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Abstract

We consider the number of partitions of n whose Young diagrams fit inside an m X £ rectangle;
equivalently, we study the coefficients of the g-binomial coefficient (mnfe)q. We obtain sharp asymptotics

throughout the regime £ = ©(m) and n = ©(m?). Previously, sharp asymptotics were derived by
Takacs [Tak86] only in the regime where |n — ¢m/2| = O(y/¢m(£ +m)) using a local central limit
theorem. Our approach is to solve a related large deviation problem: we describe the tilted measure that
produces configurations whose bounding rectangle has the given aspect ratio and is filled to the given
proportion. Our results are sufficiently sharp to yield the first asymptotic estimates on the consecutive
differences of these numbers when n is increased by one and m, ¢ remain the same, hence significantly
refining Sylvester’s unimodality theorem and giving effective asymptotic estimates for related Kronecker
and plethysm coefficients from representation theory.
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1 Introduction

A partition A of n is a sequence of weakly decreasing nonnegative integers A = (A\; > Ay > ...) whose sum
Al = A1 + A2+ -+ is equal to n. The study of integer partitions is a classic subject with applications
ranging from number theory to representation theory and combinatorics, and integer partitions with various
restrictions on properties, such as part sizes or number of parts, occupy the field of partition theory [And76].
The generating functions of integer partitions play a role in number theory and the theory of modular forms.
In representation theory, integer partitions index the conjugacy classes and irreducible representations of the
symmetric group S,,; they are also the signatures of the irreducible polynomial representation of GL,, and
give a basis for the ring of symmetric functions. More recently, partitions have appeared in the study of
interacting particle systems and other statistical mechanics models.

The number of partitions of n, typically denoted by p(n) but here unconventionally! by N,,, was implicitly
determined by Euler via the generating function
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There is no exact explicit formula for the numbers N,,. The asymptotic formula

4n1\/§ exp (7? 2;) , (1)

obtained by Hardy and Ramanujan [HR18], is considered to be the beginning of the use of complex variable
methods for asymptotic enumeration of partitions (the so-called circle method).

N, = #{\F n} ~

Our goal is to obtain asymptotic formulas similar to (1) for the number of partitions A of n whose Young
diagram fits inside an m X £ rectangle, denoted

Np(l,m) :=#{AFn: X < £ length(\) < m}.
These numbers are also the coefficients in the expansion of the g-binomial coefficient
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The g-binomial coefficients are themselves central to enumerative and algebraic combinatorics. They are
the generating functions for lattice paths restricted to rectangles and taking only north and east steps under
the area statistic, given by the parameter n. They are also the number of /-dimensional subspaces of Ff;*m
and appear in many other generating functions as the g-analogue generalization of the ubiquitous binomial
coefficients. Notably, the numbers N,, (¢, m) form a symmetric unimodal sequence

1= NO(E,m> < Nl(gam) < < N|_m€/2](£>m) >z Nmf(&m) =1,

a fact conjectured by Cayley in 1856 and proven by Sylvester in 1878 via the representation theory of
sl [Syl78]. Ome hundred forty years later, no previous asymptotic methods have been able to prove this
unimodality.

1We use the notation N, to distinguish scenarios of probability with those of enumeration, both of which occur in the present
manuscript.



Asymptotics of N, (¢, m)

Our first result is an asymptotic formula for N,,(¢,m) in the regime ¢/m — A and n/m? — B for any fixed
A > B > 0. This is the regime in which a limit shape of the partitions exists: £/m — A implies the aspect
ratio has a limit and n/m? — B € (0, A) implies the portion of the m x £ rectangle that is filled approaches
a value that is neither zero nor one. By “asymptotic formula” we mean a formula giving N,,(¢,m) up to a
factor of 1 + o(1); such asymptotic equivalence is denoted with the symbol ~. By the obvious symmetry
Ny (€,m) = Nye—n (€, m) it suffices to consider only the case A > 2B > 0.

To state our results, given A > 2B > 0 we define three quantities ¢, d and A. The quantities ¢ and d are
the unique positive real solutions (see Lemma 9) to the simultaneous equations

1 c+d
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! t 1 dlog(l —e %) +dilog (1 — e~¢) — dilog (1 — e~¢~9)
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where we recall the dilogarithm function

. “ logt (1—x)

for |z — 1] < 1. The quantity A, which will be seen to be strictly positive, is defined by

_ 2Bef(e? —1) 4+ 2A(ec—1) -1 A?
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Theorem 1. Given m,{ and n, let A :={/m and B := n/m? and define ¢,d and A as above. Let K be any
compact subset of {(z,y) : x > 2y > 0}. As m — oo with £ and n varying so that (A, B) remains in K,

m[cAJerBflog(lfe_c_d)]

2rm2y/A (1 —e=¢) (1 — e—c=d)’

where ¢ and d vary in a Lipschitz manner with (A, B) € K.

Remark. In the special case B = A/2, the parameters take on the elementary values

A+1 A%(A+1)?
d=0, c:log(jl_>, and A:%.

In this case we understand the exponent and leading constant to be their limits as d — 0, giving
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The special case when A — oo, so that N,(¢,m) = N,(m) and the restriction on partition sizes is
removed corresponds to ¢ = 0 and d is a solution to an explicit equation given in Lemma 9. In this case the
result matches the one obtained first by Szekeres [Sze53] using complex analysis, then by Canfield [Can97]
using a recursion, and most recently by Romik [Rom05] using probabilistic methods based on Fristedt’s
ensemble [Fri93]. These works and others are further explained in Section 2.



Unimodality

Our second result gives an asymptotic estimate of the consecutive differences of N,,. In fact our motivation
for deriving more accurate asymptotics for N, (¢, m) was to be able to analyze the sequence {N,1(¢,m) —
Np(f,m) : n > 1}. Sylvester’s proof of unimodality of N,(¢,m) in n [Syl78], and most subsequent
proofs [Sta84, Sta85, Pro82], are algebraic, viewing N, (¢, m) as dimensions of certain vector spaces, or
their differences as multiplicities of representations. While there are also purely combinatorial proofs of
unimodality, notably O’Hara’s [O’H90| and the more abstract one in [PR86|, they do not give the desired
symmetric chain decomposition of the subposet of the partition lattice. These methods do not give ways
of estimating the asymptotic size of the coefficients or their difference. It is now known that N, (¢,m) is
strictly unimodal [PP13], and the following lower bound on the consecutive difference was obtained in [PP17,
Theorem 1.2] using a connection between integer partitions and Kronecker coefficients:

5
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Nn(ga m) - Nn—l(év m) > 0004@5 (6)

where n < ¢m/2 and s = min{2n, ¢?, m?}. In particular, when £ = m we have s = 2n.

