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Abstract

In many real world situations, collective decisions are made
using voting and, in scenarios such as committee or board
elections, employing voting rules that return multiple win-
ners. In multi-winner approval voting (AV), an agent submits
a ballot consisting of approvals for as many candidates as they
wish, and winners are chosen by tallying up the votes and
choosing the top-k candidates receiving the most approvals.
In many scenarios, an agent may manipulate the ballot they
submit in order to achieve a better outcome by voting in a way
that does not reflect their true preferences. In complex and un-
certain situations, agents may use heuristics instead of incur-
ring the additional effort required to compute the manipula-
tion which most favors them. In this paper, we examine voting
behavior in single-winner and multi-winner approval voting
scenarios with varying degrees of uncertainty using behav-
ioral data obtained from Mechanical Turk. We find that peo-
ple generally manipulate their vote to obtain a better outcome,
but often do not identify the optimal manipulation. There are
a number of predictive models of agent behavior in the so-
cial choice and psychology literature that are based on cog-
nitively plausible heuristic strategies. We show that the exist-
ing approaches do not adequately model our real-world data.
We propose a novel model that takes into account the size of
the winning set and human cognitive constraints; and demon-
strate that this model is more effective at capturing real-world
behaviors in multi-winner approval voting scenarios.

1 Introduction
Computational Social Choice (COMSOC) investigates com-
putational issues surrounding the aggregation of individual
preferences for the purposes of collective decision-making
(Brandt et al. 2016). There is a rich body of work that
focuses on the computational complexity of manipulating
elections under various voting rules (Faliszewski and Pro-
caccia 2010). In some cases, it is easy for a voter to com-
pute the optimal manipulation for a given scenario, e.g., an
agent casting a ballot for their second ranked candidate, who
would win over their third ranked candidate, when their most
preferred candidate has no chance in a plurality election.

However, in cases when it is computationally hard for the
agent to manipulate an election optimally, it is assumed that
voters will report their true preferences rather than trying to
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strategize (Faliszewski, Hemaspaandra, and Hemaspaandra
2010; Faliszewski and Procaccia 2010). Voting truthfully is
just one possible heuristic that voters may use when faced
with complex voting scenarios in which the optimal strategy
is not easy to compute. For example, a recent study showed
that in a plurality election where there was uncertainty over
how many more votes were to be cast and a preferred can-
didate had no chance to win, voters would compromise and
vote for the current leader (Tal, Meir, and Gal 2015). In other
work on allocations, agents have been observed using local
strategies to manipulate when faced with a complex compu-
tation to find the optimal strategy (Mennle et al. 2015).

In this paper, we examine both the accuracy with which
these heuristics model decision making in single-winner and
multi-winner approval voting elections. We consider scenar-
ios both with and without uncertainty that is represented, in
our case, as missing ballots in the election.

Multi-winner approval voting is particularly interesting
as a voter may have multiple sincere ballots they can cast,
with some being better than others (Meir et al. 2008; Walsh
2007). Understanding the behavioral component of strategic
actions plays an important role in agent models as the com-
plexity of the voting scenarios increases. A computational
model can capture contextual information about an election
to predict voter’s choices in such settings and provide a bet-
ter understanding of how voters behave at both the individual
and group level. Prediction accuracy is an important metric
for evaluating models of how humans vote. Accurate models
play a fundamental role in providing more reliable forecasts,
plausible explanations of voter behavior, and new models for
complexity analysis of voting settings (Mattei 2020).

Contributions. We perform a novel experiment to inves-
tigate voter behavior in multi-winner approval voting un-
der uncertainty. We identify cognitively plausible heuristics
from the psychology literature that may serve as models of
voters’ responses, and we provide a quantitative analysis of
when and how often these models are deployed in the real
world. We evaluate these heuristics against others from the
literature on voting in terms of accuracy in predicting vot-
ers’ behavior, showing that none of these existing models
are very accurate. Finally, we propose a new model which
exhibits a significant performance improvement by taking
into account contextual information, such as the size of the
winning set, as well as human cognitive constraints.



