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We study the dynamics of a ferrofluid thin film
confined in a Hele-Shaw cell, and subjected to a
tilted nonuniform magnetic field. It is shown that the
interface between the ferrofluid and an inviscid outer
fluid (air) supports traveling waves, governed by a
novel modified Kuramoto–Sivashinsky-type equation
derived under the long-wave approximation. The
balance between energy production and dissipation
in this long-wave equations allows for the existence
of dissipative solitons. These permanent traveling
waves’ propagation velocity and profile shape are
shown to be tunable via the external magnetic field.
A multiple-scale analysis is performed to obtain the
correction to the linear prediction of the propagation
velocity, and to reveal how the nonlinearity arrests
the linear instability. The traveling periodic interfacial
waves discovered are identified as fixed points in
an energy phase plane. It is shown that transitions
between states (wave profiles) occur. These transitions
are explained via the spectral stability of the
traveling waves. Interestingly, multiperiodic waves,
which are a non-integrable analog of the double
cnoidal wave, are also found to propagate under
the model long-wave equation. These multiperiodic
solutions are investigated numerically, and they are
found to be long-lived transients, but ultimately
abruptly transition to one of the stable periodic states
identified.

1. Introduction
Immiscible fluid flows confined in Hele-Shaw cells have
been investigated extensively during the past several
decades [1]. Going back to the classical work by Saffman
and Taylor [2], interest has focused on the dynamics of
the sharp interface between the fluids [3]. The interface’s
displacement, when the motion of the fluids is normal to
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the unperturbed interface, has been of particular interest to most studies, specifically viscous
fingering instabilities and finger growth [4]. By contrast, Hele-Shaw flows in which the main flow
direction is parallel to the fluid interface has received less attention. Early work by Zeybek and
Yortsos [5, 6] considered such a parallel flow in a horizontal Hele-Shaw cell, both theoretically
and experimentally. They found that, in the limit of large capillary number and under the long-
wave assumption, interfacial waves between the two viscous fluids in this setup are governed by
a set of coupled Korteweg–de Vries (KdV) and Airy equations. Similarly, Charru and Fabre [7]
investigated periodic interfacial waves between two viscous fluid layers in a Couette flow,
in which case the long-wave equation was found to be of Kuramoto–Sivashinsky (KS) type.
Subsequently, experimental work by Gondret and co-workers [8, 9] demonstrated traveling waves
in a parallel flow in a vertical Hele-Shaw cell. In this case, the phenomenon is well-described by
a modified Darcy equation accounting for inertial effects, in which context a Kelvin–Helmholtz
instability for inviscid fluids was found [10, 11]. These prior studies considered fluids that are not
responsive to external stimuli.

Ferrofluids (also known as “magnetic fluids” [12, 13]), on the other hand, are colloidal
suspensions of nanometer-sized magnetic particles dispersed in a nonmagnetic carrier fluid.
These fluids are typically Newtonian but respond to applied magnetic fields, which is of
particular interest in the present work. The linear theory of the Kelvin–Helmholtz instability
for unconfined ferrofluids was developed by Rosensweig [14], which revealed how the strength
of the applied magnetic field (on top of the velocity difference and viscosity contrast between
the fluid) enters the threshold for instability. Miranda and Widom [15] extended this result to a
parallel ferrofluid flow in a vertical Hele-Shaw cells under an external non-tilted magnetic field
and deduced that the magnetic field does not affect the propagation speed of waves. Using a
perturbative weakly nonlinear analysis, Lira and Miranda [16] further extended the latter analysis
by adopting an in-plane tilted applied magnetic field, showing that the wave speed speed is
sensitive to the angle. Such a field was shown to generate nonlinear traveling surface waves
between a ferrofluid and an inviscid fluid (such as air). Jackson and Miranda [17] introduced
a “crossed” magnetic field (with perpendicular and azimuthal components) to influence the
mode selection for a ferrofluid drop confined in a horizontal Hele-Shaw cell. Beyond Hele-
Shaw configurations, Seric et al. [18] derived a long-wave equation to model dewetting of a
two-dimensional thin film resulting from the interaction between a uniform applied magnetic
field and disjoining pressure. More recently, Yu and Christov [19] conducted fully nonlinear
simulations, using a vortex sheet Lagrangian method, of ferrofluid droplets in a horizontal
Hele-Shaw cell. They showed that nonlinear periodic waves can be generated on the ferrofluid
interface by tuning an external magnetic field’s orientation. In their analysis, the nonlinear wave
propagation speed was well predicted by perturbation theory, showing that the magnetic field
can set the wave speed and induce rotation of the droplet. Despite the recent work and interest on
how tilted magnetic fields generate nonlinear waves on ferrofluid interfaces, a model long-wave
equation, to describe these phenomena is still lacking. Such a reduced-order (“low-dimensional”)
model would provide deeper insight into the nonlinear wave dynamics and the mechanisms that
sustain them [20].

To this end, in this work, our goal is to derive a novel model long-wave equation [21–23] to
describe the nonlinear wave dynamics on a confined ferrofluid interface. First, we reexamine the
problem proposed in [19] by considering a thin ferrofluid film in Cartesian coordinates (as shown
in Fig. 1), subjected to an in-plane tilted magnetic field, which makes an arbitrary angle with the
unperturbed (flat, horizontal) interface. Next, a perturbation analysis similar to that for shallow
water waves, valid for small wave amplitudes and long wavelengths, is conducted. We show that
the interfacial waves are governed by a modified equation of the Kuramoto–Sivashinsky (KS)
type. Although the KS equation is usually mentioned in the context of the work by Kuramoto and
Tsuzuki [24], on phase turbulence in reaction-diffusion systems, and the work by Sivashinsky [25],
on wrinkled flame front propagation, the equation was first derived by Homsy [21] for thin liquid
films (see also the discussions in [26, 27]). On the other hand, the generalized KS equation, which
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Figure 1. (a) Schematic of a Hele-Shaw cell (width b) confining a thin ferrofluid film, with unperturbed depth h0. An

azimuthal magnetic field Ha can be produced by a long wire conveying an electric current I , adapted from [19]. A radial

magnetic field Hr can be produced by a pair of anti-Helmholtz coils with equal and apposite currents IAH . (b) Top

view of Hele-Shaw cell, with boxed region to be studied as a periodic domain. (c) In the local Cartesian coordinates,

the external magnetic field H is tilted at angle φ with respect to the x-axis, and it acts to deforms the interface at

y= f(x, t) = h0 + η(x, t). The fluid exterior to the thin film (e.g., air) is assumed to have negligible viscosity and

velocity. Gravity acts in the −z-direction, but its effects are negligible for the in-plane interface evolution.

additionally contains a dispersion term, has been derived in the context of a wide variety of falling
thin film problems [28], for which the driving force is typically gravity. In the present work, the
novel feature is the non-invasive forcing of the ferrofluid by a magnetic field, which leads to a new
type of generalized KS equation that captures the myriad of nonlinear effects (interestingly, in the
absence of the Hopf-like convective nonlinearity found in the traditional KS-type equations) on
long-wave evolution in one-dimension (1D).

This paper is organized as follows. §2 introduces the governing equations of the parallel
ferrofluid thin film flow confined to a horizontal Hele-Shaw cell. In §3, the long-wave equation
for the interface dynamics is derived, exposing the key parameters governing the physics. In §4,
linear and weakly nonlinear analyses are conducted to understand the wave dynamics. An energy
budget for the nonlinear traveling wave solution of the long-wave equation is obtained, showing
that a dissipative soliton can propagate under the novel balance of surface tension and magnetic
forces in this system. The effects of the key parameters on the wave profile and its propagation
are discussed in §5. Then, §6 considers the transition between different nonlinear states, and
their spectral stability, to address the pattern selection problem. Additionally, propagating
multi-periodic waves are uncovered numerically, and their persistence is investigated. Finally,
conclusions and avenues for further work are summarized in §7.

2. Mathematical model and governing equations
Building on our previous work [19], we study the dynamics of interfacial waves on a thin
ferrofluid film, confined in the transverse direction within a Hele-Shaw cell with gap thickness
b, as shown in Fig. 1. In the reference configuration, the unperturbed interface is at r=R0 + h0.
The entire cell is subjected to a radially-varying external magnetic field via a long wire carrying
an electric current I through the origin. This current produces an azimuthal magnetic field
component Ha = I

2π
1
r êθ . Then, anti-Helmholtz coils can be used to produce a radial magnetic

field component Hr =
H0
R0
rêr , where H0 is strength of the magnetic field at r=R0 [19, 29, 30].

