
Geosci. Model Dev., 14, 4593–4616, 2021
https://doi.org/10.5194/gmd-14-4593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

icepack: a new glacier flow modeling package in Python, version 1.0

Daniel R. Shapero1, Jessica A. Badgeley2, Andrew O. Hoffman2, and Ian R. Joughin1

1Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
2Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA

Correspondence: Daniel R. Shapero (shapero@uw.edu)

Received: 12 December 2020 – Discussion started: 12 January 2021
Revised: 2 May 2021 – Accepted: 27 May 2021 – Published: 26 July 2021

Abstract. We introduce a new software package called
“icepack” for modeling the flow of glaciers and ice sheets.
The icepack package is built on the finite element model-
ing library Firedrake, which uses the Unified Form Language
(UFL), a domain-specific language embedded into Python
for describing weak forms of partial differential equations.
The diagnostic models in icepack are formulated through ac-
tion principles that are specified in UFL. The components of
each action functional can be substituted for different forms
of the user’s choosing, which makes it easy to experiment
with the model physics. The action functional itself can be
used to define a solver convergence criterion that is indepen-
dent of the mesh and requires little tuning on the part of the
user. The icepack package includes the 2D shallow ice and
shallow stream models. We have also defined a 3D hybrid
model based on spectral semi-discretization of the Blatter–
Pattyn equations. Finally, icepack includes a Gauss–Newton
solver for inverse problems that runs substantially faster than
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method of-
ten used in the glaciological literature. The overall design
philosophy of icepack is to be as usable as possible for a
wide a swath of the glaciological community, including both
experts and novices in computational science.

1 Introduction

Nearly all glaciologists, from graduate students to senior re-
searchers, need to use numerical models at some point in
their career. Several software packages for glacier flow mod-
eling already exist and are effective in the hands of experts.
We highlight four main uses of glacier models in the litera-
ture:

1. projecting future glacier extent and estimating the sea
level rise contribution from glacier dynamics (Joughin
et al., 2014);

2. exploring aspects of glacier physics, such as hydrology
and calving, that are not completely understood (Nick
et al., 2010; Werder et al., 2013);

3. estimating unobservable quantities, such as bed friction
or rheology, from observational data (Vieli et al., 2007;
Shapero et al., 2016); and

4. reconstructing what glaciers of the near- or distant-past
may have looked like (Huybrechts, 2002).

To accomplish these tasks, modeling tools are usually writ-
ten in compiled programming languages such as C, C++,
and Fortran for reasons of computational efficiency. Many
glaciologists receive little or no formal programming train-
ing, much less in these languages, and are instead self-taught
in either Python or MATLAB. The ubiquity of C, C++, and
Fortran in scientific computing can create a barrier to entry
for glaciologists who are not experts in high-performance
computing. In this paper, we introduce a new Python soft-
ware package for glacier flow modeling called “icepack”.
Our goal is to make a tool that will be both accessible to
novices and more productive for experts. Thus far, we have
focused efforts on process studies of individual glaciers or
drainage basins (use cases 2 and 3 of the list above). The de-
velopment of icepack is ongoing, and we will broaden our
efforts to encompass more use cases in future.

The glacier flow modeling package closest in spirit to
icepack is VarGlaS (Brinkerhoff and Johnson, 2013). Var-
GlaS is implemented using the finite element modeling
(FEM) package FEniCS (Logg et al., 2012), whereas icepack
is built on top of Firedrake, which began as an outgrowth

Published by Copernicus Publications on behalf of the European Geosciences Union.

4594 D. R. Shapero et al.: icepack

of FEniCS. Both packages share a similar goal of saving
users from manually writing low-level code for assembling
the systems of equations that discretize their model physics.
Instead, users describe the weak form of the partial differen-
tial equations they wish to solve using a high-level domain-
specific language (DSL) called the Unified Form Language
or UFL (Alnæs et al., 2014). This DSL is embedded entirely
into Python (i.e., the complete syntax of UFL can be mapped
directly onto overloaded operators in the Python program-
ming language). Both FEniCS and Firedrake then generate
optimized C or C++ code to assemble the discretized system
of equations from this symbolic description of the problem
(Kirby and Logg, 2006; Rathgeber et al., 2016). Combining
a DSL and a code generator frees users from the very error-
prone process of writing these assembly kernels themselves
and also makes the syntax of the code align more closely with
the syntax of written mathematical expressions. Addition-
ally, having a high-level symbolic description of the prob-
lem makes it possible to automatically derive tangent linear
models and adjoints (Mitusch et al., 2019).

The icepack package improves upon the groundwork laid
in VarGlaS in three main respects. First, icepack includes a
simple 3D flow model that uses several features only avail-
able in Firedrake: extruded meshes and tensor product fi-
nite elements (Sect. 2.2.3; Bercea et al., 2016; McRae et al.,
2016). Second, icepack’s architecture is designed to make it
easy for users to alter the various physics components, such
as the rheology and basal friction, of any of its constituent
models (see Sect. 2.4). Finally, the inverse solver in icepack
uses the Gauss–Newton method, which converges faster and
more reliably than the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method used in VarGlaS (see Sect. 4.4).

2 Physics

The two main components of a glacier flow model are a
diagnostic and a prognostic equation. The diagnostic equa-
tion prescribes the ice velocity through a time-independent,
nonlinear, elliptic partial differential equation (PDE). The
prognostic equation prescribes how the ice thickness evolves
through conservation of mass. Mathematically, these two
coupled PDEs can be thought of as a differential-algebraic
equation (see Ascher and Petzold, 1998).

The evolution equations for ice thickness and velocity are
necessary for any simulation, but other fields with their own
dynamics can be a part of the problem as well. For exam-
ple, the rheology and friction are the main coefficients in
the diagnostic equation. These coefficients are functions of
other fields that have their own evolution equations. The rhe-
ology is a function of temperature, englacial water content,
and damage from crevassing. Likewise, the friction coeffi-
cient can be described in terms of the subglacial water pres-
sure and a roughness factor for the underlying bedrock (Cuf-
fey and Paterson, 2010). The diagnostic and prognostic equa-

tions can then be supplemented with evolution equations for
these fields, for example the heat equation for temperature,
or a hydrology model for subglacial water pressure.

In this section, we will describe the mathematical formu-
lation of each of the models implemented in icepack. See
Table A1 for definitions of all mathematical symbols and Ta-
ble A2 for physical constants.

2.1 Prognostic model

The prognostic model or mass transport equation (the two
terms are synonymous) describes how the ice thickness
changes in time. The prognostic model is

∂h

∂t
+ ∇ ·hu = ȧs − ȧb, (1)

where ȧs and ȧb are the surface and basal mass balance, re-
spectively. This problem has the apparent form of a conser-
vative advection equation, but the velocity u is coupled to
the thickness and surface slope in such a way that the whole
problem is not hyperbolic. For the specific case of the shal-
low ice approximation (see section Sect. 2.2.1), the coupled
system is parabolic. In all other cases, the problem does not
have a PDE “type” in the usual sense because the velocity is
found through solving an elliptic PDE where the thickness
and surface slope are coefficients.

The icepack package represents the thickness using con-
tinuous, piecewise polynomial basis functions in each cell of
the mesh. In the examples, we use up to degree 2, and the unit
tests use up to degree 4. We have not yet implemented a for-
mulation that works with discontinuous basis functions, but
this extension is completely feasible within our framework.

The surface elevation is calculated as

s = max{b+h,(1 − ρI/ρW)h}, (2)

with the first case corresponding to grounded ice and the
second case corresponding to floating ice. In the immedi-
ate vicinity of the grounding line, the assumption that the
floating ice is in hydrostatic equilibrium with the ocean fails.
Most models assume hydrostasy, and icepack does as well.
Elmer/Ice, on the other hand, solves a contact problem for
the moving upper and lower ice surfaces and, thus, can accu-
rately model non-hydrostatic ice shelves (Gagliardini et al.,
2013).

We implement two types of boundary conditions for the
prognostic equation. First, users can specify an inflow flux
value, and this value becomes a source of thickness at any
point along the domain boundary where the ice velocity is
pointing in to the domain. The flux at the inflow boundary
can change in time. Second, we impose outflow boundary
conditions on any part of the domain where the ice velocity
is pointing outwards. The segments of the boundary that are
inflow or outflow are diagnosed automatically by calculating
the sign of the dot product between the velocity and the unit
outward normal vector.

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4595

The mass transport equation for ice thickness is a free
boundary problem, where the free boundary is the contour
between ice-covered and ice-free regions (Schoof and He-
witt, 2013). Where there is ablation in ice-free regions, a cor-
rectly implemented prognostic solver will compute a nega-
tive thickness, which is unphysical and requires correction.
The prognostic solver in icepack truncates the thickness to
zero, which approximates the free boundary, where there is
ablation in ice-free regions. An implicit approach would in-
stead treat the free boundary problem directly as a variational
inequality (Jouvet and Bueler, 2012). The icepack package
currently lacks such a scheme, and this will be the subject
of future development. The Portable Extensible Tookit for
Scientific Computation (PETSc) includes scalable solvers for
variational inequalities (Bueler, 2020) that are also available
through Firedrake.

2.2 Diagnostic model

There are four diagnostic or stress balance models imple-
mented in icepack. For each of the diagnostic models, we
use a formulation of the physics based on a minimization or
action principle (Dukowicz et al., 2010). Action principles
are completely equivalent to the usual weak form of a partial
differential equation but have certain numerical advantages,
as described below.

The most complex and most physically accurate model
that we implement is the first-order or Blatter–Pattyn ap-
proximation, a 3D system describing the horizontal veloc-
ity (Blatter, 1995; Pattyn, 2003). (In icepack, we refer to our
implementation of this equation as a “hybrid model” as it in-
cludes both shear and plug flow modes, as described below.)
The first-order model is based on an asymptotic expansion of
the Stokes equations with respect to the ratio of the ice thick-
ness to a typical horizontal length scale. The aspect ratio of
most glacier flows is on the order of 1/20 or less, although
there are some exceptions – for example, the main trunk of
Jakobshavn Glacier in Greenland flows through a very deep
and narrow trough with an aspect ratio closer to 1/5.

From the first-order model, two approximations are possi-
ble. First, the shallow ice approximation (SIA) comes from
assuming that vertical shear is the dominant mode of ice
flow. The SIA model (Hutter, 1981) describes the interior
of ice sheets well, where flow can be simply described as
bed-parallel shear and surface and basal slopes are small.
This approximation breaks down near ice margins, where
basal sliding can be a large fraction of the surface speed
and where membrane stresses are substantial. Second, one
could assume that ice flow is purely by horizontal exten-
sion and that the surface and bed velocities are practically
the same, which is called the shallow stream approximation
(SSA). The SSA model describes the fast-flowing margins
of the ice sheet best, encompassing grounded ice streams or
floating ice shelves (MacAyeal, 1989).

All of the diagnostic models inherit a fundamental nonlin-
earity in the mechanics of ice flow. For a Newtonian viscous
fluid, the stress tensor τ and the strain rate tensor ε̇ are lin-
early proportional to each other. Glaciers, however, have a
nonlinear constitutive relation:

ε̇ = A|τ |n−1τ, (3)

where A is the fluidity, and n is the Glen flow law expo-
nent (Cuffey and Paterson, 2010). The most commonly used
value of the flow law exponent is n≈ 3, as determined from
laboratory experiments. Strictly speaking, the fluidity should
be a tensor field but is almost universally treated as a scalar
(Gillet-Chaulet et al., 2006).

All of the diagnostic models in icepack are described
through variational or action principles (Dukowicz et al.,
2010). Rather than describe the velocity as the weak solution
of a nonlinear PDE, an action principle instead states that the
velocity minimizes a functional called the action. The action
consists of four terms:

action =

∫∫

stress × strain rate dzdx

−

∫

basal friction × sliding velocity dx

−

∫∫

surface slope × velocity dzdx

−

∫∫

ocean pressure × velocity dzdγ, (4)

where dzdx denotes integration over the entire glacier, dx
denotes integration over the glacier footprint, and dzdγ de-
notes integration over the side wall boundary. The action has
units of power (energy/time) and can be related to the rate
of decrease of the thermodynamic free energy (De Groot and
Mazur, 2013).

Every diagnostic model in icepack is encapsulated in
its own Python class. The key responsibility of the model
classes is to take in the input fields – the ice thickness, ve-
locity, etc. – and return a symbolic description of the action
functional in UFL.

