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Abstract

Many real-life scenarios require humans to make difficult trade-offs: do we always
follow all the traffic rules or do we violate the speed limit in an emergency? These
scenarios force us to evaluate the trade-off between collective norms and our own
personal objectives. To create effective AI-human teams, we must equip AI agents
with a model of how humans make trade-offs in complex, constrained environments.
These agents will be able to mirror human behavior or to draw human attention
to situations where decision making could be improved. To this end, we propose
a novel inverse reinforcement learning (IRL) method for learning implicit hard
and soft constraints from demonstrations, enabling agents to quickly adapt to new
settings. In addition, learning soft constraints over states, actions, and state features
allows agents to transfer this knowledge to new domains that share similar aspects.

1 Introduction

Implicit and explicit constraints are present in many decision making scenarios, and their presences
forces us to make difficult decisions: do we always satisfy all constraints, or do we violate some of
them in exceptional circumstances? Many techniques can be used to combine constraints and goals
so that an autonomous agent rationally minimizes constraint violations while achieving the given
goal [11]. However, it is well known that humans are not rational. When we need to make a decision
in a constrained environment, we often reason by employing heuristics and approximations which are
subject to bias and noise [5, 6]. This means that optimal techniques may not be suitable if the aim is
to design autonomous artificial agents that act like humans, or decision support systems that simulate
human behavior to anticipate it and possibly alert humans by making them aware of their reasoning
and inference deficiencies.

Moreover, these constraints are often not explicitly given, but need to be inferred from observations
of how other agents act in the constrained world. Learning constraints from demonstrations is an
important topic in the domains of inverse reinforcement learning [1, 16], which is used to implement
AI safety goals including value alignment [4, 8, 15] and to circumvent reward hacking [3, 12]. Recent
work has focused on building ethically bounded agents [4] that comply with ethical or moral theories
of action [13, 18]. Following the work of Scobee and Sastry [16], we propose an architecture that,
given access to a model of the environment and to demonstrations of constrained behavior, is able to
learn constraints associated with states, actions, or state features. Our method, MESC-IRL, performs
comparably with the state of the art and is more general, as it can handle both hard and soft constraints
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in both deterministic and non-deterministic environments. It is also decomposable into features of
the environment, supporting the transfer of learned constraints between environments.

Contributions. We propose and evaluate a novel method, MESC-IRL, that is able to learn both hard
and soft constraints in both deterministic and non-deterministic MDPs from a set of demonstrations.
This method strictly generalizes existing methods in the literature and achieves state of the art
performance. Our method is also decomposable into features of the environment, which supports
transferring learned constraints between environments.

2 Constrained MDPs and Inverse Reinforcement Learning

We begin this section by providing the preliminary notions on the context of our work, that is, con-
strained Markov Decision Processes and Reinforcement Learning [17]. We then review fundamental
concepts and methods on Inverse Reinforcement Learning [1, 10] and background on Constrained
Markov Decision Processes [2] including related work on learning constraints [9, 16, 20], which we
will leverage to develop our novel method for learning soft constraints [14] from demonstrations [7].

3 Markov Decision Processes and Reinforcement Learning

A finite-horizon Markov Decision Process (MDP)M is a model for sequential decision making
over a number of time steps t ∈ T defined by a tuple (S,A, P,D0, φ, γ,R) [17]. S is a finite set
of discrete states; {As} ⊆ A is a set of actions available at state s; P : S × A × S → [0, 1] is a
model of the environment given as transition probabilities where P (st+1|st, at) is the probability
of transitioning to state st+1 from state st after taking action at ∈ {Ast} at time t. D0 : S → [0, 1]
is a distribution over start states; φ : S × A × S → Rk is a mapping from the transitions to a
k-dimensional space of features; γ ∈ [0, 1) is a discount factor; and R : S ×A× S → R is a scalar
reward received by the agent for being in one state and transitioning to another state at time t, written
as R(st, at, st+1).

An agent acts within the environment defined by the MDP, generating a sequence of actions called a
trajectory of length t. Let τ = ((s1, a1, s2), ..., (st−1, at−1, st)) ∈ (S ×A× S)t. We evaluate the
quality of a particular trajectory in terms of the amount of reward accrued over the trajectory, subject
to discounting. Formally, R(τ) =

∑t
i=1 γ

iR(si, ai, si+1). A policy, π : S → P(A) is a map of
probability distribution to actions for every state such that π(s, a) is the probability of taking action
a in state s. We can also write the probability of a trajectory τ under a policy as π(τ). The feature
vector associated with trajectory τ is defined as the summation over all transition feature vectors in τ ,
φ(τ) =

∑
(st,at,st+1)∈τ φ(st, at, st+1)

The goal within an MDP is to find a policy π∗ that maximizes the expected reward, J(π) =
Eτ∼π[R(τ)] [9]. In the MDP literature, classical tabular methods are used to find π∗ including value
iteration (VI). Such method finds an optimal policy by estimating the expected reward for taking an
action a in a given state s, i.e., the Q-value of pair (s, a), written q(s, a). [17].

