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Abstract— GaN radio frequency (RF) power amplifiers offer
many benefits including high power density, reduced device
footprint, high operating voltage, and excellent gain and
power-added efficiency. Accordingly, these parts are enabling
next-generation technologies such as fifth-generation (5G) base
transceiver stations and defense/aerospace applications such as
high-performance radar and communication systems. However,
these benefits can be overshadowed by device overheating that
compromises the performance and reliability. In response to
this, researchers have focused on GaN-on-diamond integration
during the past decade. However, manufacturability, scalability,
and long-term reliability remain as critical challenges toward
the commercialization of the novel device platform. In this
work, a diamond-incorporated flip-chip integration scheme is
proposed that takes advantage of existing semiconductor device
processing and growth techniques. Using an experimentally
validated GaN-on-SiC multifinger device model, the theoretical
limit of the cooling effectiveness of the device-level thermal
management solution has been evaluated. Simulation results show
that by employing a ∼2-μm diamond passivation overlayer, gold
thermal bumps, and a commercial polycrystalline carrier wafer,
the power amplifier’s dissipated heat can be effectively routed
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toward the package, which leads to a junction-to-package thermal
resistance lower than GaN-on-diamond high electron mobility
transistors (HEMTs). Furthermore, simulation results show that
this approach is even more promising for lowering the device
thermal resistance of emerging ultra-wide bandgap devices based
on β-Ga2O3 and AlGaN, below that for today’s state-of-the-art
GaN-on-diamond HEMTs.

Index Terms— Aluminum gallium nitride, diamond passiva-
tion, flip-chip devices, gallium nitride, gallium oxide, radio
frequency (RF), Raman scattering, thermal management of
electronics, wide bandgap semiconductors.

I. INTRODUCTION

THE GaN high electron mobility transistor (HEMT)
architecture offers high voltage/current handling and

high-frequency operation capabilities by taking advantage of
the material’s large critical breakdown field and the two-
dimensional electron gas (2DEG) formed via polarization
doping [1]. GaN radio frequency (RF) power amplifiers have
become key components enabling fifth-generation (5G) cell
towers, broadband satellites, high-performance military radar,
and electronic warfare systems [2]–[5].

GaN HEMTs have demonstrated RF output power densities
of 40 W/mm at S-band [6], 30 W/mm at X-band [7], and
8 W/mm at W-band [8]. However, heat accumulation caused
by the extreme energy dissipation in the device channel
degrades signal integrity and compromises the component life-
time [9]. Therefore, commercial AlGaN/GaN HEMTs employ-
ing silicon carbide (SiC) substrates are typically operated at
reduced power levels of 5–8 W/mm to circumvent device self-
heating issues.

In order to address the extreme operational heat flux of
GaN HEMTs (q �� > 50 kW/cm2) [9], device-level thermal
management must precede the application of package- and/or
system-level active cooling solutions [10]. For device-level
cooling, the main focus has been to replace the SiC substrate
of commercial GaN HEMTs with polycrystalline synthetic
diamond [11]–[14]. GaN-on-diamond integration has been
demonstrated through bonding the GaN epitaxy onto diamond
[12], [15]–[19] and direct growth of diamond underneath the
GaN buffer [20]–[22]. Enhanced RF performance of 11 W/mm
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output power density at a 40-V drain bias with 51% power-
added efficiency (PAE) has been demonstrated [18]. However,
the structural rigidity of the GaN/diamond interface under
prolonged high power RF operation remains unanswered [23].
The additional fabrication steps associated with the integration
process and the limited availability of large diameter of
GaN-on-diamond wafers are other roadblocks to the entry into
high-volume low-cost manufacturing [24]. Dielectric seeding/
adhesive layers are necessary for the integration of GaN and
diamond. Therefore, the thermal resistance of these layers
must be precisely controlled, in order to maximize the benefit
of the GaN-on-diamond technology.