Candidates (C): A B C D E
Utility (ui): 0.05 0.10 0.01 0.25 0

Table 1: Example of the utility of a voter i for 5 candidates
A,B,C, D and E.

2 Approval Voting
Following (Aziz et al. 2015) and (Kilgour 2010) we con-
sider a social choice setting (N,C) where we are given a
set N = {1, . . . , n} of voting agents and a disjoint set
C = {c1, . . . , cm} of candidates. Each agent i ∈ N ex-
presses an approval ballot Ai ⊆ C which gives rise to a set
of approval ballots A = {A1, . . . , An}, called a profile. We
study the multi-winner approval voting rule that takes as in-
put an instance (A,C, k) and returns a subset of candidates
W ⊆ C where |W | = k called the winning set. Approval
Voting (AV) finds the set W ⊆ C where |W | = k that max-
imizes the approval score, i.e., the total weight of approvals,
AV (W ) =

∑
i∈N |W ∩ Ai|. Informally, the winning set

under AV is the set of candidates approved by most voters.
In some cases, it is necessary to use a tie-breaking rule

in addition to a voting rule to enforce that the size of W
is indeed k. Tie-breaking is an important topic in COM-
SOC and can have significant effects on the complexity of
manipulation of various rules even under idealized models
(Aziz et al. 2013; Mattei, Narodytska, and Walsh. 2014;
Obraztsova, Elkind, and Hazon 2011). Typically in the lit-
erature, a lexicographic tie-breaking rule is given as a fixed
ordering over C, and the winners are selected in this order.
However, in this paper, as discussed in (Aziz et al. 2013), we
break ties by selecting a winner uniformly at random from
the tied set.

Similarly to work in the literature on decision heuristics,
e.g., Gigerenzer and Goldstein (1996) and COMSOC, e.g.,
Meir et al. (2008), we assume that each agent i ∈ N also has
a real valued utility function ui : C → R; Table 1 shows an
example with 5 candidates. We also assume that the utility
of agent i for a particular set of winning candidates W ⊆ C
is ui(W ) =

∑
c∈W ui(c) (with slight abuse of notation). If

W is the subset elected by the voting rule we will refer to
ui(W ) as agent i’s utility for the outcome of the election.

Truthfulness in Approval Voting
Studies of approval voting for multi-winner elections span
nearly 40 years (Brams 1980). For nearly that entire period,
there has been an intense discussion of the strategic aspects
of approval balloting (Brams 1982). Researchers over the
years have made a variety of assumptions and (re)definitions
of what makes a particular vote either truthful or strategic
(Laslier and Sanver 2010; Niemi 1984; Brams 1982). Ac-
cording to Brams (1982): “A voter votes sincerely if and
only if whenever he votes for some candidate, he votes for all
candidates preferred to that candidate.” However, even this
definition is debated as there can be multiple sincere strate-
gies (Niemi 1984). This definition is used in recent COM-
SOC literature to define Sincere Ballots (Endriss 2007), of
which there may be many for a given scenario. This is a sub-
tle issue as when it is assumed that agents have dichotomous

preferences, then multi-winner approval voting is incentive
compatible as a complete ballot, i.e., one for all candidates
with positive utility, and a sincere ballot are the same. How-
ever, if agents have linear preferences over the candidates,
as they do in our settings, then there may be multiple sincere
ballots that are not complete (Meir, Procaccia, and Rosen-
schein 2008; Meir et al. 2008).

