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ABSTRACT 

Recognizing the model of a vehicle in natural scene images is an important and challenging task for real-life 
applications. Current methods perform well under controlled conditions, such as frontal and horizontal view-angles 
or under optimal lighting conditions. Nevertheless, their performance decreases significantly in an unconstrained 
environment, that may include extreme darkness or over illuminated conditions. Other challenges to recognition 
systems include input images displaying very low visual quality or considerably low exposure levels. This paper 
strives to improve vehicle model recognition accuracy in dark scenes by using a deep neural network model.  To boost 
the recognition performance of vehicle models, the approach performs joint enhancement and localization of vehicles 
for non-uniform-lighting conditions.  Experimental results on several public datasets demonstrate the generality and 
robustness of our framework. It improves vehicle detection rate under poor lighting conditions, localizes objects of 
interest, and yields better vehicle model recognition accuracy on low-quality input image data.  
 

Grants: This work is supported by the US Department of Transportation, Federal Highway Administration (FHWA), 
grant contract:  693JJ320C000023 
Keywords—Image enhancement, vehicle model and make recognition, object detection, deep learning, object 
recognition in the dark, vehicle detection and recognition in the dark. 
 

1. INTRODUCTION 

The recent revolutionary advancement in the field of deep learning and computer vision in particular, has had a 
transformational impact on intelligent transportation systems. Vehicle plate number identification and recognition 
systems [1], [2] , vehicle detection and classification [3]–[5], vehicle reidentification [6], [7] , incidents detection 
systems [8], [9], and spatio-temporal tracking systems [10], are some of the numerous computer vision technologies 
that find direct application in smart  transportation systems.  

As the sheer volume of traffic surveillance cameras continues to grow, monitoring the vast amounts of live feeds and 
producing timely actionable responses to incidents becomes intractable. Thus, it has become imperative to develop 
assistive technologies to make transportation systems much smarter with capabilities of integrating a wider range of 
applications including advanced security.  

The ability to recognize the make and model of a vehicle is vital in providing an extra layer of security in surveillance 
applications. Consider for example a plate number verification system that is capable of efficiently identifying and 
recognizing a plate number attached to a vehicle and effectively retrieving the residential address and other essential 
details of the owner to which the vehicle is registered. Such a system will fail to identify cases in which license plates 
are swapped from one vehicle to another to perpetuate crimes or may simply fail if images are of low-quality under 
non-uniform lighting conditions. There has been several reported cases of truck drivers using several tricks to instantly 
swap  or partially occlude their plate number to avoid paying toll fees, and then swap back to the original plate once 
they’ve gone pass the toll gate [11], [12]. Automatically recognizing the make and model of a particular vehicle along 
with its associated license plate will help address such loopholes while altogether providing an additional layer of 
security. 
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(a) Ambigous plate number (b) Duplicate plate number 

  
(c) Marred plate number (d) Fake plate number 

Figure 1: Samples of altered plate numbers which elude plate number identification and recognition systems. 

State-of-the-art object detection algorithms such as YOLOv3 [13], SSD [14], and Fast-RCNN [15], have demonstrated 
very high accuracy in object detection tasks, specifically vehicle detection and categorization (car, buses, trucks, 
motorcycle, bicycle). However, detection accuracy of these models is significantly impaired in presence of non-
uniform illumination. This detection impairment in turn reduces the efficacity of vehicle recognition models. 
Furthermore, most existing vehicle recognition models are designed to work well under controlled environments and 
optimal lighting conditions, as such they suffer considerable performance degradation in presence of non-ideal 
conditions such as low-light, hazy, and foggy weather. 

To address these challenges, a deep neural network-based framework for joint enhancement and localization for real 
time vehicle make and model recognition was developed. The proposed framework incorporates from end-to-end: a) 
a lightweight Non-Uniform Light Enhancement via Deep Curve Estimation (NULE-DCE) model for automatically 
transforming the input images/frames into their well illuminated version with fine-grain details, b) Yolov5 object 
detector for automatically detecting and extracting patches of objects of interest, and c) a trained Resnet model for 
recognizing the make and model of the detect vehicles.  

The notable contributions of this research endeavor can be summarized as follows: 

a) An efficient lightweight model for non-uniform light enhancement through well-defined and pretrained light 
enhancement curves technique is proposed. The proposed NULE-DCE model is a hybrid fusion of  Zero-
DCE [16] and DUAL [17] light enhancement models. Unlike existing low light enhancement algorithms, the 
model considers the case of underexposed (low-light) and overexposed image enhancement while not 
requiring paired data for training. The model is also very lightweight and can run at very high frame rate 
making it suitable for a framework with computationally intensive object detection and object recognition 
models. 

b) We proposed a trained ResNet 50 model with high accuracy for vehicle make and model recognition. 
c) Lastly, an end-to-end framework for automatically localizing and recognizing vehicles make and model in 

the presence of non-uniform lighting is developed. 

