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Abstract
Microbially induced carbonate precipitation (MICP) has been actively investigated as a promising method to improve soil

properties. A burning issue impeding its wide application is the severe spatial inhomogeneity of the CaCO3 distribution.

Inspiring by the temperature sensitivity of the bacteria activity, a temperature-controlled one-phase MICP method is

proposed consisting of two major steps: (1) grouting the specimen with the mixture of cementation and bacteria solutions in

a low temperature; (2) inducing CaCO3 precipitation by exposing the specimen to room temperature. A series of exper-

iments are conducted to demonstrate the advantages of the proposed method over the normal two-phase MICP method.

Specimens treated with the proposed temperature-controlled method present higher CaCO3 contents with a roughly

uniform distribution along the height of the specimen; the strength of those specimens are substantially improved with

apparent dilatancy due to the effective bond network formed by the homogeneously distributed CaCO3 precipitation. SEM

images indicate that the temperature-controlled method tends to form small crystals distributing uniformly on the grain

surface, which may increase the roughness of the grain and the residual stress more effectively.
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1 Introduction

Microbially induced carbonate precipitation (MICP)

[21, 40, 55, 59, 90, 91] is a promising technique to improve

soils with carbonate precipitation induced by environment-

friendly ureolytic bacteria, filling the void space among

soil grains, increasing roughness of the grain surfaces and

forming effective bonds at interparticle contacts

[3, 17, 22, 30, 32, 33, 47, 48, 50, 57, 59, 89]. The carbonate

ions are induced from urea by the bacteria and the car-

bonate precipitation can form if calcium ions are supplied

[21, 40, 66, 97]:

CO NH2ð Þ2þH2O��������!ureolytic bacteria
2NHþ

4 þ CO2�
3 ð1Þ

CO2�
3 þ Ca2þ ! CaCO3 # ð2Þ

Many experimental investigations have been conducted

on MICP-treated soil specimens, demonstrating an

improvement in strength, stiffness, dilatancy and lique-

faction resistance [8, 15, 18, 20, 21, 25, 26, 34, 36,

46, 49, 51, 57, 63, 67–69, 77, 78, 81, 82, 87, 88, 94, 95,

100, 101, 104, 106, 108, 111, 112], a decrease in hydraulic

conductivity [3, 5, 7, 9, 15, 16, 19, 24, 36, 37,

39, 42, 43, 53, 58, 73, 76, 83, 84, 98, 99], and restraint of

particle breakage [107]. The effect of MICP treatment

might be influenced by base material factors (e.g., miner-

alogy, grain shape, grain roughness, gradation, fines con-

tent, relative density of the sand specimen, etc.)
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[9, 29, 31, 37, 52, 58, 60, 63, 70–72, 79–81, 92, 106, 113],

bacterial, chemical and technical factors (e.g., bacterial

concentration, bacterial type, composition and concentra-

tion of the cementation solution, clay nucleation, flow rate,

injection times and intervals, one-phase or multiple-phase

method, pH, temperature, etc.) [1, 2, 10, 13, 14, 17, 27, 53,

54, 56, 61, 62, 64, 73, 76, 86, 96, 105, 113]. A critical issue

encountered in these experiments is the inhomogeneity of

the MICP-treated specimen. It is often reported that a

majority of carbonate precipitates close to the inlet area of

the chemical reaction solution [8, 10, 25, 48], and the

spatial inhomogeneity increases substantially with

increasing concentration of reaction solutions [8, 41]. The

potential reason might be the inhomogeneous convection

and diffusion of the bacteria and reaction solutions in the

grouting stage [64, 85, 90, 97].

It is reported that the activity of the bacteria might be

influenced by ambient conditions including temperature

and pH of the bio-mixture solution [11, 105]. Biochemistry

experiments showed that the optimum temperature of

urease activity was about 30 �C [65, 66]. Production rate of

CaCO3 increased from 20 to 30 �C for bacteria and from

10 to 60 �C for urease enzyme. Further experiments [10]

reported that larger clusters consisting of calcium carbon-

ate crystals could be formed at lower temperature and

better improve the strength of the specimens. Given the

temperature-sensitivity of the activity of the bacteria, a

novel and effective approach is proposed to improve the

homogeneity of the MICP-treated specimen, i.e., dispersing

the mixture of bacteria and reaction solutions in low tem-

peratures to achieve a relatively uniform condition for the

MICP process. A series of experiments are conducted, to

evaluate the homogeneity and mechanical responses of the

specimens, and to demonstrate the advantages of the pro-

posed temperature-controlled method over the normal two-

phase method (i.e., staged injection method [12]).