Now assume thatR0 ≫ h0, where h0 is a characteristic ‘depth’ of the ferrofluid film at rest. Under
this “small film curvature" assumption [31], the nonuniform magnetic field H=Ha +Hr can be
approximated in locally Cartesian coordinates as:

H≃ I

2π

1

(R0 + y)
êx +

H0

R0
(R0 + y)êy. (2.1)
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From Eq. (2.1), we understand that a magnetic body force ∝ |M|∇|H| acts on the thin film,
where M is the magnetization vector of the ferrofluid. For the purposes of studying the interface
and shape dynamics [29, 32–34], we assume that the ferrofluid is uniformly magnetized, and the
magnetization is colinear with the external field, i.e., M= χH, where χ is the constant magnetic
susceptibility. Since the applied field is spatially varying, i.e., ∇|H| ̸= 0, then ∇|H| becomes the
main contribution to the magnetic body force. According to the prior literature, this observation
leads us to neglect the effect of the demagnetizing field in comparison.

It is straightforward to show by standard methods (see, e.g., [29] and the references therein)
that neglecting inertial hydrodynamic terms, enforcing the no-slip condition on the confining
boundaries (transverse to the flow) of the Hele-Shaw cell, and averaging across the gap (i.e., over
z) yields a modified “Darcy’s law” that governs this flow [29]:

v̄=− b2

12µf
∇ (p− Ψ) , ∇ · v̄= 0, −∞<x<∞, 0≤ y≤ f(x, t). (2.2)

Here, p is the hydrodynamic pressure in the film, µf is the ferrofluid’s dynamic viscosity,
Ψ = µ0χ|H|2/2 is a scalar potential accounting for the magnetic body force (such that p− Ψ is
a modified pressure), and µ0 is the free-space permeability. Gravity acts in the −z-direction, but
it is neglected due to the narrow confinement. Both fluids are considered incompressible. The
viscosity of the “upper” fluid is considered negligible (i.e., it is considered inviscid, as would
be the case with air), so the flow outside the ferrofluid film is not considered. We denote by
v̄= u(x, y, t)êx + v(x, y, t)êy the z-averaged velocity field in the “lower” fluid (the ferrofluid).

At the interface, having neglected the dynamics of the upper fluid, the pressure is given by a
modified Young–Laplace law [14, 35]:

p= σκ− µ0
2
(M · n̂)2 on y= f(x, t), (2.3)

where σ is the constant surface tension, and κ≡−fxx/(1 + f2x)
3/2 is the curvature of the surface

y= f(x, t) (x and t subscripts denote partial derivatives). The second term on the right-hand side
of Eq. (2.3) is the magnetic normal traction [14, 35], where n̂= (−fx, 1)/

√
1 + f2x denotes the

upward unit normal vector to the interface. This contribution, due to the projection of M onto
n̂, induces unequal normal stress on either side of the profile’s peaks on the perturbed interface,
thus breaking the initial equilibrium and leading to wave propagation [19].

A kinematic boundary condition is also imposed at the interface:

v= ft + ufx on y= f(x, t), (2.4)

which requires that the film boundary is a material surface. The no-penetration condition

v= 0 on y= 0 (2.5)

is imposed at the “bottom” of the layer, which is the material surface at r=R0 in the original
radial coordinates (Fig. 1), that maps to y= 0.

Introducing the potential ϕ= p− Ψ − Ψ0, where the constant

Ψ0 =−µ0
2
χ
H2

0

R2
0

(R0 + h0)
2(1 + χ)− µ0

2
χ
I2

4π2
1

(R0 + h0)2
(2.6)

accommodates the trivial solution, and combining the two equations in (2.2) together, the
governing equation becomes Laplace’s equation:

∇2ϕ= 0. (2.7)
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From Eqs. (2.3) and (2.4), Eq. (2.7) is subject to the following boundary conditions on y= f(x, t):

v= ft + ufx, (2.8a)

ϕ+
µ0χ

2

H2
0 (R0 + y)2

R2
0

+
µ0χ

2

I2

4π2(R0 + y)2
+ Ψ0 (2.8b)

= σκ− µ0χ
2

2

[
I2

4π2(R0 + y)2
f2x

1 + f2x
+
H2

0 (R0 + y)2

R2
0

1

1 + f2x
− IH0

πR0

fx

1 + f2x

]
.

3. Derivation of the long-wave equation

(a) Expansion of the potential and non-dimensionalization
To reduce the governing equations to a single partial differential equation (PDE) for the surface
deformation η, we expand ϕ in a power series in y, a standard approach for small amplitude
surface deformations (see, e.g., [36]):

ϕ(x, y, t) =

∞∑
n=0

ynϕn(x, t). (3.1)

Substituting this expansion into Laplace’s equation (2.7) generates a recursion relation ϕn,xx +

(n+ 2)(n+ 1)ϕn+2 = 0. On the other hand, since ϕy =
∑∞

n=1 ny
n−1ϕn(x, t), the constraint at the

bottom (i.e., Eq. (2.5)) requires that ϕ1 = 0, which eliminates the odd terms from the expansion.
Hence, we can simplify Eq. (3.1) as:

ϕ(x, y, t) =

∞∑
m=0

(−1)my2m

(2m)!
g(2m)(x, t), g(2m)(x, t)≡ ∂2m

∂x2m
ϕ0(x, t). (3.2)

Let a be the typical amplitude scale for the surface deformation η(x, t). Now, we introduce the
following non-dimensionalization:

x 7→ ℓx, y 7→ h0y, t 7→
12µf ℓ

3

σb2
t, η 7→ aη,

u 7→
(
a

h0

)
σb2

12µf ℓ2
u, v 7→

(
a

h0

)(
h0
ℓ

)
σb2

12µf ℓ2
v, ϕ 7→

(
a

h0

)
σ

ℓ
ϕ, g 7→

(
a

h0

)
σ

ℓ
g,

(3.3)

where ℓ is the horizontal length scale. Next, we define the small parameters of the model

δ :=
h0
ℓ
, ϵ :=

a

h0
, ε :=

h0
R0

, (3.4)

corresponding to a wavelength parameter, an amplitude parameter, and a magnetic field gradient
parameter, respectively. To implement the upcoming asymptotic expansion, a long wavelength
δ≪ 1 and small amplitude ϵ≪ 1 approximation is made [37]. (Although it is possible to
also derive arbitrary-amplitude long-wave equations [22, 37], Homsy [21] argued that the
distinguished limit of ϵ≪ 1 leads to the model equations capturing the essential physics.) Note
that ε≪ 1 is determined by the geometric configuration; specifically, R0 is chosen sufficiently
large to allow the Cartesian approximation, but small enough to ensure that ∇|H| is still the
dominant term in the magnetic body force [29, 32, 33]. Note that demagnetization can still be
neglected because it can be made arbitrarily small via the thickness b [34].

The scaled potential obeys:

ϕxx + δ−2ϕyy = 0, u=−ϕx, v=−δ−2ϕy, (3.5)

and, to O(δ2), the scaled and truncated Eq. (3.2) yields:

ϕ= g − 1

2
δ2y2gxx, u=−gx +

1

2
δ2y2gxxx, v= ygxx − 1

6
δ2y3gxxxx, (3.6)

consistent with Eq. (3.5).
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(b) Boundary conditions and reduction of the governing equations
Under the above assumptions on the small parameters, the leading-order terms involve ϵ, ε2,
and δ2. Without making further assumption on their relative scalings (thus, keeping cross-terms
as well), the corresponding kinematic and dynamic boundary conditions (2.8) on the fluid–fluid
interface become:

v= ηt + ϵuηx on y= 1 + ϵη(x, t), (3.7a)

ϕ=B1η − δηxx + δB2ηx + ϵδ2B3η
2
x −B4ϵη

2 on y= 1 + ϵη(x, t), (3.7b)

where Bn are constants (see electronic supplementary material §A for their expressions).
Importantly, the constants are functions of the magnetic Bond numbers:

NBx =
µ0χ

2

I2

4π2
1

R2
0

ℓ

σ
, NBy =

µ0χ

2
H2

0
ℓ

σ
, (3.8)

which quantify the ratios of the magnitudes of the x and y components of the magnetic body force
to the surface tension force.