The action principle is especially useful for designing a
robust numerical solver, the implementation of which will
be described in Sect. 4.2. For viscous flow problems near
to steady state, the action is convex as a function of the
ice velocity (i.e., its second derivative is positive-definite).
Convexity implies that the action functional has a unique
minimizer and that, with an appropriate line search strategy,
Newton’s method will converge from any initial guess. Algo-
rithms for minimizing convex functionals have better conver-
gence guarantees than algorithms for solving general nonlin-
ear systems of equations while having no additional compu-
tational cost (Nocedal and Wright, 2006). Both formulations
are mathematically equivalent.

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4596 D. R. Shapero et al.: icepack

2.2.1 Shallow ice approximation

The shallow ice model can be derived from the Blatter–
Pattyn approximation by assuming that ice flow is domi-
nated by bed-parallel shear and that surface and basal slopes
are small (i.e., ∂u/∂x ≪ ∂u/∂z). The result is a 2D sys-
tem of equations for depth-averaged horizontal velocity. The
class in icepack that represents this physics model is called
ShallowIce. The terms in the action functional are

localization =
1

2

∫

�

u · udx; (5)

gravity =

∫

�

2A(ρIg)
n

n+ 2
hn+1|∇s|n−1∇s · udx; (6)

penalty =
1

2

∫

�

ℓ2∇u · ∇udx; (7)

and the action functional is

J = localization + gravity + penalty. (8)

The default value of the length scale ℓ in the penalty term is
defined as follows:

ℓ= 2max{cell diameter,5h}, (9)

but users can adjust this to the value of their choice. This
penalty term smooths over numerical artifacts, especially
near the ice margins and termini. In these regions, the shallow
ice approximation is less applicable, so the error in solving a
different set of equations is small compared with the inherent
modeling error in using these equations in the first place.

We verified the correctness of our implementation by
checking that numerical results converge at the expected rate
to the analytical Bueler profile for a circular symmetric ice
sheet (Greve and Blatter, 2009).

The shallow ice approximation applies well in ice sheet
interiors. For this reason, and because the equations are par-
ticularly simple to solve, this approximation has been a com-
mon choice for ice sheet modeling (Cuffey and Paterson,
2010; Kirchner et al., 2016). This approximation does not
work well in areas of the ice sheet where the flow has sub-
stantial membrane stresses, like fast outlet glaciers.

2.2.2 Shallow stream and shelf approximations

The shallow stream model can be derived from the Blatter–
Pattyn approximation by assuming nearly plug flow (i.e.,
∂u/∂z≪ ∂u/∂x). The momentum equations can, again, be
vertically integrated to obtain a 2D system of equations. The
class in icepack that represents this physics model is called

IceStream. The terms in the action functional are

viscosity =
n

n+ 1

∫

�

hA− 1
n |ε̇(u)|

1
n
+1dx; (10)

friction =
m

m+ 1

∫

�

C|u|
1
m

+1dx; (11)

gravity = −

∫

�

ρIgh∇s · udx; (12)

terminus =
1

2

∫

Ŵ

(

ρIgh
2 − ρWgd

2
)

u · ν dγ ; (13)

and the action functional is

J = viscosity + friction − gravity − terminus. (14)

When the ice is floating, there are two simplifications: the
friction coefficient C is zero, and the surface elevation s can
be written in terms of the thickness h as

s = (1 − ρI/ρW)h. (15)

Additionally, the terminal stress term of the action disap-
pears after applying integration by parts to the gravity term to
shift the gradient of the surface elevation over onto the veloc-
ity. As the action functional for ice shelves has fewer terms
than for grounded ice streams, we have defined a separate
IceShelf model class. The ice shelf and ice stream mod-
els share common components (i.e., the viscosity and side
wall stress).

We verified the correctness of our implementation of the
ice shelf model by checking that numerical results converge
at the expected rate to an analytical solution for the veloc-
ity with a linearly sloping thickness in a rectangular domain
(Greve and Blatter, 2009). There are analytical solutions to
the shallow stream equations with basal friction (Böðvars-
son, 1955; Bueler, 2014); these solutions are more complex
algebraically than those for the case without basal friction.
To get an exact solution, we chose the ice velocity and thick-
ness a priori and used the computer algebra system SymPy
(Meurer et al., 2017) to generate a friction coefficient that
makes these fields an exact solution. We hand-tuned the in-
put parameters so that the values of the manufactured friction
coefficient were within reasonable bounds. We then checked
that numerical results converge to this manufactured solution
at the expected rate (Roache, 2002).

Several studies have compared the shallow stream approx-
imation to 3D models such as Blatter–Pattyn or full Stokes
(Pattyn et al., 2013). The most appreciable difference be-
tween lower- and higher-order models occurs near the glacier
grounding line, where the full Stokes equations can repre-
sent bridging stresses (Van der Veen, 2013). The lack of ver-
tical strain rates in the ice viscosity in 2D models can also
lead to different equilibrium grounding line positions un-
der the same external forcing. The advantage of the SSA is

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4597

that it can capture most of the overall flow features of fast-
flowing glaciers but at much lower computational cost than
the Stokes equations.

2.2.3 Hybrid model

The first-order model in icepack is described in the class
HybridModel. The shallow ice and shallow stream mod-
els follow directly from the variational principles described
above. The hybrid flow model, while also based on a varia-
tional principle, uses two more advanced mathematical tech-
niques: terrain-following coordinates and spectral discretiza-
tion in the vertical dimension.

Each of these techniques has appeared in the literature on
glacier modeling before but rarely all in the same place for a
3D model. Langdon and Raymond (1978) and Bassis (2010)
used variational principles and vertical spectral methods, but
these works considered only flow-band models. Kleiner and
Humbert (2014) used terrain-following coordinates for 3D
glacier flow modeling, but they discretized the problem with
finite difference methods in every direction and did not take
the variational formulation of the diagnostic model into ac-
count. Jouvet (2015) used vertical semi-discretization of the
variational problem, but this model used a finite difference
discretization in the vertical direction. The model used in
Brinkerhoff and Johnson (2015) is the closest to the one we
present below. This work used both terrain-following coordi-
nates and a tensor product basis of Lagrange finite elements
in the horizontal and higher-degree polynomials in a single
vertical layer. For the vertical basis functions, they used a
plug flow mode and one shear mode.

Terrain-following coordinates

Rather than the usual Cartesian coordinate system, the hybrid
flow model uses terrain-following coordinates. The terrain-
following vertical coordinate ζ is

ζ =
z− b

h
, (16)

where b is the ice base. We can then think of the compu-
tational domain as the Cartesian product of a 2D footprint
domain � and the unit interval [0,1].

Both the bed elevation and thickness depend on x and y.
As a result, the formula for the horizontal gradient of a field
in terrain-following coordinates includes an additional geo-
metric correction factor. Letting ∇z and ∇ζ denote the hor-
izontal gradient with the respective z and ζ terms held con-
stant, the chain rule gives us

∇zq = ∇ζq +
∂q

∂ζ
∇ζ, (17)

where we can calculate the spatial gradient of ζ as

∇ζ = −h−1 {(1 − ζ)∇b+ ζ∇s} . (18)

Likewise, the strain rate of a vector field can be expressed as

ε̇z(u)= ε̇ζ (u)+
1

2
(u ⊗ ∇ζ + ∇ζ ⊗ u) , (19)

where ⊗ is the tensor product of two vectors.
For the Stokes equations, this alternative coordinate sys-

tem also helps avoid the problem of how to enforce the con-
dition u · ν = −ȧb at the ice base, where ν is the unit out-
ward normal vector, and ȧb is the basal mass balance. This
boundary condition is difficult to impose exactly because
the unit outward normal vector ν is defined on mesh faces
whereas the velocity is defined at mesh vertices. Elmer/Ice
uses an ad hoc procedure to define the unit normal vectors
at mesh nodes (Gagliardini et al., 2013). This procedure is
nearly always effective in practice. But with a transforma-
tion to terrain-following coordinates, we can set the terrain-
following vertical velocity ω to be −ȧb/h at the ice base to
impose this boundary condition with no additional interven-
tion.

We also argue that answers expressed in terrain-following
coordinates are more intuitive in some respects than in Carte-
sian coordinates. At the bed of a grounded glacier, the verti-
cal velocity in Cartesian coordinates is

w = −ȧb + u · ∇b. (20)

Knowing that a model gives a vertical velocity at the base
of a glacier of, say, 10 cm yr−1, the modeler needs to also
know the bed slope and sliding velocity. In other words, it is
not immediately clear whether the vertical velocity is a re-
sult of basal mass balance or of geometry without additional
information. By contrast, the vertical velocity ω in terrain-
following coordinates evaluated at ζ = 0 is completely de-
termined by basal mass balance and ice thickness.

Spectral discretization

Terrain-following coordinates open up several choices for
how to describe the vertical variation of the velocity field. In
Elmer/Ice, for example, the user can extend the finite element
discretization into a number of vertical layers. The number of
vertical layers is a user-tuneable parameter, depending on the
desired resolution along this axis (Gagliardini et al., 2013).

The horizontal velocity for many realistic flows is very
smooth as a function of depth, and this suggests a different
approach. For example, under the plug flow approximation,
the horizontal velocity is constant with depth. Under the shal-
low ice approximation, the horizontal velocity varies with
depth as 1 − (1 − ζ)n+1, where n= 3 is the Glen flow law
exponent. This extra information about our solution suggests
a modal rather than a nodal discretization strategy.

Rather than divide the spatial domain into many vertical
layers, we can instead use only one vertical layer and in-
crease the polynomial degree in the vertical direction to ob-
tain higher resolution. This type of basis, in which different
shape functions are used in different dimensions, is called a

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4598 D. R. Shapero et al.: icepack

tensor product element (McRae et al., 2016). Given a set of
finite element basis functions {φk(x,y)} defined on the 2D
domain � and a set of basis functions {ψl(ζ)} defined on
the unit interval [0,1], the tensor product finite element basis
{8kl} on the extruded domain is defined as

8kl(x,y,ζ)= φk(x,y)ψl(ζ). (21)

For example, we can use piecewise linear or quadratic ele-
ments on (horizontal) triangles and use quintic or higher de-
gree polynomials in the vertical. Rather than use the usual
Lagrange elements in the vertical dimension, we can instead
use the Legendre polynomial basis. The Legendre polynomi-
als are mutually orthogonal, which makes the mass matrix
block-diagonal, and provide better approximation properties
(Szabó et al., 2004). Our main reason for choosing to build
icepack using the Firedrake package was because it natively
supports tensor product elements.

The combination of using extruded meshes and tensor
product elements in the vertical direction can be thought of
merely as a way to discretize a PDE that has special struc-
ture. Alternatively, we can view discretization in the vertical
as defining a family of models indexed by the number of ver-
tical basis functions. The order-d model defines a coupled
system of PDEs for d vector fields. Each vector field repre-
sents one mode of vertical variability, similar to the distinc-
tion between barotropic and baroclinic modes in atmospheric
physics and oceanography. The system is then discretized in
the horizontal and solved numerically. In any case, the code
is the same regardless of how one views the underlying math-
ematics.

The user then has to decide how many vertical modes are
sufficient. Using only degree 0 is exactly equivalent to the
shallow stream approximation, and we use this fact as a san-
ity test for the hybrid model. The degree-2 model is the mini-
mal model that still exhibits vertical shear and can satisfy the
zero-stress boundary condition at the ice surface. Going up
to a degree-4 model is sufficient to capture the exact solution
for the shallow ice approximation. In the tutorial notebooks
for icepack, we use up to degrees 2 and 4, but the test suite
checks up to degree 8.

Brinkerhoff and Johnson (2015) used a similar approach to
the one described above, with one vertical basis function for
plug flow and one for shear flow. The shear flow basis func-
tion is exact assuming the SIA balance when the ice is cold.
When the ice is polythermal, they use a heuristic approxima-
tion. By contrast, our approach allows for an arbitrary num-
ber of shear modes.

Action functional

We can now describe all of the terms in the action functional
for this model:

viscosity =
n

n+ 1

∫

�

1
∫

0

hA− 1
n

√

|ε̇(u)|2 +h−2|∂ζu|2
1
n
+1

dζ dx;

(22)

friction =
m

m+ 1

∫

�

C|u(ζ = 0)|
1
m

+1dx; (23)

gravity = −

∫

�

1
∫

0

ρIgh∇s · udζ dx; (24)

terminus =

∫

Ŵ

1
∫

0

(pI −pW)u · ν dζ dγ. (25)

Here, pI is the ice overburden pressure, and pW is the water
pressure (if any) at the calving terminus from the ocean or
a proglacial lake. The full action functional is exactly analo-
gous to that of the shallow stream model:

J = viscosity + friction − gravity − terminus. (26)

Again, we note that the expression for the horizontal strain
rate in terrain-following coordinates comes from Eq. (19),
which includes the additional geometric correction factor.