2 Methodology

2.1 Test materials

Fujian quartz sands with the grain size distribution as

shown in Fig. 1a, b were adopted in the current study as the

tested material, whose maximum and minimum void ratios

were 0.978 and 0.523, respectively. The sands were packed

into a plastic tube to form a cylindrical specimen, whose

diameter was 39.1 mm and height was 80 mm. An

undercompaction method proposed by Ladd [45] was

adopted to obtain consistent and uniform sand specimens

[6, 35, 38, 74, 75, 102, 103, 109, 110]. The oven-dried

sands mixed with 5% de-aired water were divided into six

equal parts. Every part was placed into the mold in

sequence and compacted slightly more in density (about

1%) than its substratum. The prepared specimen had a

relative density of 40–45%.

2.2 Temperature-controlled MICP method

Sporosarcina pasteurii (DSM 33; ATCC 11859), a widely

adopted ureolytic bacterium [3, 16], was employed in the

current study. In the typical two-phase MICP method

[14, 44], the bacteria and reaction solutions are usually

grouted into the specimen from top to bottom under gravity

[23, 36]. CaCO3 precipitation would be first induced at the

top of the specimen, leading to a decrease in hydraulic

conductivity and preventing the subsequent solutions from

transporting downwards. An inhomogeneous MICP-treated

specimenwould be formed as a consequence, with amajority

of CaCO3 precipitation close to the grouting inlet. It has been

reported that the distribution of CaCO3 depends on particle

size distribution, relative density of the sand specimen,

concentrations of the solutions and flow rate [3, 10].

A possible way to improve the homogeneity of CaCO3

precipitation in MICP-treated specimen is to inhibit the

activity of the bacteria and distribute the mixture of bacteria

and cementation solutions uniformly prior toMICP reaction.

The urease activities of the bacteria solution at various
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Fig. 1 Particle size distribution of the silica sands prior to loading in

terms of a percent passing by weight (data from [93]), b percent

retained by weight
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temperatures are measured with a conductivity method [97]

to investigate its temperature-sensitivity. Interested readers

please refer to [93] for more details about the measurement.

Figure 2a shows clearly an almost constant activity at tem-

peratures of 17–22 �C and a peak urease activity at a tem-

perature around 33 �C. It is interesting to note that the urease
activity decreases with decreasing temperature for temper-

atures below 16 �C; the urease activity decreases to around

zero at temperatures around 10 �C, i.e., CaCO3 precipitation

is inhibited in that temperature, which could be chosen as the

controlling state.

In view of the low activity of urea-hydrolytic bacteria in

low temperatures, a temperature-controlled one-phase

MICP method (TCOP) is proposed to achieve a homoge-

nous MICP-treated specimen, which consists of: (1)

grouting with the mixture of bacteria and cementation

solutions in low temperatures; (2) inducing CaCO3 pre-

cipitation in relatively high temperatures. Specifically, in

the current study, the bacteria solution (20 mL, optical

density OD600 = 1.628 * 1.753) and cementation solu-

tions (250 mL, consisting of equimolar CaCl2 and urea)

were first mixed and kept in 10 �C with a temperature

controller. Then, the mixture was grouted into the sand

specimen, placed horizontally, by a pump at a steady

velocity (5.0 mL/min) to achieve a relatively uniform

distribution. Specimens with different MICP-treatment

levels were obtained by varying the concentration of the

cementation solution (0.5, 1.0, 2.0 M). A typical room-

temperature two-phase MICP method (RTTP) is adopted as

well for comparison. In this scheme, 20 mL bacteria

solution was grouted into the specimen first at a steady

velocity (5.0 mL/min), followed by 250 mL cementation

solution at the same velocity at room temperature (26 �C).
After the grouting steps, the cementation liquid was

retained in the specimen for 10 h in both TCOP and RTTP

treatment procedures.