Before proceeding further in the analysis, we rewrite the boundary conditions from Eqs. (3.7)
to hold at y= 1 through Taylor series expansions of u, v, and ϕ:

v + vyϵη= ηt + ϵ(u+ uyϵη)ηx on y= 1, (3.9a)

ϕ+ ϕyϵη=B1η − δηxx + δB2ηx + ϵδ2B3η
2
x −B4ϵη

2 on y= 1. (3.9b)

With the relations in Eq. (3.5), Eqs. (3.9) can be rewritten, within the assumed order, as

v= ηt − ϵ {[B1ηx + δ(B2ηxx − ηxxx)]η}x on y= 1, (3.10a)

ϕ=B1η + δ(B2ηx − ηxx)−B4ϵη
2 + ϵδ2(B3η

2
x + ηηt) on y= 1. (3.10b)

Combining Eqs. (3.6), evaluated at y= 1, and Eqs. (3.10) allows us to eliminate g(x, t), and the
dynamics of the interface η(x, t) is governed by

ηt = (−εα− ε2ϑ)ηxx + δ(βηxxx − ηxxxx) + ϵ
{
[(−εα− ε2ϑ)ηx + δ(βηxx − ηxxx)]η

}
x

− ϵ
1

2
ε2ϑ(η2)xx +

1

2
δ2

[
ηxxt −

1

3
(−εα− ε2ϑ)ηxxxx

]
+ ϵδ2

[
(γη2x + ηηt)xx − 1

4
(−εα− ε2ϑ)(η2)xxxx +

1

12
ε2ϑ(η2)xx

]
,

(3.11)

where

α= 2[NBy(1 + χ)−NBx], (3.12a)

β = 2χ
√

NBxNBy, (3.12b)

γ = χ(NBy −NBx), (3.12c)

ϑ= 2[(1 + χ)NBy + 3NBx], (3.12d)

are now the governing dimensionless parameters of the model, beyond the previously defined
small quantities in Eq. (3.4). Note that Eq. (3.11) is a general expression of the interface dynamics
without any assumption about the relation between the (three) small parameters ϵ, δ, and ε. To
obtain a model equation, in sense of [21], we must consider the relevant distinguished limit.



7

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(c) The model long-wave equation
Next, we seek to simplify the governing Eq. (3.11) in the distinguished asymptotic limit(s) of
interest. For ε=O(δ2), without loss of generality, we let ε= δ2 and conduct another rescaling:

η 7→ η/ϵ, t 7→ t/δ (3.13)

to describe the long-time evolution (as expected, since we focus on traveling wave solutions).
From Eq. (3.11), the interface evolution equation for ε=O(δ2) can be written as:

ηt =−δαηxx + βηxxx − ηxxxx + [(−δαηx + βηxx − ηxxx)η]x + δ(γη2x)xx. (3.14)

The long-wave equation for ε=O(δ) has similar structure as Eq. (3.14) (see electronic
supplementary material §B for details), so that in this study we will focus on Eq. (3.14), which
is a modified generalized KS equation. The main difference lies in the dispersion and nonlinear
terms. Whereas the KS equation features the Hopf nonliterary ηηx (as do the KdV and Burgers
equations), Eq. (3.14) does not. Instead, the last two terms on the right-hand side of Eq. (3.14)
depict a more complicated nonlinearity introduced almost entirely by the magnetic forces. One
of the latter terms, ∝ (ηxη)x, is similar to the term due to the Maragoni effect in the so-called
Korteweg–de Vries–Kuramoto–Sivashinsky–Velarde equation [26, Eq. (6)]. We note in passing that
this term, together with the term ∝ (ηxxxη)x and ηηx, also appear in the nonlinear terms of the
model equation for interfacial periodic waves in [7, Eq. (9)]. As in present study, the (ηxxxη)x
nonlinearity arises from surface tension. However, while (ηxη)x in [7, Eq. (9)] comes about from
inertia, in our model equation this term arises from magnetic forces. Meanwhile, the role of the
linear terms is well known, as in KS: ηxx is responsible for the instability at large scales, while
ηxxxx provides dissipation at small scales. As in the generalized KS equation, the KdV-like term
ηxxx in Eq. (3.14) leads to dispersion.

4. Stability of the flat state and nonlinear energy budget

(a) Linear growth rate and weakly nonlinear mode coupling
Let η(x, t) =

∑∞
k=−∞ ηk(t)e

ikx be the Fourier decomposition of the surface elevation on the
periodic domain x∈ [0, 2π]. Then, substituting the Fourier series into Eq. (3.14), we immediately
obtain:

η̇k =Λ(k)ηk +
∑
k′

F (k, k′)ηk′ηk−k′ , (4.1)

where the overdot denotes a time derivative, k ̸= 0, k′ ̸= 0, ηk=0 = 0, i=
√
−1, and

Λ(k) = δαk2 − k4 − iβk3, (4.2a)

F (k, k′) = δαkk′ − iβkk′2 − kk′3 + 2δγ(k2k′2 − kk′3). (4.2b)

Recalling the definition of α from Eq. (3.12a), the real part of the linear growth rate ℜ[Λ(k)]
indicates that the y-component of the magnetic field ∝ (1 + χ)NBy is destabilizing, while the
x-component ∝NBx and surface tension are stabilizing. Weakly-nonlinear mode coupling at the
second-order is accounted for by the function F . Note that the terms in ℜ[Λ(k)] from Eq. (4.2a)
above are quite similar to the ones in [19] (for a radial geometry), apart from being multiplied by
an additional power of k.

The most unstable mode km satisfies:

dℜ[Λ(k)]
dk

∣∣∣∣
k=km

= 0 ⇐⇒ 2k2m = δα, (4.3)

which implies the important role of δα on stability. Figure 2(a) shows examples of how δα

controls the most unstable mode and determines the range of linearly unstable modes (for which
ℜ[Λ(k)]> 0). We will show that km (and δα) can be used to predict the possible states (period of
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Figure 2. (a) Real part of the linear growth rate ℜ[Λ(k)] as a function of the wavenumber k for δα= 8, 32, 72 and 128;

the markers denote the most unstable mode km. (b) The nonlinear evolution of the interface from a small perturbation

of the flat base state [η(x, 0) = 0.01 sin(4x)] into a permanent traveling wave with δα= 32, β = 16, and γ determined

by Eq. (3.12) accordingly. (c) Energy budget of the nonlinear traveling generation process shown in (b); the red curve

represents the δα term, the green curve represents the surface tension term, and the blue curve represents the β term

from the PDE (3.14). The contribution of the linear term is denoted by the solid curves while the dashed curves represent

the nonlinear term(s). The black curve in (c) shows the sum of these components, which is seen to approach zero as the

wave evolves into a dissipative soliton.

the nonlinear interfacial wave), and it is helpful for selecting suitable initial conditions that evolve
into (nonlinear) traveling wave solutions.

The imaginary part of the linear growth ℑ[Λ(k)] rate reveals the phase velocity of each mode:

vp(k) =−ℑ[Λ(k)]/k= βk2. (4.4)

Perturbations to the flat base state of the film can propagate with velocity controlled by the
coupling term β = χ

√
NBxNBy (and, since vp = vp(k), they also experience dispersion). Here,

β results from the magnetic normal stress due to the asymmetric projection of the x- and y-
components of the magnetic force onto the interface. Changing the direction of the x-component
of H will reverse the sign of these terms, i.e., β 7→ −β. The linear analysis indicates that such
wavepackets will either decay or blow-up exponentially according to the sign of ℜ[Λ(k)].
However, below we will show, through simulations of the governing PDE, that this linear
instability is arrested by nonlinearity.

(b) Nonlinear energy balance and the dissipative soliton concept
The energy method [38] can be applied to any PDE to understand the stability of its solutions. For
example, the energy method was used to establish stability and uniqueness of generic ferrofluid
flows [39]. Here, we employ this approach to understand the stability of the traveling wave in our
model long-wave equation, which features both damping and gain. Multiplying Eq. (3.14) by η,
and integrating by parts over x∈ [0, 2π], yields an energy balance:

Ė =

∫2π
0
δαη2x − η2xx + δαη2xη +

1

2
βη3x − ηη2xx dx, (4.5)

where E(t)≡ 1
2

∫2π
0 η(x, t)2 dx denotes the total energy of the wave field. The δαη2x term on the

right-hand side of Eq. (4.5) produces energy, while the surface tension term −η2xx acts as a sink.
This result matches well with the observation regarding the linear growth rate, i.e., that the
destabilizing δα term is balanced by the (stabilizing) surface tension (δαk2 > 0 and −k4 < 0 in
Eq. (4.2a)). The linear dispersion term conserves energy and thus drops out of Eq. (4.5). Meanwhile
the sign of the three remaining terms is indeterminate a priori. Figure 2(c) show the evolution of
the various terms on the right-hand side of Eq. (4.5) for the solution η(x, t) shown in Fig. 2(b).
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Eventually, all curves in Fig. 2(c) become independent of time. In general, we expect that, for
some distinguished solutions η(x, t), Ė = 0 holds exactly. If this is the case for one of the traveling
wave solutions, then they are classified as dissipative solitons in the sense of [26]. Dissipative
solitons are expected to be long-lived stable structures. We wish to address if such structures
arise in our model of a ferrofluid interface subjected to a magnetic field.