3.1 Constrained MDPs and Inverse Reinforcement Learning

We are interested in learning constraints from a set of demonstrations D. Our goal is to create agents
that are able to be trained to follow constraints that are not explicitly prohibited in the MDP, but
should be avoided [13]. [16] discusses the importance of such constraints: an MDPM may encode
everything necessary about driving a car, e.g. the dynamics of steering and movements, but often one
wants to add additional general constraints such as avoid obstacles on the way to the goal. These
constraints are often non-Markovian and engineering a reward function that encodes these constraints
may be a difficulty or impossible task [19].

One approach for learning constraints from demonstrations is to use techniques from inverse rein-
forcement learning (IRL): given a set of demonstrated trajectories D of an agent in an environment
M with an unknown reward functionM\R, IRL provides a set of techniques for learning a reward
function R̂ that explains the agent’s demonstrated behavior [1, 10]. However, this technique has
many drawbacks: often there are many reward functions that lead to the same behavior [16], the
reward functions may not be interpretable [19], and there may be issues such as reward hacking –
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Figure 1: Example grid with constraints of varying costs over actions, state occupancy, and state
features. Note π∗N for MN is the red trajectory, obtained by an agent that does not know the
constraints while π∗C∗ forMC∗ is the blue trajectory.

wherein the agent learns to behave in ways that create reward but are not intended by the designer –
an important topic in the field of AI safety [3, 12] and value alignment [13, 15].

We follow the framework of Altman [2] and Malik et al. [9] and define a Constrained MDPMC
which is a nominal MDPMN with an additional cost function C : S × A × S → R and a budget
α ≥ 0. We can then define the cost of a trajectory to be c(τ) =

∑t
i=1 c(si, ai, si+1). Setting α = 0 is

enforcing hard constraints, i.e., we must never trigger constrained transitions. In this work, unlike the
work of both Scobee and Sastry [16] and Malik et al. [9], we are interested in learning soft constraints
[14]. Under a soft constraints paradigm, each constraint comes with a real-valued penalty/cost and
the goal is to minimize the sum of penalties incurred by the agent.

Following Scobee and Sastry [16], the task of constraint inference in IRL is defined as follows. Given
a nominal MDPMN and a set of demonstrations D in ground-truth constrained worldMC∗ , we
wish to find the most likely set of constraints C that could modifyMN to explain the demonstrations.
We are concerned with three types of constraints:

Action Constraints: We may not want an agent to ever perform some (set of) action ai;
Occupancy Constraints: We may not want an agent to occupy a (set of) states si;
Feature Constraints: Given a feature mapping of transitions φ, we may not want an agent to

perform an (set of) action in presence of specific state features.

Without loss of generality, we add the state and actions to the features. Hence, action and occupancy
become specific cases of feature constraints. Note that the set of constraints is defined as a cost
function over the set of transitions C : S × A× S → R. In Scobee and Sastry [16], this definition
is limited to a set of state-actions S ×A as they are assuming a deterministic setting and hence are
able to defineMC by substituting A = {As} with AC = {ACs} inMN . Finally, both Scobee and
Sastry [16] and Malik et al. [9] propose a greedy approach to infer a set of constraint C that explains
the demonstrations D onMC∗ . In both Scobee and Sastry [16] and Malik et al. [9] the domain is
restricted to deterministic MDPs, which we strictly generalize in this work; additionally Scobee
and Sastry [16], like our model, only works with discrete actions, while Malik et al. [9] works for
both discrete and continuous action sets. We also generalize to the non-deterministic setting; we
additionally generalize to the setting of soft constraints, hence our task is to learn the cost function C.

