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Abstract

We present a high-order radial basis function finite difference (RBF-FD) framework for the solution of
advection-diffusion equations on time-varying domains. Our framework is based on a generalization of the
recently developed Overlapped RBF-FD method that utilizes a novel automatic procedure for computing
RBF-FD weights on stencils in variable-sized regions around stencil centers. This procedure eliminates the
overlap parameter δ, thereby enabling tuning-free assembly of RBF-FD differentiation matrices on moving
domains. In addition, our framework utilizes a simple and efficient procedure for updating differentiation
matrices on moving domains tiled by node sets of time-varying cardinality. Finally, advection-diffusion in
time-varying domains is handled through a combination of rapid node set modification, a new high-order
semi-Lagrangian method that utilizes the new tuning-free overlapped RBF-FD method, and a high-order
time-integration method. The resulting framework has no tuning parameters and has O(N logN) time
complexity. We demonstrate high-orders of convergence for advection-diffusion equations on time-varying
2D and 3D domains for both small and large Peclet numbers. We also present timings that verify our
complexity estimates. Finally, we utilize our method to solve a coupled 3D problem motivated by models of
platelet aggregation and coagulation, once again demonstrating high-order convergence rates on a moving
domain.

Keywords: Radial basis function; high-order method; meshfree; advection-diffusion; RBF-FD;
semi-Lagrangian.

1. Introduction

Collocation methods based on radial basis functions (RBFs) have been increasingly popular for numerically
solving partial differential equations (PDEs), due to their high-order convergence rates and their ability to
naturally handle scattered node layouts on arbitrary domains. RBF interpolants can be used to generate
both pseudospectral (RBF-PS) and finite-difference (RBF-FD) methods [2, 6, 15, 23, 24, 67]. RBF-based
methods are also easily applied to the solution of PDEs on node sets that are not unisolvent for polynomials,
such as ones lying on the sphere S2 [25–28] and other general surfaces [29, 36, 46, 47, 55].

The focus of this paper is on advection-diffusion problems on domains Ω(t) with boundary conditions enforced
at time-varying internal embedded boundaries and a fixed outer boundary. This can be modeled by the

∗Corresponding Author
Email addresses: shankar@cs.utah.edu (Varun Shankar), gradywright@boisestate.edu (Grady B. Wright),

fogelson@math.utah.edu (Aaron L. Fogelson)

Preprint submitted to JCP August 14, 2021



following equations:

∂c

∂t
+ u · ∇c = ν∆c+ f(x, t),x ∈ Ω(t), (1)

α(x, t)n · ∇c+ β(x, t)c = g(x, t),x ∈ ∂Ω(t), (2)

where c(x, t) is a scalar quantity being transported in the incompressible velocity field u(x, t), ν is the
diffusion coefficient, α and β are functions that determine boundary conditions (linear in this article), n
are the unit outward normals to the domain, and g(x, t) is either a prescribed or numerically computed
boundary condition. Our interest in the above equations stems from their application in the modeling and
simulation of platelet aggregation and coagulation [37–39]. Broadly speaking, numerical methods to solve
such systems can be divided into three categories: (a) Eulerian methods (b) Lagrangian methods and (c)
semi-Lagrangian (SL) methods.

There is extensive literature on Eulerian finite difference (FD) or finite volume (FV) methods for solving
PDEs along with boundary conditions on fixed irregular surfaces embedded in the computational domain.
Such methods (most of which are designed for Cartesian grids) are mainly of two types. The first type involves
augmenting the FD/FV scheme to enforce boundary conditions at the irregular boundary. This could be
done via spreading and restriction as in the immersed boundary (IB) method [43–45], or via adding unknowns
to the system to force the PDE to satisfy boundary conditions (at the irregular embedded boundaries) as
in the wide class of forcing methods [31, 34, 42, 54, 69], the ghost cell method [14, 30], and the more recent
immersed boundary smooth extension method [62, 63]. In contrast, the second type involves modifying
FD/FV stencils near the boundary, such as in the original direct forcing method [19], the immersed interface
method (IIM) [40], the embedded boundary method (EBM) [33], the sharp interface method [65, 70], and
the capacity function finite volume method [13]. Finally, to tackle moving boundaries outside the original
IB framework, a common approach involves converting the moving-boundary problem into a series of fixed-
boundary problems each solved by one of the above approaches (e.g., see [41]). Such methods typically
require an additional spatial extrapolation step to fill newly-uncovered grid points as the domain boundary
moves. For all these types of Eulerian methods, obtaining a stable, high-order discretization in space and
time can be challenging both due to the presence of a background Cartesian grid and the need for spatial
extrapolation to fill newly-uncovered grid points.

In contrast to Eulerian methods that use a fixed background grid, Lagrangian methods involve populating
the moving domain with a set of marker particles that move with the velocity field u. In this case, the
advection term is handled without any difficulty. However, to discretize the diffusion term, one of the
following approaches can be used: (a) interpolate quantities to a fixed background grid and discretize the
PDE there like in the material point method (MPM) [32]; (b) discretize the diffusion term directly on the
distorted Lagrangian grid as in smoothed particle hydrodynamics (SPH) [64]); or (c) some variation on the
weighted particle method [17] (sometimes called the particle strength exchange method). In all cases, it may
be necessary to introduce some form of Lagrangian particle rearrangement to improve spatial resolution and
convergence rates [12]. Alternatively, it is possible to reformulate the PDE using the Feynman-Kac formula
so that the diffusion term is also handled in a Lagrangian fashion [10, 11, 21].

Semi-Lagrangian (SL) methods are Eulerian methods that use fictitious Lagrangian particles to determine
the numerical domain of dependence. We focus on the class of backward SL methods, which have found wide
application to problems in fluid dynamics, climate modeling, and numerical weather prediction [58–61, 68].
For a pure advection equation, these methods assume that Lagrangian marker particles have arrived at every
time-step on an Eulerian grid (or more generally node set). By tracing these particles backward through
the velocity field (and to a previous time level), determining their departure positions, and interpolating
the solution to those departure positions from the fixed Eulerian node set, one can determine how much
material was advected to a given Eulerian location. Solving an advection-diffusion problem then amounts
to using an appropriate splitting scheme. The advantage of this method is that the diffusion operator is
always discretized on the Eulerian grid. In addition, when solving problems with moving boundaries, the SL
framework obviates the need for any spatial extrapolation.

The numerical method presented in this paper relies on the SL framework for precisely these reasons. While
RBF methods have been used within the SL framework before, these either were global RBF methods [35],
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methods that relied on Voronoi cells [7], or localized RBF methods designed specifically for the sphere [53].
Our new method is based on a generalization of the overlapped RBF-FD method [49, 50, 52, 57], and
therefore allows the use of scattered or quasi-uniform nodes in place of a background Cartesian grid, allowing
for arbitrary outer boundaries. The time-varying nature of the domain is handled by enabling or disabling
pre-existing background nodes contained by the moving boundaries (and in a small neighborhood around
them). To facilitate this node set adaptation, we represent the moving boundaries using a high-order accurate
parametric model built from Lagrangian markers. In this way, our node sets always conform to the time-
varying domain, unlike the Eulerian methods discussed above. This technique allows efficient updates to
differentiation matrices and necessitates recalculation of overlapped RBF-FD weights only in neighborhoods
around the moving boundaries. The resulting meshless method allows for high orders of spatial and temporal
convergence, does not require spatial extrapolation, and is of quasi-linear computational complexity.

The remainder of the paper is organized as follows. In Section 2, we present our generalization of the
overlapped RBF-FD method that removes tuning parameters. In Section 3, we present and describe our
overall numerical method in Algorithm 2, complete with error estimates and parameter choices. We present
a simple and efficient preconditioner in Section 4, which we then use to solve the time-varying sparse linear
system resulting from our numerical method. We conduct a thorough complexity analysis of Algorithm 2 in
Section 5. Then, in Section 6, we present 2D and 3D convergence tests on problems with moving embedded
boundaries for a range of Peclet numbers. Finally, in Section 7, we present an application of our method to a
3D coupled problem with time-varying boundary conditions on a moving domain inspired by mathematical
models of platelet aggregation and coagulation. We conclude with a summary and comments on future work
in Section 8.

2. An automatic overlapped RBF-FD method

We now present a generalization of the overlapped RBF-FD method that eliminates the overlap parameter
δ, and instead automatically computes, tests, and retains/discards candidate weights on a given stencil. Our
approach for automation is to use two stability indicators to indicate whether a set of computed weights is
of sufficient quality. In the discussion that follows, we will primarily focus on the new method, remarking
on the older version presented in [49, 50, 52] as needed.

Let X = {xk}Nk=1 be a global set of nodes on a domain Ω ⊂ Rd. Define the stencil Pk to be the set of nodes
containing node xIk1 and its n− 1 nearest neighbors {xIk2 , . . . ,xIkn}; here, {Ik1 , . . . , Ikn} are indices that map

into the global node set X and Ik1 = k. Without loss of generality, we focus on the stencil P1. Let 1 ≤ p1 ≤ n
be the number of points on this stencil for which we wish to compute RBF-FD weights. Further, define R1

to be the global indices of these p1 nodes so that

R1 = {R1
1,R1

2, . . . ,R1
p1
}. (3)

Next, let B1 be the ball containing the nodes whose indices are in R1. Thus,

B1 = {xR1
1
, . . . ,xR1

p1
}. (4)

We discuss how to obtain B1 and R1 in Section 2.2. First, in Section 2.1, we describe how to compute
RBF-FD weights for all the nodes in the ball B1.