In terrain-following coordinates, the ice overburden pres-
sure at relative depth ζ is pI = ρIgh(1 − ζ). The water pres-
sure is zero above the waterline and increases linearly below
it. Letting ζsl denote the relative depth to the waterline, the
water pressure is

pW = ρWgh(ζsl − ζ)+, (27)

where { }+ denotes the positive part of a real number. This
quantity is continuous but only piecewise linear. Integrating
it correctly requires more work above and beyond the usual
symbolic approach (see section Sect. 4.5.2 for details).

2.3 Boundary conditions

The shallow shelf, shallow stream, and hybrid models re-
quire boundary conditions to be well posed. We implement
three different types that are largely the same for each physics
model:

1. Users can specify the velocity on segments of the do-
main boundary where ice is flowing in; this is a Dirich-
let condition which is eliminated from the system at the
level of the solver. Supplying inflow boundary condi-
tions for the hybrid model necessarily requires more in-
formation, namely the variation of the horizontal veloc-
ity with depth.

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4599

2. The Neumann condition at the ice terminus (Eq. 13) is a
natural boundary condition which is imposed by adding
the relevant term to the action functional.

3. We allow for side wall boundary conditions where the
ice has nonzero thickness but abuts, say, a fjord wall
or an ice shelf embayment that exerts resistive stresses.
In the normal direction, the boundary condition is that
u · ν = 0, where ν is the unit outward normal vector.
In the tangential direction, the boundary condition is

hM · ν = −C|u|
1
m

−1
u, where C is a side wall friction

coefficient and M is the membrane stress tensor. Putting
these together gives a mixed Dirichlet–Robin boundary
condition. The side wall friction (Robin) boundary con-
dition is natural and, thus, can be added directly to the
action functional. The constraint of no normal flow is
harder to impose directly for a curved boundary; we
used the penalty method.

Future versions of the code will use Nitsche’s method
(Nitsche, 1971) instead of the penalty method to enforce
the no normal flow constraint. Nitsche’s method dramati-
cally improves the conditioning of the associated optimiza-
tion problem. Our implementation of the hybrid model re-
quires special care to handle the terminus boundary condi-
tion as a consequence of our choice of vertical basis functions
(see section Sect. 4.5.2).

The shallow ice model alone is able to cope with ice-free
regions in the domain, albeit with truncation at zero thick-
ness. All of the remaining models and their boundary con-
ditions assume that the entire spatial domain is ice covered.
We will improve the solvers to address ice-free areas in fu-
ture versions.

2.4 Substituting model components

Many aspects of glacier physics are not completely under-
stood. For example, the most commonly used sliding law is
the power law

τ b = −C|u|
1
m

−1
u (28)

for some exponent m. Older research assumed m= 3 based
on the theory of regelation (Weertman, 1957), which has
since been referred to as the Weertman sliding law. When
m= ∞, the basal shear stress is independent of the sliding
speed; this is referred to as perfect plasticity. More recently,
Schoof (2005) proposed an alternative form that acts like the
Weertman law when |u| ≪ uc and like the plastic law when
|u| ≫ uc. A simplified form of this model can be expressed
as

τ b = −C

(

|u|

|u| + uc

)
1
m u

|u|
, (29)

where uc is some critical speed. This latter equation has
been found to agree best with laboratory experiments on till

(Zoet and Iverson, 2020) and in reproducing observed veloc-
ity variations (Joughin et al., 2019).

The Weertman and plastic sliding laws possess the same
functional form but differ only in the value of a single scalar
parameter m. The Schoof sliding law, on the other hand,
has a totally different functional dependence on the veloc-
ity. Several authors, including Schoof, have proposed that the
basal shear stress is also a function of the effective pressure
N = ρgh−pw within the subglacial hydrological system
(Budd et al., 1979; Schoof, 2005). Implementing these more
sophisticated mathematical models would require adding an
extra argument to the procedure for solving the diagnostic
equation.

One of our goals with icepack is to facilitate experimen-
tation with the model physics, even for novice users. Of the
programming languages that are commonly used for scien-
tific computing, only Python and possibly Julia would appear
to meet these needs. To support use cases like implementing
the Schoof sliding law, it must be possible not just to change
the value of a single parameter but also to completely alter
the functional form of a given model component. For uses
cases like explicitly adding the dependence of basal shear
stress on hydrology, it must also be possible to add entirely
new fields to a given model component. In programming
terms, this amounts to changing the number of arguments to
the function that calculates basal shear stress, which Python
accommodates easily. For a library developed in C or Fortran,
the user would then also have to change the signature of the
diagnostic solve function, which is undesirable. In C++, one
could avoid changing the signature of the diagnostic solve
routine by (1) using variadic templates, (2) wrapping the in-
puts in a class, or (3) passing all arguments in a dictionary.
Using variadic templates or wrapping the inputs in a class
would require users to know more about generic or object-
oriented programming than a novice might. Using a dictio-
nary data structure to pass arguments is relatively easier but
would be more idiomatic in Python than in C++. Some of
the difficulty associated with changing the model physics in
a C++ code can be alleviated with automatic differentiation
tools, which have been used successfully in Albany/FELIX
(Tezaur et al., 2015) and ISSM (Hück et al., 2018). Nonethe-
less, C++ or any language with a stronger type discipline will
be much more restrictive about changing function signatures.

In icepack, users can substitute any diagnostic model com-
ponent for the parameterization of their choosing, including
adding new fields. From the user’s perspective, substituting
model physics components does not require any advanced
language features beyond keyword arguments. To understand
how this is possible, we will briefly describe the path that the
input fields take through the program:

1. The user passes all arguments to the diagnostic solve
procedure by keyword.

2. The diagnostic solve procedure creates a symbolic rep-
resentation of the action functional by summing up sev-

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4600 D. R. Shapero et al.: icepack

eral terms, such as the viscosity and basal friction. Cal-
culating these terms is delegated to specialized proce-
dures for each term. Each term procedure gets the entire
collection of fields.

3. The routine that calculates the terms of the action se-
lects which fields it actually needs from the argument
dictionary and then creates the symbolic representation
of that term.

4. Finally, once the symbolic representation of the action
functional has been created, all the responsibility passes
to the nonlinear solver.

To substitute different model components, the user intervenes
at step 3. Each model object – shallow ice, shallow stream,
etc. – is initialized with a default set of routines to calculate
the terms of that model’s action functional. The user can re-
place these default routines with one of their own choosing
by passing the function of their choice when that model ob-
ject is initialized.

In step 3, any fields that were unnecessary for calculating a
given component are ignored. For example, the gravitational
driving power routine will pull out the velocity, thickness,
and surface elevation. While the routine will not use them, it
also has access to other fields, such as the ice fluidity.

In adopting this approach, we are restricted to using key-
word arguments instead of positional arguments. We argue
that employing only keyword arguments is a strength rather
than a weakness because it enhances readability and com-
prehensibility for the particular use case of calling a physics
solver. The user only needs to know the argument names,
which are chosen to agree with the English name most com-
monly used in the literature – “friction”, “rheology”, “veloc-
ity”, etc. The order of the arguments is arbitrary and immate-
rial. The preference for argument passing by name is specific
to this use case, however, and is not universal.

2.5 Heat transport

We implemented the enthalpy transport model described in
Aschwanden et al. (2012). The enthalpy density E describes
the heat content of the material in a way that incorporates
both temperature T and latent heat stored in meltwater:

E = ρI(cT +Lf), (30)

where L is the latent heat of melting of ice, and f is the melt
fraction. The melt fraction can only be positive when the ice
as at the pressure-melting point. The temperature and melt-
water fraction can be uniquely calculated at any point from
the value of the enthalpy, so nothing is sacrificed in describ-
ing heat content one way or the other. Using the enthalpy
has the advantage of circumventing many of the difficul-
ties associated with tracking the interface between cold and
temperate ice. Our implementation of the model uses all of
the simplifying assumptions described in Aschwanden et al.

(2012) – for example, that horizontal diffusion is negligible
and that heat capacity and conductivity are not temperature-
dependent within each phase. The resulting PDE is
(

∂

∂t
+ ∇ · u

)

E−
∂

∂z
α
∂E

∂z
= q, (31)

where u is the full 3D velocity, α is the (temperature-
dependent) thermal diffusivity, and q represents the volumet-
ric heat sources. This form assumes some amount of vertical
diffusion of water at the melting point. A realistic treatment
would require treating the ice as a porous medium and mod-
eling englacial water transport explicitly, which we have not
done. The boundary condition at the ice base is a fixed flux of
heat from geothermal sources or from the oceans. We depart
from Aschwanden et al. (2012) in one respect. Rather than
fix the ice surface temperature to the atmospheric tempera-
ture, we instead use a Robin boundary condition that makes
the ice temperature adjust to the external temperature:

−α
∂E

∂z

∣

∣

∣

z=s
= κ(E−Es), (32)

where κ is a surface exchange coefficient, and Es is the
temperature-equivalent enthalpy that forces the surface. Us-
ing a Robin instead of a Dirichlet boundary condition at the
surface allows for more gradual adjustment to above-freezing
temperatures that might otherwise create areas of unrealisti-
cally high melt fraction. Except in blue ice areas, the thermal
contact between ice and the atmosphere is mediated by firn,
which we do not model explicitly. The Robin boundary con-
dition is a compromise to work around this missing compo-
nent of the system. Finally, if there is an upstream boundary,
the user must provide the inflow values of the enthalpy with
depth, while outflow boundary conditions are applied at the
glacier terminus.

The heat transport model assumes that the user will sup-
ply a volumetric heating rate, but the model itself does not
calculate the heating rate from other fields. The simplest de-
scription for the shear heating rate is

q = τ : ε̇ = A
−1
n |ε̇(u)|

1
n
+1. (33)

The fluidity factor A in Glen’s law is roughly a known func-
tion of both temperature and melt fraction, and we have in-
cluded this function in the package. However, parameterizing
fluidity is not sufficient by itself. While the dependence of
fluidity on temperature is known fairly well from laboratory
experiments, the dependence on melt fraction is known with
much less certainty (Cuffey and Paterson, 2010). Some users
of this module may want to substitute in their own parame-
terization for melt fraction dependence. Other processes such
as damage, fabric development, and impurities can affect the
fluidity as well. Moreover, there may be other volumetric
heat sources that users wish to account for, such as cryo-
hydrologic warming (Phillips et al., 2010). These consider-
ations defy any attempt to have one function that calculates

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4601

the volumetric heating rate from the other state variables. In-
stead, we opted for an interface where users calculate this
rate themselves, with tutorials and examples that show how
to do so for simple scenarios, leaving the freedom to alter the
thermal feedbacks as they see fit. Our general design prin-
ciple is that icepack will solve differential equations for the
various prognostic fields, but it is up to users to decide how
these fields are coupled.

We have not implemented a model for the surface or
englacial transport of meltwater, although it would be pos-
sible to include this process. Instead, we rely on an exter-
nal scheme to act as a sink of enthalpy for meltwater frac-
tion values above some user-defined critical value. A com-
mon choice for this critical value is 1 % (Aschwanden et al.,
2012).

2.6 Damage transport

Other physical fields besides temperature can influence ice
fluidity. At large spatial scales (> 5 km), crevasse fields affect
ice flow by reducing the lateral area over which stress can be
transmitted. Modeling individual fractures is not computa-
tionally feasible for large-scale simulations. Instead, we have
implemented the phenomenological model described in Al-
brecht and Levermann (2014), which is based on the theory
of continuum damage mechanics. This model is defined in
the class DamageTransport. Prognostic damage models
can be broken down into three parts: (1) evolve the damage
field based on the membrane stress of the glacier, (2) advect
the damage field with flow, and (3) feed the damage field
back into the fluidity of the glacier. Changes in fluidity, in
turn, affect the membrane stress; the coupling between bulk
damage and ice flow goes both ways. The model from Al-
brecht and Levermann (2014) adds sources of damage where
the membrane stress exceeds a critical value and sinks of
damage when the principal strain rate is less than a critical
value.

