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Abstract

Microbially induced carbonate precipitation (MICP) has been actively investigated as a promising method to improve soil
properties. A burning issue impeding its wide application is the severe spatial inhomogeneity of the CaCO; distribution.
Inspiring by the temperature sensitivity of the bacteria activity, a temperature-controlled one-phase MICP method is
proposed consisting of two major steps: (1) grouting the specimen with the mixture of cementation and bacteria solutions in
a low temperature; (2) inducing CaCO; precipitation by exposing the specimen to room temperature. A series of exper-
iments are conducted to demonstrate the advantages of the proposed method over the normal two-phase MICP method.
Specimens treated with the proposed temperature-controlled method present higher CaCO; contents with a roughly
uniform distribution along the height of the specimen; the strength of those specimens are substantially improved with
apparent dilatancy due to the effective bond network formed by the homogeneously distributed CaCOj5 precipitation. SEM
images indicate that the temperature-controlled method tends to form small crystals distributing uniformly on the grain
surface, which may increase the roughness of the grain and the residual stress more effectively.
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1 Introduction forming effective bonds at interparticle contacts
[3, 17,22, 30, 32, 33, 47, 48, 50, 57, 59, 89]. The carbonate
ions are induced from urea by the bacteria and the car-
bonate precipitation can form if calcium ions are supplied

[21, 40, 66, 97]:

Microbially induced carbonate precipitation (MICP)
[21, 40, 55, 59, 90, 91] is a promising technique to improve
soils with carbonate precipitation induced by environment-
friendly ureolytic bacteria, filling the void space among

ureolytic bacteria + 2
soil grains, increasing roughness of the grain surfaces and CO(NH2),+H,0 »2NH, + CO3 (1)
CO3™ + Ca’" — CaCO; | (2)
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on MICP-treated soil specimens, demonstrating an
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faction resistance [8, 15, 18, 20, 21, 25, 26, 34, 36,
46, 49, 51, 57, 63, 67-69, 77, 78, 81, 82, 87, 88, 94, 95,

100, 101, 104, 106, 108, 111, 112], a decrease in hydraulic
conductivity [3, 5, 7, 9, 15, 16, 19, 24, 36, 37,
39, 42, 43, 53, 58, 73, 76, 83, 84, 98, 99], and restraint of
particle breakage [107]. The effect of MICP treatment
might be influenced by base material factors (e.g., miner-
alogy, grain shape, grain roughness, gradation, fines con-
tent, relative density of the sand specimen, etc.)
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[9, 29, 31, 37, 52, 58, 60, 63, 70-72, 79-81, 92, 106, 113],
bacterial, chemical and technical factors (e.g., bacterial
concentration, bacterial type, composition and concentra-
tion of the cementation solution, clay nucleation, flow rate,
injection times and intervals, one-phase or multiple-phase
method, pH, temperature, etc.) [1, 2, 10, 13, 14, 17, 27, 53,
54, 56, 61, 62, 64, 73, 76, 86, 96, 105, 113]. A critical issue
encountered in these experiments is the inhomogeneity of
the MICP-treated specimen. It is often reported that a
majority of carbonate precipitates close to the inlet area of
the chemical reaction solution [8, 10, 25, 48], and the
spatial inhomogeneity increases substantially with
increasing concentration of reaction solutions [8, 41]. The
potential reason might be the inhomogeneous convection
and diffusion of the bacteria and reaction solutions in the
grouting stage [64, 85, 90, 97].

It is reported that the activity of the bacteria might be
influenced by ambient conditions including temperature
and pH of the bio-mixture solution [11, 105]. Biochemistry
experiments showed that the optimum temperature of
urease activity was about 30 °C [65, 66]. Production rate of
CaCOj; increased from 20 to 30 °C for bacteria and from
10 to 60 °C for urease enzyme. Further experiments [10]
reported that larger clusters consisting of calcium carbon-
ate crystals could be formed at lower temperature and
better improve the strength of the specimens. Given the
temperature-sensitivity of the activity of the bacteria, a
novel and effective approach is proposed to improve the
homogeneity of the MICP-treated specimen, i.e., dispersing
the mixture of bacteria and reaction solutions in low tem-
peratures to achieve a relatively uniform condition for the
MICP process. A series of experiments are conducted, to
evaluate the homogeneity and mechanical responses of the
specimens, and to demonstrate the advantages of the pro-
posed temperature-controlled method over the normal two-
phase method (i.e., staged injection method [12]).