2.1. Computing weights

The weights for all the nodes in B1 with indices in R1 are computed using the following augmented local
RBF interpolant on P1:

s1(x,y) =

n∑
j=1

w1
j (y)‖x− xI1

j
‖m +

M∑
i=1

λ1
i (y)ψ1

i (x), (5)
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where ‖x − xI1
j
‖m is the polyharmonic spline (PHS) RBF of degree m (m is odd), and {ψ1

i (x)} form a

basis for the space of polynomials of total degree degree ` in d dimensions so that M =
(
`+d
d

)
; common

choices for these include monomials [50] or orthogonal polynomials [52]. In this work, we select the ψ1
i (x)

functions to be Legendre polynomials. The n overlapped RBF-FD weights associated with the point y are
w1
j (y), j = 1, . . . , n. We compute the weights for the linear operator L uniquely at all nodes in B1 with

indices in the set R1 by imposing the following two (sets of) conditions on (5):

s1|x∈P1,y∈B1
= L‖x− xI1

j
‖m
∣∣∣
x∈B1

, j = 1, . . . , n, (6)

n∑
j=1

w1
j (y)ψ1

i (x)
∣∣
x∈P1,y∈B1

= Lψ1
i (x)

∣∣
x∈B1

, i = 1, . . . ,M. (7)

These conditions enforce that the weights are exact for both L applied to the PHS RBF and to the polynomial
basis. In this work, we use the heuristic n = 2M+1 [23, 24, 49, 50]; however, larger stencil sizes can sometimes
be beneficial [4]. The constraints (6)–(7) for determining the weights in (5) can be collected into the following
block linear system: [

A1 Ψ1

ΨT
1 0

] [
W1

Wψ
1

]
=

[
BA1

BΨ1

]
, (8)

where

(A1)ij = ‖xI1
i
− xI1

j
‖m, i, j = 1, . . . , n, (9)

(Ψ1)ij = ψ1
j (xI1

i
), i = 1, . . . , n, j = 1, . . . ,M, (10)

(BA1
)ij = L‖x− xI1

i
‖m
∣∣∣
x=xR1

j

, i = 1, . . . , n, j = 1, . . . , p1, (11)

(BΨ1
)ij = Lψ1

i (x)
∣∣
x=xR1

j

, i = 1, . . . ,M, j = 1, . . . , p1. (12)

W1 is the matrix of overlapped RBF-FD weights, with each column containing the RBF-FD weights for a
point x ∈ B1. It is also notationally useful to refer to the column of W1 associated with the point y as
W1(y). The linear system (8) has a unique solution if the nodes in P1 are distinct and Ψ1 has full column

rank [22, 66]. The matrix of polynomial coefficients Wψ
1 enforces the polynomial reproduction constraint

(7). This constraint ensures that the local approximation error is bounded by O
(
h`+1−θ), where θ is the

order of the differential operator L, and h is the largest distance between the point at which the weights are
computed and every other point in the stencil [16].

2.2. Automatically determining R1 and B1

In previous versions of the overlapped RBF-FD method, the set R1 and the ball B1 were determined by
defining a overlap parameter δ ∈ (0, 1] such that all nodes within a distance (1 − δ)ρ1 from the center lay
within the ball B1, where ρ1 = max

1≤j≤n
‖xI1

1
− xI1

j
‖. As such an approach requires tuning δ, in this work, we

present an automatic approach to determine the sets R1 and B1. This new approach uses a pair of stability
indicators to determine whether a set of computed weights is of sufficient quality. In the discussion that
follows, we continue to use y to refer to the point at which weights w1(y) are computed, and x to refer to
points comprising the stencils.

2.2.1. The local L-Lebesgue function indicator

As described in [49] and noted in [3, 5], local L-Lebesgue functions play a key role in assessing the suitability
of a set of RBF-FD weights. Large values of the local L-Lebesgue function can lead to spurious eigenvalues
in the differentiation matrix corresponding to L. This fact was used to develop a stability indicator for the
overlapped RBF-FD method in [49] which was used to discard unsuitable weights on a given stencil. Recall
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that xI1
1

and its n− 1 neighbors form the stencil P1. Then, letting y1 = xI1
1
, one can define the L-Lebesgue

function at x1 as the `1-norm of the weight vector at that point:

ΛL(y) = ‖W1(y)‖1, (13)

where W1(y) = w1(y) refers to the column of W1 corresponding to the point y. We can now define a set
B11 as:

B11 = {y ∈ P1 | ΛL(y) ≤ ΛL(y1)}, (14)

i.e., the set of all points in P1 where the L-Lebesgue function takes on values smaller than at the stencil
center y1. In [49], the RBF-FD weights from lower-order methods were computed by solving (8) (with the
right hand side determined by the overlap parameter), but were tested (and if necessary, discarded) using
the L-Lebesgue stability indicator. In this work, we do not use the overlap parameter, but instead directly
compute RBF-FD weights for every y ∈ P1, and assess their suitability using the L-Lebesgue function at
that point. This process is repeated on every stencil.

2.2.2. An oscillation indicator

All RBFs have an associated reproducing kernel Hilbert space called the native space [22]. The native
space semi-norm of an RBF interpolant formed from PHS RBFs is a measure of how much the interpolant
oscillates [7]. In the standard interpolation setting (rather than the RBF-FD setting), PHS RBF interpolants
with RBF interpolation matrix A and RBF coefficient vector c have a native space semi-norm of |cTAc| [7].
We now define an analogous oscillation indicator for the RBF-FD context on the stencil P1 for the interpolant
s1(x,y) as:

S(y)|y∈P1
=

∣∣∣∣[W1(y)T
(
Wψ

1 (y)
)T] [A1 Ψ1

ΨT
1 O

] [
W1(y)

Wψ
1 (y)

]∣∣∣∣ . (15)

This quantity serves as a second stability indicator for the overlapped RBF-FD method. We use it to define
a set B12 (analogous to B11):

B12 = {y ∈ P1 | S(y) ≤ S(y1)}. (16)

While [49] found that the L-Lebesgue indicator is sufficient for low-order methods, we found that the above
oscillation indicator was vital for stability in high-order methods. To better understand this indicator, we
can multiply out the matrix and vectors in (15) to obtain:

S(y)|y∈P1
=

∣∣∣∣W1(y)TBA1
+
(
Wψ

1 (y)
)T

BΨ1

∣∣∣∣ , (17)

where BA1 and BΨ1 are evaluations of L applied to the basis functions. Since application of W1(y)T

corresponds to approximating the action of L, this indicator can be thought of as measuring the magnitude
of higher-order derivatives of the basis functions (RBFs and polynomials) as approximated by computed
RBF-FD weights. While theoretical justification for this indicator is lacking, our experiments indicate that
this indicator works well in conjunction with the L-Lebesgue indicator.

2.2.3. Parameter-Free Assembly

Once both stability indicators are used to define the sets B11 and B12, we can now define a single set B1 of
points whose weights are acceptable from the stencil P1 as:

B1 = B11 ∩ B12, (18)

i.e., the set of nodes for which we deem the RBF-FD weights as suitable is the intersection of the sets of
nodes which pass both stability indicator tests. It is also useful to obtain the global indices of the points
each ball B1:

R1 = {R1
1,R1

2, . . . ,R1
p1
}, (19)
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Figure 1: A visualization of (14) (left column) and (16) (right column) for a stencil used to compute RBF-FD weights for
the Laplacian on the unit disk (N = 4975 nodes) with two embedded ellipses given by (53) and (54). The colors show the
function values pointwise, while the crosses indicate the points that have been selected by the indicator. The top row shows
both indicators for ξ = 2, a second order method, and the bottom row shows the indicators for ξ = 6, a sixth-order method.

where p1 = |B1|. Note that with the definition of the sets Bk, the stencil centers yk = xIk1 will automatically
pass our stability tests, and an assembly algorithm based on the stencil centers is guaranteed to converge in
that every point x ∈ X is guaranteed to receive a set of RBF-FD weights. The indicators (14) and (16) are
both visualized in Figure 1.

In practice, even for irregular nodes, we find that the number of stencils Ns can be much smaller than the
number of nodes N . In addition, we find that the order θ of the differential operator L can influence the
number of stencils, with higher-order operators leading to fewer stencils. This is likely due to the fact that
our formula for the stencil size n depends indirectly on θ, and also due to the fact that larger stencils result
in better behaved RBF-FD weights [49]. The full process for assembling the sparse differentiation matrix
using the indicators (14) and (16) is described in Algorithm 1. The new algorithm no longer requires an
overlap parameter, and is therefore much more robust to irregularities in node sets. More importantly, if
the node sets are changing in time (as they do in the present study), this approach obviates the need for
hand-tuning.

3. A high-order meshless framework for advection-diffusion equations

We now present a high-order semi-Lagrangian meshless method that takes advantage of the parameter-free
overlapped RBF-FD formulation given in Algorithm 1. Our complete method is outlined in Algorithm 2.
Algorithm 2 references several other algorithms and sections in this work, which will be explained later in
the text. Also, since the overall framework uses a multistep method, it is important to appropriately modify
the algorithm for the first two steps; we do this by using single steps of lower-order multistep methods. This
section is organized as follows: first, we explain the overarching semi-Lagrangian (SL) ghost node method in
Section 3.1. Then, in Section 3.2, we describe the underlying node adaption algorithm used to tackle moving
embedded boundaries. Next, in Section 3.3, we explain how to use Algorithm 1 to generate overlapped local
RBF interpolation stencils for use within the SL ghost node method. Parameters and error estimates are
described in Section 3.5. The preconditioner on step 16 of Algorithm 1 is described in Section 4.1. We defer
a full complexity analysis of the algorithm to Section 5.
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Algorithm 1 Automatic Differentiation matrix assembly

Given: X = {xk}Nk=1, the set of nodes in the domain.
Given: L, the linear differential operator to be approximated.
Given: n << N , the stencil size.
Generate: L, the N ×N differentiation matrix approximating L on the set X.
Generate: Ns, the number of stencils.