Temperature evolutions were recorded, with a trans-

ducer embedded into the specimen (see the inset in

Fig. 2b), for the proposed TCOP method and typical RTTP

method, respectively. As shown in Fig. 2b, the temperature

in the specimen treated with the TCOP method drops

remarkably to around 13 �C during the grouting stage, as

compared to the almost constant temperature around 26 �C
in the one treated with the RTTP method. The temperature

could be maintained below 15 �C for around 1.0 h in the

TCOP method, suggesting the inhibited activity of the

bacteria during the grouting stage. The sand specimen,

exposed to a room temperature of 26 �C, is heated there-

after through the thermal transmission. The ureolytic bac-

teria are activated at the same time, hydrolyzing urea and

inducing CaCO3 precipitation.

2.3 Evaluation of strength and CaCO3

distribution

Triaxial compression tests were conducted to examine the

mechanical properties of the MICP-treated specimens.

When moved into the triaxial apparatus, the specimens

were placed in a way that the part close to the solution inlet

is on the top. The specimens were saturated under an

effective confining pressure of 10 kPa, with an increasing

back pressure until the pore pressure coefficient reached

0.96. Then, the specimens were isotropically consolidated

under an effective confining pressure of 20 kPa and sub-

jected to axial load with a constant vertical displacement

rate of 0.1 mm/min under drained condition afterward.

After the triaxial compression tests, the distribution of

CaCO3 was evaluated to estimate the homogeneity of

MICP-treated specimens. Samples were obtained from

different positions (top: close to the solution inlet, middle,

bottom: close to the outlet) of the specimens and CaCO3

contents were evaluated with the typical acid-washing

method [41, 48, 97]. The CaCO3 contents could be calcu-

lated as follows:

10 15 20 25 30 35 40
0

2

4

6

pH=9.0

Losing activity

Peak activity

Stable activity

U
re

as
e 

ac
tiv

ity
 (m

M
/m

in
)

Temperature ( )

Low activity

0 2 4 6 8 10 12
10

15

20

25

30

Precipitation

Te
m

pe
ra

tu
re

  (
)

 TCOP method
 RTTP method

Time (hr)

Dispersion

26

Temperature transducer

a

b

Fig. 2 a Evolution of urease activity for Sporosarcina pasteurii
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Cca ¼
m0 � m1

m0

� 100% ð3Þ

where m0 is the dry weight of the sample before acid-

washing; m1 is the dry weight of the sample after acid-

washing. SEM images were captured to observe the

microscale distribution of CaCO3 precipitation.

3 Results and discussions

3.1 Distribution of CaCO3 precipitation

Figures 3 and 4 show CaCO3 content distributions for

RTTP-treated and TCOP-treated specimens treated with

cementation solutions of different concentrations (0.5, 1.0,

2.0 M), respectively. Note that repetitive tests have been

conducted for every concentration condition to increase the

reliability of the data. The CaCO3 content decreases from

top to bottom in RTTP-treated specimens. CaCO3 could be

rarely found at the bottom for all cases treated with 0.5 M
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Fig. 4 CaCO3 distribution along the height of the specimen for

TCOP-treated specimens with a 0.5 M, b 1.0 M and c 2.0 M

cementation solutions
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reaction solutions as shown in Fig. 3a. Even if treated with

cementation solutions of a higher concentration, the CaCO3

contents at the bottom can barely increase as shown in

Fig. 3b, c. On the contrary, CaCO3 contents for the TCOP-

treated specimens present largely uniform distributions; the

CaCO3 contents, at both the top and the bottom of the

specimens, increase effectively with increasing concentra-

tion of the reaction solution as shown in Fig. 4a–c.