2 Methodology
2.1 Test materials

Fujian quartz sands with the grain size distribution as
shown in Fig. 1a, b were adopted in the current study as the
tested material, whose maximum and minimum void ratios
were 0.978 and 0.523, respectively. The sands were packed
into a plastic tube to form a cylindrical specimen, whose
diameter was 39.1 mm and height was 80 mm. An
undercompaction method proposed by Ladd [45] was
adopted to obtain consistent and uniform sand specimens
[6, 35, 38, 74, 75, 102, 103, 109, 110]. The oven-dried
sands mixed with 5% de-aired water were divided into six
equal parts. Every part was placed into the mold in
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Fig. 1 Particle size distribution of the silica sands prior to loading in
terms of a percent passing by weight (data from [93]), b percent
retained by weight

sequence and compacted slightly more in density (about
1%) than its substratum. The prepared specimen had a
relative density of 40-45%.

2.2 Temperature-controlled MICP method

Sporosarcina pasteurii (DSM 33; ATCC 11859), a widely
adopted ureolytic bacterium [3, 16], was employed in the
current study. In the typical two-phase MICP method
[14, 44], the bacteria and reaction solutions are usually
grouted into the specimen from top to bottom under gravity
[23, 36]. CaCOs precipitation would be first induced at the
top of the specimen, leading to a decrease in hydraulic
conductivity and preventing the subsequent solutions from
transporting downwards. An inhomogeneous MICP-treated
specimen would be formed as a consequence, with a majority
of CaCOj precipitation close to the grouting inlet. It has been
reported that the distribution of CaCOj3; depends on particle
size distribution, relative density of the sand specimen,
concentrations of the solutions and flow rate [3, 10].

A possible way to improve the homogeneity of CaCOj;
precipitation in MICP-treated specimen is to inhibit the
activity of the bacteria and distribute the mixture of bacteria
and cementation solutions uniformly prior to MICP reaction.
The urease activities of the bacteria solution at various
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temperatures are measured with a conductivity method [97]
to investigate its temperature-sensitivity. Interested readers
please refer to [93] for more details about the measurement.
Figure 2a shows clearly an almost constant activity at tem-
peratures of 17-22 °C and a peak urease activity at a tem-
perature around 33 °C. It is interesting to note that the urease
activity decreases with decreasing temperature for temper-
atures below 16 °C; the urease activity decreases to around
zero at temperatures around 10 °C, i.e., CaCOs precipitation
is inhibited in that temperature, which could be chosen as the
controlling state.

In view of the low activity of urea-hydrolytic bacteria in
low temperatures, a temperature-controlled one-phase
MICP method (TCOP) is proposed to achieve a homoge-
nous MICP-treated specimen, which consists of: (1)
grouting with the mixture of bacteria and cementation
solutions in low temperatures; (2) inducing CaCO;5 pre-
cipitation in relatively high temperatures. Specifically, in
the current study, the bacteria solution (20 mL, optical
density ODgog = 1.628 ~ 1.753) and cementation solu-
tions (250 mL, consisting of equimolar CaCl, and urea)
were first mixed and kept in 10 °C with a temperature
controller. Then, the mixture was grouted into the sand
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Fig. 2 a Evolution of urease activity for Sporosarcina pasteurii
(DSM 33; ATCC 11859) with varied temperature (adapted from
[93]), b temperature histories for specimens treated with TCOP and
RTTP methods

specimen, placed horizontally, by a pump at a steady
velocity (5.0 mL/min) to achieve a relatively uniform
distribution. Specimens with different MICP-treatment
levels were obtained by varying the concentration of the
cementation solution (0.5, 1.0, 2.0 M). A typical room-
temperature two-phase MICP method (RTTP) is adopted as
well for comparison. In this scheme, 20 mL bacteria
solution was grouted into the specimen first at a steady
velocity (5.0 mL/min), followed by 250 mL cementation
solution at the same velocity at room temperature (26 °C).
After the grouting steps, the cementation liquid was
retained in the specimen for 10 h in both TCOP and RTTP
treatment procedures.