1: Build a k-d tree on the set X in O(N logN) operations.
2: Initialize g, an array of N flags set to 0.
3: Initialize the stencil counter, Ns = 0.
4: for k = 1, N do
5: if g(k) == 0 then
6: Use k-d tree to determine {xIk1 , . . . ,xIkn}. Here, Ik1 = k.

7: Use (8) to compute Wk, the n× n matrix of RBF-FD weights on the full stencil P1.
8: Find the set Bk using (14) and (16).
9: Also find the set Rk by keeping track of global indices of elements of Bk.

10: for i = 1, n do
11: if xRk

i
/∈ Bk then

12: CONTINUE.
13: end if
14: Set g

(
Rki
)

= 1.
15: for j = 1, n do
16: Set L

(
Rki , Ikj

)
= Wk(j, i).

17: end for
18: end for
19: end if
20: end for

3.1. A ghost node formulation

We now discuss the ghost node formulation used in Algorithm 2. First, we rewrite the advection-diffusion
equations in (1) in Lagrangian form as

dc

dt
= ν∆c+ f(x, t),x ∈ Ω(t), (20)

where d
dt = ∂

∂t + u · ∇ is the material or Lagrangian derivative. Once the material derivative is discretized
in some suitable fashion, the above equation also requires a suitable discretization of the Laplacian ∆ and
the boundary condition operator αn · ∇+ β from (2) on the time-varying domain Ω(t). Our approach is to
use the backward differentiation formula (BDF) scheme to discretize the above equation in time, with the
Laplacian, boundary conditions, and forcing terms treated implicitly. For a stable spatial discretization in
the presence of derivative boundary conditions, we use the ghost node scheme outlined in [49, 50]. We now
discuss the details of this scheme in the context of domains with time-varying embedded boundaries, though
the scheme is easily adapted to domains where the outer boundary also varies in time.

For a given domain Ω(t), we define a node set X(t) = {xk(t)}N(t)
k=1 ⊂ Ω(t) that discretizes Ω(t). This node

set is explicitly divided into a set of interior nodes Xi(t) and a set of boundary nodes Xb(t) with cardinality
Ni(t) and Nb(t), respectively. In addition, we tile the boundary nodes some small distance in the outward
normal direction to obtain a set of ghost nodes Xg(t), also of cardinality Nb(t). This forms an extended node
set Xe(t) = X(t) ∪Xg(t), which is used extensively in Algorithm 2.

Our ghost node scheme involves enforcing the PDE up to and including the domain boundary ∂Ω(t), and
enforcing boundary conditions at the boundary. We discretize the Laplacian using Algorithm 1 with L ≡ ∆
on the extended node set Xe(t). The time-varying discrete Laplacian L(t) can be written in block form as:

L(t) =

[
Lii(t) Lib(t) Lig(t)
Lbi(t) Lbb(t) Lbg(t)

]
, (21)
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Algorithm 2 Semi-Lagrangian Advection-Diffusion on Moving Domains

Given: X0, the initial node set on the interior and boundary of a time-invariant reference domain Ω0.
Given: (Xe)0 = X0 ∪ (Xg)0, the initial extended node set on Ω0 containing interior, boundary, and
ghost nodes.
Given: Seed nodes on all embedded boundaries.
Given: h, the average separation distance between nodes.
Given: ξ, the desired order of approximation of the numerical method.
Given: ν, the diffusion coefficient.
Given: u, an incompressible velocity field.
Given: c0(x) = c(x, 0), an initial condition.
Given: 4t, the time step.
Given: T , the final time.
Given: g(x), the desired boundary condition such that Bc = g over the full domain boundary.
Generate: C = C(x, t)|X ≈ c(x, t)|X , the numerical solution to (20).

1: Set polynomial degree `, PHS RBF exponent m, and stencil size n according to Table 1.

2: Set ns =
⌊
T
4t

⌋
and adjust 4t so that 4tns = T .

3: Reconstruct embedded boundaries from seed nodes (as outlined in Section 3.2).
4: Modify (Xe)0 to account for embedded boundaries to obtain (Xe)(t0) (as outlined in Section 3.2).
5: Use Algorithm 1 with L = δ◦ and (X)(t0) to obtain (localized) interpolation operator I 0 (as outlined

in Section 3.3).
6: Use Algorithm 1 with L = ∆ and L = B to obtain sparse matrices L(t0) and B(t0) respectively.
7: Set C0 = c0(x).
8: for k = 1, . . . , ns do
9: Set tn+1 = k4t.

10: Move seed nodes on embedded boundaries using u and RK3 with the same time-step 4t.
11: Reconstruct embedded boundaries from seed nodes and modify (Xe)0 to obtain (Xe)(tn+1).
12: Update sparse matrices L(tn) and B(tn) to L(tn+1) and B(tn+1) using Algorithm 3.
13: Update interpolation operator I n to I n+1 using Algorithm 3.
14: Trace back (Xe)(tn+1) to tn, tn−1, and tn−2 using (28)–(29) to obtain (Xe)

n
d , (Xe)

n−1
d , and (Xe)

n−2
d .

15: Compute (C)nd = I nCn, (C)n−1
d = I n−1Cn−1, and (C)n−2

d = I n−2Cn−2 using the procedure
outlined in Section 3.3.

16: Form the preconditioner as outlined in Section 4.1.
17: Form and solve the BDF3 linear system (26) (or its BDF1 or BDF2 analogues if k = 1 or k = 2) to

obtain Cn+1.
18: Set Cn−2 = Cn−1, Cn−1 = Cn, and Cn = Cn+1.
19: Set I n−2 = I n−1, I n−1 = I n, and I n = I n+1.
20: end for

where the subscripts indicate partitions of the Laplacian corresponding to interior (i), boundary (b), and
ghost (g) points. Notice that L(t) is computed only at the interior and boundary points, but uses stencils
that involve ghost points, giving the matrix dimensions of N(t)×(N(t)+Nb(t)), where N(t) = Ni(t)+Nb(t).
We also discretize the boundary condition operator using Algorithm 1 with L = α(x, t)n · ∇+ β(x, t). The
resulting discrete boundary operator B(t) can be written as:

B(t) =
[
Bbi(t) Bbb(t) Bbg(t)

]
. (22)

This matrix has dimensions Nb(t)× (N(t) +Nb(t)). The sparse matrices L(t) and B(t) can now be used to
discretize the advection-diffusion equation.

Let C(x, t) ≈ c(x, t) be the numerical solution to the advection-diffusion equation. First, partition C(x, t)|Xe

into Ci = C(x, t)|Xi
, Cb = C(x, t)|Xb

, and Cg = C(x, t)|Xg
. We can use these partitions to write the
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discretized advection-diffusion equation as:

dCi
dt

= ν (Lii(t)Ci + Lib(t)Cb + Lig(t)Cg) + fi(t), (23)

dCb
dt

= ν (Lbi(t)Ci + Lbb(t)Cb + Lbg(t)Cg) + fb(t), (24)

Bbi(t)Ci +Bbb(t)Cb +Bbg(t)Cg = gb(t), (25)

where gb(t) = g(x, t)|Xb(t). The above system can only be treated as a set of ODEs if a suitable discretization

for the material derivative d
dt is used. For example, for the third-order BDF scheme (BDF3) [1], we obtain:I − 6

11ν4tL
n+1
ii − 6

11ν4tL
n+1
ib − 6

11ν4tL
n+1
ig

− 6
11ν4tL

n+1
bi I − 6

11ν4tL
n+1
bb − 6

11ν4tL
n+1
bg

Bn+1
bi Bn+1

bb Bn+1
bg


︸ ︷︷ ︸

A(tn+1)

Cn+1
i

Cn+1
b

Cn+1
g


︸ ︷︷ ︸
Cn+1

=

 18
11 (Ci)

n
d − 9

11 (Ci)
n−1
d + 2

11 (Ci)
n−2
d +4t 6

11f
n+1
i

18
11 (Cb)

n
d − 9

11 (Cb)
n−1
d + 2

11 (Cb)
n−2
d +4t 6

11f
n+1
b

gn+1
b


︸ ︷︷ ︸

rn+1

,

(26)

where the superscripts now indicate time levels. The subscript d under a variable denotes the value of that
variable at an SL departure point [68]. We explain this in greater detail, focusing without loss of generality
on the interior points. Recall that Cni = C(x, tn)|Xi(tn), where Xi(tn) is the set of interior points at time

level n. Then, the variable (Ci)
n
d can be written as:

(Ci)
n
d = C(x, tn)|(Xi)d(tn) , (27)

where the set of departure points (Xi)d(tn) = {(xj)d(tn)}Ni(tn)
j=1 is defined by solving the following set of

ODEs backward in time:

dpj
dt

= u(pj , t), (28)

pj(tn+1) = xj(tn+1), j = 1, . . . , Ni(tn+1). (29)

These ODEs can be solved using a standard numerical ODE solver; we use the third-order Runge-Kutta
(RK3) method. This process is called trajectory reconstruction [53], since it reconstructs the trajectory a
(fictitious) particle would take if it arrived at the nodes Xi(tn+1); it is also alternatively referred to as the
back trace procedure. In simple terms, solving the above set of ODEs for each of the Ni(tn+1) nodes results
in the set of departure points (Xi)d(tn). In general, however, the set of departure points (Xi)d(tn) differs
from the set of interior nodes Xi(tn) at time level n. Consequently, Cni must be interpolated to (Xi)d(tn)
to obtain (Ci)

n
d . For convenience, let us define an abstract time-dependent interpolation operator Ii(t, ·, ·)

such that

(Ci)
n
d = Ii (tn, C

n
i , C

n
b ) , (30)

where Ii(t, ·, ·) is an interpolation operator that lets us interpolate fields from Xi(tn) and Xb(tn) to (Xi)d(tn).
We defer discussion of this operator to Section 3.3. To simplify the notation, we set

Ii (tn, C
n
i , C

n
b ) = I n

i (Cni , C
n
b ) .

