17084

IEEE SENSORS JOURNAL, VOL. 21, NO. 16, AUPGUST 15, 2021

\"Sﬁ%mtauncil

Real-Time Low-Cost Drift Compensation for
Chemical Sensors Using a Deep Neural
Network With Hadamard Transform
and Additive Layers

Diaa Badawi- , Agamyrat Agambayev, Sule

Ozev-, and A. Enis Cetin, Fellow IEEE

Abstract—In this paper, we propose a computationally
efficient deep learning framework to address the issue of
sensitivity drift compensation for chemical sensors. The
framework estimates the underlying drift signal from sensor
measurements by means of a deep neural network with a
multiplication-free Hadamard transform based layer. In addi-
tion, we propose an additive neural network which can be
efficiently implemented in real-time on low-cost processors.
The temporal additive neural network structure performs only
one multiplication per “convelution™ operation. Both the reg-
ular network and the additive network can have Hadamard
transform based layers that implement orthogonal transforms
over feature maps and perform soft-thresholding operations
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in the transform domain to eliminate noise. We also investigate the use of the Discrete Cosine Transform (DCT) and
compare it with the Hadamard transform. We present experimental results demonstrating that the Hadamard transform

outperforms the DCT.

Index Terms— Chemical sensor drift, chemical sensor, time series analysis, discrete cosine transform, Hadamard

transform, convolutional neural networks.

l. INTRODUCTION'

RIFT correction is a crucial pre-processing step for reli-
D able and accurate gas analyte detection and identification
in chemical sensors and Electronic nose (E-nose) systems
[11-[5]. Sensor drift canses the characteristics of a chemical
sensor's response to change over time. It is due to multiple
factors, such as variations in temperature and humidity, aging
and the so-called sensor poisoning [6]. An electronic nose
system can neither be reliable nor accurate without addressing
the sensor drift problem [7].
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Recently, there has been great interest in drift correction
in the sensors community by utilizing machine learning algo-
rithms. Zhang er al. [8] propose an unsupervised subspace
projection method, named Domain Regularized Component
Analysis (DRCA), which aims at adapting the distribution
of the drifted data to that of drifi-free data for analyte
classification. Liu ef al. [9] propose an online active-learning
algorithm that calibrates sample drift for class identification.
In [10], Tao er al. propose learning drift invariant features in
an adversarial manner by minimizing the Wasserstein distance
to perform domain adaptation between the drifted data and
the drifi-free data domains. In [11], we proposed a genera-
tive adversarial framework to train a discriminator-classifier
network to learn drift-invariant feature parameters using the
chemical sensor dataset collected by Vergara ef al. [6].

While the previous work addresses long-term drift in
chemical sensors, machine learning algorithms therein are
implemented over several extracted features, such as the max-
imum and minimum values of the original time-series data.
Unfortunately, the original time-series measurement data is
not available in [6], [%]-[11]. Huang et al. propose a Papoulis-
Gerchberg (PG) algorithm-based method for drift correction.
The PG algorithm-based algorithm first extrapolates the drift
signal from the observed data by assuming that the drift
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signal is a band-limited low-pass signal [12]. This PG-based
algorithm is not applicable to on-line, real-time applications
since PG algorithm is an iterative method that requires com-
puting successive Fourier Transforms (FT) between time and
frequency domains until a satisfactory convergence level is
achieved. Furthermore, some baseling drift samples should be
known for convergence. Other chemical sensor drift estima-
tion approaches include Kalman filtering and shallow neural
network-based methods [7], [13]-[17].

In this paper, we propose using deep learning to estimate
the sensor drift signals from raw time-series data in real-time.
Deep convolutional neural networks (CNNs) have excelled in
various time-series related tasks, such as prediction, interpo-
lation, and classification [18]. Researchers have recently used
CNNs in the analyte classification problem [11], [19], [20].
CNNs have been increasingly preferred (o recurrent neural
networks in time-series recognition problems thanks to their
highly flexible architectures and relative ease to train [21].
Since our goal is to carry out drift correction in real-time
using a causal regression framework, we propose to use
novel temporal convolutional neural networks (TCNNs) for
sensor drift estimation, TCNNs have been able to outperform
recurrent neural networks over a number of benchmark data
sets [21], [22]. In TCNNs, convolutional layers implement
causal convolution (or correlation), meaning that the current
output only depends on the current and previous input values.
Convolutions are carried out at different dilation rate, thus
enabling the network to learn long- and shori-term features
for the task.