From the energy analysis in Eq. (4.5), we can conclude that α, β, and γ are the three key
parameters controlling the wave propagation and existence of the dissipative soliton. Recall that
these three parameters, which show up in Eq. (3.14), are given as combinations of the physical
parameters (i.e., χ, NBx, NBy), as per Eq. (3.12). In particular, α and β in the linear terms of
Eq. (3.14) are expected to strongly affect the stability and the characteristics of the traveling wave
profile. We explore this issue next through numerical simulations.

(c) Numerical simulation strategy for the governing long-wave PDE
To understand the nonlinear interfacial wave dynamics, in the upcoming sections below, we
solve Eq. (3.14) numerically using the pseudospectral method [40]. For the linear terms, the
spatial derivatives are evaluated using the fast Fourier transform (FFT) with N = 512, while
the nonlinear terms are inverted back to the physical domain (via the inverse FFT), evaluated,
and then transformed back to Fourier space. The modified exponential time-differencing fourth-
order Runge–Kutta (ETDRK4) scheme [41], which is stable and accurate for stiff systems [40], is
adopted for the time advancement. Grid and time-step convergence of the numerical scheme was
established (see electronic supplementary material §C). Figure 2(b) shows an example evolution
from the infinitesimal perturbation of the flat state, to the formation of a nonlinear traveling wave.

5. Nonlinear periodic interfacial waves: propagation velocity and
shape

As discussed in §4(b), α and β play an important role in the energy balance. In this section, we
investigate their effects on the traveling wave’s propagation velocity and the wave profile (shape).
Before we start, it is helpful to discuss the physical meaning of these parameters, which can be
useful in designing control strategies in practice.

First, as explained above, β is the coupling term resulting from the asymmetry of the surface
force on the perturbed interface. This parameter is also closely related to the orientation of the
magnetic field. To understand this point better, let

ρ=NBx +NBy, q=NBx/ρ. (5.1)

Here, ρ∝ |H|2 relates to the magnitude of the magnetic field at R0, and q= cos2 φ, where φ is the
angle of H with respect to the flat interface (recall Fig. 1). With χ= 1, the main parameters can be
rewritten as:

α= 2ρ(2− 3q), β = 2ρ
√
q(1− q), γ = ρ(1− 2q). (5.2)

In this study, we restrict ourselves to magnetic fields with small x-component magnitude, with
q ∈ [0, 0.06], i.e., φ∈ [0.42π, π/2]. For this choice, α≈ 4ρ, β ≈ 2ρ

√
q, and γ ≈ ρ. Hence, controlling

α is equivalent to controlling the magnitude of the magnetic field, while β is sensitive to the
orientation. Note that two independent variables will set the dynamics, and in this section we
will control α and β, with γ determined by Eq. (5.2). Furthermore, in the numerical studies
below, we will use one initial condition, η(x, t= 0) = 0.01 sin(k0x), with an initial perturbation
wavenumber k0 = 4, and we will only consider δ= 0.1. These perturbations will first grow, then
become arrested by saturating nonlinearity [42], and finally lead to a permanent traveling wave.
The latter is of interest in this section.

(a) Propagation velocity
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(i) Linear prediction and nonlinear expression

Lira and Miranda [16] reported that the propagation velocity of interfacial ferrofluid waves in a
Cartesian configuration in a vertical Hele-Shaw cell is sensitive to the magnetic field’s angle. The
fully nonlinear simulations of a radial configuration in a horizontal Hele-Shaw cell in [19] further
showed that this velocity can be well predicted by the linear phase velocity, which is determined
by the coupling term of azimuthal and radial magnetic field components in that work. In this
study, we examine how this coupling term, which is captured by our parameter β (and closely
related to the angle φ of the magnetic field), controls the nonlinear wave propagation velocity.

A permanent traveling wave profile takes the form η(x, t) =Θ(kx− ωt), where vf = ω/k is
its propagation (phase) velocity. The modes’ complex amplitudes can be expressed as ηk(t) =
cke

−iω(k)t, with constant ck ∈C accounting for their relative phases. A nonlinear traveling wave
profile would consist of a fundamental mode kf and its harmonics nkf (n∈ Z+), with ω(nkf ) =
nω(kf ), so that the phase velocity can be evaluated as vp(nkf , t) = nω(kf )/nkf = vf . The average
vp of the first five harmonics is used to calculate vNf for the nonlinear simulation. Meanwhile, the
linear phase velocity vLf = vp is given by Eq. (4.4).

Figure 3(a) shows the comparison of the nonlinear propagation velocity and the linear
prediction for δα= 32. The fundamental mode, computed as kf = 4 from the simulation, sets
the linear propagation velocity as vLf = βk2 = 16β. It is surprising to see that the actual nonlinear
propagation velocity can be well fit by the straight line vNf = 14.05β with small variance σ2 =
0.005, even if the wave profiles changes with β dramatically, as shown in Fig. 3(c). This curious
correction is not as trivial as it looks, as the nonlinear phase velocity can be evaluated a posteriori
through Eqs. (4.2) as:

vNf = β

{
k2 +

∑
k′

k′2ℜ
[
ηk′ηk−k′

ηk

]
− k

β

∑
k′

[δαk′ − k′3 + 2δγ(kk′2 − k′3)]ℑ
[
ηk′ηk−k′

ηk

]}
,

(5.3)
where vNf =ℑ[N (k, k′)/k] is derived from the propagator operator N (k, k′) = λ(k) +∑

k′ F (k, k′)ηk′ηk−k′/ηk derived in Eq. (4.1), such that η̇k =N (k, k′)ηk. The terms arising from
the summation over k′ represent the nonlinear effects. When a traveling wave solution is
obtained, ηk′ηk−k′/ηk = ck′ck−k′/ck becomes independent of time, and the nonlinear phase
velocity can be evaluated from Eq. (5.3), knowing ck from the propagation profile’s Fourier
decomposition. (This is equivalent to our approach in electronic supplementary material §D.
That approach is simpler, therefore the results hereafter follow the approach from electronic
supplementary material §D for simplicity and clarity.)

The correction in Eq. (5.3) is an a posteriori result, and it is accurate but not obvious how it
changes the pre-factor k2 = 16 into 14.05. Nevertheless, the strong, linear correlation between vNf
and β for the chosen parameters of interest is the key point.

(ii) Multiple-scale analysis and velocity correction

To better understand the linear correlation between vNf and β, an analytical approximation can be
obtained via a multiple-scale analysis of the harmonic wave [43]. However, when subject to the
current parameters (i.e., km = 4 as the most unstable mode), the linear instability poses difficulties
when using a standard travailing wave ansatz. We introduce the critical wave number kc so that
ℜ[Λ(kc)] = 0 ⇒ k2c = δα. The linear theory predicts that all k < kc are unstable. Thus, we assume
that the δα in the linear term is slightly larger than k2f , thereby making kf = 4 marginally unstable,
and also the unique unstable mode. In other words:

δα= k2f + e2κ, (5.4)

where e≪ 1 is small perturbation parameter and κ > 0 is independent of e. We first scale Eq. (3.14)
to a weakly nonlinear problem by introducing η= eY :

Yt +
(
k2f + e2κ

)
Yxx − βYxxx + Yxxxx = e

{
[(−δαYx + βYxx − Yxxx)Y]x + (δγY2

x)xx
}
. (5.5)
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Next, we introduce the traveling wave coordinate ξ = kx− ωpt of a harmonic wave, where ωp =
k3β by the linear dispersion relation. We assume that Y has a multiple-scale expansion of the form

Y =Y0(ξ, t2) + eY1(ξ, t2) + e2Y2(ξ, t2) +O(e3), (5.6)

where the slow time is t2 = e2t. By eliminating the secular term at O(e2) (see electronic
supplementary material §E for details), we obtain the leading-order solution

Y0 = 2a cos

(
kx− ωpt− k2

ℑ[Q]

ℜ[Q]
e2κt+ b0

)
, (5.7)

which gives the phase velocity with the multiple-scales correction as

vMS
f = βk2 +

ℑ[Q]

ℜ[Q]
ke2κ, (5.8)

where a=
√

κk2/ℜ[Q] is the equilibrium amplitude, b0 is an integration constant, and

Q=
[δα− iβk + (2δγ − 1)k2]

6k2 + 3iβk
[−δαk2 + 5iβk3 + (7 + 4δγ)k4]. (5.9)

Equation (5.8) predicts the propagation velocity of the traveling wave solution when kf = 4

is subjected to weak linear instability. The weak linear instability is important to emphasize in
this multiple-scales derivation because we assumed e2κ≪ 1. However, the results of this analysis
appear to hold even for stronger linear instability. As δα in the original formulation increases from
k2f = 16, e2κ increases correspondingly. In Fig. 3(a), we show two cases with δα= 18 (e2κ = 2) and
δα= 32 (e2κ = 16). For the weakly linearly unstable case (δα= 18), the propagation velocity vMS

f

predicted by the multi-scale expansion matches well with the nonlinear velocity vNf , with error
less than 0.5%. For stronger linear instability, i.e., δα= 32, vMS

f is still qualitatively corrected, but
the error is now less than 26% for smaller β, while the agreement improves for larger β, with the
error reducing to about 5%.