Note that Algorithm 2 also requires us to compute the quantities (Ci)
n−1
d and (Ci)

n−2
d . In analogy with

(30), these quantities can be written as:

(Ci)
n−1
d = C(x, tn−1)|(Xi)d(tn−1) = I n−1

i

(
Cn−1
i , Cn−1

b

)
, (31)

(Ci)
n−2
d = C(x, tn−2)|(Xi)d(tn−2) = I n−2

i

(
Cn−2
i , Cn−2

b

)
, (32)

where the operators I n−1
i and I n−2

i interpolate quantities from Xi and Xb to (Xi)d at time levels tn−1

and tn−2 respectively. To find the departure points (Xi)d(tn−1) and (Xi)d(tn−2), we solve (28) backward
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in time to levels n − 1 and n − 2. This requires advecting/tracing nodes (Xi)(tn+1) backward for several
steps [68]. The same approach can be used to obtain (Cb)d values at different time levels by defining boundary
interpolation operators Ib(t).

Since the solution of the diffusion problem is done on the node set X(tn+1), this approach proves far more
convenient than purely Eulerian methods, which typically require spatial extrapolation to fill points that
entered the domain in the current step (e.g., see [41]); this issue is completely avoided in the SL approach.

Remark 1. In Algorithm 2, we move the seed nodes on the embedded boundaries using an RK3 discretization
of (28) with the seed node positions in place of the nodes x, but forward in time. In practical scenarios, it
is straightforward to replace this step with updates of the type seen in the IB method [56].

In the following subsections, we discuss how to generate the node sets Xe(t), construct and use the interpola-
tion operators I (t), and efficiently update both the discrete Laplacians L(t) and the interpolation operators
I (t).

3.2. Node set adaptation

Our technique for solving the advection-diffusion equation on a time-varying domain Ω(t) involves using
Algorithm 1 to assemble the discrete Laplacian L(t) and the discrete boundary operator B(t) on a time-
varying node set Xe(t). In this work, we use the node generation and adaptation algorithm described in [51],
adapted and optimized for moving embedded boundaries. We make this choice because the algorithm
from [51] is designed to locally adapt nodes around embedded boundaries, allowing us to reuse previously
computed interpolation operators and overlapped RBF-FD weights at nodes that are sufficiently far away
from the moving embedded boundaries; this is discussed in greater detail in Section 3.4. We assume in the
following discussion that the (irregular) outer boundary stays fixed over time, though our algorithm can be
modified trivially to handle the case where the outer boundary also moves.

Let Ω(t) be a time-varying domain defined using a time-invariant reference domain Ω0 and NΓ time-varying
subdomains {Ωj(t)}NΓ

j=1 so that:

Ω(t) = Ω0 \
NΓ⋃
j=1

Ωj(t). (33)

The domain boundary Γ(t) can then be written as:

Γ(t) =

NΓ⋃
j=0

Γj(t), (34)

where Γj(t), j = 1, . . . , NΓ are the boundaries of the time-varying subdomains Ωj(t), and Γ0(t) = Γ0 is fixed
for all time. In this setting, our goal is now to generate the set Xe(t), which involves generating interior
nodes Xi(t), boundary nodes Xb(t), and ghost nodes Xg(t). Our approach is to generate node sets on Ω0

and Γ0 prior to starting to advance the time-dependent solution, and then adapt these to account for the
time-varying subdomains Ω1, . . . ,ΩNΓ

and their boundaries Γ1, . . . ,ΓNΓ
.1 The approach is as follows:

1. Starting from a small set of seed nodes on Γ0, generate the node set X0 = (Xi)0∪(Xb)0 for Ω0∪Γ0 and
a geometric representation for Γ0 using Algorithm 1 from [51]. Use this geometric representation to
generate a set of outward unit normal vectors N0 = {(n0)j}Nb

j=1 and use them, in turn, to generate the
ghost nodes (Xg)0 for the domain Ω0. This gives us the extended node set (Xe)0 on the time-invariant
domain Ω0 ∪ Γ0.

1If instead a node set is given directly on Ω(t0), it is sufficient for our methods to precede the node adaptation procedure
with a step that simply fills Ωj(t0), j = 1, . . . , NΓ with nodes at the initial time t = t0.
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2. Next, at any time t, use Algorithm 5 from [51] to adapt the node set by “turning-off” any nodes

contained in
NΓ⋃
j=1

Ωj(t). This requires forming a geometric representation of the boundaries
NΓ⋃
j=1

Γj(t)

from a set of initally quasi-uniform seed nodes spaced hd apart. We use the updated positions of the
seed nodes and the geometric modeling technique presented in [51] to form geometric representations
of the embedded boundaries. This node adaptation algorithm uses normal vectors on each subdomain

boundary to test whether the nodes in (Xi)0 are inside or outside the domain Ω(t) = Ω0 \
NΓ⋃
j=1

Ωj(t).

The geometric modeling error is O(h8
d) [51].

3. We now need to ensure that the boundary nodes Xb(t) respect the average node spacing h. While
the outer boundary nodes are assumed to be fixed in time, the inner boundaries Γj may deform over
the course of a simulation. In Algorithm 2, we describe moving the boundaries by moving the seed
nodes; this amounts to a Lagrangian description of the embedded boundaries, not unlike in the IB
method [45]. To avoid boundary nodes being further apart than h due to this movement, we first
reconstruct the embedded boundaries from their seed nodes using the previously-mentioned geometric
modeling technique. We then use Algorithm 2 from [51] to sample the embedded boundaries in such a
way that the resulting node sets are quasi-uniform and neighboring points a distance of approximately
h apart. Thus, in Algorithm 2 (as used in this article), the seed nodes on the embedded boundaries are
specified once at the beginning of the simulation (or at the introduction of an embedded boundary). In
contrast, the boundary nodes are regenerated every time step and may vary in number. If the seed
nodes drift apart, one could use the boundary representation at a given step to regenerate the seed
nodes via quasi-uniform sampling with a spacing of hd. Once the the boundary nodes are obtained,
the normal vectors at the boundary nodes Xb(t) can be used to obtain the set of ghost nodes Xg(t)
(by extension in the normal direction). This generates the fully extended set Xe(t).

3.3. Overlapped local RBF interpolation

During every step of the method, the departure points (Xi)d(tn), (Xi)d(tn−1), and (Xi)d(tn−2) (and their
boundary counterparts) are calculated by solving (28). Once these departure points are calculated, the
solution is interpolated to these departure points using the interpolation operators I n, I n−1, and I n−2.
In this article, we use an analogue of RBF-FD (local RBF interpolation) to compute these interpolation
operators, making them completely localized and inexpensive to compute and evaluate. In previous work on
a static domain (the sphere), the authors used a separate stencil for each of the points in the domain [53].
Our approach here is similar, except that we now use overlapped RBF-FD to generate potentially fewer
stencils.

At a high level, our approach is to decompose the points X(t) ⊂ Ω(t) into stencils first, use the back trace
procedure to determine which stencil a departure point lies on, then interpolate the solution from the node
set X(t) to the set of departure points Xd(t) = (Xi)d(t) ∪ (Xb)d(t). To automatically determine stencils,
we use Algorithm 1 with the point evaluation operator δ◦ in place of L. However, unlike in the case of the
matrices L(t) and B(t), we do not assemble the resulting weights into a sparse matrix. Instead, we only
store the LU decompositions of the interpolation matrices. Once the stencils are determined and the LU
decompositions are stored, we build an acceleration structure (a k-d tree) on the stencil centers.

For each time-step, we then determine which stencil each departure point (xj)d, j = 1, . . . , N(t) lies on by
finding the closest stencil center to that departure point. Suppose that some number of departure points
(xj)d, j = 1, . . . , Nk turn out to be associated with the stencil Pk, and for simplicity, ignore time levels for
the moment. Our goal is to find C ((xj)d, t) , j = 1, . . . , Nk given the values of C(x, t) on the stencil Pk and
the LU decomposition of the interpolation matrix on Pk. The procedure to do so is as follows:

1. Using the stored LU decomposition of that stencil interpolation matrix from (8) and C(x, t)|Pk
as

the right hand side, solve a local linear system for O(n2) operations to determine a set of RBF and
polynomial coefficients ck on the stencil Pk.

2. Using these coefficients, evaluate the local interpolant on the stencil Pk at each departure point
(xj)d, j = 1, . . . , Nk on Pk to get C((xj)d, t).
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This procedure is repeated for every stencil.

Finally, it is important to note that we do not use the extended node set Xe(t) to compute the interpolation
stencils using Algorithm 1. This would produce interpolation stencils that use unphysical values at ghost
nodes to interpolate data to the departure points. Instead, the interpolation stencils are only calculated on
the set X(t) = Xi(t)∪Xb(t), which does not contain ghost nodes. While this results in one-sided stencils at
the domain boundary, we found this to be more stable over a wide range of Peclet numbers and boundary
conditions than an approach that allowed the incorporation of ghost nodes into SL interpolation stencils.