As compared with bottom-side device-level cooling meth-
ods (i.e., diamond substrate integration) pursued to date, this
work proposes a top-side cooling approach that leverages well-
established flip-chip heterointegration processes [25]–[27],
augmented by recent breakthroughs in diamond-on-GaN
growth [28]–[30]. A 3-D finite element device thermal mod-
eling was created for a commercial multifinger GaN-on-SiC
HEMT, which was validated using micro-Raman thermometry.
A 480-nm-thick polycrystalline diamond film was deposited
on a GaN/sapphire template to measure its thermophysical
properties to be used for subsequent modeling of diverse
device configurations. Using the experimentally validated
device model and the measured thermophysical properties of
the diamond film, simulation was performed to quantify the
theoretical limit of the cooling effectiveness of a diamond-
incorporated flip-chip integration scheme. Furthermore, this
device-level thermal management solution was applied to
emerging ultra-wide bandgap (UWBG) semiconductor device
technologies [31] based on β-Ga2O3 and AlGaN, facing
overheating as a bottleneck to their commercialization.

II. SAMPLE DESCRIPTION AND EXPERIMENTS

A. Device Thermal Characterization
The channel temperature of a six-finger commercial

GaN-on-SiC HEMT, mounted on a CuW package, was char-
acterized using micro-Raman thermography [32]. This device
had an identical epitaxial structure described in [33], and
the only difference was the reduced number of gate fin-
gers. Details of the Raman measurement setup can be found
in [34] and [35]. The center point of the channel closest to
the device center was measured at various power levels up
to 11.69 W, which corresponds to a linear power density
of 5.27 W/mm. The base temperature underneath the CuW
package was maintained at 85 ◦C during the experiments.
Measurement and device modeling results (to be discussed
in Section III-A) are displayed in Fig. 1.

B. Diamond Film Preparation and Thermal Characterization

In order to determine proper diamond thermophysical prop-
erties to be used in thermal models with diverse device
configurations (to be discussed in Sections III-B and III-C),
experiments were performed on a diamond film deposited
on GaN. A 480-nm-thick polycrystalline diamond film was
grown using a microwave plasma chemical vapor deposition
(MPCVD) system (SDS 5000 Seki Diamond Systems) on a
Si3N4 (20 nm)/GaN (1.17 μm)/sapphire (430 μm) template.

Fig. 1. (a) Cross-sectional view of the channel region of the GaN-on-SiC
HEMT model. (b) Quarter-thermal model of the six-finger GaN-on-SiC
HEMT operated under a power density of 5.27 W/mm. (c) Planar device
layout and measurement location for the Raman thermometry experiments.
(d) Measured [32] and simulated channel temperature rise of the six-finger
GaN-on-SiC HEMT.

The GaN layer was grown by metal organic chemical vapor
deposition (MOCVD) on a sapphire substrate. Details of the
growth process can be found in [29]. The optimized diamond
growth process was shown not to negatively impact the device
electrical characteristics [28]. The columnar grain structure of
the diamond films (with increasing lateral grain size with film
thickness) results in a highly anisotropic thermal conductivity
(TC) where the in-plane TC (κr ) is lower than the cross-plane
TC (κz) [36]. The effective thermal boundary resistance (TBR)
at the diamond/GaN interface includes contributions from the
phonon mismatch between materials, the thermal resistance of
the dielectric layer used for diamond seeding, and the defective
nucleation/coalescence region [11], [37], [38].

Time-domain thermoreflectance (TDTR) and frequency-
domain thermoreflectance (FDTR) measurements (previously
used in [39]) were performed to determine κz and TBR, respec-
tively, by taking advantage of the complementary sensitivities
of the two techniques [40]. To minimize the number of fitting
parameters during postprocessing, a diamond/GaN/sapphire
material stack, GaN/sapphire template, and sapphire substrate
were individually prepared and characterized. Au (90 nm)/Ti
(7 nm) metal transducers were deposited on the samples and
their thicknesses were confirmed by profilometry and cross-
sectional scanning electron microscopy (SEM) measurements.

