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Abstract

In offline reinforcement learning (RL), the goal is to learn a highly rewarding
policy based solely on a dataset of historical interactions with the environment.
The ability to train RL policies offline would greatly expand where RL can be
applied, its data efficiency, and its experimental velocity. Prior work in offline
RL has been confined almost exclusively to model-free RL approaches. In this
work, we present MOReL, an algorithmic framework for model-based offline RL.
This framework consists of two steps: (a) learning a pessimistic MDP (P-MDP)
using the offline dataset; (b) learning a near-optimal policy in this P-MDP. The
learned P-MDP has the property that for any policy, the performance in the real
environment is approximately lower-bounded by the performance in the P-MDP.
This enables it to serve as a good surrogate for purposes of policy evaluation and
learning, and overcome common pitfalls of model-based RL like model exploitation.
Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline
RL. Through experiments, we show that MOReL matches or exceeds state-of-the-art
results in widely studied offline RL benchmarks. Moreover, the modular design
of MOReL enables future advances in its components (e.g., in model learning,
planning etc.) to directly translate into improvements for offline RL.

1 Introduction

The fields of computer vision and NLP have seen tremendous advances by utilizing large-scale
offline datasets [1, 2, 3] for training and deploying deep learning models [4, 5, 6, 7]. In contrast,
reinforcement learning (RL) [8] is typically viewed as an online learning process. The RL agent
iteratively collects data through interactions with the environment while learning the policy. Unfor-
tunately, a direct embodiment of this trial and error learning is often inefficient and feasible only
with a simulator [9, 10, 11]. Similar to progress in other fields of AI, the ability to learn from offline
datasets may hold the key to unlocking the sample efficiency and widespread use of RL agents.

Offline RL, also known as batch RL [12], involves learning a highly rewarding policy using only a
static offline dataset collected by one or more data logging (behavior) policies. Since the data has
already been collected, offline RL abstracts away data collection or exploration, and allows prime
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Figure 1: (a) Illustration of the offline RL paradigm. (b) Illustration of our framework, MOReL, which
learns a pessimistic MDP (P-MDP) from the dataset and uses it for policy search. (c) Illustration of
the P-MDP, which partitions the state-action space into known (green) and unknown (orange) regions,
and also forces a transition to a low reward absorbing state (HALT) from unknown regions. Blue dots
denote the support in the dataset. Function approximation and generalization allows us to learn about
states not numerically identical to data support. See algorithm 1 for more details.

focus on data-driven learning of policies. This abstraction is suitable for safety sensitive applications
like healthcare and industrial automation where careful oversight by a domain expert is necessary for
taking exploratory actions or deploying new policies [13, 14]. Additionally, large historical datasets
are readily available in domains like autonomous driving and recommendation systems, where offline
RL may be used to improve upon currently deployed policies.

Due to use of static dataset, offline RL faces unique challenges. Over the course of learning, the agent
has to evaluate and reason about various candidate policy updates. This offline policy evaluation is
particularly challenging due to deviation between the state visitation distribution of the candidate
policy and the logging policy. Furthermore, this difficulty is exacerbated over the course of learning
as the candidate policies increasingly deviate from the logging policy. This change in distribution,
as a result of policy updates, is typically called distribution shift and constitutes a major challenge
in offline RL. Recent studies show that directly using off-policy RL algorithms with an offline
dataset yields poor results due to distribution shift and function approximation errors [15, 16, 17].
To overcome this, prior works have proposed modifications like Q-network ensembles [15, 18] and
regularization towards the data logging policy [19, 16, 18]. Most notably, prior work in offline RL
has been confined almost exclusively to model-free methods [20, 15, 16, 19, 17, 18, 21].

Model-based RL (MBRL) presents an alternate set of approaches involving the learning of approxi-
mate dynamics models which can subsequently be used for policy search. MBRL enables the use of
generic priors like smoothness and physics [22] for model learning, and a wide variety of planning
algorithms [23, 24, 25, 26, 27]. As a result, MBRL algorithms have been highly sample efficient
for online RL [28, 29]. However, direct use of MBRL algorithms with offline datasets can prove
challenging, again due to the distribution shift issue. In particular, since the dataset may not span
the entire state-action space, the learned model is unlikely to be globally accurate. As a result,
planning using a learned model without any safeguards against model inaccuracy can result in “model
exploitation” [30, 31, 29, 28], yielding poor results [32]. In this context, we study the pertinent
question of how to effectively regularize and adapt model-based methods for offline RL.

Our Contributions: The principal contribution of our work is the development of MOReL (Model-
based Offline Reinforcement Learning), a novel model-based framework for offline RL (see figure 1
for an overview). MOReL enjoys rigorous theoretical guarantees, enables transparent algorithm design,
and offers state of the art (SOTA) results on widely studied offline RL benchmarks.

• MOReL consists of two modular steps: (a) learning a pessimistic MDP (P-MDP) using the offline
dataset; and (b) learning a near-optimal policy for the P-MDP. For any policy, the performance in
the true MDP (environment) is approximately lower bounded by the performance in the P-MDP,
making it a suitable surrogate for purposes of policy evaluation and learning. This also guards
against model exploitation, which often plagues MBRL.

• The P-MDP partitions the state space into “known” and “unknown” regions, and uses a large
negative reward for unknown regions. This provides a regularizing effect during policy learning
by heavily penalizing policies that visit unknown states. Such a regularization in the space of
state visitations, afforded by a model-based approach, is particularly well suited for offline RL. In
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contrast, model-free algorithms [16, 18] are forced to regularize the policies directly towards the
data logging policy, which can be overly conservative.

• Theoretically, we establish upper bounds for the sub-optimality of a policy learned with MOReL,
and a lower-bound for the sub-optimality of a policy learnable by any offline RL algorithm. We
find that these bounds match upto log factors, suggesting that MOReL is nearly minimax optimal.

• We evaluate MOReL on standard benchmark tasks used for offline RL. MOReL obtains SOTA results
in 12 out of 20 environment-dataset configurations, and performs competitively in the rest. In
contrast, the best prior algorithm [18] obtains SOTA results in only 5 (out of 20) configurations.

In addition, this version of the paper extends the results presented at NeurIPS 2020 through addition
of results in the D4RL benchmark suite and by expanding the scope of Lemma 3.

2 Related Work

Offline RL dates to at least the work of Lange et al. [12], and has applications in healthcare [33,
34, 35], recommendation systems [36, 37, 38, 39], dialogue systems [40, 19, 41], and autonomous
driving [42]. Algorithms for offline RL typically fall under three categories. The first approach utilizes
importance sampling and is popular in contextual bandits [43, 36, 37]. For full offline RL, Liu
et al. [44] perform planning with learned importance weights [45, 46, 47] while using a notion of
pessimism for regularization. However, Liu et al. [44] don’t explicitly consider generalization and
their guarantees become degenerate if the logging policy does not span the support of the optimal
policy. In contrast, our approach accounts for generalization, leads to stronger theoretical guarantees,
and obtains SOTA results on challenging offline RL benchmarks. The second, and perhaps most
popular approach is based on approximate dynamic programming (ADP). Recent works have
proposed modification to standard ADP algorithms [48, 49, 50, 51] towards stabilizing Bellman
targets with ensembles [17, 15, 19] and regularizing the learned policy towards the data logging
policy [15, 16, 18]. ADP-based offline RL has also be studied theoretically [26, 52]. However, these
works again don’t study the impact of support mismatch between logging policy and optimal policy.
Finally, model-based RL has been explored only sparsely for offline RL in literature [32, 53] (see
appendix for details). The work of Ross and Bagnell [32] considered a straightforward approach
of learning a model from offline data, followed by planning. They showed that this can have
arbitrarily large sub-optimality. In contrast, our work develops a new framework utilizing the notion
of pessimism, and shows both theoretically and experimentally that MBRL can be highly effective for
offline RL. Concurrent to our work, Yu et al. [54] also study a model-based approach to offline RL.

A cornerstone of MOReL is the P-MDP which partitions the state space into known and unknown
regions. Such a hard partitioning was considered in early works like E3 [55], R-MAX [56], and
metric-E3 [57], but was not used to encourage pessimism. Similar ideas have been explored in
related settings like online RL [58, 59] and imitation learning [60]. Our work differs in its focus on
offline RL, where we show the P-MDP construction plays a crucial role. Moreover, direct practical
instantiations of E3 and metric-E3 with function approximation have remained elusive.