Computer simulations demonstrate that the proposed lightweight automatic non-uniform light enhancement method 
outperforms current state-of-the-art. Additionally, we demonstrate that the proposed end-to-end framework 
substantially boosts vehicle detection and recognition accuracy. 
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Figure 2: Vehicle detection in presence of lowlight using YOLOv5 model. Images on the right are enhanced versions 
of the lowlight images on the left using the proposed NULE-DCE model. It can be seen that the detection model fails 
to detect some of the vehicles of interest in the dark. 
 

2. RELATED WORK 

Fine-grained vehicle recognition still remains a challenge despite continuous effort to push the accuracy boundary of 
existing models on such tasks. The public release of fine-grain vehicle classification datasets such as VMMR [18], 
Stanford Dataset [19], and CompCars [20],  has spurred increasing interest in the computer vision community to 
develop sophisticated models for performing fine-grain vehicle classification. However, the nature of these training 
datasets, which only consider specific views of vehicles (frontal view, rear view, side view) and under controlled 
lighting conditions, has skewed the strength of existing vehicle fine-grained recognition models on the type of data 
trained on. As a result of these biases, such recognition models do not account for some of the real-world scenarios 
such as nighttime/darkness, hazy or foggy weather conditions. Hence, there is noticeable decline in performance when 
these models are tested on input data that simulate other real-world conditions such as non-uniform lighting. 

A. Fine-Grained Vehicle Classification/Recognition 

Earlier classical systems favored using popular feature extraction methods such as SIFT, SURF and HOG, coupled 
with a simple classifier such as SVM, Nearest Neighbor and Random Forest [21]–[23]. However, these methods rely 
on the strength of the feature extractor used and fail to consider many real-world scenarios. 

Wang et al. [24] proposed a vehicle recognition algorithm based on a multiple feature subspace and transfer learning. 
The proposed model is divided into a) an offline training pipeline based on deep belief network (DBN) which uses 

Proc. of SPIE Vol. 11734  117340Q-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



multiple restricted Boltzmann machines to extract relevant features; and b) an online transfer learning algorithm which 
generates labels for new samples. The pipeline is then retrained end-to-end for improved efficacity. Manzoor et al. 
[25]  introduced a Vehicle Make and Model recognition system based on engineered local and global feature vectors 
used to train  a Random Forest classifier. However, performance of these models is suboptimal on large-scale datasets. 

Other methods have leveraged more advanced deep neural network techniques such as ResNet, VGG and MobileNet 
models for training more accurate vehicle recognition models. Ma et al. [26] recently proposed an AI based visual 
attention model for vehicle make and model recognition which is based on Recurrent Attention Unit (RAU) 
concatenated with  the CNN layers of the Resnet101 architecture. The model proposed by Ma et al achieves state-of-
the-art accuracy on both the Stanford and CompCars datasets. Fang et al. [27] proposed a deep neural network based 
fine-grained vehicle recognition model by automatically extracting local and global features and cues to distinctively 
recognize vehicle from 281 classes with high degree of accuracy. The proposed method is able to first identify what 
subtle parts of the image contain the most descriptive cues from which hierarchical feature maps are extracted via 
multi-layer feed-forward CNN architecture network. Lee et al. [28] proposed an incremental improvement over 
Vanilla SqueezeNet using bypass connections to extract high dimensional features from input images. Principal 
Component Analysis is then applied to reduce the features dimensionality upon which k-means clustering is used to 
cluster vehicles of similar classes.  

Although some of the aforementioned systems for vehicle make and model recognition have achieved good accuracy 
on benchmark datasets, these methods fail to consider certain non-ideal real-world conditions. In this paper, we focus 
our attention on addressing the problem of vehicle recognition in presence of non-uniform lighting conditions to help 
overcome some of the drawbacks of existing models. To this end, we develop a real-time joint enhancement and 
localization framework upon which we build a robust vehicle make and model recognition system suitable for both 
optimal and suboptimal lighting conditions.  

B. Lowlight Image Enhancement 

Numerous research work has been done to address the problem of lowlight image enhancement. From classical low-
level image processing methods [17], [29] to neural network models [16], [30]–[33], to more recent generative 
adversarial network models [34], [35]. 

Guo et al. [29] proposed LIME, a very effective and considerably simple model for lowlight image enhancement using 
well coined low-level image processing techniques to articulate a generalizable mathematical formula for 
automatically estimating illumination maps for optimal image enhancement. Guo leverages on the Retinex modeling 
theory to extract a first level illumination map by finding the maximum intensities of pixels across the RGB channels. 
This step is followed by an Augmented Lagrangian Multiplier (ALM) algorithm which exploits the structure of the 
illumination map to derive a more refined map without color saturation. Zhang et al. [30] proposed an alternative 
approach to LIME for practical lowlight enhancement called KinD. Similar to the LIME method, KinD also uses 
Retinex theory to formulate the auto-enhancement objective. But unlike LIME, KinD enhances the image from two 
decoupled subspaces: an illumination component used for auto-adjusting the lighting exposure in the image; and the 
reflectance component responsible for degradation removal. However, these methods sometimes result in color 
distortions in output images and perform sub-optimally on overexposed images. 