Using TDTR, the TCs of the sapphire substrate and GaN
layer were determined to be 37.0 ± 4.6 and 115.08 ±
20.42 W/mK, respectively. These room temperature values
are similar to those reported in [41] and [42]. The thickness
variation of the diamond film [445–521 nm; Fig. 2(a)] and
uncertainties associated with the thermal properties of the
GaN/sapphire material stack resulted in a κz with a relatively
large uncertainty (137.4 ± 42.3 W/mK). It should be noted
that κz represents the through-thickness average of the cross-
plane TC, while κz actually increases with the diamond
thickness [43], [44].
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Fig. 2. (a) Cross-sectional and (b) top-side SEM images of the diamond film
deposited on a GaN/sapphire material stack. (c) Schematic and (d) optical
image of the TLM structure used to estimate κr of the diamond layer.

Since both TDTR and FDTR methods did not have the mea-
surement sensitivity to determine κr , transmission line mea-
surement (TLM) devices (equivalent to ungated GaN HEMTs)
with and without diamond passivation were fabricated. The
base material stack consisted of 480-nm diamond/10-nm
MOCVD SiNx /320-nm Si-doped (1 × 1018 cm−3) GaN/
120-nm unintentionally doped (UID) GaN/430-μm sapphire
substrate and Ti/Al/Ni/Au ohmic contacts, as shown in
Fig. 2(c). The channel was 30 μm long and 200 μm
wide. Under various power dissipation levels at room tem-
perature, the GaN layer and diamond surface temperature
at the center point of each device were measured, using
standard [32] and nanoparticle-assisted Raman thermometry
[35], [45]. A 3-D finite-element thermal model (COMSOL
Multiphysics) was constructed with the mean value of the
measured κz (137.4 W/mK) employed as a model input
parameter. Temperature-dependent TCs for the GaN layers
and the sapphire substrate were adopted from [41] and [42].
A constant temperature boundary condition of 25 ◦C was
applied underneath the wafer die (which is consistent with
the experimental setup) and a natural convection boundary
condition (heat transfer coefficient, h = 5 W/mK) was applied
to all other surfaces. A parametric sweep was performed to
estimate κr (∼95 W/mK), based on a diamond/GaN TBR of
21.9 ± 3.3 m2K/GW, which was determined from FDTR
experiments, that also assumed the mean value of κz

(137.4 W/mK). It should be noted that the TLM devices had to
be operated up to 500 mW to clearly discern the subtle differ-
ence in the GaN channel and surface temperature of the TLM
devices. At this power condition, the GaN channel (diamond
surface) temperature rise for devices with and without the
diamond capping layer was 72.6 ± 9.6 K (84.4 ± 1.8 K) and
81.9 ± 12.7 K (87.9 ± 1.9 K), respectively. Despite the fact
that this multimethod approach does not rigorously account for
the temperature dependence of the diamond thermophysical
properties, the derived κr , κz , and TBR values (Table I) are

TABLE I

MEASURED/ESTIMATED DIAMOND THERMOPHYSICAL PROPERTIES

reasonable when compared with previous reports in literature,
also accounting for the relatively large average lateral grain
size [∼344 nm; Fig. 2(b)] of the tested diamond films [36], [46]
and the thickness of the SiNx (heretofore referred to simply
as SiN) dielectric adhesion layer [37], [47]–[49].

III. THERMAL MODELING

A. Conventional Upright Configuration

The 3-D finite-element thermal modeling of a six-finger
GaN-on-SiC HEMT was performed using COMSOL Mul-
tiphysics. This device has an identical epitaxial structure
described in [33], and the only difference is the reduced
number of gate fingers. Taking advantage of the fourfold
symmetry of the device, a quarter-model was built with an
accurate solid geometry that would represent the real device
[Fig. 1(b)]. Temperature-dependent TC of constituent materials
for the HEMT structure (SiN passivation, AlGaN, GaN, and
SiC substrate) and CuW package as well as the GaN/SiC
TBR were adopted from [32], [33], and [39]. The die attach
material (AuSn solder) TC was 57 W/mK (according to the
vendor specifications) and the metal electrodes were assumed
to be Au. Since the device was operated under fully open
channel conditions (VGS = 2.5 V), the Joule heating was
assumed to occur uniformly across the channel [50]. A con-
stant temperature boundary condition of 85 ◦C was applied
underneath the CuW package (which is consistent with the
experimental setup) and a natural convection boundary con-
dition (h = 5 W/mK) was applied to all other surfaces. This
conventional device configuration is illustrated in Fig. 3(a).
The HEMT structure employs a source connected field plate
(SCFP) with physical dimensions similar to that in [51]
[Fig. 1(a)]. As shown in Fig. 1, the thermal response of the
real device is successfully reproduced by the thermal model.

