
Optimization Letters (2021) 15:2127–2145
https://doi.org/10.1007/s11590-021-01722-3

ORIG INAL PAPER

Stability analysis of conically perturbed linearly constrained
least-squares problems by optimizing the regularized
trajectories

A. Khan1 ·M. Sama2

Received: 6 May 2020 / Accepted: 26 February 2021 / Published online: 18 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This paper studies linearly constrained least-square optimization problems in Hilbert
spaces for which the KKT system is not necessarily available to analyze and compute
the solution. The primary objective is to develop new qualitative and quantitative
stability estimates for the regularization error in the conical regularization approach.
To attain this goal, we associate the notion of stability with the solvability of some
scalar and vector optimization problems defined in terms of the regularized trajectory
on the domain space and the regularized state trajectory on the constraint space. We
analyze three optimization formulations. The first formulation minimizes a scalar
objective function over the regularized trajectory. The second formulation consists of
vector optimizing the regularized trajectory on the domain space for a specific Bishop–
Phelps cone. The third formulation results in vector optimizing the regularized state
trajectory for the constraint cone. We provide numerical examples to illustrate the
efficacy of the developed framework.
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1 Introduction

Let U , H , and Y be separable Hilbert spaces. Let C ⊂ Y be a pointed, closed, and
convex cone, inducing a partial ordering ≤C on Y , that is, y1 ≤C y2, if and only if,
y2 − y1 ∈ C . We denote by Y ∗ the dual space of Y and by

C∗ = {
μ∗ ∈ Y ∗ : μ∗(y) ≥ 0, for every y ∈ C

}
,

we denote the positive dual cone of C . In this paper, we study the following convex
optimization problem:

minimize J (u) = 1

2
‖Su − zd‖2H + κ

2
‖u − ud‖2U , subject to Gu ≤C w, u ∈ U ,

(P)

where S : U → H and G : U → Y are bounded linear operators, κ > 0 is a
given parameter, ud ∈ U , zd ∈ H and w ∈ Y are given elements. The optimization
problem (P), which is uniquely solvable with unique solution denoted by u0, encom-
passes a wide variety of problems in applied mathematics. The main obstacle in the
adequate treatment of infinite-dimensional problems with linear constraints like (P)
is the existence of the dual solutions. In strict contrast to such optimization problems
posed in a finite-dimensional setting, in infinite-dimensional optimization problems,
the existence of the dual solutions requires quite restrictive conditions. This critical
situation has been addressed in various theoretical and applied models, for example,
in PDE constrained optimization or in Mathematical Economics models, see [1,2] for
more details.

In this work, our interest is on the conical regularization methods for problem (P)
which construct a family of optimization problem by replacing the cone C by an
approximating family of cones. To be precise, for ε ∈ (0, 1), we denote by {Cε} ⊂ Y ,

a family of dilating cones associatedwithC .That is, {Cε} is a family of closed, convex,
and pointed cones with nonempty interior such that, firstly,C\{0} ⊂ int(Cε), for every
ε ∈ (0, 1), and secondly, C = ⋂

ε>0 Cε. The regularized family (Pε) is then obtained
by replacing C in (P) by Cε as follows:

minimize J (u) = 1

2
‖Su − zd‖2H + κ

2
‖u − ud‖2U , subject to Gu ≤Cε w, u ∈ U .

(Pε)

It was shown in [3] that the regularized solutions uε of (Pε) converge in norm to
u0 under an additional mild condition, see (A1). Moreover, uε can be computed using
the KKT system: There is a multiplier μ∗

ε ∈ C∗
ε such that

DJ (uε) + μ∗
ε ◦ G = 0, (1a)

μ∗
ε(Guε − w) = 0, (1b)

Guε − w ≤Cε 0, (1c)

123



Stability analysis by optimizing the regularized trajectories… 2129

where ◦ denotes the usual composition operator.
In this work, we focus on the case when Cε is a family of Henig dilating cones,

see [4,5]. An essential aspect of the study of the regularization methods is to establish
qualitative and quantitative estimates for the regularization error ‖u − uε‖U . In this
context, in [6] (see also [7]), the following condition was considered: There exists a
constant c > 0 such that

− DJ (u0)(d) ≥ c, for every d ∈ T, (2)

where the set T is defined by

T :=
{

d ∈ U : ∃ εn ↓ 0 such that
uεn − u0∥∥uεn − u0

∥∥
X

⇀d as n → ∞
}

.