To take advantage of the slowly varying nature of the sensor
drift signal, we propose incorporating orthogonal transforms
and thresholding layers in the TCNNs architecture (o produce
smooth intermediate features, which in turn will generate a
smooth drift estimate. This approach also removes the noise
in the observed data. In particular, we compute the Hadamard
Transform and Discrete Cosine Transform (DCT) over sliding
windows of the past and current intermediate feamre maps
and apply soft thresholds to the high-frequency components
in the transform domain. The transform layer will essentially
suppress the high-frequency components and regularize the
features. The thresholding parameters are also learned during
training using artificially created data. Both transforms are
fast and can be implemented efficiently using O(nloga)
operations. Hadamard transform is even faster than the DCT as
it is a multiplication-free transform, which can be constructed
from the Haar wavelet transform [23]. Furthermore, we replace
the convolutional layers of TCNN with multiplication-free
additive layers that can be implemented efficiently on a low-
performance processor o design an energy-efficient and low-
COst system.

Owr results show that the proposed framework can accu-
rately provide smooth and slowly varying drift estimates
from the sensor measurements in real-time, even for severely
degraded sensors.

The organization of this paper is as follows: In Sec. TI,
we review the sensor drift problem. In Sec. 111 we describe
the TCNN framework, the transform domain layers, and the
additive convolutional layers. In Sec. IV, we present and
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Fio 2. Example of drft signal showing that the drift signal can increase
and decrease.

discuss our experimental results. Finally, we provide our
conclusion in Sec. V.

Il. THE SENSOR DRIFT PROELEM

Sensor drift is a common problem in chemical sensors,
such as the E-nose technology, that can lead to inaccurate
measurements. There are many sources of drift in chemical
sensors, such as binding of molecules to the sensor surface,
electronic aging of components, environmental contamination,
and temperature variations. As an example, Figures | and 2
show the sensor measurements in a stable environment for two
electronic nose (E-nose) sensor devices, characterized by let
Propulsion Lab (JPL) [35]. The sensors are designed to detect
the methane gas.

In Fig. 1, the signal decays over time although there is no
methane gas excitation. Comparatively, in Fig. 2 the baseline
drift signal first decreases until around ¢ = 110 minutes and
slowly increases afterwards. Ideally, both sensors should not
have produced any output. The measured output therefore is
the offset, which drifts in time. Furthermore, although the
sensors are identical in design, they exhibit different drift
signals. These two examples show that it is difficult to rely
on analytical models to characterize drift signals due to the
individual nature of each sensor.

While sensor drift can vary significantly from device to
device, the common consensus is that the sensor dritt signal
is a slowly varying baseline signal [6], [12], [24].

In [12], it is further assumed that the drift signal is a band-
limited lowpass signal and the drift estimation is formulated
as an interpolation problem. The iterative Papoulis-Gerchberg
(PG) algorithm [25]-[27] is used to construct missing parts
of the drift signal. In particular, this drift estimation method
assumes that the sensor is not exposed to a chemical gas
initially and at the end of the measurement cycle. PG algo-
rithm imposes time and frequency domain information in an
iterative manner to perform interpolation operation until both
time and frequency constraints are satisfied or a satisfactory
convergence level is achieved. The shoricoming of the PG
method is the need for prior information about the gas
exposure to be able to interpolate section of the drift signal
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corresponding to gas exposure [12]. As pointed above, it is
also necessary o assume a low-pass bandwidth for the drift
signal in [12]. On the contrary, we do nol assume any prior
bandwidth information. The neural network automatically
imposes sparsity constraints on the drift signal in the transform
domain during training by leaming the transform domain
soft thresholds. Furthermore, we do not use tuture samples
during the DXCT and Hadamard transform computations to
estimate the drift signal. We use only the past and current
samples of sensor measurement signal v(f) to estimate the
drift signal d{r). As a result, we compute a real-time estimate
of d(1).

In this paper, we study the real valued DCT and Hadamard
transforms instead of the Discrete Fourier Transform, which
is complex. The Hadamard transform is based on the Haar
wavelel transform and can be computed without performing
any actual multiplication operations.

1. TCNN WiTH SPECTRAL TRANSFORM
DOMAIN LAYERS

TCNNs have been widely used in time-series related
tasks [21]. Typically, TCNNs are made up of successive blocks
of convolutional layers and residual connections. The convo-
lutional layers carry out causal one-dimensional convolution
at different dilation rates. The so-called dilated convolution is
expressed mathematically as follows:

C—1 K1

yrlnl := Z Z Wk, ¢l = x[n — rk, cl,

o= k=0

(1)

where n is the time index, ¢ is the input channel index, a is the
output feature map index, and r is the dilation rate. One block
typically is made of dilated convolutional layer, followed by
| x | convolutional layer, another dilated convolutional layer,
and finally a residual connection between the output and the
input of the block.

In this paper, we are interested in finding a drift estimate
ﬁ[n] at time f = nT, given the sensor time series y[r] for
t e {0,7:,2 T;,...,nT;}, where T is the sampling period.
MNotice that we have a causal baseline drift signal estimation
framework. After we estimate tf[n]. we can obtain an estimate
of the desired sensor response signal p[n] by subiracting
the drift signal from y[a]. The TCNN structure is suitable
for this causal time-series estimation task because the dilated
convolution operation not only uses recent samples (short-term
features) but also past samples (long-term features) to estimate
the current output.