Liang et al. [33] introduced a Deep Bilateral Retinex model which is a deep neural network model that learns to predict 
the  pixel-wise illumination and noise maps in a bilateral space to produce an equivalent enhanced image output by 
exploiting the inherent connections between the spatially-varying noise and the illumination layers. Liang accentuates 
the focus on handling measurement of noise in the formulation of the training objective of the network. Wei et al. [31] 
proposed a Deep-Retinex decomposition model for lowlight enhancement. Deep-Retinex consists of three steps 
trainable end-to-end. The first step decomposes the input lowlight image into illumination and reflectance map via a 
Decom-Net model. This is followed by an encoder-decoder network for adjusting the illumination map. Lastly, a 
multi-scale concatenation is used to enforce local and global consistency of pixels color and contextual information. 
The methods are computationally expensive and require paired training data. Furthermore, some patches in the image 
appear under or over enhanced. 
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The EnlightenGAN model proposed by Jiang et al. [34]  and the AGCRN model proposed by Oludare et al. [35] 
leverage on  the concept of Generative Adversarial Network to train efficient models that learn to automatically map 
input images from the lowlight domain to its equivalent well illuminated domain. EnlightenGAN is trained in an 
unsupervised manner such that lowlight data does not require a direct pair.  Instead, another pool of well-enhanced 
images is used to formulate the target domain from which the network models an equivalent hyperspace representation. 
This adequately translates the image from the lowlight domain to the illuminated domain. AGCRN on the other hand 
is trained on paired lowlight data which allows the model to learn a more optimal model for translating images from 
the lowlight domain to the well-illuminated domain. AGCRN provides several advantages over EnlightenGAN in 
terms of network architecture and loss function which helps achieve superior results on benchmark datasets. However, 
these GAN-Based methods can be more computationally expensive than the classical approach and also demands vast 
amounts of training data. Additionally, it overlooks the reverse problem which consists of toning down 
overexposed/over-illuminated images.  

Zhang et al. [17] also introduced a robust correction exposure model via dual illumination estimation (DUAL). This 
method starts by extracting the forward and reverse illumination map from which intermediate enhancement results 
of the input image and its inverted version are generated. The final enhanced image is generated by fusing the input 
image with the intermediate underexposed and overexposed corrected images from the input and its inverse, 
respectively. Hence achieving dual illumination correction. Guo et al. [16] proposed Zero-DCE, a deep curve 
estimation network model for auto enhancing both lowlight and overexposure images in a single network by modeling 
light enhancement curves without requiring reference or paired data. The major advantage of Zero-DCE it that it is 
very lightweight and high speed (capable of operating at up to 500 Fps) and also very efficient for both underexposed 
and overexposed image enhancement, while yielding better or comparable results to other state-of-the-art models. 
Zero-DCE feeds the input image to a shallow network of 6 convolutional layers to extract pixel wise enhancement 
maps which are then used to iteratively enhance the images using fine-tuned light enhancement curves. Although these 
methods are capable of auto enhancing both underexposed (lowlight) and overexposed images, they seem to 
underperform on extremely dark images, whereas the overexposure correction leaves a semblance of haze.  

The proposed NULE-DCE model addresses the shortcomings of these methods by capitalizing on the strengths of 
Retinex modeling theory used in the DUAL (dual illumination net )  [17] and the LIME [29] methods; and the learnable  
fast speed light enhancement curves of Zero-DCE model [16], to produce high quality visual enhancement of both 
underexposed and overexposed images. The fast speed and efficacy of the proposed model makes it very suitable for 
the joint enhancement and localization framework for vehicle model and make recognition. 
 