Any sharp asymptotics of the difference appears to be out of reach of the algebraic methods in this
previous series of papers. Refining Theorem 1 we are able to obtain the following estimate.

Theorem 2. Given m,{ and n, let A := {/m and B := n/m? and define d as above. Suppose m,l and n
go to infinity so that (A, B) remains in a compact subset K of {(x,y) : © > 2y > 0} and

m~!|n —Im/2| — co.

Then p
Npt1(6,m) — Np(€,m) ~ ENH(Z,m).

Remark. The condition m~1 |n — Im/2| — oo is equivalent to m |A — B/2| — oo and is satisfied if and only
if d, which depends on m, is not O(m~1). It is automatically satisfied whenever the compact set K is a
subset of {(z,y) : > 2y > 0}.

Corollary: Asymptotics of Kronecker coefficients

Recent developments in the representation theory of the symmetric and general linear groups, motivated by
applications in Computational Complexity theory, have realized the consecutive differences N, 1(¢,m) —
N, (¢,m) as specific Kronecker coefficients for the tensor product of irreducible Sy, representations (see,
for instance, [PP13] which is also one of the unimodality proofs). The Kronecker coefficient g(A, u,v) =
dim Hom(Sy,S, ® S,) is the multiplicity of the irreducible |5 Specht module Sy in the tensor product of
two other irreducible representations. It is a notoriously hard problem to determine the values of these
coefficients, and their combinatorial interpretation has been an outstanding open problem in Algebraic
Combinatorics (see Stanley [Sta00]) since their definition by Murnaghan in 1938. In general, determining
even whether they are nonzero is an NP-hard problem and it is not known whether computing them lies in NP.
See [IP16] and the literature therein for some recent developments on the relevance of Kronecker coefficients
in distinguishing complexity classes on the way towards P # NP. Being able to estimate particular values
of Kronecker coefficients is crucial to the Geometric Complexity Theory approach towards these problems.

Because it is known (see [PP13]) that the consecutive difference N, (m,£) — N,_1(m,£) equals the Kro-
necker coefficient g((mf — n,n), (m’), (m")), Theorem 2 gives the first tight asymptotic estimate on this
family of Kronecker coefficients.



Corollary 3. The Kronecker coefficient of Spme for the (rectangle, rectangle, two-row) case is asymptotically
given by

de™ [cA+2dBflog(1fefcfd)]

2rm3 /A (1 —e=¢) (1 — e—c=d)’

g((me), (m‘z)7 (ml—n—1,n+1)) = Nyy1(£,m)— N, (£,m) ~ %Nn(ﬁ, m) ~

with constants and ranges as in Theorems 1 and 2.

2 Review of previous results and description of methods

2.1 Combinatorial Enumeration

Work on this problem has developed in two streams. First, there have been combinatorial results aimed at
asymptotic enumeration in various regimes. After Hardy and Ramanujan obtained an asymptotic formula
for N, in [HR18], enumerative work focused on N, (m), the number of partitions with part sizes bounded
by m, or equivalently, partitions of n that fit in an m x oo strip. In 1941, Erdoés and Lehner [ELA41]

m—1

showed that N, (m) ~ m for m = o(n'/3). This was generalized by Szekeres and others, ultimately
leading to asymptotics of N, (m) for all m in 1953 [Szeb3]. Szekeres simplified his arguments a number of
times, ultimately giving asymptotics using only a saddle-point analysis, without needing results on modular
functions; his argument has been referred to as the Szekeres circle method. Canfield [Can97] gave a completely
elementary proof (no complex analysis) of asymptotics for N, (m) using a recursive formula satisfied by these

numbers.

The combinatorial stream contains a few results on the asymptotics of N,,(m,¢) but only in the regime
where m and ¢ are greater than \/n by at least a factor of log n. This is a natural regime to study because the
typical values of the maximum part (equivalently the number of parts) of a partition of size n was shown by
Erdés and Lehner [EL41] to be of order y/nlogn. Szekeres [Sze90, Theorem 1] used saddle-point techniques

to express N, (¢, m) in terms of N, A := % and p := %. If, in fact,
V6 1 Von 1
v <4 +8) logn < (,m < Y2081
T T

for some € > 0, then the distributions defined by ¢ and m are independent and equal, and Szekeres’ formula

simplifies to
/6
—(>\ + /l) - ?n (6_)\ + €_M)

The Szekeres circle method was recently revisited by Richmond [Ric18]. In [JW18]| the authors, independently
and concurrently with our paper, used the generating function for g-binomial coefficients and a saddle
point analysis to derive the asymptotics for N,(m,f) in the cases when m,¢ > 4/n, corresponding to
B < min{1, A%} /16 in our notation. Those authors express their result using the root of a hypergeometric
identity similar to (3), however their methods give weaker error bounds and consequently cannot answer
questions of unimodality.

N,(¢,m) ~ N, exp

2.2 Probabilistic limit theorems

The second strand of work on this problem has been probabilistic. The goal in this strand has been to
determine properties of a random partition or Young diagram, picked from a suitable probability measure.



This approach goes back at least to Mann and Whitney [MW47], who showed that the size of a uniform
random partition contained in an ¢ x m rectangle satisfies a normal distribution. Frisdtedt [Fri93] defined
a distribution on partitions of all sizes, weighted with respect to a parameter ¢ < 1. The key property of
the measure employed is that it makes the number X (\) of parts of size k in the partition A drawn under
this distribution independent as k varies; the distributions of the X} are reduced geometrics with respective
parameter 1 — ¢*, so that their mean is ¢¥/(1 — ¢¥). Fristedt is chiefly concerned with the limiting behavior
of kX, for k = o(y/n), which rescales, on division by y/n, to an exponential distribution.