The SiC substrate of the simulated device was then replaced
by polycrystalline diamond to form a GaN-on-diamond HEMT
model. The temperature-dependent/anisotropic TC of the
synthetic diamond substrate was adopted from [22]. The
GaN/diamond substrate TBR was assumed to be the mea-
sured value in Table I (21.9 m2K/GW), which is similar to
GaN/diamond effective TBRs reported in [52]. Fig. 4 shows
the reduction in channel temperature by replacing the SiC
substrate into diamond. The thermal resistance of this hypo-
thetical GaN-on-diamond HEMT will serve as a benchmark
to assess the cooling performance of the proposed diamond-
incorporated flip-chip configuration [Fig. 3(c)].

B. Diamond Passivation

While most near-junction cooling efforts for GaN HEMTs
have focused on GaN-on-diamond integration, a smaller
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Fig. 3. (a) Conventional upright configuration. (b) Flip-chip integration
of the GaN-on-SiC HEMT on a carrier wafer, without consideration of
top-side heat extraction. (c) Thermally optimized diamond-incorporated flip-
ship configuration. In (a) and (b), BP stands for bond pad.

Fig. 4. Channel temperature rise as a function of power density for GaN-on-
SiC devices with and without diamond passivation, and a GaN-on-diamond
HEMT.

number of efforts have pursued device cooling through
nanocrystalline diamond (NCD) coating on SiN-passivated
GaN-on-SiC HEMTs [53]–[55]. While these studies demon-
strate the resulting improvement in the device direct cur-
rent (dc) and RF performance, the cooling effectiveness has
not been accurately quantified.

The SiN passivation layer of the GaN-on-SiC HEMT model
was replaced by a 980-nm-thick diamond passivation layer.
While thicker diamond passivation layers will exhibit better
cooling performance, the practical diamond thickness is less
than ∼2 μm in order to prevent degradation of the 2DEG
characteristics caused by undesired residual stress effects [28].

TABLE II

ASSUMED DIAMOND THERMOPHYSICAL PROPERTIES FOR CASE STUDIES

As shown in Fig. 1(a), the diamond passivation layer in the
model was split into multiple domains to account for the
increase in κr and κz with the diamond thickness [43], [44].
Two cases of diamond-passivated GaN-on-SiC HEMTs have
been simulated, representing the lower bound and upper bound
of diamond film thermophysical properties reported in litera-
ture (which represent two different diamond layer thicknesses
as well as different diamond layer and interface quality).

