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ABSTRACT

Counterfactual estimators enable the use of existing log data to
estimate how some new target recommendation policy would have
performed, if it had been used instead of the policy that logged
the data. We say that those estimators work "off-policy”, since the
policy that logged the data is different from the target policy. In
this way, counterfactual estimators enable Off-policy Evaluation
(OPE) akin to an unbiased offline A/B test, as well as learning new
recommendation policies through Off-policy Learning (OPL). The
goal of this tutorial is to summarize Foundations, Implementations,
and Recent Advances of OPE/OPL. Specifically, we will introduce
the fundamentals of OPE/OPL and provide theoretical and empir-
ical comparisons of conventional methods. Then, we will cover
emerging practical challenges such as how to take into account
combinatorial actions, distributional shift, fairness of exposure, and
two-sided market structures. We will then present Open Bandit
Pipeline, an open-source package for OPE/OPL, and how it can be
used for both research and practical purposes. We will conclude the
tutorial by presenting real-world case studies and future directions.
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the system. For example, the logs of a news recommendation system
record which news article was presented and whether the user read
it, giving the system designer a chance to redesign its recommen-
dations to be more relevant. Exploiting log bandit data is, however,
more difficult than conventional supervised machine learning, since
the result is only observed for the action chosen by the system, but
not for all the other actions that the system could have taken. The
logs are also biased in that they over-represent the actions favored
by the system. A potential solution to this problem is an A/B test
that compares the performance of competing systems in an online
environment. However, A/B testing systems is often difficult be-
cause deploying a new policy is time- and money-consuming and
entails the risk of failure. This motivates the problem of OPE/OPL,
which aims to estimate the performance of a new policy or to train
it using only the log data collected by a past policy.

Because of their practical relevance, there has been a growing
amount of theoretical and methodological research in OPE/OPL.
However, it is not always straightforward to apply these methods to
real-world applications, since there can be a number of challenges
that arise in practice, such as combinatorial/continuous actions,
distributional shift, and fairness of exposure requirements. This
tutorial is aimed at bridging the gap between theory and practice
in OPE/OPL. Specifically, we will introduce the fundamentals of
OPE/OPL and compare conventional methods from both theoretical
and empirical perspectives. Then, we will cover recent advances
in the field to handle the emerging practical challenges. We will
then present Open Bandit Pipeline! [15], an open-source package
and how it helps us implement OPE/OPL for research and practical
purposes. We will also present real-world case studies and future
directions.

It has been five years since the related tutorial "Counterfactual
Evaluation and Learning for Search, Recommendation and Ad Place-
ment" by Thorsten Joachims and Adith Swaminathan took place
at SIGIR2016 [6]. It is an excellent time to aggregate and unify the
essential recent works into one coherent tutorial that is particularly
valuable to the RecSys community.

The learning outcomes of this tutorial are to enable the partici-
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(1) to know fundamental concepts and conventional methods
of OPE/OPL

(2) to be familiar with recent advances to address practical chal-
lenges such as fairness of exposure

(3) to understand how to implement OPE/OPL in their research
and applications

(4) to be aware of remaining challenges and opportunities in
the area

Uhttps://github.com/st-tech/zr-obp
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This tutorial is aimed at an audience with intermediate experi-
ence in machine learning, information retrieval, or recommender
systems who are interested in using OPE/OPL methods in their
research and applications. Participants are expected to have basic
knowledge of machine learning, probability theory, and statistics.
The tutorial will provide practical examples based on Python code
and Jupyter Notebooks.

2 OUTLINE OF THE TUTORIAL
This tutorial consists of the following contents.

(1) Introduction: We will introduce conventional formulation
and methods of OPE/OPL [3-5, 14, 19-21, 24]. Moreover,
we will provide comprehensive comparisons of a variety of
methods from both theoretical and empirical perspectives.
Recent Topic 1: We will cover recent works on OPE/OPL
methods to handle emerging practical challenges such as
combinatorial actions [10, 12], continuous actions [2, 8], de-
ficient support [13], multiple loggers [1, 7], and distribu-
tional shifts [9, 11, 16]. These challenges are closely related
to real-world applications in recommender and e-commerce
systems.

Recent Topic 2: We will cover OPE/OPL with alternative
and interdependent objectives (e.g., fairness, diversity, etc.)
in multi-sided markets [17, 18, 22, 23, 25].
Implementations and Case-Studies: We will introduce
how to use Open Bandit Pipeline to implement OPE/OPL in re-
search and applications [15]. We will also present some real-
world case-studies to describe how to implement OPE/OPL
in practice.

Conclusions: We will conclude the tutorial by summarizing
the previous sections and presenting remaining research
challenges of the area.
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All materials, including slides and code, will be available during
and after the tutorial.
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