Much of the work following Fristedt’s is concerned with a description of the limiting shape of the random
partition, and fluctuations around that shape. The limit shape of an unrestricted partition was posed as a
problem by Vershik and first answered in [ST77a, ST77b]. In 2001, Vershik and Yakubovich [VY01] describe
the limit shape for singly restricted partitions: those with m < ¢y/n. They obtain both main (strong law)
results and fluctuation (CLT) results. It is in this paper that the probability measures P, used in our
analysis below first arose, although we were unaware of this when we first derived them from large deviation
principles. The limit shape for doubly restricted partitions in the regime m, ¢ = ©(y/n) was first described
by Petrov [Pet09]. It is identified there with a portion of the curve e™® + ¥ = 1, which represents the
limit shape of unrestricted partitions. More recently, Beltoft et al. [BBE12]| obtained fluctuation results in
the doubly restricted regime. The limiting fluctuation process is an Ornstein-Uhlenbeck bridge, generalizing
the two-sided stationary Ornstein-Uhlenbeck process that gives the limiting fluctuations in the unrestricted
case [VYO01].

2.3 Enumeration via probability

Strangely, we know of only one paper combining these two streams. Takacs [Tak86] observed the following
consequence of the work of Fristedt and others. Begin a discrete walk at (¢,0) and randomly choose steps in
the (0, —1) or (—1, 0) directions by making independent fair coin flips. If this walk goes from (¢,0) to (0, —m)
it takes precisely m + £ steps and encloses a Young diagram fitting in an m X £ rectangle: see Figure 1. Let
G(m, £) denote the event that a walk of length m + ¢ ends at (0, —m) and let H(m,n) denote the event that
the resulting Young diagram has area n. Under the IID fair coin flip probability measure on paths, all paths
of length m + ¢ have the same probability 2~ "+, Therefore, P[G(m, ) N H(m,n)] = 2~ (mTIN, (¢, m) and
the problem of counting N, (¢, m) is reduced to determining the probability P[G(m, £) N H(m,n)].

(1,0)

||

(0, —m)

Figure 1: The red arrows are the steps in a South and West directed simple random walk

Takacs observed that this probability is computable by a two-dimensional local central limit theorem,
ultimately obtaining bounds on the relative error that are of order (m + £)~3. These error bounds are
meaningful when n differs from m£/2 by up to a few multiples of log(m + £) standard deviations: if £ = 6(m)
this means that |B — A/2|m? = O(m?3/?logm). When |B — A/2| > m~'/2logm the error is much bigger
than the main term of the Gaussian estimate provided by the LCLT and one cannot recover meaningful
information about N, (¢, m). This is where Takacs left off and the present manuscript picks up.



2.4 Description of our methods

We use a local large deviation computation in place of a local central limit theorem: this is possible because
the restriction to an m x £ rectangle is a linear constraint. Indeed, consider now a partition A = (A1, ..., Anm)
with at most m parts (so some \; may be zero) and define Ao := £ and \,,,+1 := 0. It is convenient to encode
a partition with respect to its gaps x; := A; — Aj41, so the condition that A be a partition of n of size at
most ¢ is equivalent to x; > 0 and

m m
ijzf, ijj:n. (7)
j=0 j=0
Figure 2 gives a pictorial proof.
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Figure 2: The total area n of a partition is composed of rectangles of area jz;

Solving the large deviation problem produces a “tilted measure” in which the gaps X; are no longer IID
reduced geometrics with parameter 1/2 but are instead given by independent reduced geometric variables
whose parameters q; = 1 — p; vary in a log-linear manner. Log-linearity is dictated by the variational large
deviation problem and leads to the same simplification as before. Not all partitions have the same probability
under the tilted measure, but all those resulting in a given value of ¢ and n do have the same probability.
Lastly, one must choose the particular linear function log ¢; = —c—d(j/m) to ensure that X being a partition
of n with parts of size at most £ will again be in the central part of the tilted measure, so that asymptotics
can be read off from a local CLT for the tilted measure.

The tilted measures P,,, that we employ are denoted (5, in [VYOL]| and referred to there as the grand
ensemble of partitions. That paper, however, was not concerned with enumeration, only with limit shape
results. For this reason they do not state or prove enumeration results. In fact [Pet09] is able to prove the
shape result by estimating exponential rates only, showing rather elegantly that an € error in the rescaled
shape leads to an exponential decrease in the number of partitions. The present manuscript combines the
idea of the grand ensemble with some precise central limit estimates and some algebra inverting the relation
between the log-linear parameters and the parameters A and B defining the respective limits of £/m and n/m?
to give estimates on N, (¢, m) precise enough also to yield asymptotic estimates on N, 1(¢,m) — N, (£, m).

The first step of carrying this out necessarily recovers the leading exponential behavior for N, (¢, m),
which is implicit in [VY01] and [Pet09] though Petrov only states it as an upper bound. Interestingly,



Takécs did not seem to be aware of the ease with which the exponential rate may be obtained. His result
states a Gaussian estimate and an error term. As noted above, it is nontrivial only when the (m + ¢)=3
relative error term does not swamp the main terms, which occurs when n is close to £m/2 (see also [AA91]).
Figure 3 shows Takécs’ predicted exponential growth rate on a family of examples compared to the actual
exponential growth rate that follows from Theorem 1.

0 0.2 0.4 0.6 0.8 1
B

Figure 3: Exponential growth of Npg,,2(m,m) predicted by Takacs’ formula (blue, above) compared to the
actual exponential growth given by Theorem 1 (red, below).

3 A discretized analogue to Theorem 1

We now implement this program to derive asymptotics. With c,, and d,, to be specified later, let gq; :=
eem=Iidm/m et p; =1 — q; and let

L., = Z logp;.
j=0

Let P,, be a probability law making the random variables {X; : 0 < j < m} independent reduced geometrics
with respective parameters p;. Define random variables S, and T;,, by

S 1= iXZ ; T, = iiXi, (8)
1=0 i=1

corresponding to the unique partition A satisfying X; = A; — Aj;1. We first prove a result similar to
Theorem 1, except that the parameters ¢ and d that solve integral Equations (2) and (3) are replaced by ¢,
and d,, satisfying the discrete summation Equations (9) and (10) below. These equations say that ES,, = ¢

and ET}, = m. Writing this out, using EX; = 1/p; — 1 =1/ (1 - e*Cm*dmﬁ'/m) — 1, gives

m

=3 —— 4 (9)

