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Abstract—The recent emergence of fine-grained cryp-
tography strongly motivates developing an average-case
analogue of Fine-Grained Complexity (FGC).

Prior work [Goldreich-Rothblum 2018, Boix-Adsera et
al. 2019, Ball et al. 2017] developed worst-case to average-
case fine-grained reductions (WCtoACFG) for certain al-
gebraic and counting problems over natural distributions
and used them to obtain a limited set of cryptographic
primitives. To obtain stronger cryptographic primitives
based on standard FGC assumptions, ideally, one would
like to develop WCtoACFG reductions from the core
hard problems of FGC, Orthogonal Vectors (OV), CNF-
SAT, 3SUM, All-Pairs Shortest Paths (APSP) and zero-k-
clique. Unfortunately, it is unclear whether these problems
actually are hard for any natural distribution. It is known,
that e.g. OV can be solved quickly for very natural
distributions [Kane-Williams 2019], and in this paper we
show that even counting the number of OV pairs on
average has a fast algorithm.

This paper defines new versions of OV, i<SUM and
zero-k-clique that are both worst-case and average-case
fine-grained hard assuming the core hypotheses of FGC.
We then use these as a basis for fine-grained hardness
and average-case hardness of other problems. The new
problems represent their inputs in a certain “factored”
form. We call them ‘“factored’’-OV, ‘factored-zero-k-
clique and “factored”-3SUM. We show that factored-k-
OV and factored xSUM are equivalent and are complete
for a class of problems defined over Boolean functions.
Factored zero-k-clique is also complete, for a different class
of problems.

Our hard factored problems are also simple enough that
we can reduce them to many other problems, e.g. to edit
distance, k-LCS and versions of Max-Flow. We further
consider counting variants of the factored problems and
give WCtoACFG reductions for them for a natural distri-
bution. Through FGC reductions we then get average-case
hardness for well-studied problems like regular expression
matching from standard worst-case FGC assumptions.

To obtain our WCtoACFG reductions, we formalize the
framework of [Boix-Adsera et al. 2019] that was used
to give a WCtoACFG reduction for counting k-cliques.
We define an explicit property of problems such that if
a problem has that property one can use the framework
on the problem to get a WCtoACFG self reduction. We
then use the framework to slightly extend Boix-Adsera
et al.’s average-case counting k-cliques result to average-

case hardness for counting arbitrary subgraph patterns of
constant size in k-partite graphs.

The fine-grained public-key encryption scheme of [LaV-
igne et al.’20] is based on an average-case hardness
hypothesis for the decision problem, zero-k-clique, and
the known techniques for building such schemes break
down for algebraic/counting problems. Meanwhile, the
WCtoACFG reductions so far have only been for counting
problems. To bridge this gap, we show that for a natural
distribution, an algorithm that detects a zero-k-clique with
high enough probability also implies an algorithm that can
count zero-k-cliques with high probability. This gives hope
that the FGC cryptoscheme of [LaVigne et al.”20] can be
based on standard FGC assumptions.

Keywords-Fine-Grained  Complexity, Average-Case
Lower Bounds, Worst-Case to Average-Case
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I. INTRODUCTION

Fine-grained complexity (FGC) is an active research
area that seeks to understand why many problems of
interest have particular running time bounds #(n) that
are easy to achieve with known techniques, but have
not been improved upon significantly in decades, except
by t(n)°) factors. FGC has produced a versatile set
of tools that have resulted in surprising fine-grained
reductions that together with popular hardness hypothe-
ses explain the running time bottlenecks for a large
variety of problems [Vasl18]. The reductions of FGC
have, for example, explained the difficulty of improving
over the n2~°() time algorithms for Longest Common
Subsequence (LCS) by giving a tight reduction from k-
SAT, and thus showing that an improved LCS algorithm
would violate the Strong Exponential Time Hypothesis
(SETH) [ABV15].

There are three main problems, with associated hard-
ness hypotheses about their running times, that FGC
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primarily uses as sources of hardness reductions (see
[Vas18]). The three core hard problems are All Pairs
Shortest Paths (APSP), hypothesized to require n3~o(1)
time in n-node graphs3, the 3SUM problem, hypothe-
sized to require #>~°(1) time on # integer inputs, and
the Orthogonal Vectors (OV) problem, hypothesized
to require #n2~°(1) time for n vector inputs of dimen-
sion @(logn) (the OV hypothesis is implied by SETH
[Wil07]).

While it is unknown whether these three hypotheses
are equivalent, some work suggests they might not be
[CGIt16]. There is a problem, Zero Triangle, on n
node graphs that requires #3~°()) time under both the
3SUM and the APSP hypothesis [VW18], [VW13].
Zero Triangle asks if an n node graph with integer edge
weights contains a triangle whose three edge weights
sum to 0. A natural extension of Zero Triangle, zero-
k-clique (where one wants to detect a k-clique with
edge weight sum 0), is conjectured to require n¥—(1)
time. There are also some simple to define problems
on n node graphs that require n°>~°(1) time under three
core hardness hypotheses (SETH, APSP and 3SUM):
Matching Triangles and Triangle Collection [AVY18].

Recently there has been increased interest in devel-
oping average-case fine-grained complexity (ACFGC),
with a new type of fine-grained cryptography as a main
motivation [BRSV17], [BRSV18], [GR18], [LLV19],
[BBB19]. The main goal is to identify a problem P
that requires some #(n)!~°() time on average for an
easily sampled distribution, and then to build interesting
cryptographic primitives from this problem, where any
honest party only needs to run a very fast algorithm,
in some #(n) < O(¢(n)°) time for ¢ much smaller than
1, while an adversary would need to run at least in
t(n)'~°(") time, unless problem P can be solved fast on
average.

