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Abstract. We resolve three interrelated problems on reduced Kronecker coefficients g(a, 8,7). First, we dis-
prove the saturation property which states that g(Na, N, Ny) > 0 implies g(a, §,7) > 0 for all N > 1. Sec-
ond, we esimate the maximal g(a, §,7), over all ||+ |8| + |yl = n. Finally, we show that computing g(A, u,v) is
strongly #P-hard, i.e. #P-hard when the input (A, y,v) is in unary.
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1. Introduction
The reduced Kronecker coefficients were introduced by Murnaghan in 1938 as the stable limit of
Kronecker coefficients, when a long first row is added:

gla,p,y):= lim g(aln], flnl,yln]), where alnl:=(n-lal,ay,az..), nzlal+a, (1)
see [15,16]. They generalize the classical Littlewood—-Richardson (LR-) coefficients:

gla,p,y)=cg, for lal=1pl+lyl,

see [12]. As such, they occupy the middle ground between the Kronecker and the LR—coefficients.
While the latter are well understood and have a number of combinatorial interpretations, the
former are notorious for their difficulty. It is generally believed that the reduced Kronecker

coefficients are simpler and more accessible than the (usual) Kronecker coefficients, cf. [9, 18].
The results of this paper suggest otherwise, see Remark 12.
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1.1. Saturation property

The Kronecker coefficients g(A, i1, v), are defined as

1
g v) = (k) = =2 1oy o)y ),
n: €Sy,
where A, 4, v F n, and y* is the irreducible character of S, corresponding to partition A. Similarly,
the Littlewood—-Richardson coefficients are defined as
cﬁv = (XA,Xu ®r” ngxsn,k>’ where AFn,ukkvkEn—-k.
It is easy to see that C%ﬁ Ny cﬁv forall N = 1, where NA = (NA;, NA,,...). The saturation property
is the fundamental result by Knutson and Tao [11], giving a converse:

NA A
Cnpny >0 forsomeN=1 = ¢, >0.

For a partition a + k and n = k + a;, we have a[n] = (n - k,a;,a2,...) - n. It is known
that g(a[n+ 1], Bln+1],y[n+1]) = g(aln], Bln],y[n]) for all n, whenever the right hand side is
defined. In this notation, Murnaghan’s result (1) states that g(a, 8,v) = g(alnl, B(nl,y[n]) for n
large enough.

The saturation property fails for the Kronecker coefficients, i.e. g(2%,22,2%) = 1 but
g(12,12,12) = 0. It is a long-standing open problem whether it holds for the reduced Kro-
necker coefficients. This was independently conjectured in 2004 by Kirillov [9, Conj. 2.33] and
Klyachko [10, Conj. 6.2.4] :

Conjecture 1 (Kirillov, Klyachko). The reduced Kronecker coefficients satisfy the saturation prop-
erty:
g(Na,NB,Ny)>0 forsome N=1 — g(a,B,y)>0.
This conjecture was motivated by the known converse:
g8, B,7)>0 = gWlNa,NB,Ny)>0 forall N=1,

see below. Here is the first result of this paper.

Theorem 2. For all k = 3, the triple of partitions (lkz‘l,lkz_l,kk‘l) is a counterexample to
Conjecture 1. Moreover, for every partition y s.t. y; = 3, there are infinitely many pairs (a, b) € N?
for which the triple of partitions (a”, a’,y) is a counterexample to Conjecture 1.

These results both contrast and complement [5, Cor. 6], which confirms the saturation prop-
erty for triples of the form (ab, ab, a).

1.2. Maximal values

Our second result is a variation on Stanley’s recent bounds on the maximal Kronecker and LR-
coefficients:

Theorem 3 (cf. [25,26], and also [21]). We have:

maxmaxmaxg(A, y,v) = Vnle OWM, 2)
Arn pkn ven

max maxmax max CAV = on/2-0(n) 3)
O<ksn AFn pkk vbn—-k ™7

In [21], we refine (3) and prove that the maximal Kronecker and LR-coefficients appear when
all three partitions have near-maximal dimension, which in turn implies that they have a Vershik-
Kerov-Logan-Shepp shape. See also [20] for refined upper bounds on (reduced) Kronecker coef-
ficients with few rows. Here we obtain the following analogue of Stanley’s Theorem 3.

C. R. Mathématique, 2020, 358, n° 4, 463-468



Igor Pak and Greta Panova 465

Theorem 4. We have:

max maxmaxmaxg(a,S,y) =V nlef,
a+b+c<3n aka B-b ykc

1.3. Complexity

Our final result is on complexity of computing the reduced Kronecker coefficients. Via reduction
to LR—coefficients, computing the reduced Kronecker coefficients is classically #P-hard, see [17].
The following recent result by Ikenmeyer, Mulmuley and Walter is a far-reaching extension:

Theorem 5 (cf. [7] and Remark 14). Computing the Kronecker coefficients g(A, u,v) is strongly
#P-hard.