1 — e_cm_dmj/m
=0

B Ui i/m m(m+ 1)
n= mZO T emem—dnijm 5 . (10)
J:




Let M,, denote the covariance matrix for (Sy,, T),). The entries may be computed from the basic identity
Var (X;) = qj/pjz7 resulting in

Var (Sy) zm: e=Cm—dmi/m (11)
ar (Sp,) = :
=0 (1 — e_c7n_dm,]/m)2
o (S . ) m . e_cm—dmj/m ( 2)
oV om,4Ldm) = J X 1
=0 (1 — e_cnl_dvn]/m)Q
m —Cm—dmj/m
Var (T,) = 32— . (13)

I
o

j (1 _e—cm—dm;j/m)2

Theorem 4 (discretized analogue). Let ¢, and d, satisfy (9) — (10). Define o, fm and 7, to be the
normalized entries of the covariance matrix

QO = m~ Var (S,,) ; B = m2Cov (S, Trm) ; Y = mVar (T)

which are O(1) as m — oo. Again, let A :={/m and B :=n/m? and A, = amYm — B32,. Then as m — oo
with ¢ and n varying so that (A, B) remains in a compact subset of {(x,y) : x > 2y > 0},

L
N, (l,m) ~ —— tenA+ de) } . (14)
m

1
2rm2v/ A, P {m (

Proof. The atomic probabilities P,,, (X = x) depend only on S,,, and T,,, as

7=0
m d,,
:Lm—z Cm +J— | T
7=0
m d m
e [$0) 2 (50
3=0 3=0
In particular, for any x satisfying (7),
dm
logP(X =x%x) =L, — el — —n. (15)
m

Three things are equivalent: (i) the vector X satisfies the identities (7); (i¢) the pair (S, T),) is equal to
(¢,n); (i4i) the partition A = (A1,...,Ay,) defined by A; — A\j11 = X, for 2 < j < m — 1, together with
A =/f— Xy and A\, = X,,,, is a partition of n fitting inside a m x £ rectangle. Thus,

Nn(ga m) =P, [(Sma Tm) = (E, TL)] exp (Lm + el + dmn)
m

L
=Py, [(Sm, Tim) = (¢,n)] exp [m (—WT + cmA + de>] . (16)
Comparing (14) to (16), the proof is completed by an application of the LCLT in Lemma 5. O
Lemma 5 is stated for an arbitrary sequence of parameters pg, . .., p,, bounded away from 0 and 1, though

we need it only for p; = 1 — e=¢m~9mi/™ TFor a 2 x 2 matrix M, denote by M(s,t) := [s, t] M [s, t] the
corresponding quadratic form.



Lemma 5 (LCLT). Fiz 0 <6 <1 and let po, . ..,pm be any real numbers in the interval [§,1—¢]. Let {X;}
be independent reduced geometrics with respective parameters {p;}, Sm = Z;ﬁ:o X;, and Ty, = Z;":O JX;.
Let My, be the covariance matrix for (Sp,Tp), written

amm  Bmm?

M = ( /Bme 'meg ) ’

Qm denote the inverse matriz to M,,, and A, = m~*det M,;, = i ym — B2, Let jy, and vy, denote the
respective means ES,, and ET,,. Denote py(a,b) :=P((Sm,Tm) = (a,b)). Then

1
sup m? ‘pm(a, b) — o

_lQm(a_Hmub_Vrn)
a,beZ det Mm)1/2e i

-0 (17)

as m — oo, uniformly in the parameters {p;} in the allowed range. In particular, if the sequence (am, by,)
satisfies Qum(am — tm,bm — Vm) — 0 then

P(Sm = am, Tyn = bym) = m (1 +0 (m*3/2)) .

The following consequence will be used to prove Theorem 2.

Corollary 6 (LCLT consecutive differences). Let N, (a,b) := me_%Qm(a_“m’b_”m) be the normal

approximation in Equation (17). Using the notation of Lemma 5,

S})lepz pm(a,b+1) — pm(a,b) — (N (a,b+ 1) — Ny (a, b))’ =0(m™).

The technical but unsurprising proofs of Lemma 5 and Corollary 6 are given in the Appendix at the end
of this article.

4 Limit shape

Suppose a Young diagram is chosen uniformly from among all partitions of n fitting in a m X £ rectangle. To
simplify calculations, we imagine this Young diagram outlining a compact set in the fourth quadrant of the
plane and rotate 90° counterclockwise to obtain a shape in the first quadrant. Let =, ;,, , denote the random
set obtained in this manner after rescaling by a factor of 1/m, so that the length in the positive z-direction
is bounded by 1. Fix A > 2B > 0 and metrize compact sets of R? by the Hausdorff metric. As m — oo with
¢/m — A and n/m2 — B, the random set =, ,,, ¢ converges in distribution to a deterministic set =48 See
Figure 4 for some examples.

Our methods immediately recover the distributional convergence result Z,, ,,, » — =48 As previously
mentioned, this limit shape was known to Petrov [Pet09] and others. Petrov identifies it as a portion of
the limit curve for unrestricted partitions, which itself was posed as a problem by Vershik and answered
in [ST77a, STT7b] (see also [Ver96]). Because this result is already known, along with precise fluctuation
information which we do not derive, we give only the short argument here for distributional convergence.
We do not determine the best possible fluctuation results following from this method.

The shape Z,, 1, ¢ is determined by its boundary, a polygonal path obtained from a partition A by filling
in unit vertical connecting lines in the step function x — m’l)\me |- Recall that the probability measure
P, restricted to the event {(S,,, 1) = (¢,n)} gives all partitions counted by N, (m,¥) equal probability
and that P, gives the event {(Sy,,T:n) = (¢,n)} probability ©(m~2). Distributional convergence of Z,, .,
to 248 then follows from the following.



Proposition 7. Fiz A > 2B > 0. Define the mazimum discrepancy by

> (x-2)

Then for any € > 0,
as m — oo with {/m — A and n/m — B.