3 Data assimilation

The icepack package includes a set of routines for estimating
the basal friction or rheology coefficients from observational
data. Mathematically, this inverse problem amounts to find-
ing a critical point of the functional

L(u,θ,λ)= J (u)+R(θ)+ 〈F(u,θ),λ〉, (34)

where J is the misfit between the computed velocity u and
observations, θ is the field to be inferred and R a regular-
ization functional that measures the spatial variability of this
field, F is the diagnostic physics, and λ is a Lagrange multi-
plier to enforce the physics (MacAyeal, 1992; Joughin et al.,
2004; Larour et al., 2005; Shapero et al., 2016). The optimal
value θ gives the best fit to observations subject to the con-
straints of the physics and that it should not overfit to noise in

the data. The class InverseProblem represents the spec-
ification of an inverse problem, which requires

– the model object and the method that solves the diag-
nostic equation,

– the objective and regularization functionals,

– the observed field and the name of the argument to the
diagnostic solver,

– an initial guess for the field to be estimated and the name
of the argument to the diagnostic solver, and

– extra data passed to the diagnostic solver such as bound-
ary conditions.

This class currently assumes that the observed state is always
the ice velocity. The state to be estimated can be any single
input field to the diagnostic model – basal friction, rheology,
or another field that the user has added by customizing the
model. In principle the same design would suffice for more
complicated inverse problems, and this is an area of active
development.

The InverseProblem class is flexible enough to ac-
count for users defining their own parameterization for the
rheology or friction coefficient as described in Sect. 2.4. This
flexibility with respect to parameterization is not just con-
venient but essential for common data assimilation work-
flows. Nearly all studies in the literature introduce a param-
eterization of the field to be estimated in terms of some
auxiliary field in order to guarantee positivity (MacAyeal,
1992; Joughin et al., 2009). For example, one could define
the friction coefficient C in terms of an auxiliary variable
β as C = β2 to guarantee positivity. One could also just
as easily use C ∝ exp(β). The data assimilation routines in
icepack can work the same way for any parameterization
of the physics because Firedrake provides a rich set of rou-
tines for symbolically calculating functional derivatives. The
InverseProblem class only needs to know which func-
tional needs to be differentiated with respect to which field.

The InverseSolver class is responsible for actually
solving the inverse problem. This class will be described fur-
ther in section Sect. 4.4.

4 Numerics

In the previous sections we described what problems icepack
can solve (i.e., various physics models and data assimilation
problems). In this section, we will describe how these prob-
lems are solved. This separation between the two questions
parallels the broader design of the software package.

The key classes that users interact with are flow mod-
els and solvers. The role of the model classes is to de-
scribe what problem is being solved. These classes de-
scribe the diagnostic model by taking in the input fields

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4602 D. R. Shapero et al.: icepack

– ice velocity, thickness, surface elevation, etc. – and re-
turning a symbolic representation of the action functional.
There are several model classes, one for each set of physics
equations: ShallowIce, IceShelf, IceStream, and
HybridModel. The model classes do not dictate how that
problem should be solved numerically; this is the realm of
a separate class called FlowSolver. This FlowSolver
class has methods for computing the solutions of the diagnos-
tic and prognostic equations and works the same regardless
of which model is being solved. The diagnostic solve method
amounts to invoking an external Newton solve procedure on
the symbolic action functional that the model object creates.
The Newton solver itself is completely standard, but the con-
vergence criterion is not (see section Sect. 4.3). Finally, the
flow solver has a method to update the ice thickness from the
current value, the ice velocity, and the mass balance rates.

The Unified Form Language for specifying weak forms of
PDEs contains all of the primitives necessary to express indi-
vidual terms of the action functional. These primitives con-
sist of the basic vector calculus operators, like the gradient of
a field; tensor calculus operations, like taking the dot prod-
uct of two vectors or tensors; scalar functions, like the square
root or exponential; and symbolic integration over the mesh
or its boundary. For example, the strain rate for a given ve-
locity field u can be written as sym(grad(u)), where the
function grad represents the symbolic gradient of a field,
and sym represents the symmetrization of a rank-2 tensor.

4.1 Advective transport

The icepack package offers two time-stepping schemes for
solving the prognostic model (Eq. 1). For testing purposes,
we include the implicit Euler scheme, which is first-order ac-
curate and unconditionally stable for the advection equation.
The default is a second-order accurate scheme based on an
implicit version of the Lax–Wendroff method, which is also
unconditionally stable for the advection equation (Donea and
Huerta, 2003). Explicit schemes all require a time step that
satisfies the Courant–Friedrichs–Lewy (CFL) stability condi-
tion, which many glaciologists may be unfamiliar with. With
an unconditionally stable scheme, users will get an answer,
rather than a runtime error, should they try to use a larger
time step. The extra computational cost of using an implicit
time discretization for the prognostic equation is dwarfed by
the cost of the diagnostic solve. Advanced users who are in-
terested in maximizing performance can subclass the solver
to implement a faster explicit scheme. We note that, while
the stability properties of different schemes for the linear ad-
vection equation guided our choice of method, the coupled
system for both thickness and velocity is not linear and not
hyperbolic.

The implicit Euler and Lax–Wendroff schemes tend to dif-
fuse out sharp discontinuities that may be present in the true
solution (Donea and Huerta, 2003). As the ice thickness does
not possess shock waves or propagating discontinuities, this

error mode is tolerable. The coupling of ice thickness to
velocity makes the whole system more closely resemble a
parabolic problem than a hyperbolic one, and under the shal-
low ice approximation, the system is truly parabolic.

Other problems in glaciology have more of a hyperbolic
character. For example, the thresholding behavior of the
source terms for the damage model (see Sect. 2.6) can cre-
ate sharp discontinuities. The implicit Euler scheme would
obscure this important feature. For the damage solver, we
have instead used a strong stability-preserving Runge–Kutta
method in time, a discontinuous Galerkin basis in space, and
a flux limiter to best capture these sharp interfaces (Shu and
Osher, 1988).

The icepack package currently lacks an adaptive time-
stepping scheme. Implicit schemes allow for longer time
steps to be taken than explicit ones, but taking very long time
steps will give inaccurate solutions and, in the presence of ab-
lation, may yield negative thickness values. At present, users
are still responsible for checking the accuracy of their results
– for example, by running at more than one resolution. Adap-
tive time-stepping will be added in a future release.

4.2 Convex optimization

The action functional for each diagnostic model is convex
(i.e., the second derivative is strictly positive-definite). From
a theoretical perspective, convexity guarantees that the prob-
lem has a unique solution. This property is also especially
advantageous for implementing numerical solvers. We use a
damped Newton method to solve the diagnostic equations.
Starting from a guess uk for the velocity, the search direction
vk is the unique solution of the linear system

d2J (uk) · vk = −dJ (uk). (35)

The next approximation for the velocity minimizes J along
the search direction vk starting from uk , i.e.,

uk+1 = uk +αk · vk,

αk = argminα J (uk +αvk). (36)

For an initial guess sufficiently close to the exact solution, the
undamped Newton method (αk = 1 at every step) converges
quadratically. The line search step ensures that the method
can converge even from a poor initial guess, provided that the
line search method satisfies the Armijo–Wolfe criteria (No-
cedal and Wright, 2006).

For a convex problem, d2J is a symmetric and positive-
definite matrix. This has two advantages. First, the search
direction is always a descent direction for J , which is not
always the case for non-convex problems. Second, symme-
try and positivity enable the use of specialized linear solvers,
such as the Cholesky decomposition or the conjugate gradi-
ent algorithm, that are superior to their more general coun-
terparts in many respects.

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4603

Other software packages that treat diagnostic models as
nonlinear systems of equations tend to rely on ad hoc pro-
cedures for initializing the numerical solution process. For
example, without a damping procedure in Newton’s method,
the iteration can prove unstable if initialized far away from
the true solution. Some packages combat this problem by
using a few iterations of the more robust but slower Picard
method first (Gagliardini et al., 2013). While this approach
can be effective, it requires the number of Picard iterations to
be tuned. There is no guarantee that an adequate amount for
one problem will work well on another. This issue rarely ap-
pears on realistic input data, but when solving inverse prob-
lems, the intermediate guesses for the inferred field can be
wildly unrealistic before converging. A forward model solver
that is not sufficiently robust can crash in these extreme sce-
narios. By contrast, a damped Newton procedure using a line
search that satisfies the Armijo–Wolfe criteria is guaranteed
to converge on nondegenerate, if unrealistic, input data. The
line search method that we used here is one way to achieve
global convergence of Newton’s method, but there are other
approaches to achieve global convergence – for example, ho-
motopy continuation (Tezaur et al., 2015) or the trust region
method (Bellavia and Berrone, 2007).

4.3 Convergence metrics

Several works in the literature have weighed the relative mer-
its of different iterative methods for solving the nonlinear di-
agnostic equation (Perego et al., 2012). Few have considered
the problem of when to stop iterating. The most common
stopping criteria are when (1) the 2-norm of the residual is
sufficiently small or (2) the relative change in the iterates is
sufficiently small. Each of these approaches has problems.
The residual norm depends on the discretization and does
not weight all degrees of freedom proportionally (e.g., vertex
and edge degrees of freedom in higher-order finite element
methods). The relative change criterion, on the other hand,
can suggest convergence when, in fact, the method has stag-
nated.

We can devise a convergence criterion that works equally
well, independently of the discretization and the quality
of the initial guess, based on the Newton decrement (No-
cedal and Wright, 2006). As the second derivative operator
d2J (uk) is positive-definite, the Newton search direction vk

computed from Eq. (35) is a descent direction for J :

dJ (uk) · vk < 0. (37)

The absolute value of the quantity in the last equation is de-
fined as the Newton decrement. For uk sufficiently close to
the true solution u, the Newton decrement roughly tells us
how much we can expect the action to decrease:

J (uk)− J (u)≈
1

2
|dJ (uk) · vk| . (38)

We can then use the Newton decrement to decide when to
stop the iteration, as described below.

As shown in Eq. (4), the action for most models has units
of power and is the sum of dissipation due to viscosity, fric-
tion, gravitational driving, and ocean back-pressure at the
terminus. The viscous and frictional terms are convex, posi-
tive functions of the velocity. The gravitational and terminus
stress terms are linear in the velocity and can be of either
sign. If we define the scale functional

K(u)= viscous dissipation + frictional dissipation (39)

as only the positive parts of the action, the convergence cri-
terion

|dJ (uk) · vk|< ǫK(uk) (40)

is then independent of the discretization. The intuition behind
this criterion is that the iteration is halted when the expected
decrease in the action functional is much smaller than the
positive part of the action itself.

We have found empirically that, with this criterion and the
Newton solver implementation in icepack, the iteration usu-
ally converges to machine precision in around eight steps.
The iteration count can reach as high as 20 for exceptionally
bad initial guesses for the velocity or with unphysical fluidity
or friction values. We also observe the expected doubling of
the number of accurate digits in the value of the action once
the velocity guesses are within the convergence basin of the
true solution. Other convergence criteria, such as using rel-
ative change in the velocity guesses, can terminate prema-
turely when the initial guess is very far outside the quadratic
convergence basin.

The numerical solvers in icepack have been designed so
that users who are not familiar with numerical optimization
need not be confronted with a possibly bewildering array of
algorithmic parameters. Consequently, sensible defaults have
been chosen for the Armijo and Wolfe criteria (Nocedal and
Wright, 2006), and the tolerance for the line search is cho-
sen based on that of the outer-level Newton iteration. The
Newton search direction is calculated using a direct factor-
ization solver rather than, say, the conjugate gradient algo-
rithm, as the use of another iterative method would introduce
yet another algorithmic parameter. Advanced users who are
interested in performance optimization can change these al-
gorithmic parameters by passing extra arguments to the solve
procedure.

4.4 Inverse solvers

The InverseProblem class describes what problem is be-
ing solved, whereas the InverseSolver class is respon-
sible for carrying out the numerical optimization. There are
three inverse solvers in icepack: a simple gradient descent
solver, a quasi-Newton solver based on the BFGS approxi-
mation to the Hessian, and a Gauss–Newton solver. All of
these classes are based around the general idea of first com-
puting a search direction and then performing a line search.
They differ in how the search direction is computed.

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4604 D. R. Shapero et al.: icepack

The gradient descent solver uses the search direction

φk = −M−1dJ (θk), (41)

where M is the finite element mass matrix. Gradient descent
is a popular choice because the objective functional is always
decreasing along this search direction. However, the search
direction can be poorly scaled to the physical dimensions of
the problem at hand. This method can be very expensive and
brittle in the initial iterations and often takes many steps to
converge.

The BFGS method uses the past m iterations of the algo-
rithm to compute a low-rank approximation to the inverse of
the objective functional’s Hessian matrix (see Nocedal and
Wright, 2006, for a more in-depth discussion). The BFGS
method converges faster than gradient descent. However, it
suffers from many of the same brittleness issues in the initial
iterations before it has built up enough history to approxi-
mate the Hessian inverse.