Here by strongly #P-hard we mean #P-hard when the input (A,y,v) is given in unary. In
other words, the input size of the problem is the total number of squares in the three Young
diagrams. The theorem is in sharp contrast with computing y"~%®[1] which is #P-complete but
not strongly #P-complete, see [19, §7].

Theorem 6. Computing the reduced Kronecker coefficients g(a, B,y) is strongly #P-hard.

Let us mention that the problem of computing the (reduced) Kronecker coefficients is not
known to be in #P, see [19]. In fact, finding a combinatorial interpretation for (reduced) Kronecker
coefficients is a classical open problem [24, Prob. 10]. Note also that Theorem 6 is stronger than
Theorem 5, since in the limit (1) it suffices to take n = |a|+|B| +|yl, see [3,27]. Indeed, this implies
that the reduced Kronecker coefficient problem is a subset of instances of the usual Kronecker
coefficient problem (cf., however, Remark 16).

2. Disproof of the saturation property

We assume the reader is familiar with basic results and standard notations in Algebraic Combi-
natorics, see [23]. We also need the following two results on Kronecker coefficients.

Lemma 7 (Symmetries). Forevery A, u,v F n, we have:
g, v) =g, 1, v) = g, A,v) = g(A, v, ).

Lemma 8 (Semigroup property [4,13]). Suppose a, B,y - m, such that g(a, 8,y) > 0. Then, for
all partitions A, 1, v -+ n, we have:

gl+a,u+pB,v+y) =g, uv).

This result is crucial for understanding of reduced Kronecker coefficients. First, since
g(1,1,1) = 1, we conclude that the sequence {g(a[n], B[n],y[n])} is weakly increasing with n. Sim-
ilarly, the sequence {g(N A, Np, Nv)} is weakly increasing with N if g(A, i, v) > 0.

Let (1) be the number of parts of the partition A, and d(A) := max{k : 1} = k} be the Durfee
size. For the proof of Theorem 2, we need several known technical results which we state below.

Lemma9 (cf. [6]). Let A, u, v+ n besuch that d(1) >2d(u)d(v). Then g(A, 1, v) =0.
Lemma 10 (cf. [1, Cor. 3.2]). Let A = A’ be a self-conjugate partition. Then g(A, A, 1) > 0.

Lemma 11 (cf. [8, Thm. 1.10]). Let & := {1,1%,1%,1,21,31}, and let partition v ¢ & . Denote
¢ :=max{/(v) + 1,9}, and suppose r > 3032 s>302 and|v| < rs/6. Then g(s",s",v(rs]) >0.

C. R. Mathématique, 2020, 358, n° 4, 463-468
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Proof of Theorem 2. We prove the first statement of the theorem. Let k = 3, and let a = (lkz’l),
y = (k*!) be as in the theorem. Since d(a[n]) = 1 and d(y[n]) = k for all n > k?, we have
2d(a[n])? =2 < d(y[n]) = k. Thus, we have g(a, a,y) = 0 by Lemma 9.

By Lemma 10, the symmetry and semigroup properties (Lemma 7 and 8), we have:

g(ka, ka, ky) = g(kszl, kkz—I, (kz)kfl) > g(kszl[kB], kszl (k3] (kz)kfl [k?’])
> g (k¥ K, ())F) = g (KB, (k4K (k)F) = g (K, k¥, k) > 0.
This contradicts the saturation property in Conjecture 1 for N = k, and proves the first part of the
theorem.

For the second part, we construct the counterexample based on Lemma 11. For a partition vy,
let £ := max{¢(y) + 1,9} as in the lemma. Let b > max{3¢%'2,|y|/(6,/d(y[n])/2 — 6)}. Since y» = 3,
we have d(y[n]) = 3. Thus, there exists atleast one a = 1, such that |y|/(6b) < a < /d(y[nl])/2. Let
us show now that (a, b) is a pair as in the theorem.

Take a := (a?). Since d(a[n]) < a, we have 2d(a[n])? < 2a® < d(y[n]). Thus, we have g(a, a,y) =
0 by Lemma 9. On the other hand, let N > 3¢2/a, v := Ny, r := b+1, and s := Na. Then

|v| < Nab/6 < rs/6, r > 3¢%2, and s = Na = 3¢?, by construction. Since v ¢ & for all N > 1,
the conditions of Lemma 11 are satisfied. We conclude:

g(Na, Na, Ny) :§(Nab,Nab,N)/) > g(sb“,sh“,Ny[rs]) =g(s",s",vIrsl) >0,

which implies that (a, @, y) is a counterexample to the saturation property. Since the construction
works for all b large enough as above, this proves the second part of the theorem. g

3. Bounds and complexity via identities

Proof of Theorem 4. We follow [21] in our exposition. We start with the following identity (2,
Cor. 4.5]:

Lk/2]
gapy=YY Y ) DD D DR cgmcngg(/l,u, V), 4)
m=0 ntq+m-b pk-q+m—-a obm A,uv-k-2m
wherea=lal,b=1pl, g=1yl, k=a+b-q, and
A A
Copy = ; CMCEY.
For the upper bound, by [21, Thm. 1.5] which extends (3) in Theorem 3, we have:

1/2
N
Ciﬁi(a) forall AFN,ata,f-N-a.