To better interpret the spatial distribution of CaCO3, the

probability distributions of CaCO3 content for RTTP-

treated and TCOP-treated specimens have been presented

in Figs. 5 and 6, respectively. It is noted that the CaCO3

content (X) of RTTP-treated specimens roughly obeys an

exponential distribution function:

f x; kð Þ ¼ ke�kx

for x� 0 and k[ 0
ð4Þ

where k[ 0 is the rate parameter. In contrast, the CaCO3

content of TCOP-treated specimens roughly follows a

Gamma distribution:

f x; a; bð Þ ¼ baxa�1e�bx

C að Þ
for x[ 0 and a; b[ 0

ð5Þ
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where CðaÞ is the complete gamma function, a is the shape

parameter, and b is the rate parameter. The corresponding

fitting curves with key parameters are presented in Figs. 5

and 6.

The mean and the coefficients of variation (the standard

deviation divided by the mean) calculated based on the raw

data are presented in every subplot as well. An increase in

mean content with increasing chemical concentration is

observed for RTTP-treated (from 1.678 to 4.181 as in

Fig. 5) and TCOP-treated (from 1.834 to 5.066 as in Fig. 6)

specimens, respectively. Moreover, for specimens treated

with cementation solutions of the same concentration, the

TCOP method could yield a higher mean content as com-

pared with the RTTP method, e.g., CaCO3 content of 4.181

for RTTP-treated specimens (see Fig. 5c) versus 5.066 for

TCOP-treated specimens (see Fig. 6c), both treated with

2.0 M reaction solutions. More importantly, the coeffi-

cients of variation for TCOP-treated specimens (0.195 to

0.287 in Fig. 6) are substantially lower than those for

RTTP-treated ones (1.146 to 1.358 Fig. 5), indicating a

considerable improvement in homogeneity of the MICP-

treated specimens by adopting the TCOP method. In brief,

the TCOP method enables both a more efficient CaCO3

precipitation and an improved homogeneity of the speci-

men, suggesting the potential to provide a more effective

and controllable MICP technique for relevant engineering

applications.

Figures 7 and 8 show the SEM images of samples from

the center of the RTTP-treated and TCOP-treated
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Fig. 7 SEM images for RTTP-treated specimens with a 0.5 M,

b 1.0 M and c 2.0 M cementation solutions
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Fig. 8 SEM images for TCOP-treated specimens with a 0.5 M,

b 1.0 M and c 2.0 M cementation solutions
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specimens, respectively. It is observed that the crystal

morphology is indeed affected by the temperature history

of the MICP process. In the RTTP-treated samples, CaCO3

tends to form larger CaCO3 crystals with increasing

chemical concentration (see Fig. 7a–c). Specifically, it is

noted that CaCO3 prefers to precipitate on particles with an

irregular surface comparing with those smooth ones, as

shown in Fig. 7b. On the contrary, small CaCO3 crystals

distribute largely uniformly among various particles under

TCOP conditions; more crystals of similar size are formed

with increasing chemical concentrations, covering the

surfaces of grains (see Fig. 8a–c). This interesting phe-

nomenon can be attributed to the temperature-controlled

history which helps avoid the spatial heterogeneity within

the specimen and enables a favorable dynamic crystal-

lization condition on the surfaces of sand particles [104].

3.2 Drained triaxial tests

The average stress–strain relations over the repetitive tests

for specimens treated with RTTP method and TCOP

method are presented in Fig. 9. Slight increases in initial

stiffness and peak stress are observed in Fig. 9a for RTTP-

treated specimens. By comparison, increases in initial

stiffness and peak stress are substantial for TCOP-treated

specimens as shown in Fig. 9b. The improvements in peak

stress and initial stiffness become more significant with the

increase in the concentration of the cementation solution

for TCOP-treated specimens. Note the clear shear softening

behaviors for the one treated with a 2.0 M reaction solu-

tion. The evolutions of volumetric strain with axial strain

are displayed in Fig. 10. Notably, the TCOP method leads

to a more significant increase in volume dilation than the

RTTP method; the maximum dilation rates are larger and

appear earlier in the TCOP-treated specimens than in the

RTTP-treated ones.