In Section 3.2 we explain how we implement transform
domain processing as a part of a TCNN structure and in
Section 3.2, we describe how we can develop an additive-
TCNN uwsing a novel operator, which we introduced in
[28], [29]. In Section 3.3, we describe the architecture
of the deep network, which we used in both regular and
additive-TCNNs,

A_ Transform Domain Thresholding Blocks

The sensor dritt signal is a slowly varying signal without
any high-frequency noise. Therefore, we need a way to obtain

a smooth estimate using the deep learning structure.
We perform denoising and smoothing using orthogonal trans-
forms [30], [31]. We propose novel orthonormal transform-
based blocks to perform smoothing and denoising as a part of
the deep neural network. The orthonormal blocks with soft-
thresholding feature serve as smoothing units. We perform
orthonormal transtorm operations in sliding causal windows
to make it compatible with the online estimation task because
feature parameters will be shifted by one time step at a time.

Let {f!},cq be the i-th feature map of a specific layer
resulting from the earlier convolutional layers of the meural
network at time step n. The corresponding feature vector [ is
defined using a sliding window as follows:

=[] fiin—11 ... filn—nN+11]" (2)

where N s the size of the causal sliding window. We select
N to be power of 2 to take advantage of fast O(Nlogh)
efficiency of the Hadamard transform and the DCT. The

transformed feature vector, denoted by Fj,. is defined as:
Ffi = th'f; (3)

where Wy € BV*N g the transform matrix.
The Hadamard Transform (HT) is based on an orthogonal
matrix defined using the recursive relation:

Hy = [1 _]]] @ Hyp2 (4)

with Hy = [1] and & is the Kronecker product. The matrix
Wy = LNH;.; is the unitary version of the orthogonal HT. It is
essentially constructed from butterflies and it does not require
any actual multiplication operation to compute the transform
domain coefficients. It can also be constructed from the Haar
wavelet transform [23]. It is worth mentioning that there are
different ordering conventions for the Hadamard matrix. For
example, the four-by-four sequency-ordered Walsh-Hadarmard
transform maltrix is defined as follows:

11 1 1
1 -1 -1
I -1 -1 1
1 -1 1 -1

The first row of the matrix approximates the action of
two successive halfband lowpass filtering and down-sampling
operations and generates the DC (or low-low) output with
an approximate bandwidth of [0, x/4]. The second row of
the matrix generates the so-called low-high output with the
approximate bandwidth of [x/4, 7 /2], the third-row is the
high-low and the last row is the high-high with approximate
bandwidths [x /2, 3 /4], [3x /4, ], respectively.

In the case of DCT, Wy is given by the N-point type-T1
unitary DCT matrix, whose entries are defined as follows:

Hy = (3)

[2 & B .
T
N

i=0

[Wilij = (6)

It is well-known that the DCT approximates the Karbunen-
Loeve transform when the correlation between the entries of
the input vector is high.
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In the transform domain we apply a soft-thresholding func-
tion to each coefficient except the DC value to obtain a sparse
transform domain representation as follows:

x—b, x=b
SofiTh{x) = {0, x| = b
x+b, x=-b,

(7)

where b is the soft-thresholding parameter that we learn during
the training process. In practice, we do not apply the soft-
thresholding function to the first N, = 3 values of the DCT
transformed feature parameters and the first value (DC) value
of the Hadamard transformed features. This is required to
preserve the DC level of the drift estimate over the slid-
ing windows. This is also a common practice in denoising
[307, [31]. After we obtain the thresholded transform domain
coefficients, we compute the inverse transform and we feed
the resulting smoothed feature vector to the next layer of the
deep neural network. We repeat the same process whenever
we get a new reading from the sensor.

Unlike the work of [12], we do not assume any spe-
cific bandwidth for the low frequency drift signal, the soft-
thresholding parameters of each transform domain coefficient
are automatically learned during training. It is worth men-
tioning that we call the transform domain thresholding blocks
as spectral domain thresholding blocks in this paper as both
Hadamard and the DCT transforms approximate the DFT.