Proof. This is a routine application of exponential moment bounds. By our definition of p;, in this regime
there exists § > 0 such that p; € [§,1 — §] for all 4. Therefore, there are n, K > 0 such that for A < 7, the
mean zero variables X; — q; /p; all satisfy Eexp(A(X; —q;/p;)) < exp(K\?). Independence of the family {X;}
then gives

J

/\Z(Xi _pi/Qi)‘| < fmA?

i=0

Eexp

for all 7 < m. By Markov’s inequality,
P(|X; — pi/qi| = em) < efmA Am

Fixing A = 1/(2K) shows that this probability is bounded above by exp(—m/(4K)). Hence, P(M > em) <
me~™/ (4K) = o(m=2) as desired. O

To see that Proposition 7 implies the limit shape statement, let A; := ¢ — (X + -+ + X;_1) so that

i—1
y @) =i =LY ai/p;.
j=0

Proposition 7 shows the boundary of Z,, to be within o(m) of the step function ™) (-) except with probability
o(m~2). Since P, restricted to the event {(S,.,T},) = (¢,n)} gives all partitions counted by N, (m, /)
equal probability and P, gives the event {(S,.,T,) = (¢,n)} probability ©(m~2), the conditional law
(P | (Sis Tin) = (£,m)) gives the event {M > em} probability o(1) as m — oo with ¢/m — A and
n/m — B. Thus, the boundary of =, converges in distribution to the limit

y(x) = lm m~'y™((mz)). (18)

m

Figure 4 shows examples of two families of the limit curve as well as a plot of the limit curve against uniformly
generated restricted partitions for several values of m in the range [120, 300].

Substituting the definition of y(™)(3) into (18) and evaluating the limit as an integral gives

o 1 [evdte g

After expressing c in terms of d, this may be written implicitly as

e(A—i—l)d 1= (ed _ 1)€d(A—y) + (eAd _ 1)ed(1—x)

which simplifies to
(1 —e ¢)edAY) L gmcemdo = 1 (19)

as long as A > 2B; in the special case A = 2B one obtains simply y = A - (1 — z).

10
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Figure 4: Limit shapes of scaled partitions as m — oo.

It is worth comparing this result with the limit shape derived in [Pet09]. There the limit shape of the
boxed partitions is identified as the portion of the curve {e™* + e ¥ = 1}, which is the limit shape of
unrestricted partitions. The portion is determined implicitly by the restriction that the endpoints of the
curve are the opposite corners of a 1 x A-proportional rectangle and that the area under the curve has the
desired proportion, that is B/A of the total rectangular area. To see that this matches (19) we can calculate
the given portion explicitly.

Let © = s1, so be the starting and ending points of the bounding rectangle. The side ratio and the area
requirement are respectively equivalent to

log(1 — e®1) —log(1 — e™*2)

S2 — 81

=A

and

s2
/ —log(1 — e H)dt + (53 — s1)log(1 — e™2) = B(sy — 51)°

S1

which simplify to

1 e —1
A = 1 20
So — 81 8 <652 — 652_51) ’ (20)
—di — e S2 1 _ e S1 _ o S2
B - dilog (1 — e™%2) + dilog (1 — ¢ 2) + (s2 — s1)log(1 — e™52) . (21)
(s2 = s1)

Comparing these equations with equations (2) and (3) it is immediate that the solutions are given by
s1 = ¢ and s3 = c+d. Finally, to match the curve in the second line of equation (19) we need the coordinate
transform from the curve v in the segment = = [¢, ¢ + d] given by

- log(1 —e™©
x—>x1:(xdc)7 y—>y1—A:—y+Og(d ™)

whence = dx; + c and y = —d(A — y1) — log(1 — e~ ) and the curves match.

11



5 Existence and Uniqueness of c, d

We now show that for any A > 2B > 0 there exists unique positive constants ¢ and d satisfying Equations (2)
and (3). If A = B/2 then d = 0 and ¢ can be determined uniquely, so we may assume A > 2B > 0. The
following lemma will be used to show uniqueness.

Lemma 8. Let 1) denote the map taking the pair (¢, d) to (A, B) defined by the two integrals in Equations (2)
and (3), and let K be a compact subset of {(x,y) : * > 2y > 0}. The Jacobian matriz J := D[y] is negative
definite for all (c,d) € (0,00)2, and all entries of v and J (respectively 1= and J=1) are Lipshitz continuous
on ¥ K] (respectively K ).

Proof. Differentiating under the integral sign shows that the partial derivatives comprising the entries of
D[] are given by

1 _e—(c—i-dt)
JA,C = /0 —(1 — ef(chdt))Q dt

1 —te_(c+dt)
Jaa = /0 (A= ¢ (erany dt

1 —te_(c+dt)
JB,c = /0 mdt

1 —t2 ef(chdt)
Tpa = /0 (1 — e—(c+dn)2 dt;

note that each term is negative. Let p denote the finite measure on [0, 1] with density e~ (¢t /(1 — = (ct+dt))2
and let E, denote expectation with respect to p. Then

Jae=E,[-1], Jaa=Jp.=E,[-t], Jpa=E, -1,

and
det J = E,[1] - E,[t2] — (E,[t])* = E,[1]? - Var 1],

where Var ,[t] denotes the variance of ¢t with respect to the normalized measure o = p/E,[1]. In particular,
det J is positive, and bounded above and below when ¢ and d are bounded away from 0, implying the stated
results on Lipshitz continuity. As J is real and symmetric, it has real eigenvalues. Since the trace of J
is negative while its determinant is positive, the eigenvalues of J have negative sum and positive product,
meaning both are strictly negative and J is negative definite for any ¢,d > 0. O

Lemma 9. For any A > 0 and B € (0, A/2) there exist unique c,d > 0 satisfying Equations (2) and (3).

Moreover, for a fixred A, when B decreases from A/2 to 0 then d increases strictly from 0 to oo and ¢ decreases

strictly from log (%) to 1. When B > 0 is fixred and A goes to co then ¢ goes to 0 and d goes to the root of

d* = B (dlog(1 —e™%) — dilog (1 — %)) .
Proof. Solving Equation (2) for ¢ (assuming d > 0) gives
p(A+1)d _
c =log ST —gd )

Substituting this into Equation (3) gives an explicit expression for B in terms of A and d, and shows that
for fixed A > 0 as d goes from 0 to infinity B goes from A/2 to 0. By continuity, this implies the existence of
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the desired c and d. It also shows that, for a fixed A, c is a decreasing function of d with the given maximal
and minimal values as d goes from 0 to co.

To prove uniqueness, we note that for x,y € R? Stokes’ theorem implies

B(y) — (x) = / D] (tx + (1 — t)y) - (x — y) dt

so that
x—y)" Wy —vx) = /O [(x—y)" - DY) (tx+ (1 —t)y) - (x —y)] dt.