3.4. Selective updates to RBF-FD weights and stencils

Algorithm 3 Efficient differentiation matrix update

Given: Xe(tn), the Ne(t)× d matrix of nodes at time tn.
Given: Xe(tn+1), the Ne(tn+1)× d matrix of nodes at time tn.
Given: Ke, a kd-tree built on Xe(tn+1).
Given: L, the linear differential operator to be approximated.
Given: n << N , the stencil size.
Given: L(tn), the Ne(tn)×Ne(tn) differentiation matrix corresponding to L at time tn.
Given: Xc(tn), the Nc × d matrix of stencil centers at time tn.
Given: Nc(tn) = |Xc(tn)|, the number of stencil centers at time tn.
Given: Nc, an Nc(tn)× n matrix of nearest neighbor indices for Xc(tn) in Xe(tn).
Given: Wc, a matrix mapping each row of Xc(tn) to the corresponding rows and columns in L(tn).
Generate: L(tn+1), the Ne(tn+1)×Ne(tn+1) differentiation matrix approximating L at time tn+1.

1: Build a kd-tree Kc on the set Xc(tn) in O(Nc logNc) operations.
2: Initialize Xa = Xe(tn+1), an Ne(tn) × d matrix of active points (points for which weights must be

computed).
3: for k = 1, Nc do
4: Use Ke to determine if Xc(k, :) ∈ Xe(tn+1). If not, CONTINUE.
5: Use Ke to determine n nearest neighbors of Xc(k, :) in Xe(tn+1).
6: Query Nc(k, :) to obtain n nearest neighbors of Xc(k, :) at time tn.
7: if Neighbors at tn+1 do not match neighbors at tn then
8: CONTINUE.
9: end if

10: Consult Wc(k) to obtain pk row indices (stored in Rk(tn)) and n column indices into L(tn) (stored
in Ik(tn)) corresponding to Xc(k, :).

11: Using Ke, get new pk row indices (stored in Rk(tn+1)) and n column indices (stored in Ik(tn+1))
into L(tn+1).

12: Set LRk(tn+1),Ik(tn+1)(tn+1) = LRk(tn),Ik(tn)(tn).
13: Remove (Xe)Rk(tn+1)(tn+1) from the active point matrix Xa.
14: end for
15: For all remaining points in Xa, use Algorithm 1 to compute the remaining rows of L(tn+1).

We now discuss our technique for efficiently computing the matrices L(t) and B(t) (in (23)–(25)), and the
operators I (t) on the time-varying node set Xe(t). Since the node sets vary in time, the number of rows
and columns and also the entries of L(t) and B(t) are time-varying. It is instructive to enumerate all the
scenarios in which these changes occur. For the following, assume that Xc(t) is the set of stencil centers,
where a “stencil center” is always a node from the set X(t).2 Note that any of the following scenarios could
require recomputation of weights for multiple rows of the matrix L(t) since overlapped RBF-FD uses the
same stencil to compute weights for multiple rows at once.

2In the standard RBF-FD method, every node from the set X(t) is a stencil center. Since overlapped RBF-FD is used,
there are far fewer stencil centers than nodes.
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1. A node that was a stencil center at time tn may leave the domain at time tn+1 by becoming covered
by one of the embedded domains Ωj(t). The set of weights associated with that stencil is no longer
valid.

2. A node that was a nearest neighbor to a stencil center at time tn may no longer be a nearest neighbor
to that same stencil center at time tn+1. This could occur either if the node left the domain or another
node (such as a boundary point) ended up closer. Again, the corresponding overlapped RBF-FD
weights need to be recomputed.

3. The global indices of each stencil’s nodes into the set Xe(t) could change since the total number of
nodes N(t) + Nb(t) is a function of time. In this case, new global indices must be found so that the
previously computed weights are copied in the appropriate rows and columns of L(t).

4. New nodes may be introduced to the domain. For instance, nodes on the moving boundaries Γ(t)
are always changing, as are their ghost nodes. All these new nodes create rows in L(t). Overlapped
RBF-FD weights must be freshly computed for each of these nodes.

5. In the case of B(t), the differentiation matrix that enforces boundary conditions, we must therefore
not only check the above cases, but also check if α and/or β have changed. If they have, we need to
recompute the RBF-FD weights for the boundary.

All of the above statements for L(t) also apply to I (t) with a minor caveat.3 Algorithm 3 shows this
procedure for the Laplacian, but can be trivially adapted to update the boundary condition matrix and
interpolation operators also. All the nodes for which weights are not copied are marked as such, and
Algorithm 1 is then applied to compute the weights for these nodes.
Remark 2. While Algorithm 3 describes the update procedures in terms of matrices, it is again easily adapted
to a matrix-free approach where the matrices L(t) and B(t) are never formed, but are instead simply applied
to approximate solution vectors.

3.5. Error Estimates

We now discuss the error estimates for the discrete PDE (26). To the best of our knowledge, error estimates
for SL methods are only available for pure linear advection problems [20]. A formal analysis in the context
of a multistep method is beyond the scope of this article. However, it is possible to heuristically account for
the different sources of error in (26) and combine them to get an estimate of the total error.

First, we account for all spatial errors due to RBF interpolation or RBF-FD approximations. Recall that h
is a measure of average node spacing. For the overlapped RBF-FD method (including overlapped local RBF
interpolation), the spatial error in approximating a differential operator of order θ is O(h`op+1−θ), where `op

is the degree of the polynomial used within the RBF-FD (or local RBF) formula for that operator [16]. In
our case, θ = 2 for the Laplacian, θ = 1 for derivative boundary conditions (Neumann or Robin), and θ = 0
for interpolation. Let E∆ be the error in approximating the Laplacian, and E∇ the error in approximating
the gradient. These can now be written as:

E∆ = O
(
h`∆−1

)
, E∇ = O

(
h`∇

)
, (35)

where `∆ and `∇ are the polynomial degrees used for computing the overlapped RBF-FD weights for the
operators ∆ and ∇ respectively.

Next, we account for the errors from the SL portion of the algorithm. (26) relies on three back traces and
interpolations per step. Let `I be the degree of the polynomial used for overlapped local RBF interpolation.
Then, the total error from the SL portion of the algorithm is given by [20]:

ESL = O

(
4tp +

h`I+1

4t

)
. (36)

3The only caveat is that no large sparse matrix is maintained for I (t), and only the stencil information and decomposed
local interpolation matrices are needed.
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where p is the order of the method used to perform the backtrace (p = 3 for RK3). Finally, we have an error
contribution of O

(
4t3

)
from the BDF3 time-stepping scheme itself. The total global error for stepping the

PDE on the interior and the boundary can be written as:

ETot = O
(
h`∆−1

)
+O

(
h`∇

)
+O

(
4t3

)
+O

(
4tp +

h`I+1

4t

)
. (37)

Let ξ be the desired spatial approximation order of the method. By setting `∆ = ξ + 1 and `∇ = ξ, i.e.,
choosing different polynomial degrees for each differential operator, the first two terms become hξ. In the
last term, we set 4t = O(h), set `I = ξ, and p = 3. The error estimate therefore simplifies to

ETot = O
(
hξ
)

+O
(
4t3

)
. (38)

These parameter choices for Algorithm 2 are summarized in Table 1.

Remark 3. Our choice of 4t = O(h) was not motivated by stability, but rather by the desire to have low
temporal error.
Remark 4. While we do not have a proof of stability, it is well known that the SL framework allows for
time-steps that are much larger than the CFL limit, including in the RBF context [53]. However, in order
to prevent trajectories from crossing, it is common to set 4t ≤ |J |−1, where |J | is the minimum pointwise
Jacobian of the velocity field evaluated on the collocation node set. In this work, we find that setting
4t = 0.3h

Umax
is sufficient for both stability and accuracy, where Umax is an estimate of the spatiotemporal

maximum of ‖u‖2.
Remark 5. The above analysis ignores geometric modeling errors due to moving boundaries, which are O(h8

d).
These errors are significantly smaller than the other errors in our work and can be safely ignored.

Parameter Meaning Value

`I Polynomial degree for Interpolation ξ
`∇ Polynomial degree for Neumann/Robin BCs ξ
`∆ Polynomial degree for Laplacian ξ + 1
mop PHS degree for operator op `op if `op is odd, `op − 1 if `op is even, mop = max(mop, 3).

nop Stencil size for operator op 2
(
`op+d
d

)
+ 1

Table 1: Table of parameters based on desired approximation order ξ, dimension d, and operator op = ∆, ∇, or I is the operator
being approximated.

4. Iterative methods for the implicit system

We now discuss the iterative method we use for solving the system (26). The block matrix A(t) is sparse
with at most n non-zero entries per row (where n is the stencil size), and changes every time-step. While the
update schemes outlined in Section 3.4 enable fast computation of the matrices L(t) and B(t) that make up
A(t), and the right-hand-side of (26), the solution of this time-varying linear system requires both efficient
solvers and preconditioners, especially for problems in 3D.