3 Problem Formulation

A Markov Decision Process (MDP) is represented byM = {S,A, r, P, ρ0, γ}, where, S is the state-
space,A is the action-space, r : S×A→ [−Rmax, Rmax] is the reward function, P : S×A×S → R+

is the transition kernel, ρ0 is the initial state distribution, and γ the discount factor. A policy defines
a mapping from states to a probability distribution over actions, π : S × A → R+. The goal is to
obtain a policy that maximizes expected performance with states sampled according to ρ0, i.e.:

max
π

Jρ0(π,M) := Es∼ρ0 [V π(s,M)] , where, V π(s,M) = E

[ ∞∑
t=0

γtr(st, at)|s0 = s

]
. (1)

To avoid notation clutter, we suppress the dependence on ρ0 when understood from context, i.e.
J(π,M) ≡ Jρ0(π,M). We denote the optimal policy using π∗ := arg maxπ Jρ0(π,M). Typically,
a class of parameterized policies πθ ∈ Π(Θ) are considered, and the parameters θ are optimized.

In offline RL, we are provided with a static dataset of interactions with the environment consisting
of D = {(si, ai, ri, s′i)}Ni=1. The data can be collected using one or more logging (or behavioral)
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policies denoted by πb. We do not assume logging policies are known in our formulation. Given D,
the goal in offline RL is to output a πout with minimal sub-optimality, i.e. J(π∗,M)− J(πout,M).
In general, it may not be possible to learn the optimal policy with a static dataset (see section 4.1).
Thus, we aim to design algorithms that would result in as low sub-optimality as possible.

Model-Based RL (MBRL) involves learning an MDP M̂ = {S,A, r, P̂ , ρ̂0, γ} which uses the
learned transitions P̂ instead of the true transition dynamics P . In this paper, we assume the reward
function r is known and use it in M̂ . If r(·) is unknown, it can also be learned from data. The initial
state distribution ρ̂0 can either be learned from the data or ρ0 can be used if known. Analogous toM,
we use Jρ̂0(π,M̂) or simply J(π,M̂) to denote performance of π in M̂ .

4 Algorithmic Framework

For ease of exposition and clarity, we first begin by presenting an idealized version of MOReL,
for which we also establish theoretical guarantees. Subsequently, we describe a practical version
of MOReL that we use in our experiments. Algorithm 1 presents the broad framework of MOReL. We
now study each component of MOReL in greater detail.

Algorithm 1 MOReL: Model Based Offline Reinforcement Learning

1: Require Dataset D
2: Learn approximate dynamics model P̂ : S ×A→ S using D.
3: Construct α-USAD, Uα : S ×A→ {TRUE, FALSE} using D (see Definition 1).
4: Construct the pessimistic MDP M̂p = {S ∪ HALT, A, rp, P̂p, ρ̂0, γ} (see Definition 2).
5: (OPTIONAL) Use a behavior cloning approach to estimate the behavior policy π̂b.
6: πout ← PLANNER(M̂p, πinit = π̂b)
7: Return πout.

Learning the dynamics model: The first step involves using the offline dataset to learn an approx-
imate dynamics model P̂ (·|s, a). This can be achived through maximum likelihood estimation or
other techniques from generative and dynamics modeling [61, 62, 63]. Since the offline dataset may
not span the entire state space, the learned model may not be globally accurate. So, a naïve MBRL
approach that directly plans with the learned model may over-estimate rewards in unfamiliar parts of
the state space, resulting in a highly sub-optimal policy [32]. We overcome this with the next step.

Unknown state-action detector (USAD): We partition the state-action space into known and un-
known regions based on the accuracy of learned model as follows.

Definition 1. (α-USAD) Given a state-action pair (s, a), define an unknown state action detector as:

Uα(s, a) =

{
FALSE (i.e. Known) if DTV

(
P̂ (·|s, a), P (·|s, a)

)
≤ α can be guaranteed

TRUE (i.e. Unknown) otherwise
(2)

Here DTV

(
P̂ (·|s, a), P (·|s, a)

)
denotes the total variation distance between P̂ (·|s, a) and P (·|s, a).

Intuitively, USAD provides confidence about where the learned model is accurate. It flags state-
actions for which the model is guarenteed to be accurate as “known”, while flagging state-actions
where such a guarantee cannot be ascertained as “unknown”. Note that USAD is based on the ability
to guarantee the accuracy, and is not an inherent property of the model. In other words, there could
be states where the model is actually accurate, but flagged as unknown due to the agent’s inability to
guarantee accuracy. Two factors contribute to USAD’s effectiveness: (a) data availability: having
sufficient data points “close” to the query; (b) quality of representations: certain representations, like
those based on physics, can lead to better generalization guarantees. This suggests that larger datasets
and research in representation learning can potentially enable stronger offline RL results.

Pessimistic MDP construction: We now construct a pessimistic MDP (P-MDP) using the learned
model and USAD, which penalizes policies that venture into unknown parts of state-action space.

Definition 2. The (α, κ)-pessimistic MDP is described by M̂p := {S ∪ HALT, A, rp, P̂p, ρ̂0, γ}.
Here, S and A are states and actions in the MDPM. HALT is an additional absorbing state we
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introduce into the state space of M̂p. ρ̂0 is the initial state distribution learned from the dataset D. γ
is the discount factor (same asM). The modified reward and transition dynamics are given by:

P̂p(s
′|s, a) =

δ(s′ = HALT)
if Uα(s, a) = TRUE

or s = HALT

P̂ (s′|s, a) otherwise
rp(s, a) =

{
−κ if s = HALT

r(s, a) otherwise

δ(s′ = HALT) is the Dirac delta function, which forces the MDP to transition to the absorbing state
HALT. For unknown state-action pairs, we use a reward of −κ, while all known state-actions receive
the same reward as in the environment. The P-MDP heavily punishes policies that visit unknown
states, thereby providing a safeguard against distribution shift and model exploitation.

Planning: The final step in MOReL is to perform planning in the P-MDP defined above. For simplicity,
we assume a planning oracle that returns an επ-sub-optimal policy in the P-MDP. A number of
algorithms based on MPC [23, 64], search-based planning [65, 25], dynamic programming [49, 26],
or policy optimization [27, 51, 66, 67] can be used to approximately realize this..

4.1 Theoretical Results

In order to state our results, we begin by defining the notion of hitting time.

Definition 3. (Hitting time) Given an MDPM, starting state distribution ρ0, state-action pair (s, a)
and a policy π, the hitting time Tπ(s,a) is defined as the random variable denoting the first time action
a is taken at state s by π onM, and is equal to∞ if a is never taken by π from state s. For a set of

state-action pairs S ⊆ S ×A, we define TπS
def
= min(s,a)∈S T

π
(s,a).

We are now ready to present our main result with the proofs deferred to the appendix.

Theorem 1. (Policy value with pessimism) The value of any policy π on the original MDPM and
its (α,Rmax)-pessimistic MDP M̂p satisfies:

Jρ̂0(π,M̂p) ≥ Jρ0(π,M)− 2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α− 2Rmax

1− γ
· E
[
γT

π
U

]
, and

Jρ̂0(π,M̂p) ≤ Jρ0(π,M) +
2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α,

where TπU denotes the hitting time of unknown states U def
= {(s, a) : Uα(s, a) = TRUE} by π onM.

Theorem 1 can be used to bound the suboptimality of output policy πout of Algorithm 1.

Corollary 2. Suppose PLANNER in Algorithm 1 returns an επ sub-optimal policy. Then, we have

Jρ0(π∗,M)− Jρ0(πout,M) ≤ επ +
4Rmax

1− γ
·DTV (ρ0, ρ̂0) +

4γRmax

(1− γ)2
· α+

2Rmax

1− γ
· E
[
γT

π∗
U

]
.