To obtain average-case fine-grained hard problems,
one would like to be able to obtain worst-case to
average-case fine-grained reductions for natural prob-
lems that are hypothesized to be fine-grained hard in
the worst-case*. This is what prior work does.

The problems for which fine-grained worst-case to
average-case hardness reductions are known are mostly
algebraic or counting problems, such as counting k-
cliques [GR20], [GR18], [BRSV18], [BBB19], or some

3 All hypotheses are for the word-RAM model of computation with
O(logn) bit words.

4Well, even more ideally, one would like to use problems that are
provably unconditionally average-case hard, such as the problems
from the known time-hierarchy theorems, but these problems are
difficult to work with and there are no known techniques to build
cryptography from them.
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problems involving polynomials. Some limited cryp-
tographic primitives have been obtained from such
problems, e.g. fine-grained proofs-of-work [BRSV18],
[BRSV17]. Building fine-grained one-way functions or
fine-grained public key cryptography based on any
worst-case FGC hardness assumption is still an open
problem. Such primitives have been developed, based
on plausible assumptions about the average-case com-
plexity of zero-k-clique [LLV19]. This motivates the
following question: Is there a fine-grained worst-case
to average-case reduction for zero-k-clique?

As prior work showed worst-case to average-case
case reductions for counting cliques, a natural approach
to obtaining worst-case to average-case reductions for
the detection variant of zero-k-clique is to give a fine-
grained reduction from counting to decision. A tight
reduction is not known for the worst-case version of
the problem. It turns out that a fine-grained reduction
from counting to decision for zero-k-clique is possible
in the average-case for a natural distribution with certain
parameters, if the detection probability is high enough.
We prove this in the full version [DLW20]. While the
parameters are currently not good enough to imply a
worst-case to average-case reduction for (the decision
version of) zero-k-clique, the reduction gives hope that
the fine-grained public-key scheme of [LLV19] can
eventually be based on a standard FGC (worst-case)
hardness assumption.

The next natural question is whether worst-case to
average-case reductions are possible for the other core
problems of FGC, and in particular for OV (as it is as
far as we know unrelated to zero-k-clique). Consider
the most natural distribution for OV: given a fixed
probability p € (0,1), one generates n vectors of di-
mension d = @(logn) by selecting for each vector v
and i € [d] independently, v; to be 1 with probability p
and 0 otherwise. Kane and Williams [KW19] showed
that for every p, there is an €, >0 and an O(n>~%)
time algorithm that solves OV on instances generated
from the above distribution with high probability. Thus,
for this distribution (if the OV conjecture is true), there
can’t be a fine-grained (n?,n?)-worst-case to average-
case reduction for OV. In the full paper [DLW20] we
also show that even the counting version of OV, in
which one wants to determine the number of pairs
of orthogonal vectors, has a truly-subquadratic time
algorithm that works with high probability over the
same distribution. Thus, even counting OV cannot be
average-case n2~°()-hard. (Though, it could be fine-
grained average-case hard for a different time function.
We leave this to future work.)
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The first key contribution of this paper is in defining
a new type of problem, a “factored problem” that is
fine-grained hard from a core FGC assumption, whose
counting version is average-case hard for a natural
distribution again under a core FGC assumption, and
that is also simple enough so that one can reduce
it to well-studied problems and develop average-case
hardness for them.

While developing worst-case to average-case reduc-
tions for our factored problems, we formalize the worst-
case to average-case fine-grained reductions framework
of Boix et al. [BBB19]. We identify a property of prob-
lems (the existence of a “good polynomial”) that makes
it possible for these problems to have such a worst-
case to average-case reduction. Originally, [BBB19]
gave average-case hardness for counting k-Cliques in
Erdos-Renyi graphs using their framework. Along the
way of generalizing their framework, we also obtain
a worst-case to average-case reduction for counting
copies of H for any k-node H, where the distribution
for the average-case instance is again for Erdo-Renyi
graphs. We achieve this using a new technique we call
Inclusion-Edgesclusion.

In the rest of the introduction we will present our
results mentioned in the above two paragraphs.

A. The factored problems

We call the problems we introduce “factored prob-
lems” (a full formal definition is in Section II). To
define them, let us first define a factored vector. Let
b and g be positive integers. A (g,b)-factored vector,
v, is made up of g sets v[1],...,v[g]. Each set is
a subset v[i] C {0,1}%. Roughly speaking, a factored
vector v represents many b - g binary vectors, namely a
concatenation xi,xy,...,x, for each choice of a g-tuple
of vectors x; € v[i] for all i. For example, for g =2 and
b =3, let v be a factored vector where v[0] = {001,010}
and v[1] = {010,110}. A natural interpretation of v is
that it is a set of the following 4 binary vectors, by
concatenating each member of v[0] with each member
of v[1], that is {001010,001110,010010,010110}.

Now, consider a function f that takes a 2b-bit in-
put x1,...,X5,¥1,...,¥p and returns a value in {0,1};
we can consider f as a Boolean function. Then,
for two factored vectors v and v/ and a coordinate
i € [g]l, we can consider the number of pairs of
b-bit vectors x € v[i],y € V[i] that f accepts. This
is acceptf(vav,a l) = erv[i],yev’[i] f(xla s Xpy Y1 ayb)’
where x =x1...xp and y =y1...yp. If we take the prod-
uct [T%_, accepts(v,V,i), we would obtain the number
of pairs of b-g-length vectors represented by v and v/
that are accepted by f, where f is said to accept a
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pair of b-g-length vectors if it accepts each of the g
pairs of chunks of b-length subvectors between positions
(i—1)b+1 to ib for i € [g].