4.1. An efficient saddle-point preconditioner

We use the Generalized Minimum Residuals (GMRES) method [48] to solve (26). However, it is well known
that this method requires a good preconditioner to achieve faster convergence to a tolerance. We use a
technique outlined in [9], and discuss it briefly here. For what follows, it is useful to write A(t) as a 2 × 2
block matrix of the form:

A(t) =

[
A11(t) A12(t)
A21(t) A22(t)

]
, (39)
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where the block A11(t) is given by

A11(tn+1) =

[
I − 6

11ν4tL
n+1
ii − 6

11ν4tL
n+1
ib

− 6
11ν4tL

n+1
bi I − 6

11ν4tL
n+1
bb

]
, (40)

and the other blocks naturally follow. The matrix A(t) is a (generalized) saddle-point matrix, with each of
its blocks being a sparse matrix, and its Schur complement is

S(t) = A22(t)−A21(t)A11(t)−1A12(t). (41)

A(t) has an inverse iff S(t) is invertible, which in turn requires that A11(t) is invertible [8]. While this
appears to be the case in practice for the overlapped RBF-FD method, we now use S(t) to develop a
diagonal preconditioner. Consider the block diagonal matrix P̃ (t) given by:

P̃ (t) =

[
A11(t) O
O S(t)

]
. (42)

As described in [9], the inverse of P̃ can be a reasonable preconditioner for a system involving A(t). However,
computing the true inverse of P̃ (t) requires inverting both A11(t) and S(t). To make this process efficient,
we replace A11(t) and S(t) with diagonal matrices. First, define the diagonal matrix Ã11(t) = (A11)ii, i =
1, . . . , N(t). Next, define the approximate Schur complement S̃(t) as S̃(t) = A22(t)−A21(t)Ã11(t)−1A12(t).
The preconditioner we use is then given by the inverse of the diagonal matrix

P (t) =

[
Ã11 O

O Ŝ(t)

]
, (43)

where (Ŝ(t))ii = (S̃(t))ii, i = 1, . . . , Nb(t). The inverse of P (t) can be computed efficiently while still serving
as a reasonable preconditioner to A(t). This efficiency is important, since A(t) (and hence P (t)) changes
size every time-step. In practice, we first equilibrate A(t) using Matlab’s built-in equilibrate function [18] to
permute and rescale A so that its off-diagonal entries are not greater than 1 in magnitude and its diagonal
entries are only 1 or -1. We then form P (t) using the blocks of the resulting permuted matrix B(t). The
resulting spectra of B and PB are shown in Figure 2 for ξ = 2 and ξ = 6 (with ν = 1). Our preconditioner
has the effect of shifting most of the eigenvalues of B to one side of the imaginary axis. We found in practice
that this decreased the number of GMRES iterations by half. This preconditioner is clearly not optimal, and
can be improved by adding more blocks from the original matrix to P (t). We leave a deeper investigation
of preconditioners for future work.

4.2. A good guess for GMRES

For GMRES to converge rapidly in solving (26), it is also important to supply a good initial guess to the solver.
In previous work, the authors have used the solution Cn from the previous time level to good effect [49, 50].
However, for a time-varying domain Ω(t), the solution Cn lies on the domain Ω(tn), while the solution Cn+1

lies on Ω(tn+1). Consequently, the lengths of the vectors C(x, tn)|x∈Xe(tn) and C(x, tn+1)|x∈Xe(tn+1) are

different, since the node sets Xe(t) ⊆ Ω(t) themselves vary in time. On the other hand, we see that the
vectors (Ci)

n
d and (Cb)

n
d generated from the SL trajectory reconstruction possess cardinality Ni(tn+1) and

Nb(tn+1), respectively. We therefore use these as initial guesses for Cn+1
i and Cn+1

b , respectively. To obtain
an initial guess for Cn+1

g , we approximate the value of Cg at the ghost node departure points obtain by back
tracing from the ghost nodes at tn+1, i.e., we compute (Cg)

n
d ≈ C(x, t)|(Xg)d(tn). In practice, we compute

this quantity by evaluating the local overlapped RBF interpolants from Section 3.3 at the ghost departure
points. We found that use of this guess vector accelerated GMRES when compared to using the zero vector
as a guess (the number of iterations were decreased by an order of magnitude in 3D).
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Figure 2: Effect of the preconditioner P from (43) on the equilibrated matrix B for ξ = 2 (top row) and ξ = 6 (bottom row)
for a 2D advection-diffusion problem with ν = 1 at time t = 4× 10−6.

5. Complexity Analysis

We now analyze the computational complexity of Algorithm 2 in terms of (1) the preprocessing (steps 1-7),
and (2) the actual time-stepping loop (steps 8-20). Steps 1, 2, and 7 merely involve function evaluations
and will be ignored for the purposes of simplicity. For the remainder of the section, we assume without loss
of the generality that the stencil size n and the polynomial degree ` are the same for all operators. All our
estimates nevertheless hold true in the worst case sense.

5.1. Preprocessing complexity

Consider first step 3, which involves interpolation to form the geometric model of the embedded boundaries,
and step 4 which involves removal of nodes from the set (Xe)0. Recall that we have NΓ boundaries, and
assume that there are Nd seed nodes on each boundary. Since the geometric model from [51] involves a
dense matrix solve, the total cost of forming this geometric model is O(NΓN

3
d ). In addition, step 4 involves

both evaluation of the geometric model to generate boundary points and a subsequent modification of (Xe)0.
Let N0 = |(Xe)0|. Following Section 4.2 of [51], the costs of steps 3 and 4 can be rewritten as O(NΓN0),
i.e., linear in N0 (this relationship can be derived by rewriting the N3

d term in terms of N0 [51]). This is
applicable in both 2 and 3 dimensions.

The complexity analysis of steps 5 and 6 depends on the behavior of Algorithm 1, which in turn depends on
the type of node set and the differential operator being approximated. Given the polynomial degree `, the
number of polynomial terms M =

(
`+d
d

)
, and the stencil size n = 2M + 1, Algorithm 1 will produce a worst

case complexity of O((n + (n − 1)/2)3N0), where the cubic term comes from the LU decomposition of (8)
and N0 is the number of points on the reference domain. However, in practice, far fewer linear systems than
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N0 will be solved, especially as n and ` are increased, since each stencil will be used to compute weights for
more than one of the N0 nodes. To estimate this cost, assume that for each n-node stencil, Algorithm 1
computes RBF-FD weights for n

κ nodes, where 1 ≤ κ ≤ n. Letting Ns be the number of stencils generated
by Algorithm 1, the total cost of Algorithm 1 can be written as

Tassembly = O
(
Ns

(
(n+ (n− 1)/2)3 +

n

κ
(n+ (n− 1)/2)2

))
, (44)

where the first term again corresponds to the cost of LU decomposition, and the second term to the cost of
back substitutions. We can now bound Ns in terms of N0 and κ. To do so, we need only realize that

Ns ≈ N0
κ

n
, (45)

where κ is typically closer to 1 than to n, making the constant κ
n quite small. Thus, the assembly cost can

be rewritten as

Tassembly = O
(κ
n
N0

(
(n+ (n− 1)/2)3 +

n

κ
(n+ (n− 1)/2)2

))
, (46)

which is significantly smaller than if κ = n as in the standard RBF-FD method. In practice, as n and
` increase, κ decreases because larger stencils allow us to retain more weights per stencil [49]. The only
difference between steps 5 and 6 is that the values of n and ` are potentially different for the Laplacian
versus point evaluation.

Steps 5 and 6 use Algorithm 1, which also require k-d trees to be built on the node sets for a cost of
O(N0 logN0). The cost of searching them for n nearest neighbors on Ns stencils is O(nNs logN0). Using
(45), we can write the total preprocessing cost as

Tpreprocessing = O
(
NΓN0 +

(
(n+ (n− 1)/2)3 +

n

κ
(n+ (n− 1)/2)2

) κ
n
N0 +N0 logN0 + κN0 logN0

)
,

(47)

where again κ is a number closer to 1 than to n. We have observed in practice that the second term dominates
this cost and scales as O(N0) for a given n and κ. To control efficiency, κ could be explicitly introduced as
an input to Algorithm 1, but we leave this approach for future work.

5.2. Time-stepping complexity

We now estimate the complexity for steps 8-20 which are carried out in each timestep. We ignore steps 8,
9, 18, 19, and 20, as they are trivially estimated. Instead, we focus on the cost of a single time-step. Step
10 is done using the RK3 method, which has three stages, but the cost only depends on the number of seed
nodes and the total number of embedded boundaries. This cost is clearly O(NΓNd). Step 11 is the same as
the preprocessing steps 3 and 4, and therefore has a cost of O(NΓN0).

Steps 12 and 13 involve a mix of copying old information and computing new information, as shown in
Algorithm 3. Estimating the cost of these steps requires an analysis of Algorithm 3, combined with a
slightly modified analysis for Algorithm 1. Within Algorithm 3, letting Ne = |Xe(t)|, a k-d tree is first
formed on Xe(t) for O(Ne logNe) operations in step 1. Steps 2 and 13 can be ignored as this can simply be
done with Boolean flags. Steps 6, 10, and 12 can be done in constant time. This leaves the following steps:

• Step 4 can be done in O(logNe) operations (with possible early termination).

• Step 5 has a cost of O(n logNe).

• Step 7 can be done in practice by computing ‖pnew− pold‖2, where pnew are the positions of neighbors
at tn+1, and pold the positions at tn; this costs O(n) operations. Steps 8 and 9 can be ignored.

• Step 11 involves a kd-tree search for a cost of O(n logNe).