3. METHODOLOGY 

 

 

 

 

 

 

 

 

 

 

Fast speed 
non-uniform 

light 
enhancement 

model 
(NULE-
DCE) 

  

 

 

non-uniform light input 

Overexposed 

lowlight 

Vehicle Make and Model Recognition 

Enhanced image 

BMW 330i 

Object 
Detector 

Recognit
ion  

Figure 3: Framework for Vehicle Make and Model Recognition in presence of non-uniform lighting. The Light enhancement module 
is capable of performing high speed input preprocessing to reveal objects of interest and boost performance of object detection 
and subsequent recognition models. The overall framework achieves high accuracy for vehicle recognition in low-light. 
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The proposed joint-enhancement and localization framework for vehicle model and make recognition is a fluid end-
to-end integration of three sub-modules working collaboratively to achieve desired results., including: a) non-uniform 
light auto-correction and auto-enhancement model (NULE-DCE), b) object detection model, and c) vehicle make and 
model recognition model. Figure 3 shows the structural architecture of the proposed framework. The individual 
modules are trained independently and consolidated into a pipeline where they work hand in hand to accurately detect 
and recognize vehicles by their make and model in presence of non-uniform lighting including lowlight 
(underexposure) and overexposure. The light enhancement module preprocesses the image by correcting for non-
uniform lighting in the input image/video feed to boost the performance of the object detector which demonstrates 
reduced detection efficiency in presence of bad lighting conditions. Detected objects are subsequently passed through 
the recognition model for accurate vehicle make and model recognition. The Vehicle make and model recognition is 
a difficult task given limited availability data per class. Much less data is available with desired poor lighting 
conditions. As such it is more effective to train the recognition model on well illuminated images, making the 
enhancement module even more crucial to help the system achieve desired performance on distorted test input. 
 

3.1. No-Reference Non-Uniform Light Enhancement via Deep Curve Estimation (NULE-DCE) 

Because the object detection and recognition models are computationally intensive, it is imperative to develop a very 
lightweight enhancement model which could preprocess the input feed at a very high speed to achieve real-time 
operations. Figure 4 shows the network model for the proposed lightweight non-uniform light enhancement model. 

 
Figure 4: Non-Uniform Light Enhancement via Deep Curve Estimation (NULE-DCE) model for improved vehicle localization and 
recognition. The network is divided into 3 modules, a) a shallow network for predicting light enhancement curve inspired by Guo 
et al. [16]; b) a dual illumination network for  simultaneous underexposure and overexposure correction inspired by Zhang et al. 
[17]; and c) a recursive pixel-wise light enhancement curve mapping.  
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There are numerous state-of-the-art algorithms for performing low-light enhancement as discussed in section 2. 
However, these methods present several disadvantages if used in the proposed pipeline, the most important of which 
being “high inference time” which would constitute a system bottleneck and defeat the intended real-time speed. 
Furthermore, most algorithms only consider the case of low-light enhancement and neglect overexposure correction. 

The model proposed in this work is mainly inspired by the  Zero-DCE deep curve estimation for low-light 
enhancement proposed by Guo et al. [16], and the dual illumination estimation (DUAL) for robust exposure correction 
proposed by Zhang et al. [17]. Both these methods are lightweight and consider both underexposure and overexposure 
correction in one network. We combine the strength of both these algorithms to propose a more robust model capable 
of rendering better enhancement outputs. Essentially, we leverage the fast speed light enhancement curve estimation 
via shallow network as championed by Guo, and we make our recursive pixel-wise mapping network to benefit from 
the first level enhancement output of the dual illumination exposure correction network which helps stabilize the 
training and improve enhancement curve via backpropagation. Evaluation on numerous datasets and on vehicle 
recognition dataset as presented in the result section show the strength of the proposed methods as compared to other 
state-of-the-art.   

Non-Uniform Light Auto-Correction Curve Estimation Network 

The curve estimation network is essentially just a very shallow network of 9 blocks of 2D convolutional each followed 
by a ReLU activation function. Layers have kernel sizes of 32 and stride of 3x3.  The output of the network is passed 
through a tanh activation function to generate final pixel-wise light enhancement curve parameters used for 
automatically correcting the input images. Feature maps from lower convolutional layers are concatenated to the 
outputs of upper layers to ensure local and global pixel color consistency in the enhanced outputs using predicted light 
enhancement curves. The proposed method is also a zero-reference based method which does not require paired data 
for training. As such, the training set incorporates a mixture of images of same scene at multiple exposure level. 
Sample such images are shown in Figure 5 which are drawn from original multi-exposure images used in the LVZ-
HDR dataset [36]. Training is very fast and can be completed in 30 to 45 min, and only about 50 epochs are need. 

     
Figure 5: Sample data from the training set showing multiple exposure level for same scene from which the network learns to 
estimate the light enhancement curves to correct for both lowlight and overexposure. 

Dual Illumination Model for Exposure Correction 

Zhang et al. proposes a simple dual illumination exposure correction by formulating the joint under and over exposure 
correction as a dual illumination estimation with adequate fusion of the input image and its inverted version. 
Leveraging on this observation we theorize that such single step enhancement could help boost the performance of 
the recursive pixel-wise light enhancement curve mapping which maps the light enhancement curves parameters 
generated by the convolutional blocks to the input image.  