To test our methods, we use the same grid world setup as Scobee and Sastry [16]. Within our grid
world example, shown in Figure 1 (Left), we have an action penalty of −4 for the cardinal directions,
−4×

√
2 for taking the diagonal actions, and reaching the goal state has a reward of 10. In Figure 1

(Left) we set the constraint costs to various values but in all our experiments we fix the constraint costs
on the generated grids for states, actions, and features to be −50. The feature vector φ is a one-hot
vector representing the color associated with each state: blue, green, and no color. Throughout we
assume a non-deterministic world with a 10% chance of action failure, resulting in a random action.
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4 MESC-IRL: Max Entropy Inverse Soft-Constraint RL

We now describe our method for learning a set soft constraints from a set of demonstrations D and
a nominal MDPMN . Our method described here generalizes the work of both Scobee and Sastry
[16] and Malik et al. [9] to the setting of non-deterministic MDPs and soft constraints. Following
Ziebart et al. [20], our goal is to optimize a function that linearly maps the features of each transition
to the reward associated with that transition, R(st, at, st+1) = ωφ(st, at, st+1), where ω is the
reward weight vector. Ziebart et al. [20] propose a maximum entropy model for finding a unique
solution (ω) for this problem. Based on this model, the probability of finite-length trajectory τ being
executed by an agent traversing an MDPM is exponentially proportional to the reward earned by

that trajectory and can be approximated by P (τ |ω) ≈ eω
T φ(τ)

Z(ω)

∏
(st,at,st+1)∈τ P (st+1|st, at). The

optimal solution is obtained by finding the maximum likelihood of the demonstrations D using this
probability distribution: ω∗ = argmax

ω

∑
τ∈D logP (τ |ω).

We extend the setting of Scobee and Sastry [16] to learning a set of soft constraints which best
explain D. Allowing us to move from the notion of a constraint forbidding an action or a state to a
soft constraint imposing a penalty proportional to the gravity of its violation. Given access toMN
and a set of demonstrations D in ground-truth constrained MDPMC∗ we want to find the costs C.
Formally, we define the residual reward function RR : S × A × S → R+ as a mapping from the
transitions to the penalties. We can now formally define our soft-constrained MDPMC as follows:
Given MN = 〈S,A, P, µ, φ,RN 〉 we define soft-constrained MDP MC = 〈S,A, P, µ, φ,RC〉
where RC = RN − RR. Thus, the goal of our task is to find a residual reward function RR that
maximizes the likelihood of the demonstrations D given the nominal MDPMN .

Our solution is based on adapting Maximum Causal Entropy Inverse Reinforcement learning [20, 21]
to soft-constrained MDPs. Following the setting of Ziebart et al. [20] we can write the reward function
RN (resp. RC) ofMN (resp. MC) as a linear combination of the transitions: RN (st, at, st+1) =
ωNφ(st, at, st+1) and RC(st, at, st+1) = ωCφ(st, at, st+1). As, both reward functions RN and RC
are linear, RR should be linear as well: RR = ωRφ(st, at, st+1). From this formulation of RR we
can infer that the reward vectors follow ωC = ωN − ωR.

We can use Max Entropy IRL for learning a reward function compatible with the set D. The gra-
dient for maximizing the likelihood in this setting is defined as in Ziebart et al. [20]: ∇ωCL(D) =
ED[φ(τ)] −

∑
(st,at,st+1)

Dst,at,st+1
φ(st, at, st+1). Where Dst,at,st+1

is the expected feature fre-
quencies for transition (st, at, st+1) using the current ωC weights. As the reward vectors fol-
low ωC = ωN − ωR, we have ∇ωC = −∇ωR . Finally, by substituting this in the above,
we obtain the gradient of likelihood of the constrained trajectories w.r.t. ωR: ∇ωRL(D) =∑

(st,at,st+1)
Dst,at,st+1φ(st, at, st+1)− ED[φ(τ)]. As we estimate the residual rewards w.r.t. the

nominal rewards, these rewards are automatically scaled to be compatible with the nominal rewards.

5 Generalizing From Penalties to Probabilities

The estimated penalties from the previous section can effectively guide an agent to navigate the
environment optimally as well as provide estimates of the cost of the constraints scaled to the value
of the original reward signal. However, there may be instances, such as when comparing with hard
constraints, where we desire probabilities that a particular action is constrained. Having probabilities
allows us to compare constraints across environments with possibly different scales, allows us to
use this information to guide our policies, and allows us to evaluate the confidence we have in a
particular constraint. In this section we describe a method to transition from penalties to probabilities,
as well as a generalized method to extract these probabilities based on a subset of the features of the
environment, which can facilitate transfer learning between domains.

A transition where the residual reward, i.e., the penalty, is significantly larger than zero is more likely
to be a constraint. We estimate the significance of a penalty by scaling it to the standard deviation
of the mean learned reward. Therefore, we assume that a transition penalty is a random variable,
denoted by C ∼ logistic(σpooled, σpooled), following a logistic distribution with standard deviation
σpooled, where σpooled =

√
(σ2
N+σ2

C)/2 and σN and σC are the standard deviations of the rewards in
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Figure 2: Performance of MESC-IRL for various settings of ζ at recovering hard constraints in a
deterministic setting according to false positive rate (left) and KL-Divergence from the demonstrations
D (right) as we vary the number of demonstrations. Each point is the mean of 10 independent draws.
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Figure 3: Comparision of the best performing version of MESC-IRL to the best performing method
of Scobee and Sastry [16] at recovering hard constraints in a deterministic setting according to false
positive rate (left) and KL-Divergence from the demonstrations D (right) as we vary the number of
demonstrations. Each point is the mean of 10 independent draws.

the nominal and learned constrained worlds, respectively. When penalties are close to zero, we want
their probabilities to be small. To do this we set the mean of the distribution to be µ = σpooled.