For the lower bound case, the effective TBR between the
2DEG region (GaN surface) and the diamond passivation layer
was assumed to be represented by an effective TBR that lumps
the equivalent TBR arising from the 21-nm-thick AlGaN
barrier (κ = 8.77 W/mK [39]) and the measured diamond/GaN
TBR of 21.9 m2K/GW in Table I. This calculation results in an
effective TBR of 24.3 m2K/GW. The diamond film thickness
was assumed to be ∼1 μm (980 nm). For the upper bound
case, the thermal resistance between the GaN surface and the
diamond passivation is represented by a situation where the
thickness of the SiN diamond seeding layer is reduced from
20 nm (lower bound case) to 2 nm [28]. Based on the SiN
TC of ∼1.06 W/mK [56], [57], an 18-nm reduction of the
SiN thickness correlates to a reduction of the lumped/effective
TBR by ∼17 m2K/GW. Therefore, the upper bound effective
TBR between the GaN surface and diamond passivation was
set to be ∼7.3 m2K/GW. The theoretical limit for the effective
TBR between GaN and diamond was shown to be 3 m2K/GW,
assuming no SiN seeding layer is implemented and only the
diffusive mismatch between diamond and GaN contributes
to the TBR [58], [59]. By adding the resistive contributions
from the 21-nm AlGaN barrier (∼2.4 m2K/GW) and the 2-nm
SiN seeding layer (∼1.9 m2K/GW) to this theoretical value,
an identical effective TBR of ∼7.3 m2K/GW is derived. These
lower/upper bound case TBR values are listed in Table II.
It should be noted that the diamond film thickness for this
upper bound case was assumed to be ∼2 μm (1960 nm)
instead of the ∼1 μm (980 nm) used for the lower bound.
All of the assumptions used to derive the TBR values align
with experimental findings reported in [19] and [60]. For
instance, Yates et al. [60] show a diamond/GaN TBR of
9.5 m2K/GW for a sample with a 5-nm-thick SiN interlayer.
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For the lower bound case, the κr and κz values for the
bottom and top 490-nm domains of the diamond passivation
layer [Fig. 1(a)] were based on top- and bottom-side TDTR
measurements of a 1-μm-thick diamond film reported in [36].
For the upper bound case, the κr and κz values for the bottom
and middle 490-nm domains of the diamond passivation layer
were chosen from [61] and [62]. For the top 980-nm domain,
κr and κz were adopted from [63], within the error bar range of
the measured values. These references were carefully chosen
based on a comparison between the bottom-layer κr and
κz values listed in Table II and those of the diamond film
characterized in this work (Table I). It should be noted that
the thickness of characterized film is comparable with the
bottom-layer passivation layers in Table II. On the other hand,
the lateral grain size of the diamond film grown in this work
is larger than those in these references (see [36], [61], [62]).
This aligns with the fact that κz of the characterized film lies
between the lower and upper bound cases in Table II, while
κr is larger than that of the upper bound case.

As shown in Fig. 4, the cooling benefit provided by dia-
mond passivation is minute, regardless of adopting a higher
quality diamond layer (upper bound case). This is because
the diamond layer is exposed to a natural convection thermal
boundary condition. The amount of heat spreading through this
layer is much less than the heat dissipated through the substrate
and package, i.e., the bottom side is the preferred pathway for
heat flow due to the lower thermal resistance. Furthermore,
it should be noted that the model assumes κr and κz of the
diamond passivation layer are temperature invariant. For real
devices, the cooling effectiveness of the diamond passivated
configuration should be inferior to predictions shown in Fig. 4.

C. Flip-Chip Integration

In the previously discussed conventional/upright device con-
figuration, bond wires are used to interconnect the device to
external circuitry. In contrast, in the flip-chip approach [64],
the device is flipped over so that its bond pads connect
with mirror-imaged matching pads on the carrier wafer using
electrical vias [Fig. 3(b)]. However, an ordinary flip-chip
configuration is inefficient in terms of heat extraction from the
device, mainly because of the low TC of the epoxy underfill
material (κ = 1.7 W/mK; EPO-TEC 930-4 [65]). Recently,
a thermally optimized flip-chip design locating thermal bump
heat sinks between the device metal electrodes and the carrier
wafer was shown to effectively lower the junction temperature
of GaAs heterojunction bipolar transistors (HBTs) [66].

The key to accomplish high heat transfer performance from
a flip-chip configuration is to maximize heat conduction from
the heat source (for a GaN HEMT, the Joule heating region in
the 2DEG) to the thermal bump, which in turn transfers heat
to the carrier wafer. The proposed design scheme employs
existing growth, processing, and packaging techniques:
1) a 980-nm diamond passivation layer [28] that promotes
heat conduction from the 2DEG to the SCFP; 2) 2-μm-tall
Au thermal bumps [25]–[27] that transfer heat from the SCFP
to the carrier wafer; and 3) a commercial polycrystalline
diamond substrate [14], [43], [49] as the carrier wafer that

Fig. 5. Thermal optimization process of the flip-chip integration scheme.

spreads/dissipates the heat toward the CuW package. While
the SCFP is grounded for most RF power amplifiers, the drain
electrode experiences a large RF voltage swing. Therefore,
we avoid the use of a thermal bump on the drain electrode that
will result in added capacitance that may negatively impact
the device RF performance. This diamond-incorporated flip-
chip configuration is displayed in Fig. 3(c). In principle, this
top-side cooling approach locates the thermal solution in closer
proximity to the heat source, as compared with the GaN-on-
diamond bottom-side cooling method. In the model, the thick-
ness of the bond pads and interconnects was 2 μm. The carrier
wafer length, width, and height were 1600, 1600, and 100 μm,
respectively. The 100-nm-thick SiN (κ = 4.5 W/mK) was
blanket deposited on the carrier wafer for electrical isolation.