Theorem 1 indicates that the difference in any policy π’s value in the (α,Rmax) pessimistic MDP
M̂p and the original MDPM depends on: i) the total variation distance between the true and learned
starting state distributionDTV (ρ0, ρ̂0), ii) the maximum total variation distance α between the learned
model P̂ (·|s, a) and the true model P (·|s, a) over all known states i.e., {(s, a)|Uα(s, a) = FALSE}
and, iii) the hitting time Tπ

∗

U of unknown states U on the original MDPM under the optimal policy

π∗. As the dataset size increases, DTV (ρ0, ρ̂0) and α approach zero, indicating E
[
γT

π∗
U

]
determines

the sub-optimality in the limit. For comparison to prior work, Lemma 5 in Appendix A bounds this
quantity in terms of state-action visitation distribution, which for a policy π onM is expressed as
dπ,M(s, a)

def
= (1− γ)

∑∞
t=0 γ

tP (st = s, at = a|s0 ∼ ρ0, π,M). Furthermore, we can also show
that MOReL learns a policy that improves over the behavioral policy with high probability. The
following lemma presents both of these results:

Lemma 3. (Upper bound; MOReL improves over the behavioral policy) Suppose ρ0,min > 0, pmin > 0
and dπbmin > 0 are the smallest non-zero elements of initial distribution ρ0, state transition probabilities
P (·|s, a), and discounted state probability distribution dπb,M(s, a) respectively. If the dataset D
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consists of n ≥ C

(dπbmin)
2 · log 1

δd
πb
min

independent trajectories sampled according to a behavior policy πb

with initial distribution ρ0, then the output πout of Algorithm 1 satisfies:

Jρ0(πb,M)− Jρ0(πout,M) ≤ επ + εn, and

Jρ0(π∗,M)− Jρ0(πout,M) ≤ επ +
2Rmax

1− γ
· E
[
γT

π∗
U

]
+ εn ≤ επ +

2Rmax

(1− γ)2
· dπ

∗,M(U) + εn,

with probability at least 1− Cδ, where C is a large enough constant and

εn
def
=

4CRmax

(1− γ)ρ0,min
·

√
log 1

δρ0,min

n
+

4CγRmax

(1− γ)2pmin
·

√√√√ log 1
δpmind

πb
min

dπbmin · n

is an error term related to finite samples that goes to zero as n→∞.

The bound consists of three terms: (i) a sampling error term εn which decreases with larger dataset
sizes that is typical of offline RL; (ii) an optimization error term επ that can be made small with
additional compute to find the optimal policy in the learned model; and (iii) a distribution shift term
that depends on the coverage of the offline dataset and overlap with the optimal policy.

Prior results [15, 44] assume that dπ
∗,M(UD) = 0, where UD

def
= {(s, a)|(s, a, r, s′) /∈ D} ⊇ U is

the set of state action pairs that don’t occur in the offline dataset, and guarantee finding an optimal
policy under this assumption. Our result significantly improves upon these in three ways: i) UD
is replaced by a smaller set U , leveraging the generalization ability of learned dynamics model,
ii) the sub-optimality bound is extended to the setting where full support coverage is not satisfied i.e.,
dπ
∗,M(U) > 0, and iii) the sub-optimality bound on πout is stated in terms of unknown state hitting

time Tπ
∗

U , which can be significantly better than a bound that depends only on dπ
∗,M(U). To further

strengthen our results, the following proposition shows that Lemma 3 is tight up to log factors.
Proposition 4. (Lower bound) For any discount factor γ ∈ [0.95, 1), support mismatch ε ∈(

0, 1−γ
log 1

1−γ

]
and reward range [−Rmax, Rmax], there is an MDP M, starting state distribution

ρ0, optimal policy π∗ and a dataset collection policy πb such that i) dπ
∗,M(UD) ≤ ε, and ii) any

policy π̂ that is learned solely using the dataset collected with πb satisfies:

Jρ0(π∗,M)− Jρ0(π̂,M) ≥ Rmax

4(1− γ)2
· ε

log 1
1−γ

,

where UD
def
= {(s, a) : (s, a, r, s′) /∈ D for any r, s′} denotes state action pairs not in the dataset D.

We see that for ε < (1−γ)/(log 1
1−γ ), the lower bound obtained by Proposition 4 on the suboptimality

of any offline RL algorithm matches the asymptotic (as n → ∞) upper bound of Lemma 3 up to
an additional log factor. For ε > (1− γ)/(log 1

1−γ ), Proposition 4 also implies (by choosing ε′ =

(1− γ)/(log 1
1−γ ) < ε) that any offline algorithm must suffer at least constant factor suboptimality

in the worst case. Finally, we note that as the size of dataset D increases to∞, Theorem 1 and the
optimality of PLANNER (i.e., επ = 0) together imply that Jρ0(πout,M) ≥ Jρ0(πb,M).

4.2 Practical Implementation Of MOReL

We now present a practical instantiation of MOReL (algorithm 1) utilizing a recent model-based NPG
approach [28]. The principal difference is the specialization to offline RL and construction of the
P-MDP using an ensemble of learned dynamics models.

Dynamics model learning: We consider Gaussian dynamics models [28], P̂ (·|s, a) ≡
N (fφ(s, a),Σ), with mean fφ(s, a) = s + σ∆ MLPφ ((s− µs)/σs, (a− µa)/σa), where
µs, σs, µa, σa are the mean and standard deviations of states/actions in D; σ∆ is the standard
deviation of state differences, i.e. ∆ = s′ − s, (s, s′) ∈ D; this parameterization ensures local
continuity since the MLP learns only the state differences. The MLP parameters are optimized using
maximum likelihood estimation with mini-batch stochastic optimization using Adam [68].

Unknown state-action detector (USAD): In order to partition the state-action space into known
and unknown regions, we use uncertainty quantification [69, 70, 71, 72]. In particular, we consider

6



approaches that track uncertainty using the predictions of ensembles of models [69, 72]. We learn
multiple models {fφ1 , fφ2 , . . .} where each model uses a different weight initialization and are
optimized with different mini-batch sequences. Subsequently, we compute the ensemble discrepancy
as disc(s, a) = maxi,j

∥∥fφi(s, a)− fφj (s, a)
∥∥

2
, where fφi and fφj are members of the ensemble.

With this, we implement USAD as below, with threshold being a tunable hyperparameter.

Upractical(s, a) =

{
FALSE (i.e. Known) if disc(s, a) ≤ threshold

TRUE (i.e. Unknown) if disc(s, a) > threshold
. (3)

5 Experiments

Through our experimental evaluation, we aim to answer the following questions:

1. Comparison to prior work: How does MOReL compare to prior SOTA offline RL algorithms [15,
16, 18] in commonly studied benchmark tasks?

2. Quality of logging policy: How does the quality (value) of the data logging (behavior) policy,
and by extension the dataset, impact the quality of the policy learned by MOReL?

3. Importance of pessimistic MDP: How does MOReL compare against a naïve model-based RL
approach that directly plans in a learned model without any safeguards?

4. Transfer from pessimistic MDP to environment: Does learning progress in the P-MDP, which
we use for policy learning, effectively translate or transfer to learning progress in the environment?

To answer the above questions, we consider commonly studied benchmark tasks from OpenAI
gym [73] simulated with MuJoCo [74]. Our experimental setup closely follows prior work [15, 16, 18].
The tasks considered include Hopper-v2, HalfCheetah-v2, Ant-v2, and Walker2d-v2, which
are illustrated in Figure 2. We consider five different logged data-sets for each environment, totalling
20 environment-dataset combinations. Datasets are collected based on the work of Wu et al. [18],
with each dataset containing the equivalent of 1 million timesteps of environment interaction. We
first partially train a policy (πp) to obtain values around 1000, 4000, 1000, and 1000 respectively
for the four environments. The first exploration strategy, Pure, involves collecting the dataset solely
using πp. The four other datasets are collected using a combination of πp, a noisy variant of πp,
and an untrained random policy. The noisy variant of πp utilizes either epsilon-greedy or Gaussian
noise, resulting in configurations eps-1, eps-3, gauss-1, gauss-3 that signify various types and
magnitudes of noise added to πp. Please see appendix for additional experimental details.