Condition (2) guarantees an improved a priori convergence rate, see [6, Proposition
3.2], independently of the regularity of the problem, and hence it is of evident interest
to investigate conditions under which it holds. For instance, if (P) is regular, then (2) is
equivalent to the stability at ε = 0of the regularizedoptimal trajectoryΦ : [0, 1) → U ,
defined by Φ(ε) := uε, that is, ‖Φ(ε) − Φ(0)‖U = O(ε). This is not true in general.
In Example 4.2 below, we show that (2) holds, albeit (P) is not regular. On the other
hand, the converse is true, that is, if Φ is stable, then (P) is regular, and hence (2)
necessarily holds.

In this paper,we associate (2)with the solvability of one scalar optimization problem
and two vector optimization problems, all related to the regularized trajectory. To be
precise, for the scalar optimization problem, we minimize −J over (the image of) the
regularized optimal trajectory Γ := Φ([0, 1)):

minimize − J (u), subject to u ∈ Γ . (Q)

In Theorem 3.1, we prove that (2) is equivalent to the strict local minimality of
u0. Then, we pose a vector optimization problem to minimize the optimal regularized
trajectory with respect to an ordering cone in the spaceU . More specifically, for δ ≥ 0
sufficiently small, we consider the following vector optimization problem

Dδ-minimize Φ(x), x ∈ [0, 1), (P(Φ, Dδ))

where Dδ := {
u ∈ U : −DJ (uδ)(u) ≥ c ‖u‖U

}
.

Under condition (2), Dδ is a Bishop–Phelps cone and problem (P(Φ, Dδ)) is well-
defined and solvable. Moreover, in Theorem 3.3, we prove that condition (2) implies
that ε = 0 is a proper minimizer of problem (P(Φ, Dδ)), and a strongly minimizer,
if Φ is pseudoconvex. We then consider another vector optimization problem for the
optimal regularized state trajectory G ◦ Φ with respect to the constraint cone C :
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2130 A. Khan, M. Sama

C-minimize (G ◦ Φ) (x), x ∈ [0, 1). (P(G ◦ Φ,C))

In Theorem 3.6, we show that the stability of Φ implies that 0 is a strict local
minimizer of (P(G ◦ Φ,C)). We also give illustrative examples which support the
provided stability results.

Notation and preliminaries

We now briefly describe the notations that will be used in this paper, recalling some
notions in optimization and set-valued analysis, see [8]. Given a Hilbert space X , we
denote its inner product and norm by 〈·, ·〉X and ‖·‖X , respectively. We designate
the strong and the weak convergence in any space by → and ⇀. For a sequence
{(xn, yn)} and a element {(x0, y0)} in X × Y , by {(xn, yn)} →

s,w
(x0, y0), we mean

that xn → x0 and yn⇀y0. The quasi-interior of the dual cone C∗ is defined by
C� = {λ∗ ∈ Y ∗ : λ∗(c) > 0 for every c ∈ C\{0}}. Given λ∗ ∈ X∗ with ‖λ∗‖X∗ = 1,
and c ∈ (0, 1), by C(λ∗, c) ⊂ X we denote the Bishop–Phelps cone

C(λ∗, c) = {v ∈ X : λ∗(v) ≥ c ‖v‖X },

which is a closed, convex, and pointed cone (see [9,10]). We note that the notion of
Henig dilating cones that we will recall shortly, was introduced by Henig [4,5] in a
finite-dimensional setting, and later on extended to general spaces by Borwein and
Zhuang [11]. As Y is separable, the cone C has a closed convex base Θ ⊂ Y such
that

C =
⋃

λ≥0

{λθ : θ ∈ Θ} and 0 /∈ Θ.