IV. RESULTS AND DISCUSSION

To compare the effectiveness of the flip-chip cooling method
with the standard cooling methods, various flip-chip config-
urations were modeled for a GaN-on-SiC HEMT and the
results are shown in Fig. 5. The first case was a standard
flip-chip configuration with no thermal bumps, SiN passiva-
tion, SiC substrate, and an AlN carrier wafer. As expected,
this configuration results in an inferior thermal performance
as compared with the baseline GaN-on-SiC HEMT. The
calculated junction-to-package thermal resistance (Rth) is
∼31.1 Kmm/W, which means the channel temperature rise
(with respect to the base plate temperature) will be 311 K
at 10-W/mm operation. When replacing the AlN carrier
wafer with a polycrystalline diamond carrier, the thermal
resistance was reduced by 22% (Rth ∼ 24.15 Kmm/W). The
implementation of thermal bumps is shown to be the most
significant factor that further reduces the thermal resistance
by 45.1% (Rth ∼ 13.25 Kmm/W), making this a more effi-
cient cooling method than the baseline case (GaN-on-SiC
HEMT with SiN passivation). However, it should be noted
that the simulation results presume perfect bonding (without
voids) among the Au bumps and the metallization structures.
Finally, replacing the SiN passivation layer with diamond
enables to further lower the thermal resistance below that
for GaN-on-diamond devices. By implementing the “lower
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Fig. 6. Reduction in device thermal resistance by improving thermophysical
properties of the diamond passivation, for the thermally optimized flip-chip
design. All Rth values were calculated under a power density of 5.5 W/mm.

bound” diamond passivation as outlined in Table II, the result-
ing RTh value reduces to ∼9.87 Kmm/W, a further 25%
reduction. For the GaN-on-diamond case listed in Fig. 5 (and
subsequent Figs. 6–9), the GaN/diamond effective TBR is
assumed to be 21.9 m2K/GW (from Table I; a value that is
comparable with the current industry standard [67]) and the TC
of the polycrystalline synthetic diamond substrate was adopted
from [22] and [68].

One may speculate that ignoring any negative RF per-
formance implications and adding a thermal bump between
the drain electrode and diamond carrier wafer would result
in a dramatic reduction in RTh. However, the resulting RTh

reduction was found to be less than 0.4 Kmm/W (∼5%)
from the diamond passivation-incorporated flip-chip design.
Simulations show that most of the heat generated in the
2DEG conducts through the diamond passivation, SCFP and
the thermal bump above it, and toward the diamond carrier
wafer. This is the preferred pathway for heat dissipation being
that the SCFP overhangs the majority of the channel, while
the drain electrode does not. Not including a thermal bump on
the drain is the preferred design anyway considering the RF
performance and ease of fabrication.

Fig. 6 shows the effect of improving the thermophysical
properties of the diamond passivation layer. The “Lower
bound” case corresponds to the “Diamond Passivation” case
represented in Fig. 5. In this model, the 980-nm diamond pas-
sivation is used with the TC and TBR values listed in Table II
under “Lower bound.” By applying the previously derived
upper bound TBR limit of 7.3 m2K/GW (shown in Table II
as the upper bound TBR) between the diamond passivation
and the GaN, RTh is reduced by 0.5%. Now, if the 980-nm
diamond passivation is replaced with a 1960-nm passivation
layer with improved TC values outlined in Table II as “Upper
bound” while using the lower bound TBR of 24.3 m2K/GW,
RTh is reduced by 3.8% from the “Lower bound” case. This
case is represented in Fig. 6 as “Upper bound κr and κz/Lower
bound TBR.” Finally, by employing the upper bound diamond
passivation, RTh is reduced by 5.2% from the “Lower bound”