We parameterize the dynamics model using 2-layer ReLU-MLPs and use an ensemble of 4 dynamics
models to implement USAD as described in Section 4.2. We parameterize the policy using a 2-layer
tanh-MLP, and train it using model-based NPG [28]. We evaluate the learned policies using rollouts
in the (real) environment, but these rollouts are not made available to the algorithm in any way for
purposes of learning. This is similar to evaluation protocols followed in prior work [18, 15, 16].
We present all our results averaged over 5 different random seeds. Note that we use the same
hyperparameters for all random seeds. In contrast, the prior works whose results we compare against
tune hyper-parameters separately for each random seed [18].

Comparison of MOReL’s performance with prior work We compare results of MOReL with prior
SOTA algorithms like BCQ, BEAR, and all variants of BRAC. The results are summarized in Table 1.

Figure 2: Illustration of the suite of tasks considered in this work. These tasks require the RL agent
to learn locomotion gaits for the illustrated simulated characters.
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Table 1: Results in various environment-exploration combinations. Baselines are reproduced from Wu
et al. [18]. Prior work does not provide error bars. For MOReL results, error bars indicate the standard
deviation across 5 different random seeds. We choose SOTA result based on the average performance.

Environment: Ant-v2
Algorithm BCQ

[15]
BEAR
[16]

BRAC

[18]
Best
Baseline

MOReL
(Ours)

Pure 1921 2100 2839 2839 3663±247
Eps-1 1864 1897 2672 2672 3305±413
Eps-3 1504 2008 2602 2602 3008±231
Gauss-1 1731 2054 2667 2667 3329±270
Gauss-3 1887 2018 2640 2661 3693±33

Environment: Hopper-v2
Algorithm BCQ

[15]
BEAR
[16]

BRAC

[18]
Best
Baseline

MOReL
(Ours)

Pure 1543 0 2291 2774 3642±54
Eps-1 1652 1620 2282 2360 3724±46
Eps-3 1632 2213 1892 2892 3535±91
Gauss-1 1599 1825 2255 2255 3653±52
Gauss-3 1590 1720 1458 2097 3648±148

Environment: HalfCheetah-v2
Algorithm BCQ

[15]
BEAR
[16]

BRAC

[18]
Best
Baseline

MOReL
(Ours)

Pure 5064 5325 6207 6209 6028±192
Eps-1 5693 5435 6307 6307 5861±192
Eps-3 5588 5149 6263 6359 5869±139
Gauss-1 5614 5394 6323 6323 6026±74
Gauss-3 5837 5329 6400 6400 5892±128

Environment: Walker-v2
Algorithm BCQ

[15]
BEAR
[16]

BRAC

[18]
Best
Baseline

MOReL
(Ours)

Pure 2095 2646 2694 2907 3709±159
Eps-1 1921 2695 3241 3490 2899±588
Eps-3 1953 2608 3255 3255 3186±92
Gauss-1 2094 2539 2893 3193 4027±314
Gauss-3 1734 2194 3368 3368 2828±589

For fairness of comparison, we reproduce results from prior work and do not run the algorithms
ourselves. We provide a more expansive table with additional baseline algorithms in the appendix.
Our algorithm, MOReL, achives SOTA results in 12 out of the 20 environment-dataset combinations,
overlaps in error bars for 3 other combinations, and is competitive in the remaining cases. In contrast,
the next best approach (a variant of BRAC) achieves SOTA results in only 5 out of 20 configurations.

Comparison of MOReL’s performance in the D4RL benchmark suite The D4RL benchmark
suite [75] for offline RL was introduced in concurrent work. We also study the performance
of MOReL in this benchmark suite. We find that MOReL achieves the highest (normalized) score
in 5 out of 12 domains studied, while the next best algorithm (CQL) achieves the highest score in
only 3 out of 12 domains. Furthermore, we observe that MOReL is often very competitive with the
best performing algorithm in any given domain even if it doesn’t achieve the top score. However, in
many domains, MOReL significantly improves over the state of the art (e.g. hopper-medium-replay
and hopper-random). To aggregate results across multiple domains, we consider the average of the
normalized scores as a proxy, and observe that MOReL significantly outperforms prior algorithms.

Table 2: Results of various algorithms on the D4RL benchmark suite. Each number is the normalized
score computed as (score − random policy score) / (expert policy score − random policy score).
The raw score for MOReL was taken to be the average over the last 100 iterations of policy learning
averaged over 3 random seeds. Results of MOPO [54] and CQL [76] are reported from their respective
papers. Remaining results are taken from the D4RL benchmark suite white-paper [75].

Dataset Environment MOReL
(Ours) MOPO CQL SAC-Off BEAR BRAC-p BRAC-v

random halfcheetah 25.6 34.4 35.4 30.5 25.1 24.1 31.2
random hopper 53.6 11.7 10.8 11.3 11.4 11 12.2
random walker2d 37.3 13.6 7 4.1 7.3 -0.2 1.9
medium halfcheetah 42.1 42.3 44.4 -4.3 41.7 43.8 46.3
medium hopper 95.4 28.0 86.6 0.8 52.1 32.7 31.1
medium walker2d 77.8 17.8 74.5 0.9 59.1 77.5 81.1
medium-replay halfcheetah 40.2 53.1 46.2 -2.4 38.6 45.4 47.7
medium-replay hopper 93.6 67.5 48.6 3.5 33.7 0.6 0.6
medium-replay walker2d 49.8 39.0 32.6 1.9 19.2 -0.3 0.9
medium-expert halfcheetah 53.3 63.3 62.4 1.8 53.4 44.2 41.9
medium-expert hopper 108.7 23.7 111 1.6 96.3 1.9 0.8
medium-expert walker2d 95.6 44.6 98.7 -0.1 40.1 76.9 81.6

Average Average 64.42 36.58 54.85 4.13 39.83 29.80 31.44
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Figure 3: MOReL and Naive MBRL learning curves. The x-axis plots the number of model-based NPG
iterations, while y axis plots the return (value) in the real environment. The naive MBRL algorithm is
highly unstable while MOReL leads to stable and near-monotonic learning. Notice however that even
naive MBRL learns a policy that performs often as well as the best model-free offline RL algorithms.

Importance of Pessimistic MDP To highlight the importance of P-MDP, we again consider the
Pure-partial dataset outlined above. We compare MOReL with a naiv̈e MBRL approach that first
learns a dynamics model using the offline data, followed by running model-based NPG without any
safeguards against model inaccuracy. The results are summarized in Figure 3. We observe that the
naiv̈e MBRL approach already works well, achieving results comparable to prior algorithms like BCQ
and BEAR. However, MOReL clearly exhibits more stable and monotonic learning progress. This is
particularly evident in Hopper-v2, HalfCheetah-v2, and Walker2d-v2, where an uncoordinated
set of actions can result in the agent falling over. Furthermore, in the case of naiv̈e MBRL, we observe
that performance can quickly degrade after a few hundred steps of policy improvement, such as in
case of Hopper-v2, HalfCheetah-v2 and Walker2d-v2. This suggests that the learned model is
being over-exploited. In contrast, with MOReL, we observe that the learning curve is stable and nearly
monotonic even after many steps of policy improvement.

Table 3: Value of the policy learned by MOReL (5 ran-
dom seeds) when working with a dataset collected with
a random (untrained) policy (Pure-random) and a par-
tially trained policy (Pure-partial).

Environment Pure-random Pure-partial

Hopper-v2 2354± 443 3642± 54

HalfCheetah-v2 2698± 230 6028± 192

Walker2d-v2 1290± 325 3709± 159

Ant-v2 1001± 3 3663± 247

Quality of logging policy Section 4.1
indicates that it is not possible for any of-
fline RL algorithm to learn a near-optimal
policy when faced with support mismatch
between the dataset and optimal policy.
To verify this experimentally for MOReL,
we consider two datasets (of the same
size) collected using the Pure strategy.
The first uses a partially trained policy
πp (called Pure-partial), which is
the same as the Pure dataset studied in
Table 1. The second dataset is collected
using an untrained random Gaussian
policy (called Pure-random). Table 3
compares the results of MOReL using these two datasets. We observe that the value of policy
learned with Pure-partial dataset far exceeds the value with the Pure-random dataset. Thus, the
value of policy used for data logging plays a crucial role in the performance achievable with offline RL.