Another message obtained from Fig. 3 is that, even if the nonlinear propagation velocity vNf
shows a linear correlation with β, it is not necessarily linearly related to β due to the nonlinearities
of the PDE. However, this observation will not change the fact that such linear correlation enables
both vLf and vMS

f to be good predictors for the wave dynamics (and their possible control via the
imposed magnetic field). In this respect, another reason that vLf is a good quantitative prediction
is the lack of “inertia” in this system. In the classical model equations, such as the KS, KdV, and
Burgers, the ηηx term accounts for nonlinear advection, and thus the initial “mass” (

∫2π
0 η dx)

sets the velocity. In our system, the nonlinear terms have a similar effect, while the initial “mass”∫2π
0 η dx= 0 due to the definition of η as a periodic perturbation. Thus, the propagation velocity

is well predicted directly by the dispersion parameter β.

(b) Traveling wave profile
In addition to setting the propagation velocity, the coupling term β (as the source of asymmetry
of the magnetic traction force) also strongly affects the shape of the traveling wave. To explore the
shape change, as in [19], we introduce the skewness Sk and asymmetry As:

Sk(t) =
⟨η(x, t)3⟩

⟨η(x, t)2⟩3/2
, As(t) =

⟨H[η(x, t)]3⟩
⟨η(x, t)2⟩3/2

, (5.10)

where ⟨ · ⟩= 1
2π

∫2π
0 ( · ) dx, and H[ · ] is the Hilbert transform. Sk(t) quantifies the vertical

asymmetry of nonlinear surface water waves [44, 45], about the unperturbed interface, with
Sk > 0 corresponding to narrow crests and flat troughs (and vice versa for Sk < 0). Meanwhile,
As(t) quantifies the fore-aft asymmetry of a wave profile [44, 45], with As> 0 corresponding to
waves that “tilt forward” (in the direction of propagation).

Figure 3(b) shows the effect of β on the wave profile for km = 4 (i.e., for δα= 32). The
asymmetry is a concave function of β with a maximum around β ≈ 20. This implies the existence
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Figure 3. The dependence of (a) the propagation velocity, (b) the asymmetry and skewness on β for δα= 32 and γ

determined by Eq. (5.2), (c) example traveling wave profiles for β = 0, 10, 20, 40 for δα= 32. In (a), the “◦" denotes

the nonlinear velocity evaluated from the simulation; the dashed line fits the nonlinear velocity with slope “c", the solid line

marked with “+" is the velocity prediction from the multiple-scales expansion. Black sets represent results with δα= 32,

while red ones are from δα= 18.

Figure 4. (a) The propagating wave profile with km = 4, 5, . . . , 9, q= 0.01, with the initial perturbation wavenumber

k0 = 4, and β, γ determined by Eq. (3.12). (b) The corresponding asymmetry and skewness.

of an “optimum” magnetic field angle that allows tuning of the wave profile shape. For the
parameters used in Fig. 3(c), i.e., δα= 32 and β = 0, 10, 20, 40, correspondingly we have
q= 0, 3.9× 10−3, 0.015, 0.056, spanning two orders of magnitude of the magnetic field angle
parameter. For β = 0 (q= 0), the profile is symmetric, and we observe that even a small angle of
the magnetic field, breaks the fore-aft asymmetry of the wave profile. The skewness, on the other
hand, monotonically decreases with the angle, becoming negative beyond β ≈ 30.

Figure 4 shows how km (or, equivalently, α since δ is fixed) affects the wave profile. When the
initial perturbation wavenumber k0 = 4 is close to the most unstable mode km, the traveling wave
profile maintains the same period as the initial condition. For larger km, the wave profile exhibits
a sharper peak. This sharpening was also observed in [19, Fig. 3(b,c)], wherein the skewness
increases with km, and the profiles saturate for large values of km. In [19], the possibly unstable
evolution for km was not discussed, while the wave studied therein shows “wave breaking" for
large values of the dispersion parameter. Therefore, an open problem that can be addressed with
the present long-wave model is the “asymptotic" behavior of the steepening wave profile (As
and Sk) with km. This leads us to a new question: is the range of km that allows such period-
four waves bounded, or will the shape eventually become unstable (and/or “break”)? Or, we can
reframe the question as: given km, which states (period of the traveling wave) exist in this system?
What about their stability? In the next section, we perform numerical investigations to shed light
on these questions.
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Figure 5. The energy phase plane (E, Ė), showing dynamics in slices corresponding to most unstable wavenumbers

km ≈ 1, 2, 3, 4 (ρ= 5, 20, 45, 80) and, within each slice, the trajectories emerging from initial perturbations with

wavenumbers k0 = 1, 2, 3, 4, 5.

6. State transition and stability of traveling waves
The KS equation is well known for the chaotic behavior of its solutions. It has been thoroughly
investigated within the scope of instability and bifurcation theory [27, 46–48], yielding a wealth
of results on how different dynamical states can be “reached” from given initial data, and the
transition between such states. Specifically, as the ratio of coefficients of the second- and fourth-
order derivative terms (i.e., their relative importance, quantified by δα in our model (3.14))
increases, the KS equation’s steady profile exhibits more complexity and dynamical possibilities,
and finally the dynamics becomes chaotic. This feature can be understood intuitively from
Fig. 2(a), wherein higher δα allows a wider unstable band for the long waves in the system.

Considering some of the similarities between our long-wave equation (3.14) and the
generalized KS equation, a thorough examination of all the parametric dependencies of the wave
(including chaotic) dynamics is not of interest herein. Instead, we focus on showing that the
dissipative solitons emerging from perturbations in the linearly unstable band are fixed points
in an energy phase plane. Then, we analyze the state transitions via this phase plane, and explain
the stability of fixed points via the spectral stability of the wave profiles. It is noteworthy that,
this state transition process is a feature of systems having multi-mode wave solutions. The
multi-mode transition process is a generalization of the dynamics studied in the last section,
which focused on single-mode evolution. Finally, we highlight multiperiodic profiles analogous
to “double cnoidal waves” of the KdV equation.

(a) Fixed points in the energy phase plane
To reduce the parameter space exploration, in this section we fix q= 0.01, with q defined in
Eq. (5.1), and focus on the dynamics for different km only, by controlling the magnitude ρ=
5, 20, 45, 80. Recall that (as discussed at the beginning of §5) there are two independent physical
dimensionless groups (i.e., NBx and NBy), so that fixing q and ρ determines all other parameters
(i.e., α, which sets km, β, and γ). In this subsection, the energy phase plane (E , Ė) (see, e.g., [27])
will be used to identify the traveling wave solutions, which emerge as fixed points with finite E
and Ė = 0 (i.e., they are dissipative solitons).

The wavenumber range, k ∈ (0, kc], of linearly unstable modes can be obtained by solving
ℜ[Λ(kc)] = 0 to obtain kc =

√
2km. Figure 5 shows four slices of the energy phase plane at km =
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1, 2, 3, 4. The corresponding maximal linearly unstable modes have wavenumbers ⌊kc⌋= 1, 2, 4, 5.
As before, the initial condition is selected as a small-amplitude single-mode perturbation: η(x, t=
0) = 0.01 sin(k0x) with k0 = 1, 2, 3, 4, 5 as the initial wavenumbers. From the nonlinear growth
rate in Eq. (4.2b), we know that a nonlinear interaction exists only between harmonic modes nk0
(n∈ Z) when initializing with the single mode k0. These interacting modes will grow or decay
and finally become balanced harmonic components of the permanent traveling wave profile that
emerges.

The fundamental mode kf contains the highest energy, ηkf
η∗kf

, in the system. Physically, the
wave will exhibit a period-kf profile, or a “kf -state.” For a period-kf traveling profile, only the
harmonic modes nkf exist in the system. Therefore, the fixed points identified in Fig. 5 are of
different periods for a given km. In Fig. 5, k0 ̸= kf when k0 = 1, km = 3, 4.

For km = 1, only one initial mode, k0 = 1, is linearly unstable, so that an initial perturbation
with k0 > 1 will decay exponentially back to base state (flat interface). On the other hand, the
linearly unstable mode k0 = 1 will first grow, then saturate to a traveling wave profile, and thus
one fixed point can be identified in the (E , Ė) phase plane. Similarly, picking km = 2 allows two
linearly unstable modes, thus two fixed points in the energy phase plane. One fixed point is a
period-one state, and the other is a period-two state.