Each of these steps could, in the worst case, be executed Ns times (once for each stencil center). At the end
of step 14, some fraction of the rows of L(tn+1), B(tn+1), and some of the local operators that constitute
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I n+1 will have been computed. Let this fraction be τ , so that step 15 now only operates on (1 − τ)Ne
nodes. The cost of step 15 can therefore be written based on the analysis from Section 5.1 as

Tstep 15 = O
((

(n+ (n− 1)/2)3 +
n

κ
(n+ (n− 1)/2)2

) κ
n

(1− τ)Ne + κ(1− τ)Ne logNe

)
. (48)

The total cost of Algorithm 3 can thus be written using the above list, (45), and (48) as

Tupdates = O
((

1 +
κ

n
+ 2κ

)
Ne logNe +

(
3
κ

n
+ κ
)
Ne

)
+ Tstep 15. (49)

In practice, τ ≈ 1 and κ = O(1), allowing us to simply write

Tupdates = O(Ne logNe), (50)

i.e., k-d tree lookups dominate the cost of updating the differentiation matrices L(t) and B(t), and the
interpolation operators I (t). In contrast, if τ is small, most of the rows of L and B, and most of the
local interpolants comprising I have to be recomputed. This concludes the analysis of steps 13 and 14 of
Algorithm 2.

Steps 14 and 15 are the SL steps in the algorithm. Step 14 of Algorithm 2 involves 3 back traces costing
O(Ne), while step 15 implicitly involves a k-d tree lookup for each of the Ne points to find the correct local
interpolation stencil, one back-solve on that stencil, and at least one evaluation on that stencil. In the worst
case, we have Ns = κ

nNe stencils, exactly one back substitution per stencil for a cost of O((n+ (n− 1)/2)2),
and exactly one evaluation per stencil also for a cost of O((n+ (n− 1)/2)2). The lookup costs O (Ne logNe)
operations. The total cost of Steps 14 and 15 of Algorithm 2 is therefore

TSL = O
(
Ne logNe + 2

κ

n
Ne(n+ (n− 1)/2)2

)
, (51)

which is dominated by the second term. In practice, however, it is possible for our batching technique to
result in multiple evaluations per stencil and fewer back-substitutions.

Step 16 of Algorithm 2 involves forming the preconditioner as outlined in Section 4.1. The cost of this
step is dominated by the cost of forming the approximate Schur complement, which in turn involves sparse
matrix multiplications of matrices with at most n non-zero entries per row. This incurs a cost of O(n2Ne).
Finally, the complexity of step 17 of Algorithm 2 is non-deterministic as it involves the convergence of the
preconditioned GMRES method bootstrapped with a guess. Rather than attempt to estimate the complexity,
we show results in terms of number of GMRES iterations in Section 6. Thus, the total cost of each time-step
of Algorithm 2 (assuming τ ≈ 1) is Tstep = Tupdates + TSL +O

(
n2Ne

)
+ Cost of GMRES.

=⇒ Tstep = O
(

2Ne logNe + 2
κ

n
Ne(n+ (n− 1)/2)2 + n2Ne

)
+ Cost of GMRES. (52)

Depending on which terms dominate above, this cost is either linear or log-linear in Ne (provided the cost of
GMRES is kept low with a good preconditioner and initial guess). In Section 6.3, we demonstrate that the
complexity of our method is indeed very close to linear in both the preprocessing and per-step costs, with
a very large improvement in per-step costs (over the preprocessing costs) due to the reuse of weights over
several steps.

6. Numerical Results

We test our numerical framework via convergence studies on the forced advection-diffusion equation with
two Peclet numbers: 1 and 1000. The forcing term is selected to maintain a prescribed solution for all
time, and the prescribed solution is used to test spatial convergence rates. We solve this test problem on
irregular 2D and 3D domains with boundaries moving at the fluid velocity. Given a true solution c(x, t) and
a numerical solution C(x, t), we compute relative `2 errors at the final time t = 0.5 on the node set X as

e`2 = ‖cX−CX‖2
‖cX‖2 . In addition to relative `2 errors, we also report the average number of GMRES iterations

per step for each value of the node count N and approximation order ξ. Finally, we verify the complexity
estimates in Section 6 via timings, and also show a comparison of computational cost and accuracy as a
function of the approximation order. In all cases, we set the GMRES tolerance to min(0.1hξ, 10−7).
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6.1. Forced advection-diffusion in a time-varying 2D domain
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Figure 3: Top row: relative `2 error vs
√
N as a function of approximation order ξ for forced advection-diffusion on the unit

disk. The dashed lines are lines of best fit indicating the slope (and hence convergence rate). Bottom row: average number of
GMRES iterations per time-step as a function of

√
N and ξ.

The first test involves solving the advection-diffusion equation on an irregular time-varying 2D domain. The
initial domain is the unit disk with two embedded ellipses defined in parametric form as:

E1 : x = 0.4 cos(µ), y = −0.5 + 0.2 sin(µ), (53)

E2 : x = 0.1 cos(µ), y = 0.2 sin(µ), (54)

where −π ≤ µ < π. The initial simulation domain is then given as Ω(t0) = {B2 \(E1 ∪ E2)}, i.e., the portion
of the domain outside the ellipses but within the unit disk. We use 20 seed nodes on the boundary of each
ellipse, and reconstruct the moving boundary from these seed nodes using the (parametric) periodic degree-7
polyharmonic spline RBF within the geometric model developed by the authors [51]. The manufactured
solution we use is given by

c(x, t) = 1 + sin(πx) cos(πy) sin(πt), (55)
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and the incompressible velocity field u(x, t) = [u, v] is given by

u(x, t) = sin
(
π‖x‖22

)
sin(πt)[y,−x]. (56)

This velocity field vanishes on the boundary of the disk, and the 20 seed nodes on the embedded domain
boundaries are advected with the velocity u, thereby leading to deformation of the embedded ellipses. We
use a pure Neumann boundary condition operator B (α = −ν and β = 0), and the right hand side g(x, t) is
given by applying B to the prescribed c(x, t).

We measure errors in our numerical solution against the prescribed c. To obtain Peclet numbers Pe = 1 and
Pe = 1000, we set ν = 1 and ν = 10−3, respectively. We set the time-step as mentioned previously. We
simulate the PDE to time t = 0.5 using Algorithm 2.

The results for ξ = 2, 4, 6 are shown in Figures 3(a) and 3(b), plotted as a function of
√
N (proportional

to 1/h). The results show that our predicted spatial convergence rate of hξ roughly holds under refinement
for both Peclet numbers Pe = 1 and Pe = 1000; however, the errors are much lower for Pe = 1000. In
addition, Figures 3(c) and 3(d) show the average number of GMRES iterations per timestep for each of
these simulations, again as a function of

√
N . For Pe = 1, increasing ξ results in fewer GMRES iterations,

possibly due to the interplay of ξ with the guess and preconditioner. For Pe = 1000, the iteration counts are
more erratic as ξ is increased, but it is clear that far fewer GMRES iterations are required for this value of
Pe, since a smaller value of ν was used (improving the conditioning of the time-stepping matrix).

6.2. Forced advection-diffusion in a time-varying 3D domain

Next, we do a convergence study on the forced advection-diffusion equation in an irregular time-varying
3D domain. The initial domain is the unit ball with an embedded ball E3 of radius 0.2 centered at
(0.1, 0.2, 0.3). The initial simulation domain is Ω(t0) = {B3 \ E3}. We use 200 seed nodes on the boundary
of E3, and reconstruct the moving surface from these seed nodes using the (parametric) spherical, degree-8,
polyharmonic spline RBF [51]. In this case, our manufactured solution is

c(x, t) = 1 + sin(πx) cos(πy) cos(πz) sin(πt), (57)

and the incompressible velocity field u(x, t) = (u, v, w) is given by

u(x, t) = sin
(
π‖x‖22

)
sin(πt)[yz,−2xz, xy]. (58)

The boundary conditions, time-steps, and Peclet numbers are chosen as in the 2D case, and the seed nodes
are once again moved with the local fluid velocity, causing deformation while enforcing a no-slip condition.
We simulate the PDE to time t = 0.5, and measure errors against the manufactured solution.

The results are shown in Figure 4, plotted as function of 3
√
N (proportional to 1/h). Once again, from

Figures 4(a) and 4(b), we see that our results match the predicted spatial convergence rate of hξ except for
the slightly erratic convergence at Pe = 1000 for ξ = 2 (likely due to an insufficiently small timestep on the
finer node set). Figures 4(c) and 4(d) show the average number of GMRES iterations per timestep for each
of those Peclet numbers as a function of 3

√
N . In both cases, increasing ξ decreases the number of iterations

(albeit erratically at low Peclet number). In addition, the number of iterations increase more slowly with
3
√
N as ξ is increased, demonstrating the efficiency of higher order methods. As in the 2D case, Figure 4(d)

shows that a higher Peclet number requires fewer GMRES iterations to obtain the same tolerance, once
again because of the improved conditioning due to smaller values of the diffusion coefficient ν.

6.3. Timings

Next, we present timing results to verify the complexity estimates of our method. We present timings only
for Pe = 1000. This is because our goal is to verify the analysis from Section 5, which only abstractly
includes the cost of the GMRES method. Since the results thus far have already shown that the number of
GMRES iterations is smaller for Pe = 1000, this case will be more ideal for verifying complexity. We present
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Figure 4: Top row: relative `2 error vs 3
√
N as a function of approximation order ξ for forced advection-diffusion in the unit

ball. The dashed lines are lines of best fit indicating the slope (and hence convergence rate). Bottom row: average number of
GMRES iterations per time-step as a function of 3

√
N and ξ.

two types of results. All timings were run on a PC with an 8-core Intel i7-9700K CPU clocked at a base
speed of 3.6 GHz which had 32 GB of 2.6GHz RAM. Timings were accomplished in Matlab R2020b without
any explicit parallelization of the code.