Then we can define the factored problem for f, F2-
f that given two sets S and T of n (g, b)-factored vectors,
computes the sum Y5 er [[5; accepts(v,V,i), ie.
the total number of pairs of vectors represented by
vectors in S and T that are accepted by f. For technical
reasons, we restrict the values g = o(lg(n)/lIglg(n))
and b = o(lg(n)), so that each factored vector can be
represented with at most gh2? bits (g sets of at most 2°
vectors of length b).

Depending on the function f, we get different ver-
sions of a factored problem. If f on b-length vectors x
and y, returns 1 iff x-y =0, then we get the factored OV
problem F2-OV. If f returns 1 if the XOR of x and y is
0, we get the F2-XOR problem, and if f returns 1 iff
x+y =10 when viewed as integers, we get the F2-SUM
problem.

More generally, f can be defined over k- b-length
vectors, for integer k > 2, taking k-tuples of b-length
binary vectors to {0, 1}. Then analogously we can define
Fk-f to compute the number of k-tuples of vectors
represented by some k-tuple of factored vectors, one
from each n-sized input set S;, i € [k], so that f accepts
the k-tuple. This way we can define Fk-OV, Fk-XOR,
Fk-SUM etc, the factored versions of k-OV, k-XOR and
k-SUM.

Similarly to these problems defined on k-tuples of sets
of factored vectors, we define problems reminiscent to
k-clique. Here f is a function that takes (£)-tuples of
b-length vectors to {0,1}, one is given a graph whose
edges are labeled by factored vectors and the factored
[ k-clique problem, FfkC, asks to compute the number
of (¥)-tuples of vectors that are accepted by f and are
represented by the factored vectors labeling the edges
of a k-clique in the graph. We focus in particular on
the factored zero-k-clique problem, FZkC, in which f
corresponds to returning whether the sum of (£) b-bit
numbers is 0.

B. Results for factored problems

We will summarize the results around our fac-
tored problems below. They appear in the full ver-
sion [DLW20]. We give a visual summary of our results
in Figure 1. We use the shortened names for many of
the problems in the figure. The results will concern
both counting and decision versions of our factored
problems. The decision versions ask whether the count
is nonzero, whereas the counting versions ask for the
exact count. When we want the counting version, we
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will place # in front of the name of the problem. See
the Preliminaries (Section II) for more details.

Summary.: We first provide an overview summary
of our results.

First we show that the factored versions of k-OV, k-
SUM and k-XOR are all #¥=°(1)_fine-grained hard under
SETH. We also show that the factored version of zero-
3-clique (FZ3C) is n3~°()-fine-grained hard based on
any of the three core hypotheses of FGC (SETH, or
the APSP or 3-SUM hypothesis). Additionally, we show
that the counting versions of these factored problems are
as hard in their natural uniform average-case as they are
in the worst case. Moreover, we show that many natural
problems, like counting regular expression matchings,
reduce from our factored problems. This even implies
fine-grained average-case hardness for these problems
over some explicit distributions.

Thus our factored problems do three things simulta-
neously:

o Instead of trying to use the uniform average-case
of the core problems of FGC as central problems in
a network of average-case reductions, we can use
the factored versions of the core problems in FGC.
For example, the counting variant of factored OV
(#F2-OV) is hard in its uniform average case from
the worst-case OV hypothesis. Generically, our
factored problems serve as an alternative central
problem for average-case hardness. To demonstrate
this, we give reductions from counting factored
problems to four problems in graph algorithms and
sequence alignment (including counting regular
expression matchings).

The factored versions of the core problems are
sufficiently expressive that they are complete for
the large class of factored problems. In particular,
Fk-OV, Fk-XOR, and Fk-SUM are complete for
the class of problems of the form Fk-f over all f,
while FZkC is complete for the class of problems
FfkC over all f. Despite this expressiveness we
are still able to reduce our factored problems
to many natural problems. We give fine-grained
reductions from our factored problems to k-LCS,
Edit Distance and a labeled version of Max Flow.
Abboud et al. [AVY18] gave two problems, Trian-
gle Collection and Matching Triangles that are hard
from all three core assumptions in FGC. They also
showed that one can reduce Triangle Collection
to several natural problems in graph algorithms.
Unfortunately, however, neither Triangle Collec-

5 Actually a version of the problem that is still hard under all three
assumptions.
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tion, nor Matching Triangles are known to be hard
on average. One of our factored problems, FZ3C is
also hard from all three core assumptions. More-
over, the counting version of FZ3C is additionally
n3~°(1) hard in the average-case from all three core
assumptions of FGC. Thus, problems that reduce
from counting FZ3C get average-case hardness for
some explicit average-case distribution. We give
two examples of problems that reduce from count-
ing FZ3C.Hence if you are interested in average-
case hardness then counting FZ3C might be a
better source for reductions than, say Matching
Triangles or Triangle Collection.

Fine-grained hardness for factored problems: Here
we show that our factored problems are fine-grained
hard under standard FGC hypotheses.

We first show that a single call to a factored problem
solves its non-factored counterpoint.

Theorem L1. In O(n) time, one can reduce an instance
of size n of k-OV, k-XOR, k-SUM and ZkC to a single
call to an instance of size O(n) of Fk-OV, Fk-XOR, Fk-
SUM and FZkC, respectively.

The above theorem holds both in the decision and
counting context. It gives fine-grained hardness for the
factored variants of all our problems, under the hypothe-
sis that the original variants are hard. Note that k-XOR,
k-SUM have O(n[*/?1) time algorithms. However, we
have n¥=°(1) conditional lower bounds for all of Fk-
OV, Fk-XOR, Fk-SUM and FZkC. So, while we do
get fine-grained hardness from the k-XOR and k-SUM
hypotheses, this hardness is not tight. The hardness is
tight from the k-OV and ZkC hypotheses however.