B. Additive TCNN With Transform Domain Layers

While CNNs are very powerful, they are computationally
expensive because of the large number of add-multiply oper-
ations needed for the inference phase. This becomes more of
a pressing issue when deploying CNNs on embedded systems
for real-time monitoring, in which case the power and compu-
tational capabilities are often limited. In our bid to reduce the
computational cost of CNNs, we utilize the so-called additive
{multiplication-free) layers introduced in [28]. Additive nets
also improve the energy efficiency of the network because
they perform only one multiplication per convolution opera-
tion [18]. Additive nets have been applied to many recognition
tasks in fire detection, gas leak detection, and time-series
prediction [18], [20], [32]. The additive neural networks are
based on the multiplication-free operator defined for the scalar
case as follows:

(8)

where sgn(.) is the signum operation determining the sign
of regular multiplication, and the operation defined in Equa-
tion (8) is generalized to vectors as follows:

X @y:=2 xien=> seay)x+I%) ©)

x @y i=sgnlxy)(|x| + v}

for two vectors x and v £ B”. As one can see from
Equation (9), each of the summalion terms can be computed
by adding two numbers (|x;| and |y;|), and the sign can be
obtained using the logical XOR operation between the sign
bits of x; and y;. When x =y, x! @ x = 2||x||;, which is the

scaled version of the £1 norm of x. Furthermore, Equation (8)
can be expressed as

(10)

Therefore, the vector operation defined in Equation (9) can be
implemented using binary operations similar to the Hadamard
transform and there is no need to perform any multiplications
to compute the &-“dot”™ product. In the same fashion, the
F-based dilated “convolution™ can be defined as Tollows:
C—1K-1
yolnl:= B D D helk, 1 xIn —rk, c],
c=i k=0
where f is a normalization factor used to scale down the
resulting & product. Although normalization by f# requires
a multiplication, it is performed once for each v7[n] value,
as opposed to € x K multiplication operations required in
regular dilated convolution defined in Equation (1), We set
g = clx F- By selecting a number equal to the power of 2
as fi, it is possible to eliminate all the multiplications in the
dilated convolution defined in Equation (1).

x @y = sgn(x)y + sgn(y)x

(11)

C. TCNN Architecture

We combine the convolutional units, the transform domain
thresholding blocks, and the residual connections to construct
our TCNMN. At time step n, the input to the TCNN is a vector
of size M containing the sensor measurements v[a], v[n —
11,....¥[n — M + 1] and the output is a single value -:f[n].
which is the estimate of the drift signal at time instant f = aT,.

Our TCNN design is summarized in Fig. 3 and Algorithm 1,
where Convld(k,r,D) is the one-dimensional causal con-
volutional layer with filter size &, dilation rate r, and D
output features. Transform(32) represents the orthogonal
transformation of size 32, L is the number of convolutional
blocks and we set it to 7. Each convolutional block carries
out temporal convolution, followed by 1x1 convolution, and
finally another temporal convolution. We apply orthogonal
transforms after the 4-th block. We use the LeakyReLU with
leakage factor = (0.2 as our nonlinearity throughout the TCNN.

The network has residual connections between successive
blocks similar to the well-known ResMet [33] architecture,
which introduced the “identity shortcut comnection™. These
connections skip one or more layers. In our case, the so-called
skip connection linearly combines the input of a block, after
scaling it by 0.3, to the output of that block. The next block
of the network processes Fa_1(x)+0.5 x, where x represents
the input to the previous block, and F,_ represents the output
of the previous block. The scaling by 0.5 is important so that
the magnitude of the final output is stable. This is necessary
since we carry out a regression task. We only apply bias in
the 1 x 1 convolutional layers. We do not have the bias term
in the transform domain. As it can be seen from Algorithm 1,
we have a bottleneck layer that maps from 64 feature channels
to 32 and we then map back to 64 feature channels in each
block. Using 64 feature channels makes the network powerful
enough while not being very computationally expensive, while
the bottleneck layer (mapping to 32 channels) regularizes these
features.
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Fig. 2 Block diagram of the proposed system: The system receives sensor measurements and estimates the drift using a TCHNN network with
fransform domain layers. The TCHNN network is made up of a cascade of dilated convolutional and orthogonal transform residual blocks. The system
then subtracts the dift estimate from the input signal and generates the drifi-comected signal in real-time.

Algorithm 1 Pseudocode of the Design of TCNN. ConvlD
ik, r, D) Is a Convolutional Layer Of Filters of Sizes k, Dilation
Rates r, and Outputs D) Feature Maps
I: procedure TCNN(Input)
2 Out = Convl1D(3,1,64) Input)

OutRes = LeakyReLU(Cut)

for idx < {1,2 , L} do

= zid:l.