We make the following distinctions which are supported
by both psychology research on heuristic strategies dis-
cussed in Section ?? and discussions in the COMSOC com-
munity about voting in approval voting scenarios.
Complete Ballot: a voter submits a ballot approving all

candidates for which they have positive utility.
Sincere Ballot: a voter submits a ballot in which if a voter

approves a particular candidate, then she also approves
all candidates that are preferred to that candidate (Endriss
2007; Meir et al. 2008; Brams 1982). Intuitively, this is
an assumption of monotonicity over the preferences and
captures many of the votes one would cast in the take the
X best heuristic we will see later.
As an example of a Complete Ballot versus a Sincere Bal-

lot, consider a voter having the set of preferences [A =
0.4, B = 0, C = 0.2, D = 0.01]. Given these preferences,
a Complete Ballot is [A,C,D], while a Sincere Ballot could
be either [A], [A,C], [A,C,D], or [A,B,C,D].

3 Related Work
The complexity of manipulation for various types of AV has
received considerable attention in the COMSOC literature
(Brandt et al. 2016). If agents act rationally and have full in-
formation about the votes of other agents, when agents have
Boolean utilities AV is strategy-proof. When agents have
general utilities, finding a vote that maximizes the agent’s
utility can be computed in polynomial time (Meir, Procac-
cia, and Rosenschein 2008; Meir et al. 2008). For variants
of AV, including Proportional AV, Satisfaction AV, and RAV,
the complexity of finding utility-maximizing votes ranges in
complexity from easy to coNP-complete (Aziz et al. 2015).

Theoretical work in COMSOC often makes worst-case
assumptions, e.g., that manipulators have complete informa-
tion (Brandt et al. 2016). There are efforts to expand these
worst-case assumptions to include the uncertain information
and agents that are not perfectly rational, to more closely
model the real-world (Mattei 2020). In Reijngoud and En-
driss (2012), agent behaviors are measured when agents are
given access to poll information. In Meir, Lev, and Rosen-
schein (2014), agents are modeled as behaving in locally
dominant, i.e., myopic ways. A survey of recent work on
issues surrounding strategic voting is given by (Meir 2018).

There is a growing effort to use simulations and real-
world data to test various decision-making models, e.g.,
(Mattei and Walsh 2017, 2013; Mattei 2020). Within the
economics and psychology literature, there have been sev-
eral studies of approval voting and the behavior of voters.
Perhaps the most interesting and relevant to our work are the
studies of (Regenwetter, Ho, and Tsetlin 2007), which focus
on the elections of various professional societies where ap-
proval balloting. Regenwetter, Ho, and Tsetlin (2007) find



that many voters use a plurality heuristic when voting in AV
elections, i.e., they vote as if they are in a plurality election,
selecting only their most preferred candidate. Zou, Meir, and
Parkes (2015) use approval voting data from Doodle and
conclude that the type of poll has a significant effect on voter
behavior. In both of these works, only AV with a single win-
ner was investigated, and both works relied on real-world
elections where it was not possible to tease out the relation-
ship between the environment and decisions.

Three recent papers address strategic voting under the plu-
rality rule, where agents are making decisions in uncertain
environments. First, Tyszler and Schram (2016) studied the
voting behavior of agents under the plurality rule with three
options. They find that the amount of information available
to the voters affects the decision on whether or not to vote
strategically and that in many cases, the strategic decisions
do not affect the outcome of the plurality vote. Second, in
Tal, Meir, and Gal (2015) an online system is presented
where participants vote for cash payments in a number of
settings using the plurality rule under uncertainty. They find
that most participants do not engage in strategic voting un-
less there is a clear way to benefit. Indeed, most voters were
lazy, and if they did vote strategically, they would do a one-
step look-ahead or perform the best response myopically. Fi-
nally, in Fairstein et al. (2019), a comprehensive study using
both past datasets and newly collected ones examines the ac-
tual behavior of agents in multiple settings with uncertainty
versus behavior that is predicted by a number of behavioral
and heuristic models. The paper proposes a novel model of
user voting behavior in these uncertain settings called attain-
able utility, where agents consider how much utility they
would gain versus the likelihood of particular candidates
winning given an uncertain poll. They conclude that the at-
tainable utility model is able to explain the behavior seen
in the experimental studies better than existing models and
even perform near the level of state-of-the-the-art machine
learning algorithms in modeling users’ actual behavior.