Given and input image 𝐼(𝑅,𝐺𝐵), the inverse image is first generated as follows: 

𝐼𝑖𝑛𝑣(𝑅,𝐺,𝐵)
= 1 −  𝐼(𝑅,𝐺𝐵)                                          (1) 

Next, the forward and backward illumination maps are extracted from the original input image and its inverted version, 
respectively. Guo et al. in the LIME paper [29] suggests that  the illumination map for an image 𝐼(𝑅,𝐺𝐵)         can  be 
obtained by extracting the maximum of the R, G, B channel for each pixel. The illumination for a pixel x can be 
defined as: 
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𝐿(𝑥) =   max
𝑐 ∈ {𝑅,𝐺,𝐵}

𝐼(𝑅,𝐺𝐵)         
𝑐                                           (2) 

Likewise, the inverse illumination map can be computed as        𝐿𝑖𝑛𝑣(𝑥) =   max
𝑐 ∈ {𝑅,𝐺,𝐵}

𝐼𝑖𝑛𝑣(𝑅,𝐺𝐵)         
𝑐  

The intermediate under/over exposure images are generated using the forward and backward illumination maps, 
respectively. The final exposure corrected image is the result of fusing the original input image with the intermediate 
under and over exposure corrected images.  

   

 
 
 
 
 
 

 

Input image Forward illumination Map Underexposure corrected 
image 

   
Inverted input image Reverse Iluumination Map Overexposure corrected 

image 
Dual exposure corrected 
image 

Figure 6: closer look at how the dual illumination module helps correct exposure in the input image. 

Recursive Pixel-Wise Light Enhancement Curves Mapping 

Through experimentation, we observe that fusing the exposure corrected output of the dual illumination enhancement 
module to the original input and then mapping the corresponding curves with Light Enhancement Equations helps the 
learning network to learn better enhancement curves for generating output with finer details and more consistent 
structural and color information both on local and global patches.  

The output feature maps from the convolutional network module are used as parameters of the enhancement curves 
which are mapped to the input image in a pixel-wise fashion using the Light Enhancement Equations as follows: 

   
𝐼1(𝑅,𝐺,𝐵)

= 𝐼′(𝑅,𝐺𝐵)  + 𝐶1 ∗ (𝐼(𝑅,𝐺,𝐵)
2 − 𝐼(𝑅,𝐺,𝐵) + 0.05 ∗ 𝐶1) ∗ 𝐼(𝑅,𝐺,𝐵)

′                               (3) 

Where 𝐶1, 𝐼(𝑅,𝐺𝐵)  , 𝑎𝑛𝑑 𝐼′(𝑅,𝐺𝐵)  represent the output pixel-wise illumination curve parameters from the convolutional 
network block, the original non-uniform lighting input, and the intermediate enhancement from the dual illumination 
module.  

The subsequent Light Enhancement curves are applied through the following equation: 

   
𝐼𝑘(𝑅,𝐺,𝐵)

= 𝐼𝑘−1(𝑅,𝐺,𝐵)
+ 𝐶𝑘 ∗ (𝐼𝑘−1(𝑅,𝐺,𝐵)

2 − 𝐼𝑘−1(𝑅,𝐺,𝐵) + 0.05 ∗ 𝐶𝑘) ∗ 𝐼𝑘−1(𝑅,𝐺,𝐵)
               (4) 

Where  𝐼𝑘(𝑅,𝐺,𝐵)
 , 𝐼𝑘−1(𝑅,𝐺,𝐵)

     represent the enhancement output at the 𝑘𝑡ℎ and (𝑘 − 1)𝑡ℎ  step, while  𝐶𝑘 represents 
the curve parameters used for pixel-wise light enhancement at the 𝑘𝑡ℎ step. 
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Auto Contrast Correction  

To further aid the training process of the curve estimation network, we introduce an automatic contrast correction 
component which helps control the contrast in the final output image and ensure global and local contrast consistency 
through backpropagation. 

The contrast correction is applied to the R, G, B channels of an image 𝐼(𝑅,𝐺,𝐵) using the following formula where R, 
G, B pixels values of the image to contrast-correct have been scaled to [0, 1] range: 

𝐼𝑐𝑜𝑛(𝑅,𝐺,𝐵)
=  𝐹 ∗ (𝐼(𝑅,𝐺,𝐵) − 0.502) + 0.502               (5) 

Where 𝐹 represents the contrast correction factor calculated for a given desired contrast level 𝐶 ∈ [0, 1] as follows: 

𝐹 =  
1.0156(𝐶 + 1)

(1.0156 − 𝐶)
                                                         (6) 

After contrast correction using Equation (5), output pixels of the resultant contrast-corrected image are truncated to 
the [0, 1] range according to the following formula: 

𝐼(𝑥)  =  {

𝐼(𝑥)  𝑖𝑓  0 ≤ 𝐼(𝑥) ≤ 1

0  𝑖𝑓 𝐼(𝑥) < 0               

255 𝑖𝑓 𝐼(𝑥) > 1           

                                 (7) 