Finally, the Gauss–Newton solver defines an approxima-
tion to the “first-order” part of the objective functional Hes-
sian (Pratt et al., 1998; Habermann et al., 2012). Each itera-
tion of Gauss–Newton is more expensive than that of BFGS
or gradient descent because it requires the solution of a more
complex linear system than just the mass matrix. The Gauss–
Newton method converges fastest by far in virtually every
test case we have found, in some instances by up to factor of
50.

The derivative of the objective functional with respect
to the unknown parameter is calculated using the adjoint
method and the symbolic differentiation features of Fire-
drake. The user does not need to provide any routines for the
derivatives, only the symbolic form of the error metric and
the regularization functional. The model object is responsi-
ble for providing the symbolic form of the action functional.

4.5 Hybrid model

The hybrid flow model uses several features that are avail-
able in Firedrake to better exploit the special structure of the
problem. Implementing this model also required some math-
ematical sleight of hand related to the terminus boundary
condition that has not appeared in the literature before. Addi-
tionally, the hierarchical structure of spectral basis functions
presents an opportunity for developing fast algorithms. In all
other respects, the implementation of the hybrid flow model
using convex optimization follows the techniques described
above.

4.5.1 Discretization

In order to use terrain-following coordinates, the hybrid
model assumes that the geometry of the domain is an ex-
truded mesh, where a 2D footprint mesh is lifted into 3D.
Firedrake includes support for creating extruded meshes by
calling the function ExtrudedMesh on the 2D footprint

(Bercea et al., 2016; McRae et al., 2016). The cells of an ex-
truded mesh are triangular prisms instead of the more com-
mon tetrahedra used for general 3D meshes. Not every 3D
domain can be described by extruding a 2D domain, but the
geometry of most glacier flow problems can.

The geometric correction factor in Eq. (19) for gradients
in terrain-following coordinates can easily be represented in
UFL. By defining a wrapper around the UFL grad function,
the code to define the action functional in terrain-following
coordinates is only slightly more complex than in Cartesian
coordinates.

For problems defined on extruded geometries, Firedrake
includes support for tensor product elements, which includes
using different bases in the horizontal and vertical direc-
tions (McRae et al., 2016). Tensor product elements are de-
fined in Firedrake by passing the extra keyword arguments
vfamily, vdegree to the constructor for a function space.
In our case, we used the usual continuous Galerkin basis
in the horizontal and Gauss–Legendre elements in the verti-
cal. To select the Legendre polynomial basis, the user passes
the keyword argument vfamily=‘Gauss-Legendre'
or ‘GL' for short to the constructor for the function space.

Extruded meshes and tensor product elements are avail-
able in Firedrake but not in FEniCS. Other general-purpose
finite element modeling packages that support tensor product
elements include deal.II and nektar++ (Bangerth et al., 2007;
Cantwell et al., 2015). Like most other packages in this do-
main, deal.II and nektar++ are written in C++, whereas our
goal for icepack was to have both the core and the user inter-
face in Python.

4.5.2 Ocean boundary condition

Our approach for implementing a hybrid flow model works
completely seamlessly except for one important detail. The
back-pressure from ocean water at the calving front of a
marine-terminating glacier is not a smooth function of depth.
The pressure is zero above the water line and linearly increas-
ing below it:

back-pressure power =

∫

Ŵ

1
∫

0

ρWgh(ζsl − ζ)+u · ν dζ dγ,

(42)

where ζsl denotes the relative depth to the water line, and the
subscript + denotes the positive part of a real number. Were
we to use the standard assembly procedure in Firedrake to
evaluate this integral, we would get an inaccurate result due
to an insufficient number of integration points. The resulting
velocity solutions are then wildly inaccurate due to the mis-
specification of the Neumann boundary condition. A blunt
solution to this problem would be to pass an extra argument
to the Firedrake form compiler that specifies a much greater
integration accuracy in the vertical for this term. This fix re-

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4605

Figure 1. (a) The normalized ocean pressure (pw/ρWg) and Leg-
endre polynomial approximations of several degrees, and (b) the
residuals of the approximation. For this particular example, the wa-
terline is at ζ = 1/3, which would be representative of a glacier
grounded on a higher moraine. The moments of each of the residu-
als up to the approximation degree are all zero.

duces the errors in the velocities, but it does not eliminate
them completely, and it incurs a large computational cost.

We instead implemented a routine that symbolically cal-
culates the Legendre polynomial expansion of the function
(ζsl − ζ)+ with respect to the parameter ζsl using the pack-
age SymPy (Meurer et al., 2017). The symbolic variables
for ζ and ζsl used in the SymPy representation of the poly-
nomial expansion are then substituted for equivalent sym-
bolic variables in Firedrake/UFL using the SymPy object’s
subs method. The Legendre polynomial approximation to
this function only converges linearly as the number of co-
efficients is increased, as the function is continuous but not
smooth, and the approximation exhibits noticeable ringing
artifacts at a high degree. While the approximation itself
is not very accurate, the calculated value of the integral in
Eq. (42) is exact because of the orthogonality property of
Legendre polynomials. Stated another way, the residuals in
the approximation are large, but they integrate to zero when
multiplied by any Legendre polynomial up to the number of
vertical modes. An example of the pressure approximations
using linear, quadratic, and cubic Legendre polynomials are
shown in Fig. 1.

The exact symbolic integration approach is both faster
and more accurate than using a large number of quadrature
points. The same technique could be used to exactly calcu-
late the ocean back-pressure for any model, such as the full
Stokes equations, using terrain-following coordinates and a
Legendre polynomial expansion in the vertical.

4.6 Performance

The icepack package largely inherits the performance ca-
pabilities of the Firedrake package, for which we refer to
the benchmarks in Rathgeber et al. (2016). Firedrake is, in
turn, built on PETSc, which includes a rich suite of nonlinear
solvers and preconditioners that have been demonstrated to
scale up to hundreds of processors (Balay et al., 2019). Fire-
drake also includes special features for defining sophisticated
solvers and preconditioners that take advantage of problem-
specific structure (Kirby and Mitchell, 2018). The icepack
package exposes these tools through the interface of the flow
solver objects, so users can select any solver and precondi-
tioner from PETSc.

We have mainly developed icepack for process-scale stud-
ies of individual glaciers or drainage basins. For the demon-
strations presented below, nearly all simulations run in a mat-
ter of minutes to hours on a single core. We have used sparse
LU factorization to solve linear systems for many problem
instances in order to eliminate the linear solver as a possible
failure mode. Defaulting to a robust solution method is es-
pecially important for onboarding novice users who may not
be familiar with different iterative linear solvers and precon-
ditioners. Larger problems, such as continental-scale mod-
eling, will require solving the diagnostic equations using
the conjugate gradient method with an appropriate precon-
ditioner to achieve parallel scalability. The particular struc-
ture of the problems that we solve may be useful in choosing
a preconditioner. For example, a rudimentary preconditioner
for the hybrid model system could use the degree-0 model
as the coarse space in a multigrid-type approach. These opti-
mizations will be the subject of future work.

5 Demonstrations

The following demonstrations aim to show the capabilities
of icepack on both synthetic and real problems. The key fea-
tures of icepack that these demonstrations aim to highlight
are the variety of different physics models implemented and
the flexibility of the components of these physics models.

5.1 MISMIP+

As a first test case for icepack, we ran the first experiment
from the Marine Ice Sheet Model Intercomparison Project
version 3 (MISMIP+). The parameters and geometry for this
experiment can be found in Asay-Davis et al. (2016). The
MISMIP+ experiment has three phases. First, the model must
find a steady-state marine ice sheet with a fixed accumula-
tion rate and no submarine melting. Next, submarine melting
with a given depth-dependent parameterization is applied for
100 years. The increased melt thins the ice shelf and initi-
ates a retreat of the glacier grounding line. Finally, submarine
melting is turned off for at least 100 years, optionally longer.

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4606 D. R. Shapero et al.: icepack

The grounding line then readvances, although not as far as its
original position.

The original intercomparison project specified that partic-
ipants could use the Weertman sliding law (Eq. 28) as well
as two other sliding laws that transition to a more plastic rhe-
ology at high sliding speeds. The first alternative sliding law
consists of Weertman sliding until the stress reaches a criti-
cal value, at which point the constitutive relation transitions
to perfect plasticity. The second alternative is the Schoof slid-
ing law (Schoof, 2005):

τb = −
C|u|1/m · τc

(Cm|u| + τmc)
1/m

u

|u|
, (43)

where the critical stress τc is a certain specified fraction of the
water pressure in the subglacial hydrological system. Sliding
laws in icepack are not expressed directly, but rather as the
derivative of an action functional. To implement the Schoof
sliding law, we need to know the antiderivative of Eq. (43).
We found the antiderivative of this expression using a com-
puter algebra system, but the result includes hypergeometric
functions. The Unified Form Language has several transcen-
dental functions (sine, cosine, exponential, etc.), but it does
not currently support hypergeometric functions. Instead, we
implemented a sliding relation that exhibits the important
features of the Schoof law, i.e., it behaves like an m= 3
power law at low sliding speeds and m= ∞ at high sliding
speeds, but which is more tractable algebraically. Knowing
the critical stress τc and the friction coefficient C, which has
units of stress × speed −1/m, we can define a critical speed
uc as

uc = C−mτmc . (44)

The power dissipation density for the Schoof-type sliding
law that we use is

P = τc

{

(

u
1
m

+1
c + |u|

1
m

+1
)

m
m+1

− uc

}

. (45)

Figure 2 shows a comparison of the original Schoof sliding
law and the sliding law that arises as the derivative of the
functional in Eq. (45). The two have the same asymptotic
behavior when the speed is much smaller or much larger
than the critical speed; they differ in a relatively small range
around the critical speed. The relative difference in basal
shear stress between the two sliding laws is less than 10 %
throughout the entire range. Although Fig. 2 shows a com-
parison of both sliding laws with the same value of the crit-
ical speed, by using different values, the agreement between
our sliding law can be brought into much closer agreement
with the Schoof law. Finally, the Schoof law itself is phe-
nomenological. A different sliding law with the right asymp-
totic behavior is no more or less valid.

To change the sliding law, users only need to pass one
function or the other to the model object at initialization.

(See the “Code and data availability” section below for the
source code.) Users do not need to implement a subclass that
overrides some parent method. This approach would be id-
iomatic in C++, but it requires knowledge of object-oriented
programming that a nonexpert might lack.

Figure 3 shows the thickness and ice speed after spinning
up the MISMIP+ geometry and input data to steady state with
the sliding law described above. The spin-up used degree-1
basis functions for both thickness and velocity. To get a high-
resolution estimate for the steady state, the spin-up started
from a relatively coarse resolution to propagate out most of
the transient signal. Then the mesh was successively refined
and spun up again to propagate out the remaining high-wave-
number transients. This process was repeated three times.
The net result is that most of the spin-up is done at a relatively
low computational cost. Figure 4 shows the total ice mass
during the retreat and readvance phases of the experiment.
The initial response to turning on melting is very rapid but
then becomes roughly linear with time. When the high melt
is turned off at the 100-year mark, the ice readvances, but the
rate is much slower than the rate of decrease when melt was
on. This asymmetric response is typical and expected from
ice physics; the rates broadly agree with the reference results
computed with BISICLES in the original experimental spec-
ification (Asay-Davis et al., 2016).

We also ran the experimental setup to steady state using
the hybrid flow model with vertical basis functions up to de-
gree 2. This is the most minimal set of vertical basis functions
that can resolve plug flow and the stress boundary conditions
at the ice base and surface. The ratio of basal velocity to sur-
face velocity is shown in Fig. 5. The areas with the most sig-
nificant vertical deformation are at the inflow boundary and
where the troughs at the side walls are steepest. Otherwise,
the sliding ratio is above 0.8 throughout almost the entire do-
main.

Using variational principles to express all constitutive laws
is less flexible than specifying the sliding law directly, and
this is a distinct disadvantage. Nonetheless, we were able to
implement a sliding law that exhibits the important charac-
teristics of the Schoof sliding law. Asay-Davis et al. (2016)
also suggest using a sliding law that transitions sharply to ex-
act plasticity above the critical speed. Expressing this sliding
law in UFL requires a conditional in the velocity and is, thus,
no longer differentiable, causing the forward solver to crash.
The numerical advantages of using variational principles are
so great, however, that we view this trade-off as acceptable.