The relationships between the peak stress and the

average CaCO3 content of the specimen are shown in

Fig. 11a. The peak stress for untreated sand (85 kPa) is

presented as the gray dashed line for reference. Repetitive

tests have been conducted to verify our observations and

every point on the figure represents an individual test. The

peak stresses for RTTP-treated specimens are slightly lar-

ger than that for the untreated sand and a marginal increase

is noted with the increase in CaCO3 content. The maximum

peak stress for RTTP-treated specimens (treated with

2.0 M reaction solution) is around 110 kPa. In contrast, the

increases in peak stress for TCOP-treated specimens are
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substantially larger and the increase with increasing CaCO3

content is more distinct. Notably, the maximum peak stress

for TCOP-treated specimens (treated with 2.0 M reaction

solution) is around 160 kPa (around twice as high as that

for untreated sand). This is attributed to the homogenous

distribution of CaCO3 within the TCOP-treated specimens,

which forms effective interparticle bond networks. By

comparison, the larger crystals in RTTP-treated specimens

(see Fig. 7c) does not lead to significantly more effective

strength improvement. The dominating factor herein is the

homogeneity of the CaCO3 distribution. CaCO3 distributes

mainly on the top of the RTTP-treated specimens (see

Fig. 3) and cannot reinforce the bottom section effectively.

Therefore, the overall strength of the specimens, controlled

by the weakest part, cannot be increased considerably.

The relationships between the residual stress and the

average CaCO3 content of the specimen are presented in

Fig. 11b, with a grey dashed line indicating that for

untreated sand (73 kPa). It is surprising to note the general

decrease (with several increasing cases) in residual stress

for specimens with low CaCO3 contents (\ 2.5%), treated

with both RTTP and TCOP methods. The residual stress

could be reduced to as low as 65 kPa. This counterintuitive

phenomenon, verified by repetitive tests, is attributable to

the apparent shear bands (a strain-localized failure pattern

during the triaxial shearing process [4, 28]), where the

overall regularity of the grains increases due to a small

amount of CaCO3 precipitation filling the concave on the

grain surface [105]. This speculation is supported by pre-

vious SEM images presenting a preference of CaCO3

precipitating on the grains with relatively irregular sur-

faces. In comparison, the specimens with higher CaCO3

contents ([ 2.5%) tend to present a higher residual stress;

and the increase by the TCOP method is more effective

(maximum around 90 kPa). As supported by the micro-

scale observations from the SEM images, the overall

roughness of the grain surfaces would increase due to the

increase in amount/size of CaCO3 crystals with increasing

CaCO3 content, leading to the higher residual stresses.

4 Conclusions

A temperature-controlled one-phase (TCOP) MICP method

is proposed to improve the homogeneity of MICP-treated

sands. The advantages of the proposed TCOP method are

demonstrated with distributions of CaCO3 and evolutions

of strength and dilatancy, as compared with the normal

room-temperature two-phase (RTTP) MICP method. Major

findings are summarized below:

1. CaCO3 tends to precipitate in the upper part of the

RTTP-treated specimens, with almost no CaCO3 in the

bottom part. On the contrary, under conditions with the

same bacteria and cementation solutions, the TCOP

method generally produces more CaCO3 precipitation

with a much lower spatial variation, presenting a

roughly uniform distribution of CaCO3 along the

height of the specimen.

2. Specimens treated with the TCOP method display

apparent strain-softening behaviors with intense dila-

tion responses. The peak stress increases substantially

with CaCO3 content for the TCOP-treated specimens

(as high as 160 kPa) as compared with the marginal

increase for the RTTP-treated ones (maximum around

110 kPa). This difference is attributed to the effective

bond network formed by the homogenously distributed

CaCO3 precipitation within the TCOP-treated speci-

men, as compared with the inhomogeneous distribution

of CaCO3 within the RTTP-treated specimen, leaving a

barely reinforced bottom section.

3. It is surprising that specimens with lower CaCO3

content (\ 2.5%) present lower residual stresses as

compared with the untreated sands. This phenomenon

is attributable to the increase in overall regularity of the

grains (in the apparent shear bands) due to a small

amount of CaCO3 precipitation. Higher CaCO3 content
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Fig. 11 Variations of a peak stress and b residual stress with CaCO3

content for TCOP-treated and RTTP-treated specimens
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([ 2.5%) could still increase the residual stress due to

the increase in roughness of the grain surfaces (in the

apparent shear bands), and TCOP method is more

effective thanks to the small crystals uniformly

distributed among different grains.
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