However, while four unstable modes exists for km = 3, only three fixed points are identified
with periods two, three and four. When initialized with k0 = 1, the period-one perturbation
evolves and converges to a period-two traveling wave, as can be seen from Fig. 5. Note that
k0 = 1 is a special case in terms of the nonlinear interaction. For k0 = 1, all normal modes in
the system are harmonic components, so that k= 2, 3, 4 will gain energy from k0 = 1 also. A
similar phenomenon can be observed in the km = 4 slice of the energy phase plane. The initial
perturbations with modes k0 = 2, 3, 4, 5 will evolve into states with corresponding kf = k0, while
k0 = 1 evolves into the period-three state.

Note that Fig. 5 shows only four slices at integer km, but km does not necessarily have to be an
integer (because it is set by the non-integer system parameter α via Eq. (4.3)). Thus, our discussion
only provides a representative view of the rich higher-dimensional dynamics. It is evident, from
the four slices in Fig. 5, that bifurcations of fixed points occur as the parameter km is varied.
The number of fixed points increases with km, or more accurately, with the number of linearly
unstable modes. Some fixed points move along the E axis with increasing km, such as the period-
two and period-three states, while some disappear, like the period-one state. This observation
partially answers the question of whether the number of traveling wave states will increase with
km, and whether for certain states there is a possibly bounded ranged of km allowing them.
However, what exactly is this bound for each state, or each km, is beyond of the scope of this
study. This question would be challenging, since as km increases, more and more linearly unstable
modes participate in the competition for setting the fundamental mode.

(b) Spectral stability of the traveling wave
The tendency of a system to prefer a narrow set of states out of many possible ones is known
as wavenumber selection [49, 50]. In this section, we study this phenomenon by addressing the
stability of these fixed points in the energy phase plane, focusing on the case of km = 4.

To this end, we perturb the traveling wave profile, and numerically track the evolution of the
perturbation via direct simulation of the PDE. We find that period-two and period-three states
behave like local attractors, while period-four and period-five states are saddle points. We verify
the type of the fixed points through spectral (in)stability analysis [51, 52]. Specifically, we rewrite
Eq. (3.14) in the moving frame with ζ = x− vf t, τ = t as:

ητ − vfηζ =−δαηζζ + βηζζζ − ηζζζζ + [(−δαηζ + βηζζ − ηζζζ)η]ζ + δ(γη2ζ )ζζ , (6.1)

with the propagation velocity vf calculated numerically. The perturbed traveling wave solution
is written as η(ζ, τ) =Ξ(ζ) + dW (ζ)eλτ , where Ξ(ζ) is the stationary solution of Eq. (6.1) (hence,
the traveling wave solution of Eq. (3.14)), and d≪ 1 is an arbitrary perturbation parameter.
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Substituting the perturbed η(ζ, τ) into Eq. (6.1), and neglecting nonlinear terms, we obtain a linear
eigenvalue problem

λW =LW, L :=

4∑
n=0

CnDn. (6.2)

Here, the Cn = Cn(D0Ξ, . . . ,D4Ξ, vf ) are vector-valued functions (see electronic supplementary
material §F for their expressions) of the traveling wave profile Ξ(ζ) and its gradients, and
the differentiation matrices Dn are discretizations of ∂n/∂ζn (D0 = I is the N ×N identity
matrix) evaluated by the Fourier spectral approach [40]. The eigenvalue problem in Eq. (6.2) is
solved numerically with linalg.eig from the NumPy stack in Python [53]. The spectrum was
validated via a grid-independence study using grids with N = 256, 512, and 1024 points.

Next, we use this numerical spectral stability approach to understand the state transitions and
the stability of fixed points in the energy phase plane introduced in §6(a).

(c) The state transition process
Figure 6(a,b) shows that the period-three and period-two fixed points, respectively, in the (E , Ė)
phase plane are attractors. Small perturbations about them will decay, and the evolution will
convergence back to the corresponding periodic traveling wave profiles. This observation can
be confirmed by the spectral stability calculation, its results shown in Fig. 6(f), which shows
that all eigenvalues have negative real part, except for the zero eigenvalue, which represents the
translational invariance of the traveling wave solution.

Figure 6. Stability diagram based on the energy phase plane. Perturbations around the attractors, corresponding to (a)

the period-three and (b) the period-two traveling wave solutions, converge. State transitions are observed near the saddle

points corresponding to (c) the period-five and (d) the period-four traveling wave profiles. The solid curves’ colors represent

initial perturbations with different wavenumbers, which lead to different dynamics (and outcomes). The wave profiles are

shown in (e), with the symbols in the corners of the plots denoting the corresponding fixed points in the phase planes in

(a,b,c,d). In (f), the leading eigenvalues of the linearization about the corresponding wave profile in (e) are shown.
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On the other hand, Fig. 6(c,d) show that the period-five and period-four fixed points,
respectively, are saddles. A small perturbation around the period-four fixed point will grow and
oscillate away, till the evolution converges to the period-three fixed point (an attractor), black
curve in Fig. 6(d). For a different perturbation, gray curve in Fig. 6(d), this process can lead to
convergence to the period-two attractor (see output_f4_p2.mp4 in the electronic supplemental
material for a video of this process). The perturbation evolution around the period-five fixed
point, black curve Fig. 6(c), is more interesting. It is featured by a two-stage transition process.
First, the perturbation will first oscillate and grow rapidly, attracted to the neighborhood of the
period-four fixed point. Then, it will oscillate away again, until finally converging to the period-
three attractor (see output_f5_p4.mp4 in the electronic supplemental material for a video of
this process). These saddle point behaviors can be confirmed from the linear eigenspectra shown
in Fig. 6(f) as well. The period-four profile has two pairs of conjugate eigenvalues with positive
real part, while the period-five profile has four pairs.

A closer examination of the state transition process is shown in Fig. 7 for three representative
perturbations around the period-five fixed point. Rapid oscillation of the modes’ energies can be
observed during the transition process, indicating intense nonlinear interactions. The space-time
plot shows a similar phase shift feature as seen during the collision of solitons [54], but the wave
profile is completely modified here. Figure 7(b) shows a one-stage transition due to a single-mode
perturbation dW (ζ) = 0.02 sin(kpζ), kp = 3. This mode’s energy |η3| increases exponentially,
overtakes the initial |η5| value and converges to the period-three attractor. Figure 7(a,c) show
a two-stage transition with single-mode perturbations kp = 1, 4, respectively. Figure 7(a) shows
higher level of oscillation than (c), since all modes are harmonics of kp = 1, and higher |η1| can be
observed for t∈ [0.05, 0.2]. The interaction between mode 5 and mode 1 (Fig. 7(a)) immediately
excites mode 4, and |η4| grows exponentially as the most unstable modes of the linear system.
This results in a similar transition process for kp = 1 and 4 in Fig. 7(a) and (c), respectively.

While such transition paths are complex and intriguing, we would like to emphasize the
existence of the transition depends on the spectral stability of the traveling wave profile itself,
which is interpreted as a saddle point or an attractor in the energy phase plane, and the transition
direction is determined by the perturbation W (ζ). After an immediate targeted transition,
whether another transition happens or not depends on the spectral stability of the subsequent
wave profile attained.

Another intriguing aspect of this topic is multi-mode perturbations to the unperturbed flat
interface, which is a more realistic situation that might arise in experiments, where the mode of
the ambient noise is hard to control in an experiment. The competition between all possible states
will finally select the observable pattern. Next we analyze this multi-mode case and provide an
explanation of the selection process leading to multiperiodic nonlinear traveling waves.

(d) Multiperiodic waves
An interesting observation from Fig. 7(a) is the coexistence of mode 1 and mode 4 during
the transition, exemplified by the oscillations about the period-four fixed point in the energy
phase plane shown in Fig. 6(c). The energy components of the wave profile are harmonics of
kf = 4, except the nontrivial |η1| ≈ |η8|. During the time interval t∈ [0.05, 0.2], the space-time
plot of wave profile evolution shows that a period-four wave is modulated by mode 1. This
coexistence lasts for a relatively long time (compared to the total transition time) until mode
3 ultimately becomes dominant. An even longer coexistence is found when perturbing the
period-four traveling profile with mode 2, as shown by the gray curve in Fig. 6(d), leading to a
period-four wave modulated by mode 2, as in Fig. 8(a) (see output_f4_p2.mp4 in the electronic
supplemental material for a video of this process). The interaction between mode 2 and mode 4
occurs for t∈ [0, 0.6], an interval twice longer than any complete transitions in Fig. 7.