5.2 Synthetic ice sheet

As a demonstration of the shallow ice approximation model,
we ran an experiment inspired by Kessler et al. (2008). In
this work, the authors coupled an ice flow model to simple
models for bed erosion, calving, and glacial isostatic adjust-
ment (GIA) to investigate the formation of deep fjords that
are characteristic of coastlines on Baffin Island, Greenland,

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4607

Figure 2. The Weertman, Schoof, and modified Schoof sliding law of Eq. (45). The critical speed and shear stress are uc = 250 m yr−1 and
τc = 100 kPa.

Figure 3. The steady-state thickness and velocity of the MISMIP+
experimental setup with the modified Schoof sliding law of Eq. (45).

Figure 4. Total ice mass history during retreat (first 100 years) and
readvance (second 100 years) of the MISMIP+ experiment.

and British Columbia, among others. We emulated their do-
main and bedrock geometry – a plateau surrounded by a ridge
punctuated by four valleys – without also simulating erosion
or GIA.

Figure 6 shows the results of this computational experi-
ment. We initialized the experiment with a simple but un-
realistic ice thickness. We then evolved the ice sheet with-
out climate forcing for 500 years. The ice sheet relaxes very

Figure 5. Ratio of basal velocity to surface velocity in steady state
of the MISMIP+ scenario computed with the hybrid model.

Figure 6. Synthetic ice sheet simulation. (a) The bed elevation pro-
file consists of a ring of mountains with valleys of varying depth sur-
rounding a flat plateau where the ice sheet is initialized. The black
square outlines the domain of panel (b) which shows the velocity of
the ice as it passes through the southernmost mountain pass, with
contours of the bed elevation shown in greyscale.

rapidly in the first 200 years, but changes are much slower af-
ter this, as ice must be funneled through one of the four nar-
row valleys. The resulting velocity pattern is similar to that
of Kessler et al. (2008), with the highest velocities where ice
flows out from the valleys. In and upstream of the valleys,
the surface is drawn down due to the elevated export of ice.

The diagnostic model used in this demonstration is com-
putationally cheap enough that it can be used to simulate
ice sheets over several millennia in a matter of minutes on
a desktop. A key feature of icepack is the ability to choose
between many different diagnostic models. Users are free to
decide what model works best for the spatial and temporal

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4608 D. R. Shapero et al.: icepack

Figure 7. Results of ice shelf damage simulation: (a) ice velocity
without damage, (b) change in ice speed with and without damage,
(c) thickness, and (d) damage field.

scales of their problem, how accurately they need to solve
this problem to produce useful results, and what computa-
tional resources they are willing to devote.

5.3 Synthetic ice shelf

We simulated the evolution of a synthetic ice shelf towards
steady state and coupled it with the damage transport model
described in Sect. 2.6. The geometry of the ice shelf consists
of the intersection of two circles, one with a larger radius and
offset center, designed to roughly mimic the shape and size
of real ice shelves. The radius of the whole shelf is 200 km.
Four ice streams flow into the shelf with varying speeds and
a prescribed inflow thickness. In the first phase of the ex-
periment, the ice shelf is propagated to steady state without
damage for 200 years. After this time interval, the flux im-
balance is less than 1 % of the influx. In the second phase,
damage transport is turned on and coupled to the ice velocity.
An interesting feature to observe in the approximate equilib-
rium damage field is that the highest values occur between
the streams and not within them. Additionally, the spacing
between the streams changes as a result of adding damage.
The final ice thickness, velocity, strain rate, and damage are
shown in Fig. 7.

5.4 Larsen C Ice Shelf

To demonstrate the inverse solver, we will estimate the rhe-
ology of the Larsen C Ice Shelf in the Antarctic Peninsula
from observational data. Several recent studies have focused
on Larsen C because it may be unstable in the warmer cli-
mate of the coming decades. From January to March of 2002,
the neighboring Larsen B Ice Shelf disintegrated due to sur-
face melt pond-induced fracture (Banwell et al., 2013). This
mechanism might also lead to the breakup of Larsen C in the
future. One of the key factors affecting the stability of ice
shelves is the presence of marine ice – seawater that freezes
onto the base of an ice shelf – in the suture zones where two

flow units meet (Kulessa et al., 2014). Marine ice is warmer
than meteoric ice and usually includes brine pockets, which
are discernible in radio echo sounding measurements as the
absence of reflection from the ice shelf base (Holland et al.,
2009). This warmer and impurity-laden ice is more ductile
and, thus, should be less prone to fracture than cold and brit-
tle meteoric ice. Ocean models predict that marine ice forms
under Larsen C as well (Holland et al., 2009). By estimating
the material rigidity of an ice shelf, we can constrain where
marine ice may be forming.

5.4.1 Data

We used the interferometric synthetic aperture radar (InSAR)
phase-based ice velocity map from Mouginot et al. (2019).
This dataset has nominal errors over the Larsen Ice Shelf on
the order of 1–7 m yr−1. We used the recently released Bed-
Machine map of the thickness of Antarctica, which takes ad-
vantage of newly available remote sensing data (Morlighem
et al., 2019).

Existing work on glaciological inverse problems uses the
mismatch between the computed and observed velocity fields
as part of the objective functional. The effect of thick-
ness errors is studied largely through a posteriori validation
(Joughin et al., 2004; Larour et al., 2005). Errors in thickness
or surface slope can be large enough that it might be impos-
sible to fit the velocity measurements to the degree that sta-
tistical theory predicts (MacAyeal et al., 1995). The velocity
measurements themselves might have significant outliers, in
which case using the usual weighted sum of squared misfits
as an error metric will give poor results. For these reasons,
some studies have explored alternative objective functionals
(Morlighem et al., 2010). We have opted to use the regular-
ized L1-type error metric

J (u)=

∫

�





√

|u − u
o|2

σ 2
+ γ 2 − γ



dx. (46)

This error metric approaches the usual weighted sum of
squared errors as γ → ∞, and it approaches the sparsity-
promoting L1 error metric as γ → 0. For finite, positive val-
ues of γ , this error metric is robust to non-normality or a
small fraction of outliers (Barron, 2019).

5.4.2 Parameterization

The rheology parameter of an ice shelf is strictly positive.
The optimization algorithm, however, can explore unphysical
regions of parameter space without some a priori constraints.
Rather than try to solve an inequality-constrained problem,
most studies in glaciology instead reparameterize the prob-
lem in terms of some auxiliary field in such a way that the
rheology is manifestly positive. In this case we use the pa-
rameterization

A= A0e
θ (47)

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4609

Figure 8. (a) Inferred fluidity parameter θ : higher values indicate
more deformable ice. (b) Stream plot of ice velocity computed from
this fluidity parameter. The background image is the MODIS Mo-
saic of Antarctica (Scambos et al., 2007; Haran et al., 2014), cour-
tesy of the NASA National Snow and Ice Data Center (NSIDC)
Distributed Active Archive Center (DAAC).

and estimate θ . The inverse solver calculates the derivative
of the objective functional symbolically and is, thus, agnostic
to the particular parameterization. The only information that
the user needs to pass is the name of the arguments to the
forward model representing the parameter and the observed
field so that these can be passed by keyword.

5.4.3 Results

The inferred parameter field θ is shown in Fig. 8. The algo-
rithm detects areas of much lower ice rigidity around highly
damaged ice. This feature is especially apparent around the
large rift emanating from the Gipps Ice Rise, as well as the
crevassed areas upstream. We find other areas of low rigidity
in the suture zones where two flow units converge and where
marine ice tends to form, releasing heat to the ice shelf, ex-
actly as observed in Holland et al. (2009). Finally, the in-
ferred rheology field reproduces features that have already
been found in previous studies of the Larsen C Ice Shelf
(Khazendar et al., 2011).

The final value of the model–data misfit from Eq. (46)
matches the value that we would expect if the velocity errors
actually came from this probability distribution. In a separate
computational experiment, we used the older Bedmap2 ice
thickness (Fretwell et al., 2013). We were unable to achieve
the same model–data misfit using Bedmap2 at the same grid
resolution with any regularization parameter.

6 Usability

One of the main goals for icepack is to create a tool that is
accessible to researchers who might not be experts in sci-
entific computing. Previous work on numerical modeling of
glacier flow has focused largely on the technical details of
the models themselves and has aimed to answer questions
such as the following: does a given solver converge with the
accuracy expected from finite element theory? Does it scale
to large numbers of processors? Can models accurately pre-

dict grounding line retreat? For graduate students or other
researchers who are not experts in computational physics,
the difficulty of learning to use a particular software pack-
age may be more of a rate-limiting factor than the speed or
efficiency of that software.

The field of human–computer interaction (HCI) asks how
we can design software that is easier to learn and use ef-
fectively. In the following, we will describe some of the de-
sign choices in icepack and how they relate to what HCI re-
searchers call the “cognitive dimensions of notations”. Green
and Petre (1996) introduced this concept to assess the usabil-
ity of visual programming languages, but the criteria they
laid out in their study have been used to analyze software
systems across many disciplines.

6.1 Consistency: after a user learns part of the

software, can they guess the remaining parts?

Each of the model objects in icepack is a class with a method
ending in solve that takes in keyword arguments for the
various input fields and options for things like boundary con-
ditions. Users already familiar with, say, the IceStream

class can then use the HeatTransport class under the as-
sumption that the input fields – the current temperature T ,
ice velocity u, and basal melt rate m – are passed as key-
word arguments with the same name as the fields themselves.
Consistency obviates the need to repeatedly consult the doc-
umentation or examples once users are already familiar with
the software.

6.2 Progressive evaluation: how easily can users get

feedback during their use of the software?

Progressive evaluation is the main advantage of having a user
interface in an interpreted programming language such as
Python as opposed to a compiled language where programs
can only run in batch mode. In the early stages of the de-
velopment process, any nontrivial simulation of a physical
system exists as a prototype which may be nonfunctional or
even broken. The ability to manually step through a simula-
tion and examine the entire state in an interpreter is critical
to finding errors faster. The icepack package was designed to
give fine-grained control over how simulations work in order
to support this mode of debugging. The application program-
ming interface (API) provides routines for solving the diag-
nostic and prognostic equations. It is the user’s responsibility
to make the repeated calls to these routines, either in a loop or
by manually iterating through one step at a time. With this re-
sponsibility comes the freedom to add in arbitrary code. This
capability might be used to add sanity checks, such as print-
ing minimum and maximum thickness or velocity values. It
can also be used to get feedback on how long the simula-
tion will take or to save results for later visualization. Other
packages support a more coarse-grained view where the user
only specifies the start and end time of a simulation and has

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4610 D. R. Shapero et al.: icepack

more limited options for inspecting the state of the running
program.

The icepack package makes extensive use of Jupyter note-
books as a form of executable documentation. Jupyter note-
books are a document format that includes code and explana-
tory text with typeset mathematics that runs interactively in
a web browser (Kluyver et al., 2016). The contents of a note-
book can be executed incrementally much like running code
in the Python interpreter. Most importantly, Jupyter note-
books can render and display visualizations on the fly. This
enables a workflow where plotting all intermediate results
serves for sanity-checking an experimental simulation.

Simulations that have been debugged can then easily be
transformed into a single Python script, for example, using
the tool nbconvert, for production runs and parallel exe-
cution. In other words, while there is an interactive interface,
there is also a faster batch mode interface.

6.3 Abstraction gradient: what are the levels of

abstraction exposed by the library? Can irrelevant

details be hidden?

The API for icepack has been designed so that the users only
need to decide what problem to solve and not how to solve it.
Where a choice does concern the how more than the what, we
use a sensible default that biases for correctness rather than
speed. For example, the Newton solver uses a direct factor-
ization method to solve the linear system for the search direc-
tion because factorization requires no tuning whereas itera-
tive methods do. A user interested in achieving greater run-
time performance can pass additional keyword arguments in-
stead specifying, say, the preconditioned conjugate gradient
method. This choice is of interest mostly to advanced users,
so we keep the linear solver algorithm as a default argument.
In so doing, we avoid confronting novice users with options
that they might not understand.