Without any loss of generality (see [8, Theorem 2.2.7]), we assume that the base Θ

is given by a strictly positive functional β∗ ∈ C�, that is, Θ = {y ∈ C : β∗(y) = 1} ,

where we normalize to ‖β∗‖Y ∗ = 1. Given ε > 0, the Henig dilating cone Cε is then
given by

Cε = cl [cone (Θ + εBY )] , (3)

where BY = {y ∈ Y : ‖y‖Y ≤ 1} denotes the closed unit ball in Y . It is known that
the Henig cone is a solid, pointed, closed, and convex cone such that C = ⋂

ε>0 Cε

(see [11, Theorem 1.1]).
Given S ⊂ X and s̄ ∈ S, the contingent cone T (S, x̄) of S at x̄ is the set of all v ∈ X

such that there are {tn} ⊂ R+ and {sn} ⊂ S such that sn → x̄ and tn(sn − s̄) → v.
If we replace the convergence by the weak convergence, we obtain the notion of the
weak contingent cone denoted by Tw(S, x̄). For A ⊂ X × Y and (x0, y0) ∈ A, the
quasi-weak contingent cone of A at (x0, y0), denoted by T sw(A, (x0, y0)), is defined
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as the set of all (v,w) ∈ X × Y such that there exist {tn} ⊂ R+ and {(xn, yn)} ⊂ A
such that (xn, yn) →

s,w
(x0, y0) and tn(xn − x0, yn − y0) →

s,w
(v,w).

For a set-valued map F : X ⇒ Y , we denote by dom(F) := {x ∈ X : F(x) �= ∅}
its effective domain and by graph(F) := {(x, y) ∈ X × Y : y ∈ F(x)},
epi(F) := {(x, y) ∈ X × Y : y ∈ F(x) + C}, Im(F) := {y ∈ Y : y ∈
F(x)} its graph, epigraph and image respectively. The contingent derivative of F at
(x0, y0) ∈ graph(F) (see [12]) is the set-valued map DcF(x0, y0) : X ⇒ Y such that
graph(DcF(x0, y0)) = T (graph(F), (x0, y0)), while the τw-contingent derivative of
F at (x0, y0) ∈ graph(F) (see [13]) is the set-valued map Dw

c F(x0, y0) : X ⇒ Y
such that

graph(Dw
c F(x0, y0)) = T sw(graph(F), (x0, y0)).

When Y is finite-dimensional, both derivatives coincide. For a scalar map F : X ⇒ R

by D↑F(x0, y0), we denote the contingent epiderivative by (see [14])

D↑F(x0, y0)(x) = min{μ : μ ∈ Dc(F + R+)(x0, y0)(x)}
for all x ∈ dom(Dc(F + R+)(x0, y0)).

A set-valued F : X ⇒ Y map is said to be τw -pseudoconvex at (x, y) ∈ graph(F) if
F(x) ⊂ y + Dw

c F(x, y)(z − x) for every z ∈ dom(Dw
c F(x, y)). This condition is a

natural generalization of convexity and it holds in particular when F is pseudoconvex
in the usual sense given in [15] or when T sw(graph(F), (x, y)) is a convex set by
following standard arguments (see for example [14,16]).

We review some vector optimization notions, see [10]. Given a map f : S ⊂ X →
Y , we denote a generic vector optimization problem by

C-minimize f (x), subject to x ∈ S. (P( f ,C))

A point x̄ ∈ S is called a local Pareto minimizer of (P( f ,C)), if there exists a
neighborhood A of x̄ such that

( f (x̄) − C)
⋂

f (S ∩ A) = f (x̄),

where f (S ∩ A) := ⋃

x∈S∩A
f (x). Analogously, a point x̄ ∈ S is called a local strongly

minimizer of (P( f ,C)), if

f (S ∩ A) ⊂ f (x̄) + C .

When A = X , we say simply that x̄ is a Pareto or a strongly minimizer of (P( f ,C)).
Furthermore, if x̄ is a local Pareto minimizer of (P( f ,C)) and

T ( f (S ∩ A) + C, x̄)
⋂

−C = {0},
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then x̄ is a local proper minimizer of (P( f ,C)), see [17].
We will also consider the following notion of strict local minimizer introduced

in [18]. A point x̄ ∈ S is said to be a strict local minimizer (of order 1) of (P( f ,C)),
if there exists a constant α > 0 and a neighborhood U of x̄ such that

( f (x̄) + C)
⋂

B ( f (x̄), α ‖x − x̄‖U ) = ∅, for every x ∈ S ∩ A\{x̄}.

In the scalar case, Y = R, C = R+ collapses to the known notions in scalar optimiza-
tion (see [19]):

f (x) ≥ f (x̄) + α ‖x − x̄‖U for every x ∈ S ∩ A\{x̄}.

Proper minimizers and strict minimizers are proper subsets of Pareto minimizer
(see [18]), all these optimality notions coincide with the notion strongly minimizers
provided that strongly minimizers exist.