Now we give fine-grained hardness for FZ3C under
all three core hypotheses from FGC.

Theorem 1.2. If FZ3C (even for b= o(logn) and g =
o(log(n)/loglog(n))) can be solved in O(n3~) time for
some constant € > 0, then SETH is false, and there exists
a constant € > 0 such that 3-SUM can be solved in
O(n*~¢') time and APSP can be solved in O(n>~) time.

Worst-case to average-case reductions for factored
problems: We show that our factored problems admit
fine-grained worst-case to average-case reductions. Our
first theorem about this is a worst-case to average-case
fine-grained reduction for the counting version of Fk-
f for a natural distribution (defined in Definition 18).
The proof appears in the full version [DLW20].

Theorem 1.3. Let 1 be a constant such that 0 < p < 1.
Suppose that average-case #Fk-f* (see definition 18,
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Figure 1: A summary of the reductions to and from factored problems in the paper. The problems in diamonds
are the core problems of FGC. The full lines are reductions from this paper, while doted lines are pre-existing
reductions. The problems in gray boxes are our factored problems. The problems in thick lined boxes are the
problems we reduce from factored problems. For the problems surrounded by a thick-lined double box we have
generated an explicit average case distributions on which they are hard (but it is not the uniform distribution). These

results appear in the full version [DLW20].

this is an iid distribution which has ones with proba-
bility p) can be solved in time T (n) with probability
at least 1 —1/(lg(n)*€1g1g(n)*8). Then worst-case #Fk-
f can be solved in time O(T(n)) S.

When p = 1/2 average-case #Fk-f* is average-case
H#FkS,

Thus, if we have worst-case fine-grained hardness for
#Fk-f for some f, then we get average-case hardness
for the same problem over a natural distribution. In
particular, in the corollary below we obtain average-case
hardness for #Fk-OV, # Fk-SUM , #Fk-XOR, based on
the standard FGC hardness of k-OV, k-SUM, k-XOR (as
implied by Theorem L1).

Corollary 1.4. If average-case #Fk-OV can be solved
in time T (n) with probability 1 —1/ (lg(n)gklglg(n)gk)

then worst-case #Fk-OV can be solved in time O(T(n))
6

If average-case # Fk-SUM can be solved in time T (n)
with probability 1 —1/(lg(n)&*1glg(n)8*) then worst-

case # Fk-SUM can be solved in time O(T(n)) ©.
If average-case #Fk-XOR can be solved in time T (n)
with probability 1 —1/(lg(n)&1glg(n)8*) then worst-

case #Fk-XOR can be solved in time O(T (n)) °.

SNote that given that g = o(lg(n)/1glg(n)) then a probability of
1—1/n® will be high enough for any & > 0.
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Similarly, we obtain fine-grained average-case hard-
ness for #FfkC, based on the fine-grained worst-case
hardness of #FfkC.

Theorem LS. Let yu be a constant and 0 < u < 1.
If average-case #FfkCH (see Definition 18, this is
an iid distribution which has ones with probability
W) can be solved in time T(n) with probability 1 —
1/ (lg(n)"’2 g lglg(n)k2 2) then worst-case #FfkC can be
solved in time O(T(n)) ©.

When 1 = 1/2 average-case #FfkC* is average-case
#FfkC.

By Theorem L5, we have the following result for
#FZkC in particular.

Corollary 1.6. If average-case #FZkC can be solved in
time T(n) with probability 1 —1/ (lg(n)k2 g lglg(n)k2 £)

then worst-case #FZkC can be solved in time O(T(n))
6

Thus in particular we obtain fine-grained average-
case hardness for counting factored zero-3-cliques,
based on the hardness of zero-3-clique, and thus based
on the APSP and 3-SUM hypotheses.

Completeness for Fk-OV, Fk-SUM , Fk-XOR and
FZkC: Let k > 2 be a fixed integer. Consider the class
of problems Fk-f defined over all boolean functions f
on kb-length inputs. Our first sequence of results show
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that Fk-OV, Fk-SUM and Fk-XOR are complete for
the class, so that a T (n) time algorithm for any of these
problems would imply an O(T(n)) time algorithm for
Fk-f for any f.

To prove this, we first show that Fk-XOR is complete
for the class:

Theorem L7. If we can solve #Fk-XOR with g sets of
K3b length vectors in time T(n) then, for any f, we can
solve a #Fk-f instance with g sets of b length vectors
in time T (n) + O(n) time.

We then show that Fk-OV, Fk-SUM and Fk-XOR are
equivalent.

Theorem 1.8. If any of #Fk-OV, # Fk-SUM , or #Fk-
XOR can be solved in T(n) time then all of #Fk-OV,
# Fk-SUM , and #Fk-XOR can be solved in O(T(n))
time.

The above two theorems imply the final completeness
theorem:

Theorem 1.9. If any of #Fk-OV, # Fk-SUM , or #Fk-
XOR can be solved in T(n) time then #Fk-f can be
solved in O(T (n)) time.

We also consider the class of problems #)FfkC de-
fined by Boolean functions f on (£)b-length inputs. We
show that (#)FZkC is complete for this class.

Theorem L10. If (#)FZkC can be solved in T (n) time
then (#)FfkC for any f, can be solved in O(T (n) +n?)
time.

Thus our factored problems corresponding to core
problems in FGC, are the hard problems for natural
classes of factored problems.