3
4
5
6 Dut = Conv1D{3, 4 0utRes)
'Fr
8
9

Dut = LeakyReLU{Out)
Dut = ConwlD{1,1,32)(0ut)

: Dut = LeakyReLU{Cuk)
10 out

= Conv1D{3,r64)0ut)
11: Out = LeakyReLU{Out)
12: if idx=>=4 then
13 Out = Transform(32)0out)
14: Out = SoftThresholding(Cut)
15: Out = InverseTransform(32)(Cut)
16: end if
17: if id<= 1 then
15 OutRes = %Gut + %GutRes
19: else
20 OutRes = Out
21: end if
22: end for

23 Out = Convl1D(l,1,1)}{CutRes)
24: return Cut
25: end procedure

The number of blocks is ted to the dilation rates and the
input size. Because we double the dilation rate, the number
of blocks is in order of the logarithm of the input size. In our
case, we have 7 blocks and the dilation rate of the last block is
27 — 128, which means the filters of the last block can look
back in time by this amount (128) multiplied by the filter
size. The actual “effective” length will still be larger, given

the contribution from earlier blocks. increasing the dilation
rate after some point will result in having the effective filter
size larger than the input size. This means that early filter
coefficients will lie outside the input support.

The orthogonal transform can be the Hadamard trans-
form or the DCT depending on the network and it is applied
after the 4-th round of convolutions. This is because the size of
the features exceed the transform block size of 32 after the 4-th
round successive convolutions. “Soft -thresholding™ operations
have threshold values which are learned during training. We do
not apply thresholds to the DC value of the transforms to
maintain continuity between the blocks as in many image and
audio coding algorithms.

As mentioned qarlier, we train the TCNN networks (o find
a drift estimate d[n]. In order to do so, we minimize the
following regularized cost function:

N-1 N-1
T =" (dinl —dinl)* + 2> [din] —din - 1]|
n=l} n=1
I-17-1
-7 Z Z logh;; (12)
i=0 j=0

where the first term in Equation (12) is the reconstruction
square errors and the second term is the Total Variation {TV)
regularization term [34], [35], which also imposes smoothness
on the drift estimates because it minimizes the difference
between the neighboring samples. The last term is a log
penalty for the soft-thresholding parameters by; for layer i and
channel j. This term is required to make sure that the threshold
parameters are pushed away from zero. We use synthetically
generated data using Equation 13 and Equation 14 to train the
networks, as detailed in Sec. TV.

IV. EXPERIMENTAL AND SIMULATION RESULTS
Datasers: In our experiments, we used data from Electronic-
nose (E-nose) sensors used for air quality monitoring. This
dataset is collected by the Jet Propulsion Lab (JPL) [36]
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using 32 different carbon-polymer sensors. We use data from
16 sensors for the experimental evaluation of the proposed
technique. We also collected our own data using the com-
mercially available M(Q-137 ammonia sensor which has a
detection range of 5-500 ppm [37].

Some sensor recording examples are shown in Fig. 4 and 5.
In what follows, we refer to this data set as JPL sensor
data. We considered recordings corresponding to single-gas
{methanol) exposure experiments as in [12]. In E-nose sensors,
the sensor reacts with the vapor upon contact with its surface.
Once the sensor is no longer exposed to the gas vapor, it starts
exuding the vapor it had absorbed earlier. Absorbing and exud-
ing the vapor depends on the sensor material, the analyte type,
and the environment. The ideal sensor response in the absence
of drift can be approximated analytically as follows [38]:

0 1=T;
( pran (") i< AT
pit) = t =T, f—T, — AT (13)
prftan™! (——) —tan™ (———)]
=T, + AT

where T, is the starting time of the exposure, and AT is the
exposure duration.

The sensors are exposed to the gas vapor after 200, 400,
600 and 800 minutes in Fig. 4 and the exposure duration is
about 150 minutes. The sensor responses more or less obey
the model described in Equation (13), in the first two rows of
Fig. 4. Even in some of these sensors, it may not be possible
to set a threshold without estimating the drift waveform to
detect the VOC gas because the drift waveform is decaying.
In the last row of Fig. 4, there are “noninformative™ sensors
and the pulses due to gas are irregular and noisy.

Three typical sensor recordings obtained from the ammonia
sensors are shown in Fig. 6 and Fig. 7. We refer o this data
set as the Ammonia data set. The real E-nose data was used
as our test sel,

We trained and validated our TCNN models on synthetic
data that we created. The drift-correct signal modelling is
based on Equation (13). We created a total of 10,000 time
series with the different levels of gas exposure duration. The
length of the time series is resampled to 512 samples. We set
the upper bound on the duration of the gas exposure as 500 min
in the JPL dataset. We randomized the starting time and
the end time of each gas exposure session as well as the
parameters f and r in synthetic training data. To generate
slowly varying drift signal, we sampled data from a Gaussian
process of mean g oand the covariance given by:

( —1'2}2)1

a2

where ¢~ is a hyperparameter controlling how strongly corre-
lated the samples of the realizations are. The process is locally
smooth, and by selecting a large o value, we can generate
slowly varying realizations of the random process. In particular
we select o2 to be equal to either 2048, 4096 or §192. The
mean value g is also chosen randomly. Afterwards, the syn-
thetic sensor measurements are created by adding the synthetic
drift signal and signals created using Equation (13). Finally,
we add zero-mean while noise with various standard deviation
levels to the training waveforms.