We expand upon these recent works on plurality to con-
sider heuristics in the significantly more complex setting
of multi-winner approval voting with uncertainty. We show
that, in this context, simple heuristics are inadequate to cap-
ture voting behavior and applying the attainability-utility
model directly results in limited predictive capabilities. We
then extend the attainability-utility model to incorporate
more information of the voting scenarios while maintain-
ing cognitive plausibility, proving that this is key to greatly
enhance predictive accuracy.

4 Behavioral Data
Our behavioral study aimed at investigating approval voting
heuristics and included 104 participants recruited through
Mechanical Turk. Participants were asked to cast ballots in
a voting game where they were presented with a number
of multi-winner approval voting scenarios with a monetary
value that was paid out when certain candidates won. Partici-
pants were paid $1.00 to participate in the study and received
a bonus of no more than $8.00, which was determined by the
outcome of hypothetical elections. All participants voted in
the single winner scenarios (n=104). Participants were then

Candidate: A B C D E
Utility: 0.05 0.10 0.01 0 0.25
# Votes: 3 3 3 4 3

Table 2: Scenario A design, including candidates, utilities
and votes. Heuristic votes: Complete: [A,B,C,E], Take 1
Best: [E], Take 2 Best: [E,B], Take 3 Best: [E,B,A]

Candidate: A B C D E
Utility: 0.05 0.10 0.01 0.25 0
# Votes: 3 3 4 3 3

Table 3: Scenario B design, including candidates, utilities
and votes. Heuristic votes: Complete: [A,B,C,D], Take 1
Best: [D], Take 2 Best: [D,B], Take 3 Best: [D,B,A]

randomly assigned to be part of a 2-winner (n=50) or 3-
winner (n=54) election for the remainder of the study. More
information about this study can be found in Scheuerman
et al.; Scheuerman et al. (2019a; 2019b).

In this analysis, we consider two scenarios in particular,
Scenario A and Scenario B, shown in detail in Tables 2
and 3. In these scenarios, the participant faces a situation
where each candidate generates a different amount of utility
u ∈ 0, 0.1, 0.05, 0.10, 0.25, paid as a reward if that candi-
date is in the winning set. In both scenarios, none of the par-
ticipant’s high utility candidates are leading the election, but
all are within 1 approval of being tied for the lead. We ob-
serve how people respond, particularly considering if they
cast a Complete Ballot or a Sincere Ballot, and how many
sincere candidates they choose to approve. The experimental
data consists of responses to Scenarios A and B in 9 different
conditions: where there are 1, 2 and 3-winners with 0, 1 or
3 missing ballots. Hence we can examine how varying both
the number of winners as well as the amount of uncertainty
affects voter behavior.

Using χ2 analysis, we examined the responses from both
scenarios across all conditions and found no significant dif-
ference in the distribution of responses between each sce-
nario. This means that even though the values of the can-
didates and the current leader changed, the voters behaved
largely the same in both Scenarios A and B. Within each
scenario, there was also no significant difference in how
people voted as the number of missing ballots increased.
However, significant differences (P < 0.005) were found
when comparing the strategies used by voters in those con-
ditions electing one or two winners compared to those elect-
ing three winners. In general, when voting in single-winner
and 2-winner elections, participants cast a ballot for 2 or 3
candidates (single-winner: 57.9%, 2-winner: 70.7%) more
often than other strategies. When participants voted in the
3-winner election, they usually cast a ballot for 3 candidates
(61.7%). Figure ?? shows how an individual voter’s ballots
changed as the number of winners increased from 1 to 3.