Advanced users who do wish to tune solver performance
for large simulations will need some way to make choices
about algorithms. For example, one might choose the gener-
alized minimum residual (GMRES) iterative solver together
with an incomplete LU preconditioner to solve linear sys-
tems. The solver classes, as opposed to the model classes,
provide the interface for making these choices. While alter-
native solvers might offer faster runtime performance than
direct factorization, they also require additional choices to
be made – for example, how often to restart GMRES, or how
much fill-in to allow in the incomplete factorization. Many
glaciologists do not have the background in numerical linear
algebra to know that adjusting these parameters could make
the difference between solver convergence or breakdown. As
another example, users might want to select between differ-
ent discretization strategies for the Stokes equations. The dis-
cretization of the Stokes equations has to be chosen care-
fully in order to satisfy the Ladyzhenskaya–Babuška–Brezzi
(LBB) conditions (Boffi et al., 2013). When using Galerkin

least squares stabilization of the weak form, the user has to
pick a value of the stabilization parameter. Determining ex-
actly what value of this parameter is necessary to guarantee
stability is a subtle problem, even more so for the kinds of
highly anisotropic meshes that are commonly encountered
in 3D glacier flow modeling. If the solver fails to converge, it
might not be obvious, even to an expert, whether the problem
lies with the stabilization or the aforementioned parameters
of the linear solver.

7 Conclusions

We have presented a new software package called icepack
for modeling the flow of glaciers and ice sheets. This pack-
age advances the state of the art in this field by providing
a platform for easily experimenting with the model physics.
In this paper, we have presented three demonstrations of this
feature:

1. coupling a model of ice shelf flow to a phenomenologi-
cal model of damage,

2. changing the sliding law in a simulation of a marine-
terminating glacier, and

3. inferring the fluidity of a floating ice shelf in a way that
guarantees positivity.

The physics of how glaciers interact with their environment
are not completely understood. Consequently, the ability to
change components of the model is an essential feature for
any tool aimed at researchers in this field.

We have also paid special attention to how we can design
this software package to be most usable for its intended au-
dience. Relatively few works in the computational science
literature draw directly from relevant work in HCI when dis-
cussing usability (see, e.g., Hannay et al., 2009; Harris et al.,
2020). We believe that this is due to two difficulties: first, the
degree to which usability is a rate-limiting factor for scien-
tists is hard to quantify and likely differs widely across disci-
plines; second, concretely assessing what features make soft-
ware tools more or less usable is highly subjective. By con-
trast, measuring computational performance is much more
feasible, although still fraught with difficulties of its own.
(This is not to say that performance optimization is easy by
any means.) In working with several graduate students and
postdoctoral researchers in glaciology, we have observed that
usability is a substantial bottleneck for researchers at these
career stages. For this reason, we have chosen to focus ex-
plicitly on usability by drawing on the research literature in
HCI. Exactly how to apply principles from HCI to maximize
usability is, nonetheless, not an exact science. Our imple-
mentation may have failed to meet this goal, and changes
in future versions will be guided by what users find most dif-
ficult. Finally, we argue that the same design features that

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4611

enhance usability for relative novices to the subject area will
also enhance the productivity of expert users.

This paper has presented several physics models currently
implemented in icepack along with demonstrations. Future
developments will include

1. an implementation of full Stokes flow,

2. improved physics formulations and solvers that work in
ice-free areas, and

3. adaptivity in time and space.

New features will be guided by feedback from icepack users
and from the glaciological community at large. By provid-
ing implementations of several glacier flow models from less
to more complex and by enabling users to experiment with
the physics, this tool both lowers the barrier to entry for
novices to numerical modeling and provides a pathway for
these users to progress towards ever more sophisticated and
advanced simulations.

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4612 D. R. Shapero et al.: icepack

Appendix A

Table A1. Mathematical symbols.

Symbol Meaning

h Thickness
b Bed elevation
s Surface elevation
d Water depth
u Velocity
ȧs Surface mass balance
ȧb Basal mass balance

ε̇ Strain rate, 1
2 (∇u+ ∇u⊤)

C Bed friction coefficient
A Rheology coefficient
E Enthalpy density
ν Unit outward normal
J Action functional
� Spatial domain
Ŵ Calving terminus

Table A2. Physical constants.

Symbol Meaning

n Glen’s flow law exponent
m Weertman sliding law exponent
ρI Ice density
ρW Seawater density
c Specific heat capacity of ice
L Latent heat of melting of ice
g Gravitational acceleration

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4613

Code and data availability. All code used in this repository is free
and open source, and all data sets used in the demonstrations
are publicly available. The icepack source repository and regres-
sion testing results are available from https://github.com/icepack/
icepack (last access: 28 May 2021). The icepack package is released
under the GPLv3 license. The Git commit hash of the version of
the code used for this publication is b78b0ee5 (see also the Zen-
odo release at https://doi.org/10.5281/zenodo.1205640; Shapero et
al., 2020). The icepack documentation, user manual, and contribu-
tion guidelines are hosted at https://icepack.github.io (last access:
28 May 2021).

The source code for the demonstrations used in this paper
is hosted at https://doi.org/10.5281/zenodo.5063264 (Shapero and
Badgeley, 2021), commit hash 4db3dc28. The demonstrations used
glacier outlines that were hand-digitized from satellite imagery in
order to generate the model domains. These outlines are kept in ver-
sion control and hosted at https://doi.org/10.5281/zenodo.5063248
(Shapero et al., 2021), and the Git commit hash for the version used
in this publication is c98a8b75. The BedMachine thickness map
(Morlighem, 2020, https://doi.org/10.5067/E1QL9HFQ7A8M) and
the MEaSUREs InSAR phase-based velocity map (Mouginot et al.,
2019, https://doi.org/10.5067/PZ3NJ5RXRH10) are hosted at the
US National Snow and Ice Data Center.

Author contributions. DS designed and implemented icepack with
contributions from JB and AH. IJ tested the model and assisted with
design and debugging. All authors contributed to the demonstration
codes and to writing this paper.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We would like to thank the Firedrake develop-
ment team for their support and for many helpful discussions.

Financial support. This research has been supported by the
National Aeronautics and Space Administration (grant nos.
80NSSC20K0954 and 80NSSC20K1627) and the National Science
Foundation (grant nos. 1835321 and 1643285).

Review statement. This paper was edited by Alexander Robel and
reviewed by Douglas Brinkerhoff, Ed Bueler, and one anonymous
referee.

References

Albrecht, T. and Levermann, A.: Fracture-induced softening
for large-scale ice dynamics, The Cryosphere, 8, 587–605,
https://doi.org/10.5194/tc-8-587-2014, 2014.

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells,
G. N.: Unified form language: A domain-specific language for
weak formulations of partial differential equations, ACM T.
Math. Software, 40, 1–37, 2014.

Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B.
K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Hol-
land, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot,
P., Pattyn, F., and Seroussi, H.: Experimental design for three
interrelated marine ice sheet and ocean model intercomparison
projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +)
and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–
2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016.

Ascher, U. M. and Petzold, L. R.: Computer methods for ordinary
differential equations and differential-algebraic equations, Soci-
ety for Industrial and Applied Mathematics, 314 pp., 1998.

Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An en-
thalpy formulation for glaciers and ice sheets, J. Glaciol., 58,
441–457, 2012.

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp,
W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., Curfman
McInnes, L., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith,
B., Zampini, S., Zhang, H., and Zhang, H.: PETSc users manual,
U.S. Department of Energy, 2019.

Bangerth, W., Hartmann, R., and Kanschat, G.: deal.II — a general-
purpose object-oriented finite element library, ACM T. Math.
Software, 33, 24–es, https://doi.org/10.1145/1268776.1268779,
2007.

Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of
the Larsen B Ice Shelf triggered by chain reaction drainage of
supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, 2013.

Barron, J. T.: A general and adaptive robust loss function, in: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), IEEE, Long Beach, CA, USA, 15–20 June 2019,
4326–4334, 2019.

Bassis, J. N.: Hamilton-type principles applied to ice-sheet dy-
namics: new approximations for large-scale ice-sheet flow, J.
Glaciol., 56, 497–513, 2010.

Bellavia, S. and Berrone, S.: Globalization strategies for Newton–
Krylov methods for stabilized FEM discretization of Navier–
Stokes equations, J. Comput. Phys., 226, 2317–2340, 2007.

Bercea, G.-T., McRae, A. T., Ham, D. A., Mitchell, L., Rathgeber,
F., Nardi, L., Luporini, F., and Kelly, P. H.: A structure-exploiting
numbering algorithm for finite elements on extruded meshes,
and its performance evaluation in Firedrake, arXiv [preprint],
arXiv:1604.0593, 2016.

Blatter, H.: Velocity and stress fields in grounded glaciers: a simple
algorithm for including deviatoric stress gradients, J. Glaciol.,
41, 333–344, 1995.

Boffi, D., Brezzi, F., and Fortin, M.: Mixed finite element methods
and applications, vol. 44, Springer, https://doi.org/10.1007/978-
3-642-36519-5, 2013.

Böðvarsson, G.: On the flow of ice-sheet and glaciers, Jökull, 5,
1–8, 1955.

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4614 D. R. Shapero et al.: icepack

Brinkerhoff, D. and Johnson, J.: Dynamics of thermally induced ice
streams simulated with a higher-order flow model, J. Geophys.
Res.-Earth Surf., 120, 1743–1770, 2015.

Brinkerhoff, D. J. and Johnson, J. V.: Data assimilation and prog-
nostic whole ice sheet modelling with the variationally derived,
higher order, open source, and fully parallel ice sheet model Var-
GlaS, The Cryosphere, 7, 1161–1184, https://doi.org/10.5194/tc-
7-1161-2013, 2013.

Budd, W. F., Keage, P. L., and Blundy, N.: Empirical studies of ice
sliding, J. Glaciol., 23, 157–170, 1979.

Bueler, E.: An exact solution for a steady, flowline marine ice sheet,
J. Glaciol., 60, 1117–1125, 2014.

Bueler, E.: PETSc for Partial Differential Equations: Numeri-
cal Solutions in C and Python, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 406 pp.,
https://doi.org/10.1137/1.9781611976311, 2020.

Cantwell, C. D., Moxey, D., Comerford, A., Bolis, A., Rocco,
G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.-
E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson,
C., Nelson, B., Vos, P., Biotto, C., Kirby, R. M., and Sherwin,
S. J.: Nektar++: An open-source spectral/hp element framework,
Comput. Phys. Commun., 192, 205–219, 2015.

Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Aca-
demic Press, 704 pp., 2010.

De Groot, S. R. and Mazur, P.: Non-equilibrium thermodynamics,
Dover Publications, New York, 510 pp., 2013.

Donea, J. and Huerta, A.: Finite element methods for flow problems,
John Wiley & Sons, https://doi.org/10.1002/0470013826, 2003.

Dukowicz, J. K., Price, S. F., and Lipscomb, W. H.: Consistent ap-
proximations and boundary conditions for ice-sheet dynamics
from a principle of least action, J. Glaciol., 56, 480–496, 2010.

Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Bar-
rand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blanken-
ship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H.,
Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferracci-
oli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs,
J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel,
R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler,
J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov,
G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot,
J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot,
E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert,
M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B.,
Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin,
C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and
thickness datasets for Antarctica, The Cryosphere, 7, 375–393,
https://doi.org/10.5194/tc-7-375-2013, 2013.

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier,
L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback,
P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H.,
and Thies, J.: Capabilities and performance of Elmer/Ice, a new-
generation ice sheet model, Geosci. Model Dev., 6, 1299–1318,
https://doi.org/10.5194/gmd-6-1299-2013, 2013.

Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Zwinger, T., and
Ruokolainen, J.: Flow-induced anisotropy in polar ice and re-
lated ice-sheet flow modelling, J. Non-Newton. Fluid, 134, 33–
43, 2006.

Green, T. R. G. and Petre, M.: Usability analysis of visual program-
ming environments: a “cognitive dimensions” framework, J. Vi-
sual Lang. Comput., 7, 131–174, 1996.

Greve, R. and Blatter, H.: Dynamics of ice sheets and glaciers,
Springer Science & Business Media, 2009.

Habermann, M., Maxwell, D., and Truffer, M.: Reconstruction of
basal properties in ice sheets using iterative inverse methods, J.
Glaciol., 58, 795–808, 2012.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P.,
Pfahl, D., and Wilson, G.: How do scientists develop
and use scientific software?, in: 2009 ICSE Workshop on
Software Engineering for Computational Science and Engi-
neering, IEEE, Vancouver, BC, Canada, 23–23 May 2009,
https://doi.org/10.1109/SECSE.2009.5069155, 2009.

Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock,
M.: MODIS Mosaic of Antarctica 2008–2009 (MOA2009) im-
age map, Boulder, Colorado USA, National Snow and Ice Data
Center, https://doi.org/10.7265/N5KP8037, 2014.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett,
M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,
Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming
with NumPy, Nature, 585, 357–362, 2020.

Holland, P. R., Corr, H. F., Vaughan, D. G., Jenkins, A., and
Skvarca, P.: Marine ice in Larsen ice shelf, Geophys. Res. Lett.,
36, L11604, https://doi.org/10.1029/2009GL038162, 2009.