We trained our networks using the synthetic training data
for 80 epochs and we employed early stopping criterion during
training based on the reconstruction loss calculated over our
validation data set, starting from the tenth epoch. We used mini
batches of size 32. We used Adam Optimizer with a learning

Cov(x(1), x(tz)) = exp( (14)

2
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Fig. 6. Results over the Ammonia data set obtained by the three TCMN models. The original signal is in black. The red-colored signals are obtained
by the baseline TCNN, while the green- and blue-colored are obtained by the TCNMs with DCT and HT layers, respectively.
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Fig. 7. Results over the Ammonia data set obtained by the three additive TCNM models. The oniginal signal i1s in black. The red-colored signals are
obtained by the baseline TCHN, while the green- and blue-colored are obtained by the TCMNs with DCT and HT layers, respecively.

rate equal to 103, M =09, and f; = 0.99. We set the for some examples in Fig. 4 for baseline TCNN, TCNN with
TV parameter £ in Equation (12) to (.1 and the log penalty Hadamard Transform (HT) thresholding layers, and TCNN
parameter ¥ to 107°. Our numerical results over the JPL. with DCT thresholding layers. The drift estimates for the
data set and the Ammonia data set, are shown in Table | additive neural networks are shown in Figo 5. We included
and Table 11, respectively. We also show the drift estimates only nine examples in Fig. 4 and 5 to save some space.
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TABLE |

MEAN SQUARE ERROR (MSE) OVER THE JPL Data SET FOR S1x TCNN MODELS AND THE PAPOULIS-GERCHBERG (PG) ALGORITHM. THREE
REGULAR AND THREE ADDITIVE (MULTIFLICATION-FREE ) MODEL. WE IMPLEMENTED THREE MODELS USING THE REGULAR TCHMMN anD
ADDITIVE TCHMN, RESPECTIVELY. "NONE™ MEANS REGULAR TCNM, THE SECOND AND THE 3RD COLUMNS REFER TO DCT anD HT Basen
TCHMS, RESPECTIVELY. THE LAST THREE COLUMNS REFORT THE MSE RESULTS OF THE PG ALGORITHM FOR DIFFEREMT BANDWIDTH

SELECTION. THE MUMBERS 8,16, AND 24 CORRESPOND TO THE CUTOFF FREQUENCY INDEX FOR A DFT OF SIZE 4096 USED IN
PG ALGORITHM. WE ALSO SHOW THE AVERAGE MEAN-ABSOLUTE ERROR FOR THE DIFFERENT ALGORITHMS USED

Regular Network Additive Network P(; Algorithm Tt

Example Nonc | DCT | HT | Nome | DCT | HT || & | 16 | 24
JPL 0 34 459 | 252 4.17 298 | 459 1242 | 11.27 | 596
IPL 1 075 | 098 | 097 1.12 1.09 1.20 2.82 4.48 754
JPL 2 1.02 | 0597 | LR 1.10 1.02 | 1.23 274 .20 B85
JFL 3 227 | 152 | 174 || 155 [ 181 | 191 || 221 | 587 | 745
JPL 4 0.75 040 | 052 044 | 088 0.54 1355 | 715 578
JPL 5 1.02 050 | 073 1.35 .70 0.34 1656 | 932 6.0
JFL & 4.41 521 | 593 3oz 240 234 1143 | 1352 | 20013
IPL 7 239 1.87 | 156 286 1.65 | 391 443 1.36 728
JPL & 152 | 245 | 1.25 2,03 147 1.15 3.56 13 | 1247
JPL 4 196 | 308 | 1.55 210 1.02 | 1.21 25 THEG | 1143
JPL 11 1.11 047 | 060 1.11 1.49 0.74 1951 | 1233 | 1092
JPL 12 5.23% B2T | 437 717 3E9 | 490 1571 | 1260 | 13.86
TPL 13 362 63 | 50 388 580 | 634 2123 | 1244 | 11.29
JPL 14 139 | 414 | 253 1.35 299 1.45 747 o481 11.23
IPL 15 3101 | 392 | 225 || 658 | 224 | 449 | 1282 | 815 | 1077

Average (MSE) | 263 | 322 | 235 | 3.04 | 320 | 260 || 846 | 8.84 | 11.62

Average (MAE) | 007 | 007 | 006 | 007 | 006 | 006 || 023 | 025 | 030

TABLE Nl
MEAN SQUARE ERROR {MSE) OVER THE AMMONIA DATA SET FOR
51X TCHN MODELS: THREE REGULAR AND THREE ADDITIVE
(MULTIPLICATION-FREE) MODEL. “NONE" MEANS A REGULAR
TCHNM STRUCTURE (WITHOUT TRANSFORM DOMAIN LAYERS ).
WE ALSO REPORT THE AVERAGE MEAN-ABSOLUTE
ERROR FOR THE DIFFERENT MODELS LISED