Using the Vandermonde identity for the sums of binomial coefficients, we have:

N

1/2
y) N/2
C“ﬁys(a,b,N—a—b) <3 forall A\ N,atka,fFby-N—-a-b.

In this notation, the theorem is a maximum over a + b + g < 3n. Combining these with (2) in
Theorem 3, we have:
g, B,7)<(3n/2)-p 3n)° 332/l = VnteOm

For the lower bound, let a, B,y I n, and note that g(a, B,y) = g(a, B,7), which is achieved in (4)
for m = 0. The result now follows from part (2) of Theorem 3. O
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Proof of Theorem 6. Let A = (11, A2,...) - n, which can be viewed as an infinite nonincreasing
sequence by appending zeros at the end. Denote A := (12, 13,...). Forall i = 1, define

A= (A + 1,02+ 1L, Aoy + 1, 4isn, Ada, ),

so in particular A1’ = 1. The result is a direct consequence of the following identity:

2Wew) ) _
ghpvi= Y D'gA"E9), ©)
i=1
see [3, Thm. 1.1]. From Theorem 5, computing g(A, i, v) is #P-hard in unary. The identity (5) has
polynomially many terms, and thus gives a polynomial reduction. g

4. Final remarks and open problems

Remark 12. All three results in this paper are centered around the same (philosophical) claim,
that the reduced Kronecker coefficients are closer in nature to the (usual) Kronecker coefficients
than to the LR—coeflicients. This is manifestly evident from both the statements and the proofs of
the theorems. However, this should not be taken as a suggestion that the LR-coefficients are not
strongly #P-hard. We do, in fact, conjecture that computing cﬁv is strongly #P-hard [19, Conj. 8.1],
but this remains beyond the reach of existing technology.

Remark 13. There is a general setting which extends the stability of Kronecker coefficients to
other families of stable limits, see [22]. Manivel asks if the saturation property holds for all these
families, but notes that “we actually have only very limited evidence for that” [13]. In view of our
results, it would be interesting to see if the saturation property holds for any of these families of
stable coefficients.

Remark 14. Theorem 5 is not stated in [7] in this form. It does however follow directly from the
proof, which is essentially a parsimonious reduction from the 3-PartiTION problem classically
known to be (strongly) NP-complete, and thus the counting is (strongly) #P-complete.

Remark 15. Among other consequences, the saturation property implies that the vanishing
problem c”}v >* 0 is in P, see [14]. The main result of [7] proved that the vanishing problem
g(A,i,v) >* 0 is NP-hard, refuting Mulmuley’s conjecture (cf. e.g. [19, §2]). Following the pat-
tern in Remark 12 above, we conjecture that the vanishing problem g(a, 8,7) >* 0 for reduced

Kronecker coefficients is also NP-hard.

Remark 16. There is a subtle but important technical differences between the way we state
Theorem 5 and the way it is stated in [7]. While we use the (standard) Turing reduction to
derive Theorem 6 from Theorem 5, the original proof in [7] uses a more restrictive many-to-
one reduction. Such a reduction for Theorem 6 would also resolve our conjecture above on the
vanishing problem.

Acknowledgements

The authors are grateful to Christine Bessenrodt, Chris Bowman and Rosa Orellana for interesting
conversations and helpful remarks. Special thanks to Christian Ikenmeyer for the explanation of
the inner working of [7], and to Mike Zabrocki for help with the computer algebra. The results of
the paper were obtained during authors’ back to back visits at the Oberwolfach Research Institute
for Mathematics and the Mittag-Leffler Institute; we are grateful for their hospitality.

C. R. Mathématique, 2020, 358, n° 4, 463-468



468 Igor Pak and Greta Panova

References

[1] C. Bessenrodt, C. Behns, “On the Durfee size of Kronecker products of characters of the symmetric group and its
double covers”, J. Algebra 280 (2004), no. 1, p. 132-144.

[2] C. Bowman, M. De Visscher, R. Orellana, “The partition algebra and the Kronecker coefficients”, Trans. Am. Math.

Soc. 367 (2015), no. 5, p. 3647-3667.

E. Briand, R. Orellana, M. Rosas, “The stability of the Kronecker product of Schur functions”, J. Algebra 331 (2011),

no. 1, p. 11-27.