Fine-grained hardness for well-studied problems,
based on the hardness of factored problems: The results
we mention here appear in the full version [DLW20].
The main upshot is that the factored problems are both
hard and also simple enough to imply hardness for basic
problems in graph and string algorithms. Some of the
results are based on the hardness of FZ3C which implies
hardness from all of SETH, 3-SUM and APSP. Some
come from Fk-f which implies hardness from SETH.
Partitioned Matching Triangles. First we define the
Partitioned Matching Triangles problem (PMT) as fol-
lows: Given g disjoint n-node graphs with node colors,
is there a triple of colors a,b,c so that every one of the
g graphs contains a triangle whose nodes are colored
by a,b,c? The counting variant of PMT is to count the
total number of such g-tuples of colored triangles.

Abboud et al. [AVY18] consider the related Matching
Triangles problem mentioned earlier in the introduction,
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and show that it is hard from all three core FGC
hypotheses. In the Matching Triangles problem one is
given an integer T and a node-colored graph G and one
wants to know if there is a triple of colors a,b,c so that
there are at least T triangles in G colored by a,b,c.
We observe first that for the particular parameters
for which Matching Triangles is shown to be hard in
[AVY18], one can actually reduce Matching Triangles
in a fine-grained way to Partitioned Matching Triangles
(PMT), so that the latter problem is also hard from
all three hypothesis. Furthermore, we give a powerful
reduction to PMT from FZ3C. Moreover, our reduction
also holds between the counting versions of the prob-
lems, so that we get fine-grained average-case hardness
for counting PMT under all three hypotheses as well.

Theorem L.11. If (#)Partitioned Matching Triangles
can be solved in T(n) time, then we can solve
(#)FZ3C in time O(T (n) +n?).

k-color Node Labeled st Connectivity. In the k-color
Node Labeled st Connectivity Problem (k-NLstC) one
is given an acyclic graph G = (V, E) with two designated
nodes s,¢ € V, and colors on all nodes in V'\ {s,¢} from
a set of colors C. One is then asked whether there is a
path from s to ¢ in G using at most k node colors.

We give a fine-grained reduction from FZkC to k-
NLstC that also holds between the counting versions.
Here in the counting version of k-NLstC we want to
output the number of s-¢ paths through at most k colors,
mod |'22k1g2(")].

Theorem L12. If a O(C[F2E|'"¢/?) or
O(|C|F~27|E|) time algorithm exists for (counting mod
22K1"(")) k_NLstC then a O(n*=%) algorithm exists for
(#)FZKC.

The conditional lower bound of (|C|*2|E|)!~—o(1)
resulting from the above theorem is tight. In Appendix
of the full version [DLW20] we give the corresponding
algorithm.
k-color Edge Labeled st Connectivity. The k-color Edge
Labeled st Connectivity problem (k-ELstC) asks for a
given acyclic graph with colored edges and given source
s and target ¢, if there is a path from s to ¢ that uses
only k colors of edges.

We give conditional hardness for both the decision
and counting version of the problem (where the counts
are mod a small R). This also implies average-case
hardness for the counting mod R problem under all three
hardness hypotheses of FGC.

Theorem L.13. Ifa O(|E||C[*"17%) or 0(|E|1‘EJC|"‘1)
time algorithm exists for (counting mod 2%*'8 @) k-
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ELstC, then a O(n*¢) algorithm exists for (#)Fk-f.

This is tight. Note this algorithm is slower (by a
factor of |C|) than the node-labeled version, however it
is optimal. The corresponding algorithm is in a theorem
from the Appendix of the full version [DLW20].
(k+1) Labeled Max Flow. The (k+ 1) Labeled Max
Flow problem studied in [GCSR13] asks, given a capac-
itated graph G = (V, E) where the edges have colors, and
s,t €V, if there is a maximum flow from the source s to
the sink ¢ where number of distinct colors of the edges
with non-zero flow is at most k+ 1.

Theorem L14. If (k+ 1)L-MF can be solved in T (n)
time, then we can solve FZkC in time O(T (n) +n?).

This implies an #*~1=°(1) lower bound for kL-MF

under all three FGC hypotheses. We also show that for
the particular structured version of the problem given
in our reduction, this lower bound is tight.
Regular Expression Matching. The Regular Expression
Matching problem (studied e.g. in [BI16]) takes as
input a regular expression (pattern) p of size m and
a sequence of symbols (text) ¢ of length »n, and asks if
there is a substring of ¢ that can be derived from p. The
counting version of the problem, #Regular Expression
Matching asks for the number of subset alignments
of the pattern in the text mod an integer R, where
R=n"1), A classic algorithm constructs and simulates a
non-deterministic finite automaton corresponding to the
expression, resulting in the rectangular O(mn) running
time for the detection version of the problem.

We give hardness from #F2-OV (mod R) which
in turn implies average-case fine-grained hardness for
counting regular expression matchings mod R, from
SETH.

Theorem L15. Let R be an integer where 1g(R) is
subpolynomial. If you can solve (# mod R) regular
expression matching in T(n) time, then you can solve
(# mod R) F2-OV in O(T(n) +n) time

Again, we show in Appendix of the full version

[DLW20] that for the particular “type” of pattern used
in our reduction, this lower bound is tight.
LCS and Edit Distance. The k-LCS problem is a basic
problem in sequence alignment. Given k sequences
51,...,8 of length n, one is asked to find the longest
sequence that appears in every s; as a subsequence.
k-LCS can be solved in O(n*) time with dynamic
programming and requires #*°() time under SETH,
via a reduction from k-OV [ABV15]. Here we show
that k-LCS is also fine-grained hard via a reduction from
Fk-OV.

780

Theorem L.16. A T(n) time algorithm for k-LCS with
alphabet size O(k) implies a O(T (n)) algorithm for Fk-
ov.

The Edit Distance problem is another famous se-
quence alignment problem. Here one is given two n
length sequences a and b and one needs to compute the
minimum number of symbol insertions, deletions and
substitutions needed to transform a into b. Edit Distance
can be solved in Ognz) time via dynamic programming,
and requires #n2~°(1) time under SETH, via a reduction
from OV [BI15], [BI18].