Finally, following [6], throughout this paper we impose two conditions which avoid
pathological cases:

(A1) Gu0 − w �= 0.
(A2) uε �= u0, for ε small enough.

2 Some basic results

In this section, we study some basic properties of the set T and condition (2) which
will be used later. For this, we first recall that the image of the regularized optimal
trajectory is given by

Γ = Φ([0, 1)) = {uε : uε = Φ(ε), for some ε ∈ [0, 1)}.

We first give the following technical result that can also be derived from Lemma
3.1 and the proof of Theorem 5.1 in [6]. However, for the sake of completeness, we
provide a direct proof.

Lemma 2.1 Given any (0, 0) �= (r , v) ∈ graph(Dw
c Φ(0, u0)), there exists a positive

scalar λv > 0, with λv ≥ ‖v‖U , and dv ∈ T such that

(r , v) = λv(rv, dv). (4)

In particular, we have (rv, dv) ∈ graph(Dw
c Φ(0, u0)). Furthermore, if U is finite-

dimensional, then λv = ‖v‖U , dv = ‖v‖−1
U v, for every v �= 0.

Proof By the definition of Dw
c Φ(0, u0), given (0, 0) �= (r , v) ∈ graph(Dw

c Φ(0, u0)),
there are {tn} ⊂ R+,

{
(εn, uεn )

} ⊂ graph(Dw
c Φ(0, u0)) such that

{
tn(εn, uεn − u0)

} →
s,w

(r , v). Since by hypothesis (A2), uεn �= u0, , we can define sequences {λn}, {rn}, and
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{dn} by λn := ∥∥tn(uεn − u0)
∥∥
U , rn := εn‖uεn−u0‖U

, and dn := uεn − u0∥∥uεn − u0
∥∥
U

⊂ U .

Then,

{λn (rn, dn)} = {
tn(εn, uεn − u0)

} →
s,w

(r , v). (5)

Since
{
tn(uεn − u0)

}
is weakly convergent, it is bounded, and hence {λn} is bounded.

Keeping the same notation for subsequences, let {λn} be a subsequence that converges
to some λv ≥ 0. We claim that λv > 0. In fact, if λv = 0, then (r , v) = (0, 0)
which contradicts the hypothesis. Furthermore, since every norm is weakly lower
continuous, and

{
tn(uεn − u0)

}
⇀v, we have that λv ≥ ‖v‖U . On the other hand,

since U is reflexive, by taking subsequences, if necessary, we conclude that dn =
uεn − u0∥∥uεn − u0

∥∥
U

⇀dv, for some element dv ∈ T. From (5), λnrn → r , λndn⇀λvdv.

Applying [6, Lemma 3.1], rn → rv, for some rv ≥ 0, and consequently (r , v) =
λv(rv, dv),which proves (4). IfU is finite-dimensional, for v �= 0,we can assume that
tn(uεn − u0) → v, and hence λn → ‖v‖U and dn → ‖v‖−1

U v, therefore λv = ‖v‖U ,
dv = ‖v‖−1

U v. The proof is complete. ��
Remark 2.2 Lemma 2.1 implies that ImDw

c Φ(0, u0) = cone(T). Since, Tw
Γ (u0) =

ImDw
c Φ(0, u0), we deduce

Tw
Γ (u0) = cone (T) = ImDw

c Φ(0, u0). (6)

If in addition U is finite dimensional, then TΓ (u0) = Tw
Γ (u0), and hence

T = { ‖v‖−1
U v : v ∈ TΓ (u0)\{0}}.

Now we review and give some new useful characterizations of property (2). As we
said before, (2) implies an improved a priori convergence rate for the regularization
error. For this, for each ε ∈ [0, 1), we define

βε = −DJ (u0)(uε − u0). (7)

Since uε → u0, {βε} ⊂ R+ is a sequence of positive reals converging to 0. In
general, we have ‖u0 − uε‖U = O

(√
βε

)
. However, if (2) holds, then ‖u0 − uε‖ =

O (βε) , as we show next. This rate is knownwhen the problem is quasi-regular (see [6,
Proposition 3.2]) and regular, where, in this case, O (βε) = O (ε) (see [6, Section 3]
and [7, Section 3]).