We found that, in general, the majority of people vote sin-
cerely with a Take the X Best strategy: 78.8% in Scenario A
and 77.8% in Scenario B. However, the value of X used by
the voters changed depending on the individual and the size



# winners (k)
n 1 2 3
0 Take 1

A: 0.12
B: 0.13

Take 1
A: 0.22
B: 0.26

Take 2
A: 0.31
B: 0.36

1 Take 1
A: 0.11
B: 0.12

Take 2
A: 0.21
B: 0.22

Take 2
A: 0.30
B: 0.31

3 Take 1
A: 0.11
B: 0.11

Take 2
A: 0.20
B: 0.21

Take 2
A: 0.29
B: 0.29

Table 4: The maximum expected utility for Scenarios A and
B, and the heuristic that achieves this optimal outcome. n
represents the number of missing ballots.

of the winning set, as seen in Figure ??.

5 Evaluation of Heuristics as Models
Using our experimental data, we evaluated five approaches
for predicting voter behavior over single-winner, two-
winner, and three-winner conditions. First, we consider the
effectiveness of a model that predicts optimal votes, i.e., the
one that always maximizes the expected utility. We evalu-
ate four other predictive models, each of which corresponds
to the heuristics described in Section ??, namely, Complete,
Take X Best with X equal to the size k of the winning set,
AU and AUT.

Optimal Baseline
As a baseline, we assume that people vote optimally, approv-
ing the ballot that maximizes their expected utility, which
varies with the number of winners and missing ballots.
Given the number of winners k ∈ {1, 2, 3} and the number
of missing ballots n̂ ∈ {0, 1, 3} the expected utilityE of bal-
lot b ∈ P(C) is: E(b, k, n̂) =

∑
cj∈b p(cj , k, n̂)u(cj). As-

suming that all potential missing ballots are equally likely,
p(cj , k, n) refers to the probability that candidate cj is
elected, given that there are k possible winners, n̂ missing
votes and that ties are broken uniformly at random.

For each possible number of winners and the number
of missing ballots, the Optimal Baseline, selects the ballot
maximizing the expected utility:

MOpt(k, n̂) = arg max
b∈P(C)

E(b, k, n̂). (1)

The optimal ballots and the corresponding maximum ex-
pected values for Scenarios A and B can be found in Table
4. Note that the Optimal Baseline in each of these scenarios
and conditions corresponds to a variant of the Sincere Ballot
of Take the X best. For example, in both scenarios, the Take
the 1 Best heuristic is optimal when there is a single winner
and no missing ballots. However, it is optimal to Take the 2
Best with 3 winners and no missing ballots.

Fitting Heuristics to Data
In addition to the Optimal baseline, we fit each of the four
heuristics to the data and tested their accuracy as predictive
models of voter behavior. In addition to testing Complete

1 winner 2 winner 3 winner
Optimal: 24.7% (3.9%) 19.7% (9.1%) 14.2% (5.8%)

AU: 13.8% (2.6%) 16.3% (2.0%) 7.4% (2.0%)
Complete: 15.1% (1.2%) 13.7% (2.7%) 9.0% (2.0%)

Take k best: 22.8% (4.1%) 30.7% (2.2%) 58.3% (4.0%)
AUT: 58.1% (11.6%) 68.0% (1.8%) 67.9% (3.4%)

Table 5: Mean prediction accuracy (standard deviation) for
each model across conditions.

and Take theX Best, whereX is set to be the number of win-
ners X = k, we trained AU and AUT on the data collected
from Scenarios A and B for each individual. The parameters
and ranges we considered are:

Attainability-Utility (AU). Using a grid search, we fit α ∈
{0, 1, 2} and β ∈ {1, 2, . . . , 32}.