Based on our experiment a great value for 𝐶 can be chosen in the interval [0.12, 0.196].  
The Auto Contrast correction Equations are inspired from:https://www.dfstudios.co.uk/articles/programming/image-programming-
algorithms/image-processing-algorithms-part-5-contrast-adjustment/  
 
 

3.2. Loss function 

The deep curve estimation network is trained on unpaired data in which images are presented at multiple exposure 
level. For fast convergence and adequate deep curve learning, we adopt the four loss components proposed by Guo et 
al. [16] , including Exposure Control Loss, Color constancy Loss, Spatial Constancy loss, and Illumination smoothness 
loss. In Addition, we introduce an Auto-Contrast correction loss to allow for contrast auto-correction to backpropagate 
through the network and improve the learnable parameters. The overall training objective for the proposed model is 
defined by equation 8 where:  𝜶𝟏 = 𝟓 , 𝜶𝟐 = 𝟏, 𝜶𝟑 = 𝟐𝟎𝟎. 

𝑳 =   𝑳𝒔𝒑𝒂 + 𝑳𝒆𝒙𝒑  +  𝜶𝟏𝑳𝒄𝒐𝒍  +  𝜶𝟐𝑳𝒄𝒐𝒏  𝜶𝟑𝑳𝒕𝒗𝑨
                      (𝟖) 

The exposure control loss helps control the over and under exposure by measuring the distance between the well-
exposedness of the gray world 𝑬 (typically 𝑬 = 𝟎. 𝟔 ) to the mean intensity of pixels values in a local neighborhood 
(typically 16x16 patch size in this case). Given 𝐾 non-overlapping pixels in a 16x16 local patch, with average pixel 
intensity given as 𝑋𝑚𝑒𝑎𝑛 [16].  

𝑳𝒆𝒙𝒑 =
𝟏

𝑲
 ∑ |𝑿𝒊 − 𝑬 |

𝑲

𝒊

                                                                       (𝟗) 

The illumination smoothness loss which helps preserve the relation between neighboring pixels is defined in [16] as: 

𝑳𝒕𝒗𝑨
=

𝟏

𝑵
 ∑ ∑ (𝒄 ∈𝝃 |𝛁𝒙𝑨𝒊

𝒄|  + |𝛁𝒚𝑨𝒊
𝒄|)𝟐 ,     𝒘𝒉𝒆𝒓𝒆 𝝃={𝑹,𝑮,𝑩},   𝛁𝒙,𝛁𝒚  𝒂𝒓𝒆 𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒂𝒏𝒅 𝒗𝒆𝒓𝒕𝒊𝒂𝒍  𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕𝒔

𝑵
𝒊  )       (𝟏𝟎)      
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The color constancy and spatial constancy control losses which help maintain local and global color consistency, and 
adjacent pixels structural consistency, respectively, are defined as follows [16]: 

𝑳𝒔𝒑𝒂 =
𝟏

𝑲
 ∑ ∑ (|𝑿𝒊 − 𝑿𝒋| − |(𝑿′

𝒊 − 𝑿′
𝒋)|

𝒋 ∈ 𝜴(𝒊)
)𝟐

.

                                  (𝟏𝟏)    

𝑲

𝒊

 

𝑳𝒄𝒐𝒍  =  ∑ (𝒀𝒑 − 𝒀𝒒)𝟐,   𝝃 = {(𝑹, 𝑮), (𝑹, 𝑩), (𝑮, 𝑩)}                                     (𝟏𝟐)            

∀(𝒑,𝒒)∈𝝃

 

where 𝑿, 𝑿′, 𝒂𝒏𝒅 𝑲 represent the average intensity value in a 4x4 local patch of the original image (x) and enhanced 
image (X’); and K is the number of 𝜴(𝒊) regions. 𝒀𝒑𝒂𝒏𝒅 𝒀𝒒 are the average pixel intensity in for channel p and q 
chosen from available channel combinations (𝝃 = {(𝑹, 𝑮), (𝑹, 𝑩), (𝑮, 𝑩)}). 

Finally, the Auto-contrast correction loss is defined as: 

𝑳𝒄𝒐𝒏 =
𝟏

𝑲
 ∑ ∑ (|𝑿𝒊 − 𝑿𝒋| − |(𝑳𝒊 − 𝑳𝒋)|

𝒋 ∈ 𝜴(𝒊)
)𝟐

.

                                       (𝟏𝟑)    

𝑲

𝒊

 

Equation (13) is similar to the spatial consistency loss in Equation (11), except that L represents the average intensity 
of 4x4 local patch in the contrast correct images, and X is the average intensity in the local patch of the original image.  
 