When x # y, negative-definiteness of D[¢] implies that the last integrand is strictly negative on [0, 1], and
Y(y) # 1 (x). Thus, distinct values of ¢ and d give distinct values of A and B.

To see the monotonicity, let A be fixed and let Fg(d) = B be the equation obtained after substituting
¢ = ¢(A,d) above in Equation (3), i.e. Fp(d) =2(c(A,d),d). Then d is a decreasing function of B and vice

versa since
OFp(d) _ JBaJac—Jaalp. _ det DIy] -0
od JA,c JA7C '

For the last part, the explicit formula for ¢ in terms of A and d shows that ¢ — 0. Substitution in
Equation (3) gives the desired equation.

O

6 Proof of Theorem 1 from the discretized result

Here we show how ¢, and d,, from the discretized result are related to ¢, d defined independently of m. The
proof below also shows that ¢, and d,, exist and are unique.

The Euler-MacLaurin summation formula [dB58, Section 3.6] gives an expansion

L

m log(1 — e=°n) + log(1 — e ¢m—dm)
m

2m

1
= / log(1 — e~ ~dmt) qt + +0(m™?)
0

_ dilog (1 — e~ ~%) — dilog (1 — e~ ") n log(1 — e=¢m) + log(1 — e~ ¢m—dm)
o dm, 2m

+0(m™?) (22)

of the sum L,, in terms of ¢,, and d,,. Assume that there is an asymptotic expansion

em = cHum ' +0(m™?) (23)
dm = d+vm ' +0(m™?) (24)

as m — 0o, where v and v are constants depending only on A and B. Under such an assumption, substitution
of Equations (23) and (24) into Equation (22) implies

Ly, _ dilog (1 —e =) —dilog (1 — e™°) n uA+vB L Om-?)
m d m
A+vB
= log(l — ¢ ) =B+ “EEZ 4 O(m ), (25)

13



Substituting Equations (23)—(25) into Equation (14) of Theorem 4 and taking the limit as m — oo then
gives Theorem 1, as

1 —c—dt 1 2 —c—dt 1 —c—dt 2
e t“e te
AW</O (1= )2 dt) </ (1= e dt></o (= e dt) -a

It remains to show the expansions in Equations (23) and (24). For z,y > 0, define

m

1 1
Sml@,y) = 10 D T L

T )._l S j/m 1
m\Y) = > 1 _e-Gtvi/m) 2"

Another application of the Euler-MacLaurin summation formula implies

Sm(c,d) = A+ Ai(c,dym™ +O(m™2), (26)
Ty(c,d) = B+ Bi(c,dym™ + O(m™2), (27)
with ) . ) .
Ar=3 (1 e 1o e—c—d) and By =gy

Let J denote the Jacobian D[] of the map %, introduced in Lemma 8, with respect to ¢ and d, and let
(Chrdly) = (c,d) —m P T 71 (A — 1, By — 1/2)7.

A Taylor expansion around the point (c,d) gives

et ) () w00 o (§) o
S Gy BRIty

= (griemam) 40 (m2).

Tm (Cma dm)

where Equations (26) and (27) were used to approximate the Jacobian of ¥, : (z,y) = (Sn(2,v), Tm(z,y))
with respect to x and y.

The map 1, is Lipschitz for a similar reason as its continuous analogue. Namely, consider the partial
derivatives

1 & e—T—yi/m
Tow = —y -
S, m Z (1 _ efzfyj/m)Z
Jj=0
1 & j exyi/m
JS,y - WZ _(17671793'/’")2

-
Il
=)

j e~ xyi/m

(1 _ efmfyj/m)2

5

3

I
3=
I

<
Il
=)

j2 e—t—yi/m

(]_ _ efazfyj/m)2 :

o
<

I
3=

~
Il
=)
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Let p,, be a discrete finite measure on R, := {0,1/m,2/m,...,1} with density e *7%¢/(1 — e~ *7¥!) for
t € R,, and 0 otherwise, and let E, , be the expectation with respect to p,,. Then
Ise =Bp, 1], Jra=Jsy =E,[-t],  Jry =E,,[-1?]

) )

and
det D[tby,] = E,, [1|E,, [t*] — E,,. [t]* = E,, [1]*Var,,,[1],

where o, is the probability function p,,/E,, [1]. For any fixed m and (z,y) in a compact neighborhood
of (A, B), both the variance and the expectation are finite and bounded away from 0, as is the Jacobian
determinant. Moreover, the trace TrD[y)] = —E, [1 + ¢*] is bounded away from 0 and infinity, so the
Jacobian is negative definite with locally bounded eigenvalues, and hence v, is locally Lipschitz. Since the
norm of the Jacobian is bounded away from 0 and infinity, we have that the inverse map ;! is also locally
Lipschitz in a neighborhood of 1/ ~!(A, B). Moreover, similarly to proof of existence and uniqueness of ¢ and
d in Section 5, we have that there indeed are ¢, and d,, as unique solutions of Equations (9) and (10) since
the Jacobian is negative semi-definite.

The trapezoid formula implies |Js . — Ja .| = O(m™!), and similar bounds for the other differences of
partial derivatives in the continuous and discrete settings. Hence, the bounds for the norms and eigenvalues
of D[i,,] are within O(m™!) of the ones for D[], and 1., (and its inverse) is Lipschitz with a constant
independent of m. Thus,

O(m™2) = |[Ym(cns di) = Yin(em, dm) | = CTHI(¢h — Cmydryy — din) |

for some constant C, so that the expansions (23) and (24) hold. O

7 Proof of Theorem 2

We will prove Theorem 2 from Equation (16) and Corollary 6. Let p,,(€,n) = Py, [(Sm, Tm) = (¢,n)] and let

Lm(l'vy) = Zlog(l - efxfyj/m) ) (28)
j=0
i 1
Am(z,y) :Z;)m—(m"'l) . (29)
=
o - j/m m+1
Bm(mvy) T Z 1_ e—z—yj/m - 9 (30)

Il
=]

J

Then ¢,, and d,, are the solutions to
Ap(Cm,dm) == Am, B,.(¢m,dm) =n/m = Bm.