Transfer from P-MDP to environment

Finally, we study how the learning progress in P-MDP relates to the progress in the environment. Our
theoretical results (Theorem 1) suggest that the value of a policy in the P-MDP cannot substantially
exceed the value in the environment. This makes the value in the P-MDP an approximate lower bound
on the true performance, and a good surrogate for optimization. In Figure 4, we plot the value or
return of the policy in the P-MDP and environment over the course of learning. Note that the policy is
being learned in the P-MDP, and as a result we observe a clear monotonic learning curve for value in
the P-MDP, consistent with the monotonic improvement theory of policy gradient methods [77, 78].
We observe that the value in the true environment closely correlates with the value in P-MDP. In
particular, the P-MDP value never substantially exceeds the true performance, suggesting that the
pessimism helps to avoid model exploitation.
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Figure 4: Learning curve using the Pure-partial dataset, see paper text for details. The policy is
learned using the pessimistic MDP (P-MDP), and we plot the performance in both the P-MDP and
the real environment over the course of learning. We observe that the performance in the P-MDP
closely tracks the true performance and never substantially exceeds it, as predicted in section 4.1.
This shows that the policy value in the P-MDP serves as a good surrogate for the purposes of offline
policy evaluation and learning.

6 Conclusions

We introduced MOReL, a new model-based framework for offline RL. MOReL incorporates both
generalization and pessimism (or conservatism). This enables MOReL to perform policy improvement
in known states that may not directly occur in the static offline dataset, but can nevertheless be
predicted using the dataset by leveraging the power of generalization. At the same time, due to the
use of pessimism, MOReL ensures that the agent does not drift to unknown states where the agent
cannot predict accurately using the static dataset.

Theoretically, we obtain bounds on the suboptimality of MOReL which improve over those in prior
work. We further showed that this suboptimality bound cannot be improved upon by any offline RL
algorithm in the worst case. Experimentally, we evaluated MOReL in the standard continuous control
benchmarks in OpenAI gym and showed that it achieves state of the art results. The modular structure
of MOReL comprising of model learning, uncertainty estimation, and model-based planning allows
the use of a variety of approaches such as multi-step prediction for model learning, abstention for
uncertainty estimation, or model-predictive control for action selection. In future work, we hope to
explore these directions.
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Broader Impact

This paper studies offline RL, which allows for data driven policy learning using pre-collected datasets.
The ability to train policies offline can expand the range of applications where RL can be applied as
well as the sample efficiency of any downstream online learning. Since the dataset has already been
collected, offline RL enables us to abstract away the exploration or data collection challenge. Safe
exploration is crucial for applications like robotics and healthcare, where poorly designed exploratory
actions can have harmful physical consequences. Avoiding online exploration by an autonomous
agent, and working with a safely collected dataset, can have the broader impact of alleviating safety
challenges in RL. That said, the impact of RL agents to the society at large is highly dependent on the
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design of the reward function. If the reward function is designed by malicious actors, any RL agent,
be it offline or not, can present negative consequences. Therefore, the design of reward functions
requires checks, vetting, and scrutiny to ensure RL algorithms are aligned with societal norms.
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A Theoretical Results: Proofs For Section 4.1

In this section, we present the proofs of our main results Theorem 1 and Proposition 4.

Proof of Theorem 1. We wish to show the following two inequalities.

Jρ̂0(π,M̂p) ≥ Jρ0(π,M)− 2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α− 2Rmax

1− γ
· E
[
γT

π
U

]
, and

Jρ̂0(π,M̂p) ≤ Jρ0(π,M) +
2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α.

The proof of this theorem is inspired by the simulation lemma of [55], with some additional modi-
fications due to pessimism, and goes through the pessimistic MDPMp, which is the same as M̂p

except that the starting state distribution is ρ0 instead of ρ̂0 and the transition probability from a
known state-action pair (s, a) is P (s′|s, a) instead of P̂ (s′|s, a). More concretely,Mp is described
by {S ∪ HALT, A, rp, Pp, ρ0, γ}, where HALT is an additional absorbing state we introduce similar
to what we did for M̂p. The modified reward and transition dynamics are given by:

Pp(s
′|s, a) =

δ(s′ = HALT)
if Uα(s, a) = TRUE

or s = HALT

P (s′|s, a) otherwise.
rp(s, a) =

{
−κ if s = HALT

r(s, a) otherwise

We first show that

Jρ̂0(π,M̂p) ≥ Jρ0(π,Mp)−
2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α, and

Jρ̂0(π,M̂p) ≤ Jρ0(π,Mp) +
2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α,

The main idea is to couple the evolutions of any given policy on the pessimistic MDPMp and the

model-based pessimistic MDP M̂p so that (st−1, at−1)
def
= (s

Mp

t−1 , a
Mp

t−1) = (s
M̂p

t−1 , a
M̂p

t−1).

Assuming that such a coupling can be performed in the first step, since
∥∥∥P (s, a)− P̂ (s, a)

∥∥∥
1
≤ α,

this coupling can be performed at each subsequent step with probability 1− α. The probability that
the coupling is not valid at time t is at most 1− (1− α)t. So the total difference in the values of the
policy π on the two MDPs can be upper bounded as:∣∣∣Jρ̂0(π,M̂p)− Jρ0(π,Mp)

∣∣∣ ≤ 2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

∑
t

γt
(
1− (1− α)t

)
· 2 ·Rmax

≤ 2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α.

We now argue that

Jρ0(π,Mp) ≥ Jρ0(π,M)− 2Rmax

1− γ
· E
[
γT

π
u

]
, and

Jρ0(π,Mp) ≤ Jρ0(π,M).

For the first part, we see that the evolution of any policy π on the pessimistic MDPMp, can be
coupled with the evolution of π on the actual MDPM until π encounters an unknown state. From
this point, the total rewards obtained on the pessimistic MDPMp will be −Rmax

1−γ , while the maximum
total reward obtained by π onM from that point on is Rmax

1−γ . Multiplying by the discount factor
E
[
γT

π
u

]
proves the first part.

For the second part, consider any policy π and let it evolve on the MDPM as (s, a, s′M). Simulate an

evolution of the same policy π onMp,
(
s, a, s′Mp

)
, as follows: if (s, a) ∈ SAk, then s′Mp

= s′M
and if (s, a) ∈ U , then s′Mp

= HALT. We see that the rewards obtained by π on each transition in
Mp is less than or equal to that obtained by π on the same transition inM. This proves the second
part of the lemma.
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Figure 5: This example shows that the suboptimality of any offline RL algorithm is at least Rmax
4(1−γ)2 ×

dπ
∗,M(UD)

log 1
1−γ

in the worst case and hence Corollary 2 is tight. The states 1, 2, · · · , k + 1 in the MDP

are depicted under the circles. The actions a1, a2, a3, rewards and transitions are depicted on the
arrows connecting the states. The actions taken by the behavior (i.e. the data collection) policy are
depicted in blue. See Proposition 4 and its proof for more details.

Lemma 5. (Hitting time and visitation distribution) For any set S ⊆ S ×A, and any policy π, we
have E

[
γT

π
S
]
≤ 1

1−γ · d
π,M(S).

Proof of Lemma 5. The proof is rather straightforward. We have

E
[
γT

π
U

]
≤

∑
(s′,a′)∈U

E
[
γT

π
(s′,a′)

]
≤

∑
(s′,a′)∈U

∞∑
t=0

γtP (st = s′, at = a′|s0 ∼ ρ0, π,M)

=
1

1− γ
∑

(s′,a′)∈U

dπ,M(s′, a′) =
1

1− γ
· dπ,M(U).