In the full version [DLW20] we show that edit
distance is also fine-grained hard from F2-OV.

Theorem L17. A T(n) time algorithm for Edit Distance
implies a O(T (n)) algorithm for F2-OV.

1) Counting OV is Easy on Average: As mentioned
earlier in the introduction we show that counting or-
thogonal vectors over the uniform distribution is easy in
the average-case. Let #OVF“ be the problem of solving
orthogonal vectors on instances generated by sampling
n vectors iid from the distribution over d bit vectors
where every bit in the vector is sampled iid from the
distribution that returns 1 with probability i and returns
0 with probability 1 — u.

Theorem 1.18. For all constant values of U and all
values of d there exists constants € >0 and 6 > 0 such
that there is an algorithm for #OV*4 that runs in time
O(n*~%) with probability at least 1 —n".

2) Counting to Detection for ZkC: Our worst-case
to average-case reductions show hardness for counting
problems. We mentioned earlier in the introduction that
stronger cryptographic primitives have been built from
detection problems than from counting problems. In this
paper we show that in the sufficiently low error regime
there is a counting to detection reduction for the zero-k-
clique problem. Unfortunately, this does not give a fine-
grained one-way function from worst-case assumptions.
However, it makes progress towards bridging the gap
between the problems we can show hard from the worst-
case and those we can build powerful cryptographic
primitives from.

Definition 1. An average case instance of
ZkC (ACZKC) with range R takes as input a complete
k-partite graph with n nodes in each partition. Every
edge has a weight chosen iid from [0,R— 1]. A clique
is considered a zero k clique if the sum of the edges is
zero mod R.
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Theorem L19. Given a decision algorithm for
ACZKC that runs in time O(n*=¢) for some € >0 and
succeeds with probability at least 1—n20), there is
a counting algorithm that runs in O(n*~¢) time for
some € > 0 and succeeds with probability at least
1—n=®"), where w(1) here means any function that
is asymptotically larger than constant.

3) Worst-Case to Average-Case Reductions: We de-
fine the notion of a good low-degree polynomial for the
problem P (a GLDP(P)). We define the properties of a
good low-degree polynomial in Definition 8. Intuitively
these properties are that the function must be low
degree, count the output of the problem, and have well
structured monomials. We show that any problem P that
has a GLDP(P) is hard in its uniform average case in
the full version [DLW20]. We do this using techniques
from Boix-Adsera et al [BBB19]. We use the GLDP(-)
framework to show uniform average-case hardness for
our counting factored problems (in the full version). We
give the framework theorem statement below.

Theorem 1.20. Let i be a constant such that 0 < u < 1.
Let P be a problem such that a function f exists that
is a GLDP(P), and let d be the degree of f. Let A be
an algorithm that runs in time T (n) such that when T
is formed by n bits each chosen iid from Ber[p]:

PriAM) = PI)] 2 1-1/o (1g7(n)1g1g(n)) .

Then there is a randomized algorithm B that runs in
time O(n+T(n)) such that for any for I € {0,1}":

PrB() =P >1-0 (2—1g2 (")) .

Boix-Adsera et al show that counting k cliques is
as hard in Erd6s-Rényi graphs as it is in the worst
case. We use the GLDP(-) framework a second time
to slightly generalize their result to show that counting
any subgraph H in an ErdGs-Rényi graph is at least as
hard as counting subgraphs H in worst case k-partite
graphs (in the full version [DLW20]).

Theorem 1.21. Let H have e edges and k vertices where
k=o0(\/1g(n)). Let A be an average-case algorithm for
counting subgraphs H in Erdds-Rényi graphs with edge
probability 1/b which takes T(n) time with probability
1—272%.p . (1g(e) Iglg(e)) 2.

Then an algorithm exists to count subgraphs H in k-
partite graphs in time O(T (n)) with probability at least
1— 028,

II. PRELIMINARIES

We cover useful preliminaries for the full paper in
this section.
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A. Hypotheses about Core Problems of Fine-Grained
Complexity

Definition 1. The 3-SUM Hypothesis [GO95] In the
k-SUM problem, we are given an unsorted list L of n
values (over Z or R) and want to determine if there
are ay,...,a; € L such that Zleai = 0. The counting
version of k-SUM asks how many sets of k numbers
ai,...,ax € L sum to zero.

The k-SUM hypothesis states that that the k-
SUM problem requires n/¥/21-2() time [GO95].

This is equivalent to saying no n/¥/21=¢ time algo-
rithm exists for k.-SUM for constant € > 0.

Definition 2. APSP Hypothesis [VW10] APSP takes
as input a graph G with n nodes (vertices), V and m
edges, E. These edges are given weights in [—R,R]
where R = O(n¢) for some constant c. We must re-
turn the shortest path length for every pair of vertices
u,v € V. The length of a path is the sum of the edge
weights for all edges on that path.

The APSP Hypothesis states that the APSP problem
requires 72 ~°(1) time when m = Q(n?).

Definition 3. Strong Exponential Time Hypothesis
(SETH) [TP01] Let c; be the smallest constant such
that there is an algorithm for k-CNF SAT that runs in
0(2ckn+o(n)) time.

SETH states that there is no constant € > 0 such that
¢ < 1—¢ for all constant k.

Intuitively SETH states that there is no constant € >0
such that there is a 0(2"(1~€)) time algorithm for k-CNF
SAT for all constant values of .

Definition 4. The k-OV Hypothesis [Wil07] In the
k-OV problem, we are given k unsorted lists L1,...,Lx
of n zero-one vectors of length d as input. If there are k
vectors v1 € Ly, ...,V € L such that for Vi € [1,d] 3j €
[1,k] such that v;[j] =0 we call these k vectors an
orthogonal k-tuple. One should return true if there is an
orthogonal k-tuple in the input. The counting version
of k-OV (#k-OV) asks for the number of orthogonal
k-tuples.