Fig. 7. GaN HEMT ultimate device-level cooling limit (double-sided cooling;
Inset: operation under a power density of 5.5 W/mm).

case. It should be noted that for real fabricated/integrated
structures, the heat sinking performance of the thermal bumps
can be inferior to the model predictions. This is due to
the imperfect interfaces between the gold bumps, initially
applied to both the device and carrier wafer metallization
structures, that are eventually joined together via the flip-chip
process [66]. Therefore, it is of critical importance to employ
diamond layers with best thermophysical properties achievable
(e.g., larger lateral grain size and lower dielectric seed layer
thickness), within the growth regime (i.e., limitation in the
layer thickness and film stress [28]) that prevents degradation
of the intrinsic 2DEG electrical performance.

To push the limits of GaN HEMT cooling, the ther-
mally optimized flip-chip design [shown in Fig. 3 (c)] was
applied to a GaN-on-diamond device, from here on denoted
as the “double-sided” cooling design. By combining both
the enhanced top- and bottom-side cooling methods, a ther-
mal resistance of 8.42 Kmm/W was achieved. This value
corresponds to a 68% reduction in RTh compared with the
conventional upright GaN-on-SiC baseline case and marks
the ultimate limit for cooling the tested multifinger GaN
HEMT that is achievable using diamond with state-of-the-art
thermophysical standards (“upper bound” case in Table II).
A comparison of this best-case scenario with the aforemen-
tioned baseline (GaN-on-SiC), GaN-on-diamond, and ther-
mally optimized flip-chip cases can be found from Fig. 7.

V. APPLICATION TO ULTRA-WIDE BANDGAP DEVICES

The future of RF and power switching lies with the incor-
poration of UWBG semiconductors such as AlGaN [69]–[71]
and β-Ga2O3 [72] into the device design. The enhanced
critical breakdown fields of these materials give promise to
the development of next frontier devices with unmatched
improvement in system-level size, weight, and power (SWaP)
and efficiency [31].

While these UWBG materials offer substantial advantages
in terms of potentially achievable electrical performance, their
poor TCs [39], [73], [74] lead to greatly intensified device
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Fig. 8. β-Ga2O3 device thermal management. A homoepitaxy baseline case,
β-Ga2O3-on-diamond, diamond-incorporated flip-chip design, and a double-
sided cooling approach are compared (Inset: double-sided cooling case under
a power density of 5.5 W/mm).

self-heating. For AlGaN-channel HEMTs grown on a sapphire
substrate [35], [39] and a homoepitaxial β-Ga2O3 modulation-
doped field-effect transistor (MODFET) [65], the combined
low TCs of the substrate and channel materials greatly reduce
the ability for heat to dissipate through the bottom side of
the device. Therefore, top-side cooling solutions that allow
efficient heat extraction from the device heat generation region
are pivotal to the realization of practical UWBG devices.
By implementing the flip-chip design augmented by thermal
bumps and diamond passivation layers, similar to the designs
in Fig. 3(c), simulation results show that it is possible,
in principle, to reduce the device thermal resistance to a
value even lower than that of the conventional GaN-on-
diamond case examined in Figs. 4 and 5. For both cases, the
substrate thickness was assumed to be 100 μm and the AlGaN
channel/buffer thickness is ∼2 μm. It should be noted that
the thickness of today’s commercial β-Ga2O3 and sapphire
substrates is on the order of 500–650 μm. Also, it was shown
in [75] that for bottom-side substrate integration schemes,
reducing the thickness of the low TC β-Ga2O3 (and AlGaN)
layers is the key to achieve high heat transfer performance;
yet this is less of a concern for the flip-chip design. Details of
the AlGaN-channel HEMT and β-Ga2O3 MODFET modeling
procedure (thermal properties) can be found in [39] and [65].
In this work, both devices were assumed to have identical
device layouts as the GaN-on-SiC six-finger HEMT studied
so far.