Proof of Proposition 4. We consider the MDP in Figure 5, where we set k = 10 log 1
1−γ . The

MDP has k + 1 states, with three actions a1, a2 and a3 at each state. The rewards (shown on
the transition arrows) are all 0 except for the action a1 taken in state k + 1, in which case it is
1. Note that the rewards can be scaled by Rmax but for simplicity, we consider the setting with
Rmax = 1. It is clear that the optimal policy π∗ is to take the action a1 in all the states. The
starting state distribution ρ0 is state 1 with probability p0

def
= ε

(1−γ) log 1
1−γ

and state k + 1 with

probability 1 − p0. The actions taken by the data collection policy are shown in blue. Since
the dataset consists only of (state, action, reward, next state) pairs (1, a1, 0, 2), (2, a2, 0, 1) and
(k + 1, a1, 1, k + 1) we see that UD = (S × A) \ {(1, a1), (2, a2), (k + 1, a1)} and dπ

∗,M(UD) =

(1− γ) ·
∑k−1
t=1 γ

t · p0 ≤ (1− γ) · (k − 1) · p0 ≤ ε proving the first claim. Since none of the states
and actions in UD are seen in the dataset, after permuting the actions if necessary, the expected
time taken by any policy learned from the dataset, to reach state k + 1 starting from state 1 is at
least exp (k/5) ≥ (1 − γ)−2. So, the value of any policy π̂ learned from the dataset is at most
1−p0
1−γ + p0·γ(1−γ)−2

1−γ = 1
1−γ − p0 · 1−γ(1−γ)−2

1−γ ≤ 1
1−γ −

3p0
4(1−γ) , where we used γ ∈ [0.95, 1) in the

last step. On the other hand, the value of π∗ is at least 1−p0
1−γ + p0 ·

(
1

1−γ − k
)

. So the suboptimality

of any learned policy is at least p0 ·
(

3
4(1−γ) − k

)
= p0 ·

(
3

4(1−γ) − 10 log 1
1−γ

)
≥ p0

4(1−γ) , where
we again used γ ∈ [0.95, 1) in the last step. Substituting the value of p0 proves the proposition.

Proof of Lemma 3. We first note that the empirical starting distribution ρ̂0 satisfies DTV (ρ0, ρ̂0) ≤

C
ρ0,min

·

√
log 1

δρ0,min
n , for a large enough constant C. This is because for each state s in the support of

ρ0, its empirical frequency in D satisfies:

|ρ̂0(s)− ρ0(s)| ≤ C

√
log 1

δρ0,min

n
,
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with probability at least 1−δρ0,min using Chernoff’s bound, whereC is an absolute numerical constant.
Using union bound over at most 1

ρ0,min
states in the support of ρ0, we see that with probability at least

1− δ, we have DTV (ρ0, ρ̂0) ≤ C
ρ0,min

·

√
log 1

δρ0,min
n .

Similarly, for any state action pair (s, a), denoting n(s,a) as the number of times (s, a) appears in D,
we have that:

n(s,a)

n
− dπb,M(s, a) ≥ −C

√
log 1

δd
πb
min

n
,

with probability at least 1−dπbminδ. Again using a union bound over all state-action pairs in the support
of dπb,M(·), we see that:

n(s,a) ≥ dπbmin · n− C

√
n · log

1

δdπbmin
,

for every (s, a) in the support of dπb,M(·) with probability at least 1− δ. The asssumption on the

size of n then implies that n(s,a) ≥
d
πb
min·n
2 . Using a similar Chernoff bound argument, we see that

DTV (P (·|s, a), P̂ (·|s, a)) ≤ C
pmin
·
√

log 1

δpmind
πb
min

n(s,a)
for every (s, a) in the support of dπb,M(·) with

probability at least 1− δ. By choosing α = C
pmin
·
√

log 1

δpmind
πb
min

n(s,a)
, we see that U ∩ Supp(dπb,M) = ∅

and hence TπbU =∞. By Theorem 1, we have that for any policy π, we have:

Jρ0(πout,M) ≥ Jρ̂0(πout,M̂p)−
2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α

≥ Jρ̂0(π,M̂p)− επ −
2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α

≥ Jρ0(π,M)− επ −
4Rmax

1− γ
·DTV (ρ0, ρ̂0)− 4γRmax

(1− γ)2
· α− 2Rmax

1− γ
· E
[
γT

π
U

]
.

Plugging π = πb gives us the first assertion and plugging π = π∗ and using Lemma 5 gives us the
second assertion.

B Detailed Related Work

Our work takes a model-based approach to offline RL. We review related work pertaining to both of
these domains in this section.

B.1 Offline RL

Offline RL dates at least to the work of Lange et al. [12]. In this setting, an RL agent is provided
access to a typically large offline dataset, using which it has to produce a highly rewarding policy. This
has direct applications in fields like healthcare [33, 34, 35], recommendation systems [36, 37, 38, 39],
dialogue systems [40, 19, 41], and autonomous driving [42]. We refer the readers to the review paper
of Levine et al. [79] for an overview of potential applications. On the algorithmic front, prior work in
offline RL can be broadly categorized into three groups as described below.

Importance sampling The first approach to offline RL is through importance sampling. In this
approach, trajectories from the offline dataset are directly used to estimate the policy gradient, which is
subsequently corrected using importance weights. This approach is particularly common in contextual
bandits literature [43, 36, 37] where the importance weights are relatively easier to estimate due to
the non-sequential nature of the problem. For MDPs, Liu et al. [44] present an importance sampling
based off-policy policy gradient method by estimating state distribution weights [45, 46, 47]. The
work of Liu et al. [44] also utilizes the notion of pessimism by optimizing only over a subset of states
visited by the behavioral policy. They utilize importance weighted policy gradient (with estimated
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importance weights) to optimize this MDP. However, their work does not naturally capture a notion
of generalization over the state space. Moreover, their results require strong assumptions on the
data collecting policy in the sense of ensuring support on states visited by the optimal policy. Our
framework, MOReL, provides the same guarantees under identical assumptions, but we also show that
the performance of MOReL degrades gracefully when these assumptions aren’t satisfied.

Dynamic programming The overwhelming majority of recent algorithmic work in offline RL is
through the paradigm of approximate dynamic programming. In principle, any off-policy algorithm
based on Q-learning [48, 49] or actor-critic architectures [50, 80, 51] can be used with a static offline
dataset. However, recent empirical studies confirm that such a direct extension leads to poor results
due to the challenges of overestimation bias in generalization and distribution shift. To address
overestimation bias, prior work has proposed approaches like ensembles of Q-networks [17, 15, 19].
As for distribution shift, the principle approach used is to regularize the learned policy towards
the data logging policy [15, 16, 18]. Different regularization schemes, such as those based on
KL-divergence and maximum mean discrepancy (MMD), have been considered in the past. Wu et
al. [18] perform a comparative study of such regularization schemes and find that they all perform
comparably. ADP-based offline RL has also be studied theoretically [26, 52], with Chen and Jiang
[52] providing an information-theoretic lower bound on sample complexity. However, these works
again don’t study the impact of support mismatch between logging policy and optimal policy. Finally,
a recent line of work [21, 81] focuses on obtaining provably convergent methods for minimizing
the (one-step) Bellman error using Duality theory. While they show promising results in continuous
control tasks in the online RL setting, their performance in the offline RL setting is yet to be studied.

Model-based RL The interplay between model-based methods and offline RL has only been
sparsely explored. The work of Ross & Bagnell [32] theoretically studied the performance of MBRL
in the batch setting. In particular, the algorithm they analyzed involves learning a dynamics model
using the offline dataset, and subsequently planning in the learned model without any additional
safeguards. Their theoretical results are largely negative for this algorithm, suggesting that in the
worst case, this algorithm could have arbitrarily large sub-optimality. In addition, their sub-optimality
bounds become pathologically loose when the data logging distribution does not share support
with the distribution of the optimal policy. Model-based offline RL methods from a safe policy
improvement perspective have also been considered [53]. In contrast to both these works, we present
a novel algorithmic framework that constructs and pessimistic MDP, and show that this is crucial for
better empirical results and sharper theoretical analysis.

B.2 Advances in Model-Based RL

Since our work utilizes model-based RL, we review the most directly related work in the online RL
setting. Classical works in MBRL have focused extensively on tabular MDPs and linear quadratic
regulartor (LQR). For tabular MDPs (in the online RL setting), the first known polynomial time
algorithms were the model-based algorithms ofE3 [55] and R-MAX [56]. More recent work suggests
that model-based methods are minimax optimal for tabular MDPs when equipped with a wide restart
state distribution [82]. However, these works critically rely on the tabular nature of the problem. Since
each table entry is typically considered to be independent, and updates to any entry to do not affect
other entries, tabular MDPs do not afford any notion of generalization. The metric-E3 [57] algorithm
aims to overcome this challenge by considering an underlying metric space for state-actions that
enables generalization. While this work provides a strong theoretical basis, it does not directly provide
a practical algorithm that can be used with function approximation. Our work is perhaps conceptually
closest to E3 and metric-E3 which partitions the state space into known and unknown regions. A
cornerstone of MOReL is the P-MDP which partitions the state space into known and unknown regions,
as in, E3 [55] and R-MAX [56], but these constructions were not developed to encourage pessimism.
However, all of these works primarily deal with the standard (online) RL setting. Our work differs in
its focus on offline RL, where we show the P-MDP construction plays a crucial role. Moreover, direct
practical instantiations of E3 and metric-E3 with function approximation have remained elusive.