3.3. Vehicle Make Recognition Model  

The proposed vehicle model and make recognition model is trained on the VMMR dataset [18] which can be 
downloaded at : https://github.com/faezetta/VMMRdb. The dataset contains 9170 classes and 291,752 images and covers 
models between the year 1950 to 2016. First, we notice a lot of the classes contain less than 10 images, which is not 
enough training data per class. For optimal performance, we start by filtering out classes with at least 40 image samples 
and more. Next, we only consider images for vehicles from year 1995 to 2016 for more relevance, because it is highly 
unlikely to encounter a vehicle from 1995 and below in today’s traffic unless vintage cars which are corner cases. 
Finally, images of vehicles of the same make and model from different years are merged. This is to increase image 
samples per class given that vehicles similar make and model share similar features for across make year. By applying 
these filters, we end up with curated dataset of 450 vehicle make and model classes for a total of 240k images. 

 Images in the VMMR dataset have noisy background sometimes showing other random vehicles which are not the 
center focus and not of the same class. Such noisy data can negatively impact the learnable hyperspace parameters of 
the classifier. To mediate this challenge, we first run the images through an object detector to detect all vehicles in an 
image, then crop out the detected vehicle with the largest bounding box which is considered the vehicle of the class 
of interest. The cropped patch is then saved in place of the original image to constitute a more adequate and less noisy 
training and validation set.  

We split the consolidated dataset into 60% training, 20% validation and 20% testing. We train the recognition model 
using ResNet50. We use pretrained weight of ResNet50 on ImageNet and unfreeze the last 2 layers for fine-tuning the 
learnable parameters on the new dataset while training the classifier.  We used an SGD optimizer with initial learning 
rate 𝒍𝒓 = 𝟎. 𝟏 , momentum = 0.9, and weight decay = 0.0001.  Additionally, we use a learning rate scheduling 
defined as  𝒍𝒓 = 𝒍𝒓 ∗ (𝟎. 𝟏#𝒆𝒑𝒐𝒄𝒉//𝟑𝟎)   with #epoch//30 being integer division. 

The initial Vehicle Make and Model recognition model is independently trained and tested on well-illuminated vehicle 
images.  For recognition under non-uniform light however, the images from the test set are translated into non-uniform 
lighting using various image processing techniques to generate images with random non-uniform lighting conditions. 
Detailed results for such experiment are presented in section 4. 

 
 

Proc. of SPIE Vol. 11734  117340Q-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4. COMPUTER SIMULATIONS AND EXPERIMENTAL RESULTS 
 

Original Input Zero-DCE NULE-DCE (ours) 

   

   

   
   

Original Input DUAL NULE-DCE (ours) 

   

   

   
Figure 7: Performance comparison of proposed NULE-DCE (Non-Uniform Light Enhancement via Deep Curve Estimation) against 
other lightweight under/over exposure correction algorithms, particularly Zero-DCE and DUAL which both inspired NULE-DCE. 
Test data show here were obtained from live traffic camera feed at night, at the time of writing the paper. (See timestamps)  
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To demonstrate superior performance of the proposed NULE-DCE enhancement algorithm, we compare the enhanced 
output of our method against other lightweight over/under exposure correction and enhancement algorithms from 
which NULE-DCE is inspired. Particularly, we compare the enhancement performance on live traffic data feed 
(accessed online) with non-uniform lighting. Figure 7 shows visual comparison of NULE-DCE, Zero-DCE and 
DUAL. It can be seen that NULE-DCE which combines the strengths of Zero-DCE and DUAL to address both their 
weaknesses, is capable of rendering much better enhanced outputs which look more natural and have better contrast 
and color consistency at both local and global pixel levels. Additionally, NULE-DCE also inherits the fast speed 
processing of Zero-DCE, making it very suitable for embedding into a real-time recognition pipeline such as the one 
being proposed for vehicle make and model recognition.  

We further compare the performance of the proposed NULE-DCE against other prominent state-of-the-art low-light 
enhancement algorithms on several benchmark dataset including LIME dataset, DICM, VV, MEF, NPE, Hongkong 
dataset, and lowlight dataset as shown in Figure 8. Test data can be found here: https://github.com/VITA-Group/EnlightenGAN. 
It can be observed that NULE-DCE qualitatively outperforms other state-of-the-art methods on test images across 
numerous benchmark dataset. Enhanced image outputs from NULE-DCE have better exposure, better color, better 
contrast both locally and globally, and are more natural looking.  

Table 1 also compares the quantitative performances of these algorithms using the Natural Image Quality Evaluator 
(NIQE).  