Regular Network Additive Network
Example |Nqn¢|DCT|HT|qu|DCT|HT
Ammonia 1 2230 | 2832 | 1795 | 510 1022 | 12.85
Ammonia 2 299 | 434 | 206 [ 202 | 356 | 423
Ammonia 3 1.0 1.86 2.18 2.07 2.70 1.06
Average (MSE) | 867 | 1151 | 7.39 | 309 | 549 | 671

Average (MAE) | 008 | 010 | 009 | 008 | 010 | 032

As it can be seen from resulls in Fig. 4 and 5, the TCNN
structures with Hadamard Transform (HT) and DCT layers
can accurately estimate the drift. The TCNN with the HT
layer achieves the lowest average MSE in both regular and
additive systems in the JPL data set. The sensors in the 3rd row
of Fig. 4 and Fig. 5 generate very noisy data. In all cases,
the methane gas was applied to the sensors after roughly
250 min four times. The DCT based network overfils the data
compared to the regular TCNN and TCNN with HT layer
in one case. In JPL sensor 12 (shown in the first column,
third row in Fig. 4), the TCNN with DCT layer misses the
first pulse (the green curve). The network follows the sensor
measurements very closely. As a result, this methane gas
exposure cannot be detected by thresholding the difference
between the sensor measurement and the estimated drift signal
because they follow the baseline drift level of the sensor
On the other hand, the TCNN with HT layer (blue) and regular

TCNN (red) can detect the first pulse due to methane exposure
because they generate drift curves which are well-below the
sensor measurement data. Therefore, our results in Fig. 4 and
Fig. 5 indicate that degraded sensors can be used for methane
detection when the sensor data is processed using the TCNN
with HT layers in real-time.

In the second set of experiments we used the Ammonia
data set. Our sensors are new sensors and we do not observe
any baseline drift in the Ammonia data set. Since they are not
degraded sensors the baseline level is zero as shown in 6 and 7.
The proposed TCNN based algorithms should not generate
any false curves in this data set. All of the network models
more or less follow the zero baseline level. The results for the
Ammonia data set are shown in Fig. 6 and 7 corresponding
to regular and additive TCNNs, respectively. It is possible to
detect all the ammonia gas pulses because the drift signals are
well below the pulse levels except for the additive network
with the DCT transform block in the middle signal. Although
the overall MSE values of the regular networks are lower
than the additive networks as shown in Table 11, the estimated
drift levels of the repular networks are very close to zero
whenever the gas excitation occurs in all the three sensors as
shown in Fig. 6. The additive TCNN with HT and DCT layers
provide inferior results compared to the regular networks in the
middle plot. They may miss the 5th gas exposure in the middle
plot of Fig. 7. Only the regular additive network without any
transforms (red curve) can detect the 5th pulse of the middle
experiment in Fig. 7.

The TCHNN with the HT layer generates the lowest MSE
among the three regular network models as shown in Table T1.
The additive networks do not produce as good resulis as the
regular networks but they can be used in low-cost processor
embedded systems, such as loT devices.
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The sensor at the bottom right of Fig. 4 and 5 is a
“noninformative” sensor. After subtracting the estimated drift
waveform one can clearly detect the gas exposure as shown in
the demonstrative figure (Fig. 2). We can set up thresholds to
detect gas leaks because the sensor signal has an approximate
zero bascline level.

It is worth mentioning that the additive network replaces
the regular dot-product operations used in convolutions with a
correlation operation related with the £ norm. As a result,
intermediate features obtained in additive network learning
turn out to be different from those in traditional networks.
This is reflected in our finding that the additive network can
achieve better performance on some of the examples in terms
of the MSE. We also compared the waveforms using the £
norm-based Mean Absolute Error (MAE) and it turns out that
the average MAE results of the regular {additive) network with
DCT and Hadamard layers are 0.07 (0.06) and 0.06 (0.06),
respectively.?

A. Comparison With Fapoulis-Gerchberg (PG)
Algorithm-Based Method

Huang er al. developed a PG algorithm-based method for
sensor drift estimation method as described in Section 2 [12].
We compared our TCNN-based networks with the method
introduced in [12] using the same JPL data set. In our case,
we assume that we only know that there is no gas exposure in
the initial portions of the sensor recording and an upper bound
on the duration of the gas exposure. This is an advantage
of our method compared to the PG algorithm based method
because in [12], it is assumed they know the exact time that
the gas exposure ends, which is not a realistic assumption for a
typical gas leak detection application in an open field or inside
a building [11], [39].