In recent years, along with an explosion of interest in deep RL, MBRL has emerged as a powerful
class of approaches for sample efficient learning. Modern MBRL methods (typically in the online
RL setting) can support the use of flexible function approximators like neural networks, as well as
generic priors like smoothness and approximate knowledge of physics [22], enabling the learning of
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accurate models. Furthermore, MBRL can draw upon the rich literature on model-based planning
including model predictive control (MPC) [23, 24, 64, 72], search based planning [25, 65], dynamic
programming [26, 83], and policy optimization [84, 78, 66, 27, 51]. These advances in MBRL have
enabled highly sample efficient learning in widely studied benchmark tasks [85, 29, 86, 87, 28], as
well as in a number of challenging robotic control tasks like aggressive driving [64], dexterous hand
manipulation [88, 28], and quadrupedal locomotion [89]. Among these works, the recent work of
Rajeswaran et al. [28] demonstrated state of the art results with MBRL in a range of benchmark
tasks, and forms the basis for our practical implementation. In particular, our model learning and
policy optimization subroutines are extended from the MAL framework in Rajeswaran et al. [28].
However, our work crucially differs from it due to the pessimistic MDP construction, which we show
is important for success in the offline RL setting.

C Additional Experimental Details And Setup

C.1 Environment Details And Setup

As mentioned before, following recent efforts in offline RL [15, 16, 18], we consider four
continuous control tasks: Hopper-v2, HalfCheetah-v2, Ant-v2, Walker2d-v2 from OpenAI
gym [73] simulated with MuJoCo [74]. As normally done in MBRL literature with OpenAI gym
tasks [30, 90, 91, 28], we reduce the planning horizon for the environments to 400 or 500. Similar
to [91, 28], we append our state parameterization with center of mass velocity to compute the reward
from observations. Mirroring realistic settings, we assume access to data collected using a partially
trained (sub-optimal) policy interacting with the environment. To obtain a partially trained policy
πp [15, 16, 18], we run (online) TRPO [78] until the policy reaches a value of 1000, 4000, 1000,
1000 respectively for these environments. This policy in conjunction with exploration strategies are
used to collect the datasets (see below for more details). All our results are obtained by averaging runs
of five random seeds (for the planning algorithm), with the seed values being 123, 246, 369, 492, 615.
Each of our experiments are run with 1 NVidia GPU and 2 CPUs using a total of 16GB of memory.

C.2 Dynamics Model, Policy Network And Evaluation

We use 2 hidden layer MLPs with 512 (for Hopper-v2, Walker2d-v2, Ant-v2) or 1024
(for HalfCheetah-v2) ReLU activated nodes each for representing the dynamics model, use an
ensemble of four such models for building the USAD, and our policy is represented with a 2 hidden
layer MLP with 32 tanh activated nodes in each layer. The dynamics model is learnt using Adam [68]
and the policy parameters are learnt using model-based NPG steps [28]. We set hyper-parameters and
track policy learning curve by performing rollouts in the real environment; these rollouts aren’t used
for other purposes in the learning procedure. Similar protocols are used in prior work[15, 16, 18].

C.3 Description Of Types Of Policies

We build off the experimental setup of [18]. Towards this, we first go over some notation. Firstly,
let πb represent the behavior policy, πr is a random policy that picks actions according to a certain
probability distribution (for e.g., Gaussian πgr /Uniform πur etc.), πp a partially-trained policy, which
one can assume is better than a random policy in value. Let πub (q) be a policy that plays random
actions with probability q, and sampled actions from πb with probability 1− q. Let πgb (β) be a policy
that adds zero-mean Gaussian noise with standard deviation β to actions sampled from πb. Consider
a behavior policy which, for instance, can be a partially trained data logging policy πb. We consider
five different exploration strategies, each corresponding to adding different kinds of exploratory noise
to πb, as described below.

C.4 Datasets And Exploration Strategies

For each environment, we use a combination of a behavior policy πb, a noisy behavior policy π̃b (see
below), and a pure random stochastic process πr to collect several datasets, following Wu et al. [18].
Each dataset contains the equivalent of 1 million timesteps of interactions with the environment. See
below for detailed instructions.

(E1) Pure: The entire dataset is collected with the data logging (behavioral) policy πb.
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(E2) Eps-1: 40% of the dataset is collected with πb, another 40% collected with πub (0.1), and the
final 20% is collected with a random policy πr.

(E3) Eps-3: 40% of the dataset is collected with πb, another 40% collected with πub (0.3), and the
final 20% is collected with a random policy πr.

(E4) Gauss-1: 40% of the dataset is collected with πb, another 40% collected with πgb (0.1), and
the final 20% is collected with a random policy πr.

(E5) Gauss-3: 40% of the dataset is collected with πb, another 40% collected with πgb (0.3), and
the final 20% is collected with a random policy πr.

C.5 Hyperparameter Selection

Refer to table 4 for details with regards to parameters of MOReL. For all environments and data
collection strategies, we learn two-layer MLP based dynamics models with ReLU activations by
minimizing the one-step prediction errors using Adam [68] and utilize four of these models for
defining the USAD. The negative reward for defining the absorbing unknown state is set as the
minimum reward in the dataset D offsetted by a value that is searched over {30, 50, 100, 200}.
Ascertaining unknown state-action pairs: In order to ascertain unknown state-action pairs, we
compute the model disagreement as: disc(s, a) = maxi6=j ||fφi(s, a)− fφj (s, a)||2, where, fφi and
fφj are members of the ensemble of learnt dynamics model. Specifically, we compute disc(s, a)
over all state-action pairs that occur in the static dataset D. Next, we can compute the mean µd,
standard deviation σd and the max md of the disagreements evaluated for every state-action pair
occuring in the dataset. Then, we utilize an upper-confidence inspired strategy by defining a threshold
thresh = µd + β · σd. The value of beta is tuned between 0 to βmax = (md − µd)/σd in steps of 5.
For any model-based rollout encountered during planning, if the discrepancy of the state-action pair
at a given timestep exceeds thresh, the rollout is truncated at this timestep and is assigned a large
negative reward. We emphasize that for every environment, all hyper-parameters (except for β) is
maintained at the same value across all exploration settings.

With regards to the policy and the planning algorithm, we consider a (32, 32) tanh MLP optimized
using normalized model-based NPG steps (see, for instance, the work of Rajeswaran et al. [28] for
the model-based NPG algorithm). Parameters of model-based NPG is described in table 5.
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Table 4: Hyper-parameters for each environment for MOReL. Note that most hyper-parameters are
common across domains, and the differences are primarily in reward penalty and number of fitting
epochs, which are necessarily environment specific.

Environment: Ant-v2
Parameter Value

Dynamics Model MLP(512, 512)
Activation ReLU
# Training Epochs 300
Adam Stepsize 5e-4
Batch Size 256
Horizon 500
Negative Reward rmin(D)− 100
USAD 4-dynamics models

Environment: Hopper-v2
Parameter Value

Dynamics Model MLP(512, 512)
Activation ReLU
# Training Epochs 300
Adam Stepsize 5e-4
Batch Size 256
Horizon 400
Negative Reward rmin(D)− 50
USAD 4-dynamics models

Environment: HalfCheetah-v2
Parameter Value

Dynamics Model MLP(1024,1024)
Activation ReLU
# Training Epochs 3000
Adam Stepsize 5e-4
Batch Size 256
Horizon 500
Negative Reward rmin(D)− 200
USAD 4-dynamics models

Environment: Walker-v2
Parameter Value

Dynamics Model MLP(512, 512)
Activation ReLU
# Training Epochs 300
Adam Stepsize 5e-4
Batch Size 256
Horizon 400
Negative Reward rmin(D)− 30
USAD 4-dynamics models

Table 5: Hyper-parameters for model-based policy optimization. Note that most hyperparameters are
common except the number of iterations and exploration noise.