Let ¢}, d.,, be the solutions to A,,(c,,,d,,) = ¢ and By, (c,,,d.,) = (n+1)/m, and let Az = ¢}, —c,, = O(m™2)

m’'m m? -'m

and Ay = d’,, — d,, = O(m~2) by the Lipschitz properties proven in Section 5. Observe that

0Ly (2,y)
ox

8L'77L (Jj, y)

= Am(xay) and 8y

= Bn(z,y). (31)

Using the Taylor expansion for L.,(c,,,d.,) around (¢m,,dy) and the L, partial derivatives from Equa-
tion (31),

—Ly(c,,dr,) = —Lin(cm + Az, d, + Ay) = — Lo (Cm, din) — Az Ay (Cny di) — Ay By (¢ dy) + O(m™3),

m’'m
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so that
~L(cy,dl) + (e + Az A+ (dp + Ay)(n+1)m ™ = =Ly (Cmy din) + ol 4 dp(n 4+ 1) m ™" +O0(m™3).

To lighten notation, we now write Ly, := Ly, (¢m,dpm) and L), := Ly, (c,,,d.,). Then

m’ 'm

U

Nps1(€,m) — Np(6,m) = pp(6,m + 1) exp [—L;n +ci b+ dﬁ(n + 1)} — pm(¢,n) exp [—Lm + el + dﬁn

_ dm dm/m
= pm(¢,n)exp {—Lm + el + mn} {e — 1} (32)
dm,
+ [pm(b,n+1) — ppm(yn)]exp | =Ly + el + E(n +1) (33)
+ pm(£7n + 1) (efL:n+cin€+d:n(n+1)/m o efLm+cm£+dm(n+1)/m) ) (34)

We now bound each of these summands.

e Since d,, = d + O(m™1), Equation (16) implies that the quantity on line (32) equals

N (tm) (5 + 0™

as long as d ¢ O(m™1). This holds when |A — B/2| ¢ O(m™!) as d = 0 when A = B/2 and the map
taking (4, B) to (¢, d) is Lipschitz.

e By Corollary 6,
(6,7 4+ 1) = poa (1) < [Non (6,104 1) = Nin (6, m)] + O(m ™)
=0 (m72 . ’1 — e%Q’"(O‘l)D + O(m74)
=0(m™),

where @, is the inverse of the covariance matrix of (Sp,,T,,). Thus, the quantity on line (33) is

O(m=*-m2N,,(¢,m)) = O(m™2N,(¢,m)).
o Let
Ym=exp | — L, +c l+d,(n+1)m™ " — (=L + el +dpn+1)m ') | —1=0(m™®).
As pr(byn + 1) = pp(f,n) + O(m~?), it follows that the quantity on line (34) is

pm(ln+1) e~ Lmtemltdm(nt1)/m Uy = Nu(,m) Y, edm/m 4 O(m74 elm /M o= Lm+emltdmn/m bim)

= O0(m 3N, (L, m)).

Putting everything together,

Npy1(6,m) — Np(6,m) = Ny (£,m) (i + O(m_2)) ,

as desired. O
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Appendix: Proof of the Local Central Limit Theorem

Throughout this section, 1/2 > ¢§ > 0 is fixed and {p; : 0 < j < m} are arbitrary numbers in [§,1 — J].
The variables {X;} and (S,,,T,,) are as in Lemma 5; we drop the index m on the remaining quanti-
ties Qun, By Yms Dy my Vi, Pm (@, b) and the matrices M,, and @,,. Recall the quadratic form notation
M(s,t):=[s, t] M [s, t]T.

Lemma 10. The constants o, 8,7 and A are bounded below and above by positive constants depending only
ond.

1) (1-9) ) (1-19)
PRrROOF: Upper and lower bounds on «, 5 and -y are elementary: « € {(1_5)2, 52} ,B € [2(1 “oR 25
0

3(1—

1-96
and v € Nk ( 352 )} . The upper bound on A follows from these.

For the lower bound on A, let M = ( g” 5 " ) denote M without the factors of m. We show A is

bounded from below by the positive constant (4 —+/13)3/6. A lower bound for the determinant A of M is
|A]* where A is the least modulus eigenvalue of M; note that |A|? = infy M (cos 6, sinf). We compute

M (cosf,sinf) = m™'E (cos0S +m™" sin 9T)2
m k 2
>om~! E — si
> om 2 (0056‘ + = sin 0)

1
>4 - (00529+cosﬁsin¢9+ 351n29> .

4 —+/13
This is at least Td for all 8, proving the lemma. O

Lemma 11. Let X,, denote a reduced geometric with parameter p. For every § € (0,1/2) there is a K such
that simultaneously for all p € [6,1 — §],

2
. q q :
log Eexp(iAX,) — (sz - 2p2A2> < KN,

PROOF: For fixed p this is Taylor’s remainder theorem together with the fact that the characteristic function
op(A) of X, is thrice differentiable. The constant K (p) one obtains this way is continuous in p on the interval
(0,1), therefore bounded on any compact sub-interval. O

Proor oF THE LCLT: The proof of Lemma 5 comes from expressing the probability as an integral of the
characteristic function, via the inversion formula, and then estimating the integrand in various regions.

Let ¢(s,t) := Ee!*5+T) denote the characteristic function of (S,T). Centering the variables at their
means, denote S := S — p, T := T — v, and ¢(s,t) := Ee?>5HT) 5o that ¢(s,t) = ¢(s,t)e** T Then

1 " " —18a—1
p(aab) - (27‘(‘)2/ / e tbd)(s,t) dsdt
1 " " —is(a—p)—it(b—p) 7
(2m)2 /_7T /_Tre (a=m)=it(b=1) 45 t) ds dt . (35)
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Figure 5: The regions R; C Ro C R in the proof of the LCLT.

Following the proof of the univariate LCLT for IID variables found in [Durl0], we observe that
1 1 1 oo o0 . ) 1
—1Qla—pb—v) _ —is(a—u)—it(b—v) M t dsdt. 36
27T(det M)1/2 €’ (277)2 [oo /700 ¢ P < 2 (57 )) i ( )

Hence, comparing this to (35) and observing that e~ isa=pm)=it(b=v) has unit modulus, the absolute difference
between p(a,b) and the left-hand side of (36) is bounded above by

L 5 (1/2)M(s.1)
e
CnE / ) / [tenenmpdtsn) —e st (37)

Fix positive constants L and ¢ to be specified later and decompose the region R := [—, 7]? as the disjoint
union R, + Ry + Rg3, where

Ry = [~Lm ™2 Lm™?] x [-Lm™3/?, Lm™3/?
Ry = [—&,¢] x [~em™ L em™] \ Ry
Rs ZR\(Rl URQ);

see Figure 5 for details.