Next, we present a short summary of the PG method. Let
x[n] be the desired discrete-time signal for n € {0,.. .,
N —1}. let f[n £ &] be the indicator function which is equal
to 1 if the predicate is true, and zero otherwise. Let S is the
set of “available™ samples, which is the first 100 samples out
of 512 in JPL sensor recordings. The PG algorithm aims at
reconstructing all x[n] values from x[n]/[n e &] through the
following iteration:

#n] =x[n] x {[n € 8]+ j'-“-[.r!] ® (1 —1InecS)) (15)
where
(16)

where X' (&/%) is the Discrete-Time Fourier transform (DTFT)
of ¥[n], P(e/*) is an ideal low-pass filter performing band-
limiting operation, F—! is the inverse-DTFT operator and i
is the iteration index. The algorithm is globally convergent
regardless of the initial estimate [25]. One weakness of the PG
algorithm is that one has to know the bandwidth of the desired
signal a priori, which is not possible in general. In addition,
the alporithm is very sensitive to the noise present in the

¥inl = F7P(e®) X (e/)]

2we did not include the MAE results per example in order not to overcrowd
the tables,

available portion of the data [26], [31]. Tt generates high mean-
square-error resulls as shown in the last three columns of
Table | especially for noisy sensor signals shown in the third
row of Fig. 4.

To estimate the drift signals, we implemented the algorithm
using the Discrele Fourier Transform (DFT) of size 4096
We tried three different bandwidth choices with the following
cut-off frequencies: 8/4096, 16/4096, and 24/4096. The MSE
results are presented in the last three columns of Table 1. As it
can be seen from the table, the PG based algorithm does not
produce as good results as the deep leamming based TCNN
structures. Furthermore, the PG algorithm is very sensitive to
the quality of the samples. We conclude that the PG algorithm
is not suitable for gas leak detection. However, it can be useful
when used as an interpolator as in [12].

B. Comparison With the Shallow Multi-Layer
Perceptron-Based Predictor

We also compared the deep learning based TCNN methods
with the shallow neural network. In [40], a Radial-Basis Func-
tion {RBF) neural network is trained to predict the sensor dritt
using the current and past samples. We also implemented a
shallow multi-layer-perceptron {MLP) neural network. In [40],
the authors gathered long time series recordings of three dif-
ferent chemical sensors. The recordings correspond to baseline
drift signals and the first portion of each time-series are used
to train a shallow one-step RBF neural network predictor.

In the JPL dataset, the initial portions of the time series
sensor data correspond to the baseline sensor drift.

dinl= f(yln—11,yln—21,...,¥y[n —N+1]), (17

where f(.) represents the neural network function, N is the
number of past samples used in the nonlinear neural network-
based predictor, y[n] = d[n] + plna] is the augmented input
signal at time n containing the underlying drift d[n] and the
added pulse signal. We then trained the neural network to
minimize the MSE between d[n] and d[n] over the training
data. Once the MSE converges, we infer the drift over the
remaining portion of the signal using the following expression:

dinl=ef(yln—11,...¥[n — N + 1) + (1 — e)d[n — 1],
(18)

where 0 < ¢ < 1 is a memory factor. We use € to account
for the fact that the pulse signal might last longer than the
predictor order N, in which case the rule in Equation (17} has
no means of distinguishing the drift from the additive signal
pln]. We trained a one-hidden neural network with input size
N = 16 with hyperbolic tangent activation function, and a
hidden layer of size 32. The results of two examples from
the JPL data set are shown in Fig. 8 and Fig. 9. In Fig. 8,
we see that it is possible to get a reasonable drift prediction
when using an appropriate smoothing factor €. In contrast,
in Fig. 9, the initial portion of the drift does not look similar
to the remaining portion, resulting in a total failure of the
shallow predictor in generating any meaningtul drift estimate.
This is in contrast to our proposed approach, in which the
network can learn all sort of slowly varying signals during the
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training because the TCNN is deep with many layers, which
can “store” and “learn” the large training set of possible slowly
varying signals.

V. CONCLUSION

In this paper, we introduced a novel deep learning-based
framework for sensor drift estimation. The proposed TCNN
structures has built-in Hadamard and additive transform based
layers, which smooths and denoises the input signal because
the sensor drift signal is a slowly wvarying signal. The
Hadamard transform is related with the Haar wavelet trans-
form and it can be implemented without performing any
real multiplication operations. The Hadamard transform can
be implemented using binary operations. Similarly, the pro-
posed additive layers can be implemented using only binary
operations.

We experimentally observed that Hadamard transform
performs better than the DCT, which approximates the
Karhunen-Loeve Transform, in our dataset. The DCT is used
in signal, image and data compression and it fits the input
very efficiently. However, it overfits the data, which are feature

parameters of the previous layer in our case. Since our goal
is smoothing and denoising, the Haar wavelet transform based
Hadamard transform is more suitable compared to DCT. Other
wavelet transforms can be also used in this problem but
they are not as computationally efficient as the Hadamard
transform.
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