Attainability-Utility with Threshold (AUT). Since the
behavioral results did not show a tendency to vote based
on attainability alone, i.e., people rarely voted for only
leading candidates with no utility or low utility, we
choose to set α = 1 and fit only β and τ . Using a grid
search, we tested values for β ∈ {1, 2, . . . , 32} and
τ ∈ {0, 0.0005, . . . , 0.10}.
We train the parameters of AU and AUT as follows. For

each individual voter, when we fix k, we have 6 conditions
to use for training and testing our model. These 6 condi-
tions correspond to the number of possible missing ballots,
n̂ ∈ {0, 1, 3}, for Scenarios A and B. We use five of these
observations to train the parameters of the AU or AUT model
and predict the sixth. Using a leave-one-out methodology,
we do this for all possible splits of the data. We compute the
accuracy over these six splits for each individual. We then
average this accuracy over all individual voters for each of
the k ∈ {1, 2, 3} winning set size conditions. Each of the
models were evaluated for their accuracy in predicting voter
behavior in Scenarios A and B. The Optimal, Complete, and
Take k Best models are deterministic, depending on the sce-
nario, the number of winners and the number of missing bal-
lots. The average prediction accuracy and standard deviation
over the six responses for each of the winning set size con-
ditions are reported in Table 5 and shown in Figure 1.

Evaluation Results and Discussion
The model evaluation results show that a model of optimal
behavior using expected utilities is not a good representa-
tion of voter behavior and supports the idea that people do
not take the time to perform the calculations necessary to
identify optimal solutions. We also found that people tend
to not vote a Complete Ballot. The experimental data indi-
cated that voters tend to approve more candidates as the size
of the winning set increases. Thus, we conjectured that the
Take k Best model, predicting that people would vote for the
number of top candidates that was equal to the number of
winners (k) would perform well. However, this was refuted
by our experimental results which showed only a modest im-
provement in performance in the 3-winner condition.

Next, we tested whether or not voters make a trade-off be-
tween the utility and attainability of the candidates. We first



Figure 1: Mean and standard deviation of prediction accu-
racy for each model across conditions.

tried this by using the attainability-utility heuristic (AU),
which considers the trade-off of attainability and utility for
all subsets of candidates. We found that this also does not
describe the voting behavior in multi-winner approval voting
election. The poor performance of the AU model can likely
be attributed to the way that it calculates the attainability-
utility for every possible subset of candidates, rather than
each individual candidate. The attainability-utility of ballots
containing all utility generating candidates is higher than
ballots that contain only a subset of them, leading to Com-
plete Ballots being predicted much more often than sincere
Take the X Best behavior (See Table ??).

Finally, we addressed this with a novel model of the
attainability-utility heuristic with a threshold for approval
voting. This model takes into account human cognitive con-
straints by generating an attainability-utility score for each
candidate, rather than for every possible subset, and choos-
ing to vote for only the candidates above a certain threshold.
This model performed the best of all the models evaluated.
On average, our AUT model performed 80.7% better than
the AU model. For single-winner voting, it performed 57.5%
better than the second best model (Optimal). In 2-winner
elections, it performed 55.0% better than the second best
model (Take k Best). Finally, in the 3-winner elections, it
performed 14.3% better than the second best model (Take k
Best). Hence, our cognitively inspired heuristic model accu-
rately predicts the voting behavior of agents in multi-winner
approval voting environments more often than any existing
models in the literature.

6 Conclusion and Future Directions
We have evaluated several heuristics as models of voter be-
havior in multi-winner approval voting. We found that our
novel model of the attainability-utility heuristic with thresh-
old provided the best predictive power of the models tested.
This model simulates voters ranking each candidate based
on a trade-off between attainability and utility, and then ap-
proving candidates ranked above a threshold.

To enhance prediction and understanding, a full taxonomy
of (internal) cognitive strategies and capabilities along with
(external) voting contexts and elements of uncertainty is re-

quired to fully explore the interaction between the two. Our
AUT model, which describes the trade-off between attain-
ability and utility at the candidate level while generalizing
across different conditions of uncertainty, number of win-
ners, and voting rules (i.e. approval and plurality), is an ini-
tial step in this direction. Going forward, we will explore
how cognitively plausible models like AUT can be used to
develop hybrid machine learning models that leverage mod-
els of cognitively plausible heuristics to predict voter behav-
ior with even greater accuracy.
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