The k-OV hypothesis states that that the k-OV prob-
lem requires n*~°(1) time [Wil07].

This is equivalent to saying no O(n*~%) time algo-
rithm exists for k-OVfor constant € > 0.

B. Graphs

Definition 5. Let H = (Vy,Eg) be a k-node graph with
Va ={x1,..., %}
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An H-partite graph is a graph with k partitions
Vi,...,Vg. This graph must only have edges between
nodes v; € V; and v; € V; if e (x;,x;) € Eg. (See Figure
2)

C. Good Low-Degree Polynomials

We define the good low-degree polynomial for a
problem P (GLDP(P)). In the full version [DLW20] we
provide a framework which shows that if a problem P
has a GLDP(P) then P is hard over the uniform average
case. The proof of this framework is a generalization of
the proof in Boix et al. [BBB19]. We use this to show
average-case hardness for counting versions of factored
problems and counting subgraphs in the full version.

Definition 6. Let the polynomial f have n inputs
X1,...,X,. We say f is strongly d-partite if one can
partition the inputs into d sets S,...,Sg such that f can
be written as a sum of monomials };x1,;---xg,;, Where
every variable x;; is from the partition S;. That is, if
there is a monomial xfll xf: in f then it must be that
cj=1and for all j # £ if x;; € S, then x;, ¢ Sp.

Definition 7. Let P(I) be the correct output for problem
P given input 1.

Definition 8. Let n be the input size of the problem
P, let P return an integer in the range [0,p — 1] where
p is a prime and p < n¢ for some constant c. A good
low-degree polynomial for problem P (GLDP(P)) is a
polynomial f over a prime finite field F, where:

o If T=by,...,by, then f(by,...,b,) = f(I) = P(I)
where b; maps to either a zero or a one in the prime
finite field.

« The function f has degree d = o (Ig(n)/1glg(n)).

o The function f is strongly d-patrtite.

D. Factored Problems

We introduce a more expressive extension of k-SUM,
k-OV, k-XOR, and ZkC. At a high level this extension
takes every number or vector from the original problems
and splits them up into g = o(lg(n)/1glg(n)) groups
of numbers or vectors with bit representations of size
b =o(lg(n)). If the original numbers had length £, then
£~ b-g. Then, we allow each group to contain multiple
numbers or vectors.

We start by giving a definition of Fk-OV, then we
give a small example of F2-OV. Next, we follow up
with the analogously defined Fk-SUM ,Fk-XOR, and
FZT. Finally, we give algorithms for these problems in
the full version [DLW20].
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1) Fk-OV, Intuition and Examples: Definition 9.
A (g,b)-factored vector v is defined by g sets
(v[1],...,v[g]) where each v[i] C {0,1}? is a set of b-
dimensional binary vectors.

For a set of vectors wy,...,w; of the same dimen-
sion d, let isOrthogonalTuple(W1,...,w;) return 1 iff
W1, ..., Wy are orthogonal, i.e. iff ¥'¢_; H’J‘-zle-[a] =0,
where w|a] is the a™ bit of the vector w;.

Now we define a useful operator, o for a set
{Zi,...,Z;} where each Z; is a set of d-dimensional
binary vectors as follows.

>

W1EZ,....WtEZL

o(Z1,...,2Zg) =

Now, given k (g,b)-factored vectors vi,...,v the
number of orthogonal vectors within those factored
vectors is ®(v1,...,Vg) i= Hf;ol o (v[i,. .., vli])-

The input to Fk-OV is Vi,...,V;, where each V;
is a set of n (g,b)-factored vectors, where g =
o(lg(n)/1glg(n)) and b = o(lg(n)). The total number
of orthogonal vectors in a given Fk-OV instance is

The Fk-OV problem asks to determine whether
Yo, mevin. v @1, ) > 0.
An Example: We give a small example bellow.

Consider F2-OV where g =2 and b = 3. We give an
example of factored vectors u, v and w:

@(¥1,---,Vk)-

u[0] = {001,010} u[1] = {001,010}
v[0] = {000,010,110} V[1] = {110,101}
wl0] = {} w[1] = {000,011,100, 111}

First, note that ®(w,u) = ®(w,v) = 0 trivially be-
cause w[0] is the empty set. Empty sets are valid
in this factored representation, but, rather degenerate.
Next, note that ®(v,u) is 4-2 = 8. For o(u[0],v[0])
all of (001,000),(001,010),(001,110), and (010,000)
are orthogonal. For o(u[1],v[1]) both (001,110), and
(010,101) are orthogonal.

A Natural Interpretation:: We can generate a
k—OV instance by interpreting a factored vector as
representing |v1|-...-|vg| vectors. For example u in the
above example would represent the following list of
vectors:

001001,001010,010001,010010.

As another example v would represent the following list
of vectors:

000110,000101,010110,010101,110110,110101.
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Figure 2: An example of the corresponding H-partite graphs.

Finally, W represents no vectors, because w[0] is the
empty set.

However, the number of vectors that can be repre-
sented by a single factored vector that has a g2° sized
representation is 2%8. While g2? is sub-polynomial, 2%
can be super polynomial (e.g. if b= g =1g(n)3/2)!

2) Definitions for Fk-f, Fk-SUM, Fk-XOR, and FZT:
Definition 10. Let f: ({0,1}?)**¥ — {0,1} be a func-
tion taking k b-dimensional binary vectors to {0,1}. We
can view f as a Boolean function.