These long-lived multiperiodic waves states, which we have identified numerically, can be
considered analogous to double cnoidal waves of the KdV equation. Double cnoidal waves are
the spatially periodic generalization of the well-known two-soliton solution of KdV [55]. They
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Figure 7. Fourier mode energy evolution (mode competition and nonlinear interaction) for a perturbed period-five

traveling wave subjected to harmonic perturbation with (a) kp = 1, (b) kp = 3, and (c) kp = 4. The top row shows the

corresponding space-time plot of the transition process with color representing the amplitude of the wave profile η.

can be considered as exact solutions with two independent phase velocities [56]. The evolution
of the phase velocities vp(k) of modes k= 2 and 4 (of the Fourier decomposition of η) are shown
in Fig. 8(b). The phase velocity of mode 2 experiences more intense oscillations than mode 4,
which can be seen also from Fig. 8(a). These oscillations are caused by the energy interaction
between even modes, and a low pass filter can be applied to evaluate a time-averaged phase
velocity for mode 2, shown as the black curve (the jump around t= 0 is a windowing effect).
It is surprising to see that while |η2|, the amplitude of mode 2, is growing slowly, its phase
velocity maintains around vp(k= 2)≈ 53.5, which is independent of vp(k= 4)≈ 218.1. Haupt
and Boyd [56] constructed double cnoidal solutions of KdV through a harmonic balance of lower
modes. On the other hand, the sharper peak of the quasi-double-cnoidal-waves in Fig. 8(c) shows
the importance of the balance among higher harmonic modes in our model KS-type long-wave
equation.

Figure 8. (a) Fourier modes energy interactions for a perturbed period-four traveling profile with perturbation dW (ζ) =

0.02 sin(2ζ). (b) The phase velocities of mode 4 and mode 2. The black solid line shows the filtered vp(k= 2). (c)

Space-time plot and the corresponding wave profiles of the transition during t∈ [0.65, 0.8], marked as the grey region in

(a) and (b).

The rapid transition during t∈ [0.65, 0.8] is characterized by “wave chasing" in the physical
domain. Mode 2 and mode 4 become comparable in Fourier energy, with mode 4 propagating
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faster than mode 2. Visually, this observation is similar to soliton collisions: when the peak of
mode 2 is caught by that of mode 4, an elevation can be observed and then a deperession as
they separate, shown in the wave profiles in Fig. 8(c) for t∈ [0.713, 0.72]. However, while soliton
collision (in the sense of Zabusky and Kruskal [54]) leave the wave profile and propagation
velocity unchanged, the “chasing" (and interaction) in current study results in the waves
ultimately merging into the period-two nonlinear traveling wave. The phase velocity of mode 4
dramatically decreases, and all modes in the system merge into a phase velocity vp ≈ 55.8, which
becomes the propagation velocity vf of the period-two traveling wave. It is interesting to note
that, in this process, the time-averaged propagation velocity of mode 2 barely changes, except
for the mitigation of the oscillations. This can be intuitively understood from the strong stability
of the period-two traveling wave profile, while a mathematical reason might emerge from the
singular limit of a double cnoidal wave (if it exists in this system).

In the end, this study answers one question posed in [19]: when the energy of higher modes
is dominant, this confined ferrofluid system can accommodate multiperiodic traveling waves,
resembling a long-lasting, but non-integrable, double cnoidal wave field. When the energy of
the two component modes becomes comparable, a rapid transition happens and the modulated
propagating wave profile saturates to its envelope. In a sense, this means that these periodic
nonlinear waves lose their shapes upon “collision." However, it would be interesting to ask if a
localized solitary wave also exists for our model equation, and to address what would happen
during the localized waves’ collisions.

7. Conclusion
The dynamics of long, small-amplitude nonlinear waves on the interface of a thin ferrofluid film
was analyzed for the configuration of a horizontal Hele-Shaw flow subjected to a tilted magnetic
field. We showed that such ferrofluid interfaces support periodic traveling waves governed by
a modified KS-type equation, which we derived. A linear stability analysis and a nonlinear
energy budget were employed to reveal that the balance between stabilizing surface tension
forces (energy sink/loss) and destabilizing magnetic forces (energy source/gain) leads to the
generation of dissipative solitons on the ferrofluid interface. The effect of key parameters was
investigated, and the corresponding magnetic field configurations were discussed. Our results
lead to quantitative understanding of these nonlinear periodic traveling wave profiles, and how
interfacial waves can be generated and controlled (specifically, their propagation velocity and
shape) non-invasively by an external magnetic field. A multiple-scale analysis provides the
correction a weakly nonlinear correction to the propagation velocity of harmonic waves. This
calculation also reveals how the marginally unstable linear solution is equilibrated by the weak
nonlinearity and tends to the permanent traveling wave solution. At the same time, the model
equation (3.14) features a variety of interesting novel nonlinearities that could open avenues of
future mathematical research.

In this respect, we identified the allowed wave states (specifically, their spatial periods), which
bifurcate as the most unstable linear mode km is varied, as fixed points in an energy phase plane,
using the dissipative soliton concept [26]. State transitions are observed when some traveling
wave profiles are perturbed, depending on their spectral stability, and the transition “direction”
(towards another fixed point in the energy phase plane) is determined by the perturbation. It
would be of interest to realize the obtained traveling wave profiles (and their transition dynamics)
in laboratory experiments. The wave selection process with multi-mode perturbations poses a
challenge in that the initial perturbation must be carefully controlled, especially for the spectrally
unstable profiles.

Another novel feature of this study is that multiperiodic nonlinear waves (akin to the double
cnoidal wave of the KdV equation) were found numerically in the context of a (non-integrable)
long-wave equation of the modified KS type. Perturbations of spectrally stable modes interact
intensely with their harmonics, which are already present as part of the original spectrally
unstable traveling wave profile. Such interactions are long-lived, until an abrupt transition
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to a final stable traveling wave occurs. As mentioned in §6(d), we were unable to construct
perturbative solutions in the sense of the double cnoidal waves [56], therefore a complete
mathematical explanation of these multiperiodic nonlinear wave dynamics (and the transitions
between them) remains an open problem to be addressed in future work. Finally, it would also be
of interest to derive a 2D version of our model long-wave equation, and the dynamics it governs
could be compared and contrasted to recent work on the 2D KS equation [27].
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Supplementary Appendices for
“Long-wave equation for a confined ferrofluid interface:

Periodic interfacial waves as dissipative solitons”

by Zongxin Yu and Ivan C. Christov

A. The constants Bn

The expressions for the constants in Eq. (3.7b) in the main text are:

B1 = 2ε[−NBy(1 + χ) + NBx]− 2ε2[(1 + χ)NBy + 3NBx], (A.1a)

B2 = 2χ
√

NBxNBy, (A.1b)

B3 = χ[NBy(1 + 2ε)−NBx(1− 2ε) + (NBy − 3NBx)ε
2], (A.1c)

B4 = ε2[(1 + χ)NBy + 3NBx]. (A.1d)

B. The long wave equation with ε=O(δ)
Setting ε= δ and performing the same re-scaling as given in Eq. (3.13) in the main text, the
interface evolution Eq. (3.11) for ε=O(δ) reads:

ηt = (−α− δϑ)ηxx + βηxxx − ηxxxx + {[(−α− 2δϑ)ηx + βηxx − ηxxx]η}x + δγ(η2x)xx. (B.1)

Observe that, whether ε=O(δ) or ε=O(δ2), the resulting nonlinear evolution equation has a
similar structure, since terms multiplied by δϑ are small in comparison with the dominant α
terms in Eq. (B.1) (α≈ ϑ in the small-NBx regime within the scope of this study).

The main difference between the two scalings is the magnitude of individual terms, e.g., terms
multiplied by α in Eq. (B.1) can be compared to those multiplied by δα in Eq. (3.14). In this study,
we are interested in traveling wave solutions, so that the coefficients α in Eq. (B.1) (and δα in
Eq. (3.14)) are kept within a certain range. Therefore, since α, β and γ are expressed in terms of
NBx and NBy (via Eq. (3.12)), then the different ranges for α in Eq. (B.1) and Eq. (3.14) necessarily
leads to different ranges for β and γ in these equations (for given NBx and NBy).

For example, in Eq. (3.14), the periodic wave with km = 4 requires α= 320 in Eq. (3.14) and α=

32 in Eq. (B.1). If we stay within the small tilt angle assumption, i.e., q= 0.01 according to Eq. (5.2),
then to maintain similar stability, the system where ε=O(δ2) requires a stronger magnetic field,
i.e., ρ|ε=O(δ2) = (1/δ)ρ|ε=O(δ). Correspondingly, β|ε=O(δ2) ≈ 16.1, while β|ε=O(δ) ≈ 16.1δ. That
means Eq. (B.1) is subjected to weaker dispersion, if we require that the base states under Eq. (3.14)
and Eq. (B.1) both have the same linear stability properties.