We now want to reason about a random variable ζ that indicates our belief that the transition
(st, at, st+1) is forbidden. Hence using the above probability distribution we can define the probability
of constraint given a transition as:

ζ ≡ P
(
C ≤ RR(st, at, st+1)

)
= sigmoid

(
RR(st,at,st+1)−σpooled/σpooled

)
.

In our formulation, the residual rewards only depend on the features associated with them. Hence, we
can use this fact to reason about constraints over only a subset of features f , e.g., only color or state
position. Let φf ⊆ φ be the subset of features we are concerned with. In our grids we represent φ
with a vector of length 92. The first 81 elements represent the states, the next 8 represent the actions,
and the last 3 represent the colors. So if we are interested in only learning about constraints over the
colors, φf will be a vector equal to the last three elements of φ that is φcolor ≡ φ90,91,92.

Let φf and ωRf be the feature function and residual feature weight vector for f . We can now define
the probability of a feature value to be constrained as:

ζf ≡ P (C ≤ ωRf φf ) = sigmoid (ωfφf−stdpooled/stdpooled) .
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Figure 4: Performance of MESC-IRL on recovering soft constraints in deterministic settings according
to false negatives (left), false positives (center), and JS-Divergence to D (right). We see that across
all these settings we are able to accurately recover constraints and generate behavior similar to the D
even with few demonstrations.
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Figure 5: Performance of MESC-IRL on recovering soft constraints in deterministic settings according
to false negatives (left), false positives (center), and JS-Divergence to D (right). We see that across
all these settings we are able to accurately recover constraints and generate behavior similar to the D
even with few demonstrations.

6 Experimental Evaluation of MESC-IRL

In this section we empirically validate our method for soft constraint learning against both the method
of Scobee and Sastry [16] for learning hard constraints in deterministic settings as well as on learning
soft constraints in non-deterministic settings. Figures 2 and 3 shows the performance of MESC-IRL
compared to the method proposed by Scobee and Sastry [16] on the same metrics from their paper:
false positives, i.e., predicting a constraint when one does not exist, and KL-Divergence from the
demonstrations set D. For this test we use the same single grid, hard constraints, and a deterministic
setting to allow for a direct comparison. We generate 10 independent sets of 100 demonstrations and
report the mean. In order to decide if the values returned by MESC-IRL represent a hard constraint,
we threshold the value of ζ at various levels and plot the comparison to the best result from Scobee
and Sastry [16]. MESC-IRL with ζ ≥ 0.6 performs better than existing methods when the number of
demonstrations is low, about the same when there are more demonstrations, and is able to also work
for soft constraints and non-deterministic settings.

To evaluate MESC-IRL on soft constraints we need to adapt the notion of false positives and false
negatives. Let a false positive fp be:

fp =

∣∣∣{x ∈ C | c(x) = 0 ∧ (ζC(x)− ζC∗(x) > χ)
}∣∣∣

Num. Constraints
,

where ζC(x) and ζC∗(x) are the predicted and true probability of transition x being constrained as
described in Section 5, and χ is a value in [0,1]. Intuitively, we count a constraint as a false positive
whenever there is no constraint inMC∗ and the predicted probability exceeds the true probability by
more than the threshold χ. We can adapt the notion of false negatives, fn in the same way by taking
c(x) 6= 0.

Figures 4 and 5 shows the results of our tests on recovering soft constraints in both deterministic
and non-deterministic settings with random grids. For these tests we choose a start and a goal state
randomly at least 8 moves apart, set 6 states for blue, 6 for green randomly, and select 6 randomly
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constrained states; all penalties are set to −50. Again we take 10 sets of 100 demonstrations. We see
a strong decrease in both false positives and false negatives as the number of demonstrations grows.
We see that in general, and even more so when the optimal threshold χ = 0.2 is selected, our method
almost never adds constraints that are not present in the ground truth and rarely underestimates the
probability of existing ones, even for small demonstration sets. Likewise our method is able to
generate trajectories very close to D, showing that we are able to recover both constraints even with
soft constraints in non-deterministic setting. Hence MESC-IRL is able to work across a variety of
settings and accurately capture demonstrated constraints.
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