Environment: Ant-v2
Parameter Value

Policy Net MLP(32,32)
Non-linearity Tanh
# updates 1000
log σinit -0.1
log σmin -2.0
# trajectories for gradient 200
# Eval trajectories 25
# CG Steps/Damping 10, 1e-4

Environment: Hopper-v2
Parameter Value

Policy Net MLP(32,32)
Non-linearity Tanh
# updates 500
log σinit -0.25
log σmin -2.0
# trajectories for gradient 50
# Eval trajectories 25
# CG Steps/Damping 25, 1e-4

Environment: HalfCheetah-v2
Parameter Value

Policy Net MLP(32,32)
Non-linearity Tanh
# updates 2500
log σinit -1.0
log σmin -2.0
# trajectories for gradient 40
# Eval trajectories 25
# CG Steps/Damping 25, 1e-4

Environment: Walker-v2
Parameter Value

Policy Net MLP(32,32)
Non-linearity Tanh
# updates 1000
log σinit -0.5
log σmin -2.0
# trajectories for gradient 100
# Eval trajectories 25
# CG Steps/Damping 25, 1e-4
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Table 6: Results in the four environments and five exploration configurations.
Environment: Ant-v2 Partially trained policy: 1241

Algorithm Pure
(E1)

Eps-1
(E2)

Eps-3
(E3)

Gauss-1
(E4)

Gauss-3
(E5)

SAC [51] 0 -1109 -911 -1071 -1498
BC 1235 1300 1278 1203 1240
BCQ [15] 1921 1864 1504 1731 1887
BEAR [16] 2100 1897 2008 2054 2018
MMD_vp [18] 2839 2672 2602 2667 2640
KL_vp [18] 2514 2530 2484 2615 2661
KL_dual_vp [18] 2626 2334 2256 2404 2433
W_vp [18] 2646 2417 2409 2474 2487
MMD_pr [18] 2583 2280 2285 2477 2435
KL_pr [18] 2241 2247 2181 2263 2233
KL_dual_pr [18] 2218 1984 2144 2215 2201
W_pr [18] 2241 2186 2284 2365 2344

Best Baseline 2839 2672 2602 2667 2661

MOReL (Ours) 3663 ±247 3305 ±413 3008 ±231 3329 ±270 3693 ±33

Environment: Hopper-v2 Partially trained policy: 1202
Algorithm Pure

(E1)
Eps-1
(E2)

Eps-3
(E3)

Gauss-1
(E4)

Gauss-3
(E5)

SAC [51] 0.2655 661.7 701 311.2 592.6
BC 1330 129.4 828.3 221.1 284.6
BCQ [15] 1543 1652 1632 1599 1590
BEAR [16] 0 1620 2213 1825 1720
MMD_vp [18] 2291 2282 1892 2255 1458
KL_vp [18] 2774 2360 2892 1851 2066
KL_dual_vp [18] 1735 2121 2043 1770 1872
W_vp [18] 2292 2187 2178 1390 1739
MMD_pr [18] 2334 1688 1725 1666 2097
KL_pr [18] 2574 1925 2064 1688 1947
KL_dual_pr [18] 2053 1985 1719 1641 1551
W_pr [18] 2080 2089 2015 1635 2097

Best Baseline 2774 2360 2892 2255 2097

MOReL (Ours) 3642 ±54 3724 ±46 3535 ±91 3653 ±52 3648 ±148

Environment: Walker-v2 Partially trained policy: 1439
Algorithm Pure

(E1)
Eps-1
(E2)

Eps-3
(E3)

Gauss-1
(E4)

Gauss-3
(E5)

SAC [51] 131.7 213.5 127.1 119.3 109.3
BC 1334 1092 1263 1199 1137
BCQ [15] 2095 1921 1953 2094 1734
BEAR [16] 2646 2695 2608 2539 2194
MMD_vp [18] 2694 3241 3255 2893 3368
KL_vp [18] 2907 3175 2942 3193 3261
KL_dual_vp [18] 2575 3490 3236 3103 3333
W_vp [18] 2635 2863 2758 2856 2862
MMD_pr [18] 2670 2957 2897 2759 3004
KL_pr [18] 2744 2990 2747 2837 2981
KL_dual_pr [18] 2682 3109 3080 2357 3155
W_pr [18] 2667 3140 2928 1804 2907

Best Baseline 2907 3490 3255 3193 3368

MOReL (Ours) 3709 ±159 2899 ±588 3186 ±92 4027 ±314 2828 ±589
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Environment: HalfCheetah-v2 Partially trained policy: 4206
Algorithm Pure

(E1)
Eps-1
(E2)

Eps-3
(E3)

Gauss-1
(E4)

Gauss-3
(E5)

SAC [51] 5093 6174 5978 6082 6090
BC 4465 3206 3751 4084 4033
BCQ [15] 5064 5693 5588 5614 5837
BEAR [16] 5325 5435 5149 5394 5329
MMD_vp [18] 6207 6307 6263 6323 6400
KL_vp [18] 6104 6212 6104 6219 6206
KL_dual_vp [18] 6209 6087 6359 5972 6340
W_vp [18] 5957 6014 6001 5939 6025
MMD_pr [18] 5936 6242 6166 6200 6294
KL_pr [18] 6032 6116 6035 5969 6219
KL_dual_pr [18] 5944 6183 6207 5789 6050
W_pr [18] 5897 5923 5970 5894 6031

Best Baseline 6209 6307 6263 6323 6400

MOReL (Ours) 6028 ±192 5861 ±152 5869 ±139 6026 ±74 5892 ±128

C.6 Ablation Study with the Pure-partial dataset
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Figure 6: Learning curve using naïve MBRL with the Pure-partial dataset. Contrast the learning
exhibited by naïve MBRL in this figure with MOReL in Figure 4.

C.7 Hyperparameter Guidelines and Ablations

We did not have resources to perform a thorough hyperparamter search, and largely used our intuitions
to guide the choice of hyperparameters. We believe that better results are possible with hyperparameter
optimization. First, we present the influence of the discrepancy threshold for differentiating known
and unknown states. We first define the maximum discipancy in the dataset:

discD = max
(s,a)∈D

max
i,j
‖fi(s, a)− fj(s, a)‖

where D denotes offline dataset, and fi denotes ith dynamics model in the ensemble.

Table 7: Influence of discrepancy threshold on the Hopper-v2 task. We use a penalty of 0.0 along
with episode termination for visiting unknown regions in these experiments. We train all the cases for
1000 iterations, and report the average value over the last 100 iterations.

Discrepancy Threshold Value in P-MDP Value in true MDP

0.1× discD 1315.16 2082.21
0.2× discD 2479.92 3244.48
0.5× discD 3074.75 3359.66
1.0× discD 3543.23 3595.60
5.0× discD 3245.66 3027.59

Naive-MBRL 3656.08 2809.66
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Our general observations and guidelines for hyperparameters are:

1. In Table 7, we first note that 0.1 × discD has the most amount of pessimism and Naive-
MBRL has the least/no amount of pessimism. We observe that we obtain best results in the
true MDP with an intermediate level of pessimism. Having either too much pessimism or
no pessimism both lead to poor results, but for very different reasons that we outline below.

2. A high degree of pessimism makes policy optimization in the P-MDP difficult. The opti-
mization process may be slow or highly noisy. This is due to non-smoothness introduced
in the dynamics and reward due to abrupt changes involving early episode terminations.
If difficulty in policy optimization is observed in the P-MDP, we recommend considering
reducing the degree of pessimism.

3. With a lack or low degree of pessimism, policy optimization is typically easier, but the
performance in the true MDP might degrade. If it is observed that the value in the P-MDP
overestimates the value in the true MDP substantially, then we recommend increasing the
degree of pessimism.

4. For the tasks considered in this work, positive rewards indicate progress towards the goal.
Most of the locomotion tasks involve forward velocity as the primary component of the the
reward term. In these cases, we observed that the choice of reward penalty for going into
unknown regions did not play a crucial role, as long as it was ≤ 0. The degree of influence
of this parameter in other environments is yet to be determined, and beyond the scope of our
empirical study.
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