As [ e (/DM g5 dt decays exponentially with m, it suffices to obtain the following estimates
2

A
I

gg(s,t) — e W2AMED] gedt = O (m75/2> (38)

b(s,t) — e WAMED| gs gt = O(m~3/?) (39)

Je

log d(s,t) = 3 log Eei (70 (Xs=hs).

=0

&5(5, t)| dsdt =o0(m™?). (40)

By independence of {X;},

Using Lemma 11 with p = p; gives

log Eei(s+i)(X;=a;/p;) | ;712(8 4 jt)?

J

< Kl|s+jt|*.
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The sum of (g;/ p?)(s + jt)? is M (s,t), therefore summing the previous inequalities over j gives

~ 1 m 3
log ¢(s,t) + 2M(s,t)‘ < KZO s + jt|> . (41)
iz

On R; we have the upper bound |s + jt| < |s| +m|t| < 2Lm~1/2. Thus,
S Js it < (m + DELYM2 = 0 (mV2) |
j=0

Plugging this into (41) and exponentiating shows that the left hand side of (38) is at most |Ry|-O(m~1/?) =
O(m=5/?).
To bound the integral on Rs, we define the sub-regions
Sk = {(x,y) tk < max <m1/2|x|,m3/2\y|> <k+ 1}.
As the area of Sy is (8k + 4)m =2
[ev/m]

/ ¢)(5 t) _(1/2)M(S t) dsdt < Z / QZ S t —M(S,t)/2’dsdt
Ra Sk
levm]
m2 (8K + 4) b(s,t) — e MD/2| 42
Z +4) max |9(s1) —e (42)

We break this last sum into two parts, and bound each part. For (s,t) € Ra, we have |s+jt| < |s|+m|t] < 2e
so that

D ols 4t <2 (Isl + lt)* < (2eA7H) M (s, |¢).
§=0 j=0
Comparing this to (41) shows we may choose € small enough to guarantee that

M(]sl, It]),

A~

08 3(5.0) + 5 M (s.1) <

SO |¢(s t)] < e~ (/DM Lemma 10 shows there is a positive constant ¢ such that the minimum value of
M (s,t) on Sy is at least ck?. Thus, for (s,t) € Sy,

‘&(s,t) _ e MGn/2| <

efjw(s,t)/zl‘ I ’67M(s,t)/2‘ < 9e—ck?

If rp = [ (logm)/c—‘ then

3 Bk +4)(k+1) max |d(s 1) - e—M<S»t>/2| <2 " (8k+4)(k + e
P (s,t)ES) P

= O(m™ " polylog(m))
= O(m™"/?), (43)

where polylog(m) denotes a quantity growing as an integer power of logm. Furthermore, for (s,t) € Sy
there exist constants C' and C’ such that

~ m 3
log &(s,t) + M(s7t)/2} < C’Z s+t < C (2(k + 1)m_1/2) (m+1) = C'E>m~Y2,
j=0
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This implies the existence of a constant K > 0 such that for 0 < k < r,, and (s,t) € Sk,
’g(& t) — e—M(s,w/z‘ - ‘e—Mce,t)/Q’ ‘1 _elos $<s,t>+M<s,t)/2‘

< Ke= oK’ j3m—1/2

Thus,
> Bk +4)(k+1) max |d(s.1) - e—M<Svt>/2‘ < Km™2 3" (8k + 4)(k + DkPe
k=L (s,1) €S k=L
= O0(m~/?). (44)

Combining (42)—(44) gives (39).

Finally, for (40), we claim there is a positive constant ¢ for which |¢(s, )| < e=“™ on Rs. To see this,
observe (see [Durl0, p. 144]) that for each p there is an n > 0 such that |¢,(\)| < 1—non [—m, 7]\ [—¢/2,¢/2].
Again, by continuity, we may choose one such 7 valid for all p € [§,1 — J]. It suffices to show that when
either |s| or mlt| is at least ¢, then at least m/3 of the summands log Ee?(+79)(Xs~#5) have real part at most
—1. Suppose s > ¢ (the argument is the same for s < —¢). Interpreting s + j¢ modulo 27 always to lie
in [—m, 7], the number of j € [0, m] for which s + jt € [—¢/2,¢/2] is at most twice the number for which
s+ jt € [e/2,¢€], hence at most twice the number for which s + jt ¢ [—¢/2,e/2]; thus at least m/3 of the
m + 1 values of s+ jt lie outside [—£/2,¢/2] and these have real part of log Ee*(*+7)(Xi=1i) < _p by choice
of 7. Lastly, if instead one assumes 7 > t > ¢/m, then at most half of the values of s + jt modulo 27 can
fall inside any interval of length £/2. Choosing 7 such that the real part of log Ee*(*+7)(Xi=15) is at most
—n outside of [—&/4,¢/4] finishes the proof of (40) and the LCLT. O

PROOF OF COROLLARY 6. In order to estimate the error terms in the approximation of p(a,b) we will
consider the partial differences and repeat the approximation arguments above. Changing b to b + 1 in
Equations (35) and (36) implies

pla,b+1) —p(a,b) — (N(a,b+ 1) — N(a, b))‘ = / [1—e"| ’a(s,t) — e_l/QM(s’t)‘ dsdt. (45)
(

—7,7]2

For (s,t) € R3, the proof of the LCLT shows that the integral in Equation (45) decays exponentially with
m. As [1—e7| = /2 —2cos(t) < [t| = O(m=3/2) for (s,t) € Ry, the proof of the LCLT shows that the
integral in Equation (45) grows as O(m~3/2.m~=%/2) = O(m~*). Finally, since [1—e ] <t < (k+1)ym=3/2
for (s,t) € S, following the proof of the LCLT shows that

[ev/m ]
/ 11— e_it| ‘¢(s,t) - e_l/zM(s’t)‘ dsdt < m~"/? Z (8k +4)(k+1) max |¢(s,t) —e M1/
Ro b1, (s,t)ESK
=0(m™?).
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