C. Grid convergence and time step refinement
A grid convergence study with three levels of the grid resolution was conducted to validate the
pseudospectral method with ETDRK4 time stepping introduced in §4(c) for our model PDE (3.14).
In this appendix, we demonstrate the grid convergence for the period-period traveling wave at
km = 4, which is the most frequently discussed case in the main text. Figure 9(a) shows that the
energy of harmonic modes decays with the wavenumber, and “piling up" occurs near the “tail”
on the grids with N = 512 and N = 1024. This phenomenon is due to hitting the limit of double
precision floating point arithmetic, which is indicative of spectral convergence. Additionally, the
results on the grid with N = 512 match well with those of N = 1024. Actually, the grid with N =

256 also provides a satisfactory result for the large scales (k ∈ [4, 128]) but the grid with N = 512

can resolve smaller scales better. Therefore, Fig. 9(a) supports our decision to use N = 512 for our
simulations in the main text.
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Figure 9. (a) Spectral energy of harmonic modes (k= k0, 2k0, 3k0, . . ., connected as a curve to “guide the eye”) for

the period-four traveling wave with k0 = 4 at km = 4, q= 0.01, and ∆t= 5× 10−8. (b) The numerically computed

dissipation rate error ĖN decreases with time step refinement for the same physical parameters as (a) and N = 512.

When the traveling wave solution is obtained, the energy change rate is supposed to reach
a steady state, i.e., Ė = 0, and the right-hand side of Eq. (4.5) vanishes as well. However, due to
the numerical truncation, the sum of all the energy production/dissipation terms on the right-
hand side actually changes with the time step ∆t. Specifically, denote as ĖN = Ė −

∫2π
0 δαη2x −

η2xx + δαη2xη +
1
2βη

3
x − ηη2xx dx the error in the numerically computed dissipation rate. Four time

steps ∆t= 5× 10−5, 5× 10−6, 5× 10−7, 5× 10−8 were considered for verification, and all give
qualitatively consistent results. It is noteworthy that the time step spans two orders of magnitude,
while the ETDRK4 scheme is still stable for this fourth-order stiff PDE. The dissipation rate error
ĖN is shown in Fig. 9(b), and it exhibits fourth-order convergence with respect to ∆t. Since time-
step-convergence has been demonstrated, for this study (and the results in the main text), we use
the intermediate time step size ∆t= 5× 10−8, which commits a dissipation rate error of ĖN =

1.91× 10−9, as a compromise between numerical accuracy and computational cost.

D. Propagation velocity calculation from simulation
The Fourier modes comprising the nonlinear traveling wave profile are given by ηnk(t) =

cne
−inω(k)t, with constant cn ∈C that account for their relative phases. The phase ψ(t; k) =

∠ηnk =∠cn − nω(k)t can be computed trough a Fourier transform, as shown in Fig. 10(a).
Its rate of change, −dψ/dt= nω(k), is shown in Fig. 10(b). The phase velocity vp = nω(k)/nk

becomes independent of k when the permanent traveling wave solution is attained upon
nonlinear saturation of the unstable small-perturbation initial condition. In other words, all
modes propagate at the same velocity, as shown in Fig. 10(c), in the final state. The mean
final phase velocities of first five harmonics are used to evaluate the propagation velocity as
vf = 1

5

∑5
n=1 vp(nk). Note that this approach can only be applied for the permanent traveling

wave solution; the initial transition time period in Fig. 10 (before the permanent profile is attained)
is a meaningless transient.

E. Propagation velocity via multiple-scale analysis
In this appendix, we perform a multiple-scale analysis of harmonic wave propagation, following
the approach outlined by Kevorkian and Cole [43, Ch. 6]. Introducing the slow time and traveling
wave coordinate ξ = kx− ωpt as in the main text, we obtain the following transformations of
partial derivatives:

∂t =−ωp∂ξ + e2∂t2 , ∂x = ∂ξ. (E.1)

Next, substituting the derivative transformations from Eq. (E.1) and the dependent variable
expansion from Eq. (5.6) into the weakly nonlinear equation (5.5) gives rise to a series of problems
at each order of e≪ 1.
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Figure 10. (a) Evolution of the modes’ phases computed via a Fourier transform. (b) The time-rate-of-change of the

phases. (c) Evolution of the phase velocities of the first five harmonic modes.

• O(1) :
Denoting the linear operator as L, the leading-order equation is given as:

L[Y0] =
(
−ωp∂ξ + k2fk

2∂2ξ − βk3∂3ξ + k4∂4ξ

)
Y0 = 0. (E.2)

In this study, we are interested in the phase velocity of a single harmonic wave with wavenumber
k, which is also subjected to weak linear instability if κ > 0. So, we set kf = k and ωp = k3β. Then,
the general solution of Eq. (E.2) is

Y0(ξ, t2) =A0(t2)e
iξ + c.c., (E.3)

where c.c. stands for complex conjugate.

• O(e) :
At this order, we obtain an inhomogeneous PDE:

L[Y1] =
[
(−δαY0,ξ + βY0,ξξ − Y0,ξξξ)Y0

]
ξ
+ δ(γY2

0,ξ)ξξ. (E.4)

Substituting Eq. (E.3) into Eq. (E.4) we have:

L[Y1] = 2[δαk2 − iβk3 + (2δγ − 1)k4]A2
0e

2iξ + c.c. (E.5)

The general solution of this PDE, denoted Y1, can be written as

Y1(ξ, t2) =A1(t2)e
iξ +A1p(t2)e

i2ξ + c.c., (E.6)

where Y1p =A1pe
i2ξ + c.c. is the particular solution. Substituting Y1p into Eq. (E.5), we obtain

A1p = pA2
0, with p=

[δα− iβk + (2δγ − 1)k2]

6k2 + 3iβk
. (E.7)

• O(e2) :
At this order we obtain

L[Y2] =−(Y0,t2 + κk2Y0,ξξ)

−δαk2(Y1,ξξY0 + Y0,ξξY1 + 2Y1,ξY0,ξ)

+βk3(Y1,ξξξY0 + Y0,ξξξY1 + Y1,ξξY0,ξ + Y0,ξξY1,ξ)

−k4(Y1,ξξξξY0 + Y0,ξξξξY1 + Y1,ξξξY0,ξ + Y0,ξξξY1,ξ)

+2δγk4(Y1,ξξξY0,ξ + Y0,ξξξY1,ξ + 2Y1,ξξY0,ξξ)

(E.8)
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Substituting the previously obtained solutions Y0 and Y1 into Eq. (E.8), we have

L[Y2] =− (A0,t2 − κk2A0)e
iξ

+ d0A1A
∗
0 + d1A1pA

∗
0e

iξ + d2A1A0e
2iξ + d3A1pA0e

3iξ + c.c,
(E.9)

where di are complex constant coefficients. We are only concerned with d1 = [δαk2 − 5iβk3 −
(7 + 4δγ)k4].

To eliminate the secular term in Eq. (E.9), we require that

−(A0,t2 − κk2A0) + d1A1pA
∗
0 = 0, (E.10)

which gives rise to the amplitude equation

A0,t2 = κk2A0 −Q|A0|2A0, (E.11)

which is known as the Landau equation, with Q=−d1p. Let A0 = aeib, where a and b are real
numbers. Then, the balance of the real and imaginary parts of Eq. (E.11) gives:

da

dt2
= κk2a−ℜ[Q]a3, (E.12)

db

dt2
=−ℑ[Q]a2. (E.13)

If ℜ[Q]> 0, which is true after substituting the simulation parameters, three fixed point can be
identified, with a= 0 being an unstable equilibrium point and a=±

√
κk2/ℜ[Q] being stable.

The long-time behavior, as t2 →∞, is that a converges to these equilibrium points, and

b(t2)∼−ℑ[Q]
κk2

ℜ[Q]
t2 + b0 as t2 →∞. (E.14)

Recall that Y0(ξ, t2) =A0(t2)e
iξ + c.c.= a(t2)e

i(ξ+b(t2)) + c.c.= 2a(t2) cos
(
ξ + b(t2)

)
, with t2 =

e2t, then the solution at the leading order can be obtained as Eq. (5.7).

F. The functions Cn in the linear operator
The functions arising in the linear operator L in Eq. (6.2) in the main text are:

C0 = δαΞζζ + βΞζζζ − Ξζζζζ , C1 = vf + 2δαΞζ + βΞζζ − Ξζζζ + 2δγ,

C2 = δα(1 + Ξ) + βΞζ + 4δγΞζζ , C3 = β(1 + Ξ)− Ξζ + 2δγΞζ , C4 =−(1 + Ξ).
(F.1)
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