Temperature evolutions were recorded, with a trans-
ducer embedded into the specimen (see the inset in
Fig. 2b), for the proposed TCOP method and typical RTTP
method, respectively. As shown in Fig. 2b, the temperature
in the specimen treated with the TCOP method drops
remarkably to around 13 °C during the grouting stage, as
compared to the almost constant temperature around 26 °C
in the one treated with the RTTP method. The temperature
could be maintained below 15 °C for around 1.0 h in the
TCOP method, suggesting the inhibited activity of the
bacteria during the grouting stage. The sand specimen,
exposed to a room temperature of 26 °C, is heated there-
after through the thermal transmission. The ureolytic bac-
teria are activated at the same time, hydrolyzing urea and
inducing CaCOj; precipitation.

2.3 Evaluation of strength and CaCOj3;
distribution

Triaxial compression tests were conducted to examine the
mechanical properties of the MICP-treated specimens.
When moved into the triaxial apparatus, the specimens
were placed in a way that the part close to the solution inlet
is on the top. The specimens were saturated under an
effective confining pressure of 10 kPa, with an increasing
back pressure until the pore pressure coefficient reached
0.96. Then, the specimens were isotropically consolidated
under an effective confining pressure of 20 kPa and sub-
jected to axial load with a constant vertical displacement
rate of 0.1 mm/min under drained condition afterward.

After the triaxial compression tests, the distribution of
CaCO; was evaluated to estimate the homogeneity of
MICP-treated specimens. Samples were obtained from
different positions (top: close to the solution inlet, middle,
bottom: close to the outlet) of the specimens and CaCOj;
contents were evaluated with the typical acid-washing
method [41, 48, 97]. The CaCO; contents could be calcu-
lated as follows:
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Fig. 3 CaCO; distribution along the height of the specimen for
RTTP-treated specimens with a 0.5M, b 1.0M and ¢ 20 M
cementation solutions

Mo M 100% (3)

mo

Cea =

where my is the dry weight of the sample before acid-
washing; m; is the dry weight of the sample after acid-
washing. SEM images were captured to observe the
microscale distribution of CaCOj precipitation.

@ Springer

CaCO, content (%)
o S

T T

] ]

i f"ﬂ"-ih"‘MA-A-b--- a A 1
P T T L

oy Ml Y
0 15 30 45 60 75 90
Depth (mm)
b V7T T 77T T T T T T T T T T
[ e TCOP 1.0 M] |
S 5k — - = Fitting curve
b L i
2 - .
& 10} —
(3] | .
o(‘?
3 L i
o S5F _e Op ..- ° © N
Y e @ 4
e o o 06— o 8—--o—-% o
L e 0 4
ol v 44y
0 15 30 45 60 75 90
Depth (mm)
¢c o——r—vr—vr— 777

E TCOP2.0M
— — Fitting curve

CaCO, content (%)
S
T
]

0 15 30 45 60 75 90
Depth (mm)

Fig. 4 CaCOj; distribution along the height of the specimen for
TCOP-treated specimens with a 0.5 M, b 1.0M and ¢ 20 M
cementation solutions

3 Results and discussions
3.1 Distribution of CaCQOj; precipitation

Figures 3 and 4 show CaCO; content distributions for
RTTP-treated and TCOP-treated specimens treated with
cementation solutions of different concentrations (0.5, 1.0,
2.0 M), respectively. Note that repetitive tests have been
conducted for every concentration condition to increase the
reliability of the data. The CaCOj; content decreases from
top to bottom in RTTP-treated specimens. CaCO5 could be
rarely found at the bottom for all cases treated with 0.5 M
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Fig. 5 Probability distribution of CaCOj; content and curve fitting
with exponential distribution for RTTP-treated specimens with
a05M,b 1.0 M and ¢ 2.0 M cementation solutions

reaction solutions as shown in Fig. 3a. Even if treated with
cementation solutions of a higher concentration, the CaCO5
contents at the bottom can barely increase as shown in
Fig. 3b, c. On the contrary, CaCO; contents for the TCOP-
treated specimens present largely uniform distributions; the
CaCOj; contents, at both the top and the bottom of the
specimens, increase effectively with increasing concentra-
tion of the reaction solution as shown in Fig. 4a—c.