In Figure 5, we present wall-clock times as a function of the number of nodes N and the approximation order
ξ for both the 2D and 3D test problems. We separate the timings into preprocessing time (Figures 5(a) and
(c)) and average per-step time (Figures 5(b) and (d)). The lines of best fit indicate that the slopes are close
to 1, which indicates linear or quasi-linear complexity. In addition, it is clear that the cost per time-step is
much lower than the preprocessing cost due to our strategy of copying as many RBF-FD weights as possible.
The difference in costs is seen particularly in Figures 5(c) and (d) (for the 3D simulation), which show a full
order of magnitude difference in time between a single preprocessing step and the average time-step. Even
more interestingly, for the 3D results, we see that the sixth-order method (ξ = 6) is less expensive than the
fourth-order method (ξ = 4) not just in terms of efficiency but in terms of wall-clock time. This is likely
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Figure 5: Top row: wall-clock time vs N as a function of approximation order ξ for forced advection-diffusion on the unit disk.
The dashed lines are lines of best fit indicating the slope (and hence computational complexity). Bottom row: wall-clock time
vs N as a function of order ξ for forced advection-diffusion in the unit ball. All timings are for Peclet number Pe = 1000.

because the sixth-order method allows for a greater number of stable weights to be computed and retained
per stencil, consequently allowing fewer stencils and recomputations in total.

In Figure 6, we present the cost-accuracy tradeoffs for the 2D and 3D tests, again as a function of number of
nodes N and ξ. Here, we focus purely on the per-step costs, since the preprocessing costs are not important
for long-running simulations. The figures all show that the higher order methods deliver greater accuracy
for the same wall-clock time (and a given value of N), since our manufactured solutions are smooth. In
addition, we once again see in Figure 6b that the sixth-order method takes even less time than the fourth-
order method for the largest value of N (top-most points of the curves) while delivering greater accuracy (in
3D). Both these timing tests confirm the quasilinear complexity of our method while also demonstrating the
benefits of using high-order methods especially in higher dimensions. These tests also clearly demonstrate
the importance of selective updates to RBF-FD weights and stencils using Algorithm 3.
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(a) (b)

Figure 6: Cost vs accuracy as a function of approximation order ξ for the 2D problem (left) and the 3D problem (right). The
figure shows average time per time-step and the relative `2 error as N is increased for a given value of ξ. All timings are for
Peclet number Pe = 1000.

7. A coupled problem

To fully demonstrate the utility of our numerical methods, we now apply them to solving a 3D coupled
problem. In this problem, we track a chemical concentration c(x, t) in a fluid inside the same initial do-
main as in Section 6.2, with the embedded boundary passively advected by an incompressible velocity field
u(x, t). The concentration c(x, t) therefore satisfies the advection-diffusion equation (written using the
Lagrangian/material derivative):

dc

dt
= ν∆c+ f1(x, t),x ∈ Ω(t), (59)

where f1(x, t) is some forcing term, and Ω(t) is the time-varying irregular domain defined by the outer
spherical boundary and the deforming inner embedded boundary Γ(t). On the boundary of the unit ball, c
satisfies a time-varying inhomogeneous Neumann boundary condition:

−ν ∂c(x, t)
∂n

= g(x, t),x ∈ S, (60)

which corresponds to an inward flux of c. The inner moving embedded boundary Γ(t) is viewed as a reactive
“zone” on which chemicals can bind, unbind, and participate in other reactions. We track the bound chemical
surface density separately, and label it CB . We assume that at each point on the embedded boundary Γ(t),
CB satisfies the following PDE:

∂CB
∂t

+ u · ∇CB − CB∇Γ · u = kon(CTot − CB)− koffCB + kselfCB(CTot − CB) + f2, (61)

where kon and koff are the binding and unbinding rates of CB , kself is the rate at which CB reacts with
itself, CTot is the total density of binding sites at each point of the reactive zone, f2 is some forcing term,
and ∇Γ· is the surface divergence operator. The last term on the left accounts for local surface changes due
to the flow. As before, the first two terms in (61) can be combined into the material derivative, yielding the
following equation for CB :

dCB
dt
− CB∇Γ · u = kon(CTot − CB)− koffCB + kselfCB(CTot − CB) + f2, (62)
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Balancing fluxes at the interface Γ(t) yields the following time-varying Robin boundary condition on c(x, t):

−ν ∂c(x, t)
∂n

= −kon(CTot − CB) + koffCB ,x ∈ Γ(t). (63)

This model represents a one-way coupled bulk-surface problem, and is loosely inspired by similar problems
arising in the context of platelet aggregation and coagulation.

7.1. A manufactured solution to the coupled problem

We specify the concentration c(x, t) to be

c(x, t) = c(x, y, z, t) = 1 + sin(πx) cos(πy) sin(πz) sin(πt). (64)

In addition, we prescribe an incompressible velocity field u(x, t) = (u, v, w) in the unit ball as

u(x, t) = sin(πt) sin
(
π‖x‖22

)
[yz,−2xz, xy]. (65)

Because points on the embedded boundary Γ(t) will advect in this velocity field, the no-slip boundary is
automatically satisfied on its surface. Then, we set the forcing term f1(x, t) as

f1(x, t) =
∂c

∂t
+ u · ∇c− ν∆c. (66)

The boundary condition function g(x, t) is then obtained by applying the Neumann operator −ν ∂
∂n to c(x, t).

We substitute c(x, t) into (63) and solve for CB to obtain

CB =
−ν ∂c∂n + konC

Tot

kon + koff
. (67)

Using CB , we compute the forcing term f2 as

f2 =
dCB
dt
− CB∇Γ · u− kon

(
CTot − CB

)
camb + koffCB − kselfCB

(
CTot − CB

)
. (68)

For a spatial convergence study, we define numerical errors by comparing against c and CB . Since u is known
analytically, the term∇Γ can be computed quasi-analytically using the numerically-computed normal vectors
on Γ(t).

7.2. Time-stepping for the coupled problem

The fluid-phase chemicals c(x, t) and the bound chemical density CB are coupled through the boundary
conditions in (63), which in turn reflect the binding and unbinding reactions in the ODE (61). To simulate
this system efficiently, we use a simple time-splitting scheme that is a combination of SL updates for c and
full Lagrangian updates for CB . Given CnB , cn, and locations for the seed nodes on Γn, the algorithm is as
follows:

1. Solve (62) as an ODE using the semi-implicit BDF3 (SBDF3) method [1] to advance CnB to C̃B . The
forcing term f2 is treated implicitly in time, and all other terms are treated explicitly.

2. Advance the locations of the seed nodes on Γn using u(x, t) and the RK3 method. This advects C̃B
in a Lagrangian fashion to obtain Cn+1

B . Use the new seed node locations to construct a geometric
representation of the embedded boundary and to interpolate CB to boundary nodes.

3. Use this representation and the interpolated Cn+1
B to obtain the boundary conditions for cn+1 on Γn+1

as:

−ν ∂c
n+1

∂n
= −kon

(
CTot − Cn+1

B

)
+ koffC

n+1
B . (69)
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4. Update cn to cn+1 using the SL method presented in Algorithm 2.

It is important to note that a fully-coupled problem in which c participates in the first term on the right
hand side of (62) would likely require high-order temporal splitting; we leave such an investigation to future
work. For the purposes of this article, we have observed that the above scheme produces highly accurate
results both for c and CB . It is also worth noting that if u is not known analytically, the ∇Γ ·u term must be
computed numerically. This can also be done using a stabilized version of overlapped RBF-FD specialized
to manifolds [52, 57].

7.3. Results
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Figure 7: Left: relative errors vs node spacing as a function of approximation order ξ. Right: number of GMRES iterations as
a function of ξ.

To more fully test the stability of our method, we now set the diffusion coefficient to ν = 10−6, and scale the
velocity field u to obtain a Peclet number of Pe = 106. We select the time-step as in the advection-diffusion
test cases, run convergence studies to time t = 0.5 using ξ = 2, 4 and 6, and measure both the relative
error in c and the average number of GMRES iterations. The results are shown in Figure 7. Much like our
other tests, Figure 7(a) shows that the spatial error in the numerical approximation to c decreases at the
rate of approximately hξ. In addition, Figure 7(b) shows that the number of GMRES iterations increases
approximately linearly with the node spacing, and decreases as ξ is increased. It is also worth noting that the
relative error in CB is purely temporal and is on the order of 10−8 for all the values of 4t used in this test.
This application clearly demonstrates the utility of our overall framework in solving coupled bulk-surface
problems on moving domains.

8. Summary and Future Work

In this article, we presented a high-order numerical method for simulating the advection-diffusion equation
on domains with time-varying embedded boundaries. Our method uses semi-Lagrangian (SL) advection
combined with an Eulerian formulation for diffusion, both applied in the context of a rapid node adaptation
algorithm. These techniques rely on a generalization of the overlapped RBF-FD method that replaces the
hand-tuned overlap parameter δ with a pair of automatically-computed stability indicators. We also pre-
sented a novel automatic algorithm for updating RBF-FD interpolation stencils and differentiation matrices
on a time-varying node set. We conducted an informal error analysis to show the high-order convergence
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rate of our method, and conducted a computational complexity analysis to determine the efficiency of our
algorithms. We verified the aforementioned high-order convergence rates on both 2D and 3D advection-
diffusion problems on irregular domains with moving embedded boundaries. In addition, we demonstrated
high-order convergence rates on a more complicated 3D coupled problem.

While our informal error analysis provided estimates that were verified numerically, a formal error analysis
of semi-Lagrangian RBF-FD methods for advection-diffusion equations is absent in the literature. We plan
to address this issue in future work. In addition, in order to apply our methods to problems requiring very
large node sets, the overlapped RBF-FD method (and the overall method presented in this article) must be
parallelized for distributed and shared memory architectures. We plan to tackle this in future work as well.
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