M. Christandl, A. W. Harrow, G. Mitchison, “Nonzero Kronecker coefficients and what they tell us about spectra”,

Commun. Math. Phys. 270 (2007), no. 3, p. 575-585.

L. Colmenarejo, M. Rosas, “Combinatorics on a family of reduced Kronecker coefficients”, C. R. Math. Acad. Sci. Paris

353 (2015), no. 10, p. 865-869.

[6] Y. Dvir, “On the Kronecker product of S;, characters”, J. Algebra 154 (1993), no. 1, p. 125-140.

[7] C. Ikenmeyer, K. D. Mulmuley, M. Walter, “On vanishing of Kronecker coefficients”, Comput. Complexity 26 (2017),

no. 4, p. 949-992.

C. Ikenmeyer, G. Panova, “Rectangular Kronecker coefficients and plethysms in geometric complexity theory”, Adv.

Math. 319 (2017), p. 40-66.

[9] A. N. Kirillov, “An invitation to the generalized saturation conjecture”, Publ. Res. Inst. Math. Sci. 40 (2004), no. 4,

p. 1147-1239.

[10] A. Klyachko, “Quantum marginal problem and representations of the symmetric group”, https://arxiv.org/abs/
quant-ph/0409113, 2004.

[11] A.Knutson, T. Tao, “The honeycomb model of GL; (C) tensor products. I: Proof of the saturation conjecture”, J. Am.
Math. Soc. 12 (1999), no. 4, p. 1055-1090.

[12] D.E. Littlewood, “Products and plethysms of characters with orthogonal, symplectic and symmetric groups”, Can. J.
Math. 10 (1958), p. 17-32.

[13] L. Manivel, “On the asymptotics of Kronecker coefficients”, J. Algebr. Comb. 42 (2015), no. 4, p. 999-1025.

[14] K. D. Mulmuley, H. Narayanan, M. Sohoni, “Geometric complexity theory III: On deciding nonvanishing of a
Littlewood-Richardson coefficient”, J. Algebr. Comb. 36 (2012), p. 103-110.

[15] E D. Murnaghan, “The analysis of the Kronecker product of irreducible representations of the symmetric group”,
Am. J. Math. 60 (1938), p. 761-784.

, “On the Kronecker product of irreducible representations of the symmetric group”, Proc. Natl. Acad. Sci. USA
42 (1956), p. 95-98.

[17] H. Narayanan, “On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients”, J. Algebr.
Comb. 24 (2006), no. 3, p. 347-354.

[18] R. Orellana, M. Zabrocki, “Products of symmetric group characters”, J. Comb. Theory, Ser. A165 (2019), p. 299-324.

[19] I. Pak, G. Panova, “On the complexity of computing Kronecker coefficients”, Comput. Complexity 26 (2017), no. 1,
p.1-36.

[20] , “Upper bounds on Kronecker coefficients with few rows”, https://arxiv.org/abs/2002.10956, 2020.

[21] I. Pak, G. Panova, D. Yeliussizov, “On the largest Kronecker and Littlewood-Richardson coefficients”, J. Comb. Theory,
Ser. A165 (2019), p. 44-77.

[22] S.V.Sam, A. Snowden, “Proof of Stembridge’s conjecture on stability of Kronecker”, J. Algebr. Comb. 43 (2016), no. 1,
p.1-10.

[23] R. P. Stanley, Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cam-
bridge University Press, 1999.

, “Positivity problems and conjectures in algebraic combinatorics”, in Mathematics: frontiers and perspectives,

American Mathematical Society, 2000, p. 295-319.

, “Supplementary Excercies to [23, Ch. 7]”, 2011, http://www-math.mit.edu/~rstan/ec.

, “Plethysm and Kronecker Products”, 2016, talk slides, http://www-math.mit.edu/~rstan/transparencies/
plethysm.pdf.

[27] E. Vallejo, “Stability of Kronecker products of irreducible characters of the symmetric group”, Electron. J. Comb. 6
(1999), no. 1, article ID R39 (7 pages).

[3

4

[5

(8

[16]

[24]

[25]
[26]

C. R. Mathématique, 2020, 358, n° 4, 463-468


https://arxiv.org/abs/quant-ph/0409113
https://arxiv.org/abs/quant-ph/0409113
https://arxiv.org/abs/2002.10956
http://www-math.mit.edu/~rstan/ec
http://www-math.mit.edu/~rstan/transparencies/plethysm.pdf
http://www-math.mit.edu/~rstan/transparencies/plethysm.pdf

	1. Introduction
	1.1. Saturation property
	1.2. Maximal values
	1.3. Complexity

	2. Disproof of the saturation property
	3. Bounds and complexity via identities
	4. Final remarks and open problems
	Acknowledgements

	References