To better interpret the spatial distribution of CaCOs;, the
probability distributions of CaCOjz; content for RTTP-
treated and TCOP-treated specimens have been presented
in Figs. 5 and 6, respectively. It is noted that the CaCO;
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Fig. 6 Probability distribution of CaCOj; content and curve fitting
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content (X) of RTTP-treated specimens roughly obeys an
exponential distribution function:

flgh) = Je ™
forx>0and A >0

(4)

where A > 0 is the rate parameter. In contrast, the CaCOs3
content of TCOP-treated specimens roughly follows a
Gamma distribution:
ﬁotxocflefﬁx
X3 0 ="/~
forx >0anda, f>0
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Fig. 7 SEM images for RTTP-treated specimens with a 0.5 M,
b 1.0 M and ¢ 2.0 M cementation solutions

where I'(«) is the complete gamma function, o is the shape
parameter, and f is the rate parameter. The corresponding
fitting curves with key parameters are presented in Figs. 5
and 6.

The mean and the coefficients of variation (the standard
deviation divided by the mean) calculated based on the raw
data are presented in every subplot as well. An increase in
mean content with increasing chemical concentration is
observed for RTTP-treated (from 1.678 to 4.181 as in
Fig. 5) and TCOP-treated (from 1.834 to 5.066 as in Fig. 6)
specimens, respectively. Moreover, for specimens treated
with cementation solutions of the same concentration, the
TCOP method could yield a higher mean content as com-
pared with the RTTP method, e.g., CaCOj; content of 4.181

@ Springer

Fig. 8 SEM images for TCOP-treated specimens with a 0.5 M,
b 1.0 M and ¢ 2.0 M cementation solutions

for RTTP-treated specimens (see Fig. 5c) versus 5.066 for
TCOP-treated specimens (see Fig. 6¢c), both treated with
2.0 M reaction solutions. More importantly, the coeffi-
cients of variation for TCOP-treated specimens (0.195 to
0.287 in Fig. 6) are substantially lower than those for
RTTP-treated ones (1.146 to 1.358 Fig. 5), indicating a
considerable improvement in homogeneity of the MICP-
treated specimens by adopting the TCOP method. In brief,
the TCOP method enables both a more efficient CaCOj3
precipitation and an improved homogeneity of the speci-
men, suggesting the potential to provide a more effective
and controllable MICP technique for relevant engineering
applications.

Figures 7 and 8 show the SEM images of samples from
the center of the RTTP-treated and TCOP-treated
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Fig. 9 Stress—strain relations in drained triaxial compression tests for
a RTTP-treated specimens and b TCOP-treated specimens (data for
untreated sand from [93])

specimens, respectively. It is observed that the crystal
morphology is indeed affected by the temperature history
of the MICP process. In the RTTP-treated samples, CaCOs5
tends to form larger CaCOj; crystals with increasing
chemical concentration (see Fig. 7a—c). Specifically, it is
noted that CaCOj prefers to precipitate on particles with an
irregular surface comparing with those smooth ones, as
shown in Fig. 7b. On the contrary, small CaCOj; crystals
distribute largely uniformly among various particles under
TCOP conditions; more crystals of similar size are formed
with increasing chemical concentrations, covering the
surfaces of grains (see Fig. 8a—c). This interesting phe-
nomenon can be attributed to the temperature-controlled
history which helps avoid the spatial heterogeneity within
the specimen and enables a favorable dynamic crystal-
lization condition on the surfaces of sand particles [104].

3.2 Drained triaxial tests

The average stress—strain relations over the repetitive tests
for specimens treated with RTTP method and TCOP
method are presented in Fig. 9. Slight increases in initial
stiffness and peak stress are observed in Fig. 9a for RTTP-
treated specimens. By comparison, increases in initial
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Fig. 10 Evolutions of volumetric strain in drained triaxial compres-
sion tests for a RTTP-treated specimens and b TCOP-treated
specimens (data for untreated sand from [93])

stiffness and peak stress are substantial for TCOP-treated
specimens as shown in Fig. 9b. The improvements in peak
stress and initial stiffness become more significant with the
increase in the concentration of the cementation solution
for TCOP-treated specimens. Note the clear shear softening
behaviors for the one treated with a 2.0 M reaction solu-
tion. The evolutions of volumetric strain with axial strain
are displayed in Fig. 10. Notably, the TCOP method leads
to a more significant increase in volume dilation than the
RTTP method; the maximum dilation rates are larger and
appear earlier in the TCOP-treated specimens than in the
RTTP-treated ones.