Hück, A., Bischof, C., Sagebaum, M., Gauger, N. R., Jurgelucks,
B., Larour, E., and Perez, G.: A usability case study of algorith-
mic differentiation tools on the ISSM ice sheet model, Optim.
Method. Softw., 33, 844–867, 2018.

Hutter, K.: The effect of longitudinal strain on the shear stress of an
ice sheet: in defence of using stretched coordinates, J. Glaciol.,
27, 39–56, 1981.

Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic
reconstructions of the Greenland and Antarctic ice sheets during
the glacial cycles, Quatern. Sci. Rev., 21, 203–231, 2002.

Joughin, I., MacAyeal, D. R., and Tulaczyk, S.: Basal shear
stress of the Ross ice streams from control method
inversions, J. Geophys. Res.-Sol. Ea., 109, B09405,
https://doi.org/10.1029/2003JB002960, 2004.

Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt,
J. W., Scambos, T., and Vaughan, D. G.: Basal conditions for
Pine Island and Thwaites Glaciers, West Antarctica, determined
using satellite and airborne data, J. Glaciol., 55, 245–257, 2009.

Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet col-
lapse potentially under way for the Thwaites Glacier Basin, West
Antarctica, Science, 344, 735–738, 2014.

Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb
friction laws for ice sheet sliding: application to Pine Island
Glacier, Antarctica, Geophys. Res. Lett., 46, 4764–4771, 2019.

Jouvet, G.: Multilayer shallow shelf approximation: Minimisation
formulation, finite element solvers and applications, J. Comput.
Phys., 287, 60–76, 2015.

Jouvet, G. and Bueler, E.: Steady, shallow ice sheets as obsta-
cle problems: well-posedness and finite element approximation,
SIAM J. Appl. Math., 72, 1292–1314, 2012.

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

D. R. Shapero et al.: icepack 4615

Kessler, M. A., Anderson, R. S., and Briner, J. P.: Fjord insertion
into continental margins driven by topographic steering of ice,
Nature Geoscience, 1, 365–369, 2008.

Khazendar, A., Rignot, E., and Larour, E.: Acceleration and spatial
rheology of Larsen C ice shelf, Antarctic Peninsula, Geophys.
Res. Lett., 38, L09502, https://doi.org/10.1029/2011GL046775,
2011.

Kirby, R. C. and Logg, A.: A compiler for variational forms, ACM
T. Math. Software, 32, 417–444, 2006.

Kirby, R. C. and Mitchell, L.: Solver composition across the
PDE/linear algebra barrier, SIAM J. Sci. Comput., 40, C76–C98,
2018.

Kirchner, N., Ahlkrona, J., Gowan, E. J., Lötstedt, P., Lea, J. M.,
Noormets, R., von Sydow, L., Dowdeswell, J. A., and Benham,
T.: Shallow ice approximation, second order shallow ice approx-
imation, and full Stokes models: A discussion of their roles in
palaeo-ice sheet modelling and development, Quat. Sci. Rev.,
147, 136–147, 2016.

Kleiner, T. and Humbert, A.: Numerical simulations of major ice
streams in western Dronning Maud Land, Antarctica, under wet
and dry basal conditions, J. Glaciol., 60, 215–232, 2014.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier,
M., Frederic, J., Kelley, K., Hamrick, J. B., Grout, J., Corlay, S.,
Ivanov, P., Avila, D., Abdalla, S., Willing, C., and Jupyter devel-
opment team: Jupyter Notebooks-a publishing format for repro-
ducible computational workflows, in: Positioning and Power in
Academic Publishing: Players, Agents and Agendas, IOS Press,
87–90, 2016.

Kulessa, B., Jansen, D., Luckman, A. J., King, E. C., and
Sammonds, P. R.: Marine ice regulates the future stabil-
ity of a large Antarctic ice shelf, Nat. Commun., 5, 3707,
https://doi.org/10.1038/ncomms4707, 2014.

Langdon, J. and Raymond, C. F.: Numerical calculation of adjust-
ment of a glacier surface to perturbations of ice thickness, Mater.
Glyatsiol. Issled. Khron. Obsuzhdeniya, 32, 233–239, 1978.

Larour, E., Rignot, E., Joughin, I., and Aubry, D.: Rheology of the
Ronne Ice Shelf, Antarctica, inferred from satellite radar inter-
ferometry data using an inverse control method, Geophys. Res.
Lett., 32, L05503, https://doi.org/10.1029/2004GL021693, 2005.

Logg, A., Mardal, K.-A., and Wells, G.: Automated solution of dif-
ferential equations by the finite element method: The FEniCS
book, vol. 84, Springer Science & Business Media, 2012.

MacAyeal, D. R.: Large-scale ice flow over a viscous basal sedi-
ment: Theory and application to ice stream B, Antarctica, J. Geo-
phys. Res.-Sol. Ea., 94, 4071–4087, 1989.

MacAyeal, D. R.: The basal stress distribution of Ice Stream E,
Antarctica, inferred by control methods, JJ. Geophys. Res.-Sol.
Ea., 97, 595–603, 1992.

MacAyeal, D. R., Bindschadler, R. A., and Scambos, T. A.: Basal
friction of ice stream E, West Antarctica, J. Glaciol., 41, 247–
262, 1995.

McRae, A. T., Bercea, G.-T., Mitchell, L., Ham, D. A., and Cotter,
C. J.: Automated generation and symbolic manipulation of ten-
sor product finite elements, SIAM J. Sci. Comput., 38, S25–S47,
2016.

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh,
S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P.,
Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa,

F., Curry, M. J., Terrel, A. R., Roučka, v., Saboo, A., Fer-
nando, I., Kulal, S., Cimrman, R., and Scopatz, A.: SymPy:
symbolic computing in Python, PeerJ Comput. Sci., 3, e103,
https://doi.org/10.7717/peerj-cs.103, 2017.

Mitusch, S. K., Funke, S. W., and Dokken, J. S.: dolfin-adjoint
2018.1: automated adjoints for FEniCS and Firedrake, J. Open
Source Softw., 4, 1292, 2019.

Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2
[data set], Boulder, Colorado USA, NASA National Snow
and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H.,
and Aubry, D.: Spatial patterns of basal drag inferred using con-
trol methods from a full-Stokes and simpler models for Pine Is-
land Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502,
https://doi.org/10.1029/2010GL043853, 2010.

Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R.,
Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P.,
Goel, V., Greenbaum, J. S., Gudmundsson, G. H., Guo, J., Helm,
V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N.
B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden,
J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H.,
Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van
Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of
the Antarctic ice sheet, Nat. Geosci., 13, 132–137, 2019.

Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSUREs
Phase-Based Antarctica Ice Velocity Map, Version 1 [data
set], Boulder, Colorado USA, NASA National Snow
and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/PZ3NJ5RXRH10, 2019.

Mouginot, J., Rignot, E., and Scheuchl, B.: Continent-wide, inter-
ferometric SAR phase, mapping of Antarctic ice velocity, Geo-
phys. Res. Lett., 46, 9710–9718, 2019.

Nick, F. M., Van der Veen, C. J., Vieli, A., and Benn, D. I.: A phys-
ically based calving model applied to marine outlet glaciers and
implications for the glacier dynamics, J. Glaciol., 56, 781–794,
2010.

Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-
Problemen bei Verwendung von Teilräumen, die keinen Randbe-
dingungen unterworfen sind, in: Abhandlungen aus dem mathe-
matischen Seminar der Universität Hamburg, Springer, 36, 9–15,
1971.

Nocedal, J. and Wright, S.: Numerical optimization, Springer Sci-
ence & Business Media, 2006.

Pattyn, F.: A new three-dimensional higher-order thermomechani-
cal ice sheet model: Basic sensitivity, ice stream development,
and ice flow across subglacial lakes, J. Geophys. Res.-Sol. Ea.,
108, 2382, https://doi.org/10.1029/2002JB002329, 2003.

Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O.,
Hindmarsh, R. C., Zwinger, T., Albrecht, T., Cornford, S., Doc-
quier, D., Fürst, J. J., Goldberg, D., Hilmar Gudmundsson, G.,
Humbert, A., Hütten, M., Huybrechts, P., Jouvet, G., Kleiner,
T., Larour, E., Martin, D., Morlighem, M., Payne, A. J., Pol-
lard, D., Rückamp, M., Rybak, O., Seroussi, H., Thoma, M., and
Wilkens, N.: Grounding-line migration in plan-view marine ice-
sheet models: results of the ice2sea MISMIP3d intercomparison,
J. Glaciol., 59, 410–422, 2013.

https://doi.org/10.5194/gmd-14-4593-2021 Geosci. Model Dev., 14, 4593–4616, 2021

4616 D. R. Shapero et al.: icepack

Perego, M., Gunzburger, M., and Burkardt, J.: Parallel finite-
element implementation for higher-order ice-sheet models, J.
Glaciol., 58, 76–88, 2012.

Phillips, T., Rajaram, H., and Steffen, K.: Cryo-hydrologic
warming: A potential mechanism for rapid thermal re-
sponse of ice sheets, Geophys. Res. Lett., 37, L20503,
https://doi.org/10.1029/2010GL044397, 2010.

Pratt, R. G., Shin, C., and Hick, G.: Gauss–Newton and full Newton
methods in frequency–space seismic waveform inversion, Geo-
phys. J. Int., 133, 341–362, 1998.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F.,
McRae, A. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H.:
Firedrake: automating the finite element method by composing
abstractions, ACM T. Math. Software, 43, 1–27, 2016.

Roache, P. J.: Code verification by the method of manufactured so-
lutions, J. Fluids Eng., 124, 4–10, 2002.

Scambos, T. A., Haran, T. M., Fahnestock, M., Painter, T., and Boh-
lander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets:
Continent-wide surface morphology and snow grain size, Re-
mote Sens. Environ., 111, 242–257, 2007.

Schoof, C.: The effect of cavitation on glacier sliding, P. Roy. Soc.
A-Math. Phy., 461, 609–627, 2005.

Schoof, C. and Hewitt, I.: Ice-sheet dynamics, Annu. Rev. Fluid
Mech., 45, 217–239, 2013.

Shapero, D. R., Joughin, I. R., Poinar, K., Morlighem, M., and
Gillet-Chaulet, F.: Basal resistance for three of the largest Green-
land outlet glaciers, J. Geophys. Res.-Earth Surf., 121, 168–180,
2016.

Shapero, D. and Badgeley, J.: icepack/icepack-paper: Code
and data for icepack paper [code and data set], Zenodo,
https://doi.org/10.5281/zenodo.5063264, last access: 11 June
2021.

Shapero, D., Badgeley, J., and Hoffman, A.: icepack: glacier flow
modeling with the finite element method in Python (Version
v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.4318150, 2020.

Shapero, D., Hoffman, A., and Lilien, D.: icepack/glacier-
meshes: Digitized glacier outlines [data set], Zenodo,
https://doi.org/10.5281/zenodo.5063248, last access:
28 May 2021.

Shu, C.-W. and Osher, S.: Efficient implementation of essentially
non-oscillatory shock-capturing schemes, J. Comput. Phys., 77,
439–471, 1988.

Szabó, B., Düster, A., and Rank, E.: The p-version of the fi-
nite element method, in: Encyclopedia of Computational Me-
chanics, edited by: Stein, E., Borst, R., and Hughes, T. J. R.,
https://doi.org/10.1002/0470091355.ecm003g, 2004.

Tezaur, I. K., Perego, M., Salinger, A. G., Tuminaro, R. S., and
Price, S. F.: Albany/FELIX: a parallel, scalable and robust, fi-
nite element, first-order Stokes approximation ice sheet solver
built for advanced analysis, Geosci. Model Dev., 8, 1197–1220,
https://doi.org/10.5194/gmd-8-1197-2015, 2015.

Van der Veen, C. J.: Fundamentals of glacier dynamics, CRC press,
2013.

Vieli, A., Payne, A. J., Shepherd, A., and Du, Z.: Causes of pre-
collapse changes of the Larsen B ice shelf: Numerical modelling
and assimilation of satellite observations, Earth Planet. Sc. Lett.,
259, 297–306, 2007.

Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33–38, 1957.
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Mod-

eling channelized and distributed subglacial drainage in two di-
mensions, J. Geophys. Res.-Earth Surf., 118, 2140–2158, 2013.

Zoet, L. K. and Iverson, N. R.: A slip law for glaciers on deformable
beds, Science, 368, 76–78, 2020.

Geosci. Model Dev., 14, 4593–4616, 2021 https://doi.org/10.5194/gmd-14-4593-2021