 

 

Original LIME AGCRN ZERO-DCE DUAL NULE-DCE 
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Original LIME AGCRN ZERO-DCE DUAL NULE-DCE 

      

      

      

      
Figure 8: Visual comparison of NULE-DCE output against other state-of-the-art lowlight enhancement methods, on numerous 
datasets, including VV, LIME, NPE, MEF, and Lowlight 

 

Table 1: quantitative performance of proposed NULE-DCE against current state-of-the-art low-light enhancement methods 
across several dataset, including LIME, MEF, NPE, VV, DICM and Lowlight 

 LIME AGCRN Zero-DCE DUAL NULE-DCE 
Lowlight 4.8861 4.8221 5.4559 4.8756 5.4875 
LIME 3.8451 3.5053 4.1505 3.8459 4.5283 
MEF 3.3155 3.0685 3.4062 3.4544 3.9156 
NPE 4.4356 3.8259 4.1054 4.2693 4.2798 
Hongkong 
(traffic 
dataset) 

3.8320 3.8763 3.9098 3.7303 3.7247 

VV 2.5376 3.8465 3.2376 2.4725 3.1205 
DICM 3.7545 3.5472 3.5528 3.7531 4.0281 

 

For testing the recognition tasks under lowlight conditions, we first artificially generate non-uniform light images 
from the test set reserved from the VMMR dataset used for training the Vehicle Make and Model Recognition model. 
Next, we build an end-to-end pipeline for performing a joint- enhancement, detection, and recognition in one go. The 
pipeline includes the high-speed NULE-DCE image enhancer, the Fast speed YoloV5 object detection, and the 
ResNet50-based Vehicle Make and Model recognition model.  

Sample recognition output based on non-uniform light input is shown in Figure 9. 
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Mazda CX9  Vokswagen Tiguan Infiniti G37 BMW X5 

    

    
Toyota Prius V Toyota Prius  Acura Integra Audi S4 

Figure 9: Sample Vehicle Make and Model Recognition output in presence of non-uniform lighting using the proposed NULE-DCE 
as the input image/video feed enhancer. The first and third rows show non-uniform light inputs, while the second and forth rows 
show recognition outputs on the enhanced images.  

Table 2: Recognition accuracy of the proposed Vehicle Make and Model on the VMMR dataset. We first test the framework on 
the original test data extracted from the VMMR dataset which are relatively “well-illuminated images”. Next, we generate 
corresponding non-uniform light test data from the original test data and also generate corresponding lowlight test data using 
Pix2PixHD [37]. We test the performance of the same framework on such lowlight and non-uniform light test set without 
enhancement, and we record the respective test accuracies. Finally, we run the proposed framework on the non-uniform light test 
set, this time adding the proposed NULE-DCE model into the pipeline to preprocess the input images.  

 ResNet 50 VMM Recognition Model 
Top 1 accuracy (%) Top 2 accuracy (%) 

Ground Truth (test data from the VMMR dataset) 90.15% 97.2% 
Non-Uniform Light converted test data 88.15% 94.733% 
Lowlight test data generate using trained Pix2PixHD 79.32% 87.85% 
NULE-DCE enhanced test data 93.2% 98.6% 

 

Table 2 compares the vehicle make and model recognition accuracies of the proposed joint-enhancement and 
recognition framework, with and without NULE-DCE enhancing model. The framework is tested on both natural 
images, generated non-uniform light images, and enhanced images. Quantitative results demonstrate that 
preprocessing the input images using NULE-DCE significantly improves recognition accuracy. 
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To further substantiate superiority of the proposed Non-Uniform Light Enhancement model, we compare the 
enhancement output of NULE-DCE against Zero-DCE and DUAL on vehicle data. Figure 10 compares the visual 
performance of these models on lowlight vehicles data randomly extracted from the VMMR test set. 

Input DUAL ZERO_DCE NULE-DCE 

    

    

    

    

    

    

    
Figure 10: Visual comparison of proposed NULE-DCE against Zero-DCE and DUAL on lowlight vehicle data. This figure further 

demonstrate how NULE-DCE outperforms the methods from which it is inspired. 

5. CONCLUSION 

In this work, we proposed a novel joint-enhancement and localization framework for vehicle Make and Model 
recognition task in presence of non-uniform lighting conditions. The proposed framework includes a novel Non-
Uniform Light Enhancement via Deep Recursive Curve (NULE-DCE) model inspired from Zero-DCE and DUAL, 
which is used to preprocess non-uniform light input images/video for improved performance of the subsequent 
detection and recognition algorithm down the pipeline. NULE-DCE is shown to outperform current state-of-the-art 
lowlight enhancement algorithms as well as most closely related methods Zero-DCE and DUAL. NULE-DCE can run      
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at a very fast speed therefore making it most suitable for the computationally intensive framework that includes object 
detection and recognition with real-time operation objectives. Furthermore, we consolidate a training data from the 
VMMR dataset and train a ResNet50 model achieving up 93.2% recognition accuracy on a total of 450 vehicle make 
and model classes.  Our experimental results demonstrate that our framework boost vehicle make and model 
recognition by 5 to 13% in presence of non-uniform light/ lowlight data.  
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