Fig. 8 shows the comparison of the cooling effectiveness
of a six-finger Ga2O3 MODFET operated at a power density
of 5.5 W/mm. The following four device configurations were
studied: 1) homoepitaxy without additional thermal manage-
ment; 2) integrating the β-Ga2O3 device with a diamond
substrate; 3) flip-chipping a homoepitaxial device onto a
diamond carrier while employing a diamond passivation layer;
and 4) a β-Ga2O3-on-diamond MODFET using the diamond-
incorporated flip-chip process (i.e., double-sided cooling).

Fig. 9. AlGaN-channel HEMT device-level thermal management. A baseline
case where the AlGaN-channel HEMT is fabricated on a sapphire substrate,
AlGaN-channel HEMT-on-diamond, diamond-incorporated flip-chip design,
and a double-sided cooling approach are compared (Inset: double-sided
cooling case under a power density of 5.5 W/mm).

For the typical homoepitaxial configuration with no flip-
chipping, the poor TC and thus lack of an effective route
to dissipate heat lead to RTh of ∼216 Kmm/W, which is an
order of magnitude higher than that for a typical GaN-on-
SiC HEMT. However, if a diamond substrate is introduced,
heat dissipation is far more efficient, and the resulting RTh is
reduced to ∼22.5 Kmm/W. Furthermore, the implementation
of the top-side flip-chip cooling method with diamond passi-
vation and thermal bumps [similar to that shown in Fig. 3(c)]
further improves RTh to ∼12.1 Kmm/W. Finally, by applying
the double-sided cooling method to the Ga2O3 device, it is
possible to improve RTh to ∼8.5 Kmm/W, which is lower
than that of the GaN-on-diamond configuration.

Similarly, the effectiveness of the diamond substrate and
flip-chip methods was studied for an AlGaN channel HEMT
with Al concentrations of x = 0.7 and x = 0.85 for the
channel and barrier layer, respectively, similar to the device
described in [39] and [71]. For the baseline case [similar to Fig
3(a)] with the AlGaN-channel HEMT fabricated on a sapphire
substrate, RTh is about three times higher (∼75.7 Kmm/W)
than GaN-on-SiC HEMTs. By replacing the sapphire sub-
strate with diamond, RTh decreased to a level compara-
ble with the GaN-on-SiC HEMT (RTh ∼ 25.3 Kmm/W).
By applying the previously described diamond-incorporated
flip-chip method (to an AlGaN-on-sapphire HEMT) as well
as the double-sided cooling design, RTh is further reduced to
∼11 and ∼8.7 Kmm/W, respectively. The diamond flip-chip
cases again show that a thermal resistance lower than that of
a GaN-on-diamond HEMT is possible to achieve.

VI. CONCLUSION

In this work, the cooling effectiveness by applying diamond
as a substrate, passivation layer, and carrier wafer for various
device configurations was evaluated for GaN and UWBG
multifinger lateral transistor structures. Due to the decent TC
of GaN and SiC, simply adopting a diamond passivation
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layer does not result in a significant reduction in the ther-
mal resistance of conventional upright-positioned GaN-on-SiC
HEMTs. However, flip-chipping a diamond-passivated GaN
HEMT onto a diamond carrier while implementing thermal
bumps into the device design significantly reduces the device
thermal resistance, below that for current state-of-the-art GaN-
on-diamond HEMTs. In addition, this configuration can be
applied to UWBG devices such as AlGaN-channel HEMTs
and β-Ga2O3 MODFETs to reduce the thermal resistance
of these devices within the range of current state-of-the-
art GaN-on-diamond RF power amplifiers. By implement-
ing the double-sided cooling method, the GaN-on-diamond
benchmark can be surpassed for both AlGaN and β-Ga2O3

devices, leading to the lowest possible thermal resistances
currently achievable for these UWBG devices. In conclu-
sion, the diamond-incorporated flip-chip integration scheme
locates the heat extraction mechanism in proximity to (less
than several tens of nanometers) the heat source of lateral
transistors (that take advantage of a high electron mobility
2DEG, which is essential to build a high-frequency RF power
amplifier). Therefore, an outstanding cooling performance can
be achieved, regardless of the TC of the device base material
system.
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