Let us define an operator for f, oy, that takes k
factored vectors ay,...,a; and computes the number of
k-tuples of vectors, one in each a;, that f accepts:

Of(al,...,ak)= Z f(ﬁla-"aﬁk)'

w1 €Eay .. WrEag

If v is a (g,b)-factored vector let, for i € [g], v[i] be
the " set of vectors in v.

Given (g,b)-factored vectors vy,...,v; the number of
k-tuples of vectors accepted by f within those factored
vectors is @ f(vy,..., V) = Hf;ol of (nii],...,vli])-

For each f, we define a problem Fk-f. The input to
Fk-f is k sets, V4,...,Vi, of n (g,b)-factored vectors
each, where g = o(1g(n)/1glg(n)) and b = o(1g(n)).

The total number k-tuples of vectors accepted by f
in a given Fk-f instance is

Fk-f(V1,..., Vi) = Yy

V150 VEEVL 5o, Vi

1y s¥8):

The Fk-f problem returns true iff Fk-f(V1,...,Vg) > 0.
More generally, the counting version #Fk-f of Fk-f asks
to compute the quantity Fk-f(V1,..., V).

Definition 11. Fk-XOR is the problem Fk-f where f is
1 if the componentwise XOR of the k given vectors is
the O vector:

-

1, ifvi®...0vw=0
0, else ’

f(vl,...,vk) = {

Definition 12. Fk-SUM is the problem Fk-f where f
that checks if the sum of the k vectors is the 0 vector:

Sv,...w) ={

1, ifvi+...+v=0
0, else '

Definition 13. For an integer k, £ = (%) and a given
function f : {0,1}%¢ — {0,1}, construed as taking /-
tuples of b-length binary vectors to {0, 1}, let #FfkC be
the problem of counting cliques in a graph whose edges
are labeled with factored vectors, where a clique is
counted with multiplicity the number of {-tuples of
vectors that f accepts and that appear in the £ factored
vectors labeling the edges.

More formally, we change the definition of the op-
eration ©(-) to take as input k vertices vi,...,v of
a given graph G = (V,E) whose edges (x,y) € E are
labeled by (g, b)-factored vectors ey,y:

©,f (VI,---,Vk) =

e s -1 g g .
isClique(v1,...,v) - TE_ of (€v,v, ], €v1 w3 il - - s €y s wili])-

Above isClique(v, . ..,v) outputs 1 if vq,...,v; form
a k-clique in G, and otherwise outputs 0.

We keep the definition of of(-) the same as before,
but now its input is a list of £ sets of vectors that are
the ith group of vectors of the factored vectors labeling
the clique edges:

or(erli,...,eli]) =

Wi €eg [l] . Wy€eyp [l]

Finally, we let #FfkCbe the problem of computing
Y Ofr,...m).

Vl,...,VkGV

FfkC(G) :=

Here, unlike for #F{-f, we are only counting the sums
of factored vectors when those factored vectors are on
a set of £ = (£) edges that form a k clique. Let FfkCbe
the detection version of the problem that returns 1 if
FfkC(G) > 0 and 0 otherwise.
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Definition 14. Factored Zero k-Clique, FZkC is the
FfkC problem where f is the sum function for (£)
variables defined in the definition of Fk-SUM .

Definition 15. Factored Zero Triangle, FZT is FZ3C.

3) Hypotheses for Factored Problems: First we will
define the hypotheses for our factored list problems.
In many lemma, theorem and definition statements
we will use a structure where we put (#) before several
problem or hypothesis names. This structure means that
the statement is true for all non counting versions, or
for all counting versions. For example, in the first line
below the two implies statements are:
“The Fk-OV hypothesis (i.e.Fk-OVH) states that Fk-
OV requires n*°(1) time”
and “The #Fk-OV hypothesis (i.e.#Fk-OVH) states that
#Fk-OV requires n¥—°(1) time.”.

Definition 16. The (#)Fk-OV hypothesis (i.e.(#)Fk-
OVH) states that (#) Fk-OV requires n*—°(1) time,

The (#) Fk-SUM hypothesis (i.e.(#)Fk-SUMH) states
that (#) Fk-SUM requires n#—°(1) time.

The (#)Fk-XOR hypothesis (i.e.(#)Fk-XORH) states
that (#)Fk-XOR requires 782 time.

The (#)Fk-f hypothesis (i.e.(#)Fk-fH) states that
(#)Fk-f requires n5=°(1) time.

Now we will define the hypotheses for our factored
clique problems.

Definition 17. The (#)FZkC hypothesis (i.e.(#)FZkCH)
states that (#) FZkC requires » —o(1) time.

The (#)FfkC hypothesis (i.e.(#)FfkCH) states that (#)
FfkC requires n¥—°() time,

4) Average-Case for Factored Problems: We will
separate the average-case distribution of factored prob-
lems into the normal case and a more-general parame-
terized case.

Definition 18. More General Average-Case Let Sy,
be a distribution over sets of vectors from {0,1}2. A set
drawn from S, includes every vector w € {0,1}® with
probability p.

Let Dgpy be a distribution over factored vectors v
where all g sets of v[i] are sampled iid from Sj ;.

The average-case distribution for #Fk-f# samples
every factored vector in its input iid from Dgp ;.

The average-case distribution for #FfkC* samples
every factored vector in its input iid from Dgp ;.

For the average-case we use in this paper we use
1 =1/2. We feel this is the most natural distribution for
our problem. We will occasionally call this the “uniform
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average-case” to emphasize that every set v[i] in every
factored vector is chosen uniformly at random from all
possible subsets of {0,1}2.

Definition 19. The average-case distribution for #Fk-
f samples every factored vector in its input iid from
Dg,b,1/2-

The average-case distribution for #FfkC samples ev-
ery factored vector in its input iid from Dy ;5.
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