The relationships between the peak stress and the
average CaCO;5 content of the specimen are shown in
Fig. 11a. The peak stress for untreated sand (85 kPa) is
presented as the gray dashed line for reference. Repetitive
tests have been conducted to verify our observations and
every point on the figure represents an individual test. The
peak stresses for RTTP-treated specimens are slightly lar-
ger than that for the untreated sand and a marginal increase
is noted with the increase in CaCOj5 content. The maximum
peak stress for RTTP-treated specimens (treated with
2.0 M reaction solution) is around 110 kPa. In contrast, the
increases in peak stress for TCOP-treated specimens are

@ Springer
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substantially larger and the increase with increasing CaCOj;
content is more distinct. Notably, the maximum peak stress
for TCOP-treated specimens (treated with 2.0 M reaction
solution) is around 160 kPa (around twice as high as that
for untreated sand). This is attributed to the homogenous
distribution of CaCO3 within the TCOP-treated specimens,
which forms effective interparticle bond networks. By
comparison, the larger crystals in RTTP-treated specimens
(see Fig. 7c) does not lead to significantly more effective
strength improvement. The dominating factor herein is the
homogeneity of the CaCOj distribution. CaCO; distributes
mainly on the top of the RTTP-treated specimens (see
Fig. 3) and cannot reinforce the bottom section effectively.
Therefore, the overall strength of the specimens, controlled
by the weakest part, cannot be increased considerably.
The relationships between the residual stress and the
average CaCO; content of the specimen are presented in
Fig. 11b, with a grey dashed line indicating that for
untreated sand (73 kPa). It is surprising to note the general
decrease (with several increasing cases) in residual stress
for specimens with low CaCOj5 contents (< 2.5%), treated
with both RTTP and TCOP methods. The residual stress
could be reduced to as low as 65 kPa. This counterintuitive
phenomenon, verified by repetitive tests, is attributable to
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the apparent shear bands (a strain-localized failure pattern
during the triaxial shearing process [4, 28]), where the
overall regularity of the grains increases due to a small
amount of CaCOj precipitation filling the concave on the
grain surface [105]. This speculation is supported by pre-
vious SEM images presenting a preference of CaCOs;
precipitating on the grains with relatively irregular sur-
faces. In comparison, the specimens with higher CaCOj;
contents (> 2.5%) tend to present a higher residual stress;
and the increase by the TCOP method is more effective
(maximum around 90 kPa). As supported by the micro-
scale observations from the SEM images, the overall
roughness of the grain surfaces would increase due to the
increase in amount/size of CaCOj crystals with increasing
CaCOj; content, leading to the higher residual stresses.

4 Conclusions

A temperature-controlled one-phase (TCOP) MICP method
is proposed to improve the homogeneity of MICP-treated
sands. The advantages of the proposed TCOP method are
demonstrated with distributions of CaCQO3 and evolutions
of strength and dilatancy, as compared with the normal
room-temperature two-phase (RTTP) MICP method. Major
findings are summarized below:

1. CaCOj; tends to precipitate in the upper part of the
RTTP-treated specimens, with almost no CaCOs in the
bottom part. On the contrary, under conditions with the
same bacteria and cementation solutions, the TCOP
method generally produces more CaCOj precipitation
with a much lower spatial variation, presenting a
roughly uniform distribution of CaCOj; along the
height of the specimen.

2. Specimens treated with the TCOP method display

apparent strain-softening behaviors with intense dila-
tion responses. The peak stress increases substantially
with CaCO;5 content for the TCOP-treated specimens
(as high as 160 kPa) as compared with the marginal
increase for the RTTP-treated ones (maximum around
110 kPa). This difference is attributed to the effective
bond network formed by the homogenously distributed
CaCOj; precipitation within the TCOP-treated speci-
men, as compared with the inhomogeneous distribution
of CaCOj; within the RTTP-treated specimen, leaving a
barely reinforced bottom section.

3. It is surprising that specimens with lower CaCOs5

content (< 2.5%) present lower residual stresses as
compared with the untreated sands. This phenomenon
is attributable to the increase in overall regularity of the
grains (in the apparent shear bands) due to a small
amount of CaCOj; precipitation. Higher CaCOj5 content
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(> 2.5%) could still increase the residual stress due to
the increase in roughness of the grain surfaces (in the
apparent shear bands), and TCOP method is more
effective thanks to the small crystals uniformly
distributed among different grains.
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