Lemma 2.3 The following statements are equivalent:

(a) ‖uε − u0‖U = O(βε), where βε is given in (7).
(b) There exists a constant c > 0 such that

−DJ (u0) (d) ≥ c for every d ∈ T.
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(c) The following condition holds:

T∩ ker DJ (u0) = ∅. (8)

(d) 0 /∈ T and the following condition holds:

(
Tw

Γ (u0)\{0}
)∩ ker DJ (u0) = ∅. (9)

Proof (a) ⇒ (b). Let d ∈ T be arbitrary. By definition there exists εn → 0
with uεn−u0‖uεn−u0‖U

⇀d. For βεn as in (7), by hypothesis there is a constant c > 0,

independent of εn , such that
∥∥uεn − u0

∥∥
U ≤ 1

c
DJ (u0)(uεn − u0). Consequently,

−DJ (u0)
(

uεn−u0‖uεn−u0‖U

)
≥ c, and by passing to limit n → ∞,we get−DJ (u0) (d) ≥

c.
(b) ⇒ (a). Assume that (a) does not hold. Then, we can define a sequence εn → 0

such that
∥∥uεn − u0

∥∥
U

βεn

=
∥∥uεn − u0

∥∥
U

−DJ (u0)(uεn − u0)
= 1

−DJ (u0)
(

uεn−u0‖uεn−u0‖U

) → ∞,

which is equivalent to
{
DJ (u0)

(
uεn−u0‖uεn−u0‖U

)}
→ 0. Since U is reflexive, we can

assume, taking subsequences if necessary, that
{

uεn−u0‖uεn−u0‖U

}
⇀d, for some d ∈ T.

Consequently DJ (u0)(d) = 0 which contradicts (b).
(b) ⇒ (c). This condition is straightforward.
(c) ⇒ (b). See [7, Proposition 3.1].
(c) ⇒ (d). First of all, as a direct consequence of (8), we have 0 /∈ T. Now, take

any 0 �= v ∈ Tw
Γ (u0). Since Tw

Γ (u0) = cone(T) by (6), we can find α > 0, d ∈ T

such that v = αd. Furthermore, d /∈ ker DJ (u0) by hypothesis (8). From this, it is
immediate that v /∈ ker DJ (u0), thus (8) holds.

(d)⇒ (c). By hypothesis 0 /∈ T, andT ⊆Tw
Γ (u0) by (6), thereforeT ⊆Tw

Γ (u0)\{0}
and (8) follows from (9). ��

A interesting fact is that the disjunction ker DJ (u0)
⋂

T = ∅ holds true in a neigh-
borhood of u0.

Lemma 2.4 The following statements are equivalent:

(a) ker DJ (u0)
⋂

T = ∅.
(b) There exists small enough ε̄ > 0 such that

ker DJ (uδ)
⋂

T = ∅, for every 0 ≤ δ ≤ ε̄.

(c) There exists small enough ε̄ > 0 and a constant k > 0 such that

− DJ (uδ) (d) ≥ k, for every d ∈ T, 0 ≤ δ ≤ ε̄. (10)
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Proof (b)⇒(a). It is straightforward.
(a)⇒(b). Assume that (b) does not hold. Then, we can take sequences εn → 0 and

{dn} ⊂ T such that

DJ (uεn )(dn) = 0. (11)

Every element of T is norm bounded by 1, and hence by taking subsequences if
necessary, we consider dn⇀d, where d ∈ T because T is weakly sequentially closed
by definition. Since uεn → u0, taking limits in (11), we have DJ (u0)(d) = 0, and
hence d ∈ ker DJ (u0)

⋂
T, contradicting (a).

(b)⇒(c). Assume that (10) does not hold. Then we can take sequences εn → 0,
and {dn} ⊂ T such that

DJ (uεn )(dn) → 0. (12)

Reasoning as before dn⇀d0 as n → ∞, for some d0 ∈ T. By continuity
DJ (u0)(d0) = 0, contradicting (b).

(c)⇒(a). It is a consequence of Lemma 2.3. ��
Based on the previous result, in the sequel by Dδ ⊂ U , we denote the cone

Dδ = {u ∈ U : −DJ (uδ) (u) ≥ k ‖u‖U } for each 0 ≤ δ ≤ ε̄.

Remark 2.5 Assuming that any condition of Lemma 2.4 holds, constant k > 0 in (10)
verifies

k ≤ inf
0≤δ≤ε̄,d∈T − DJ (uδ) (d) ,

and, consequently, we have k ≤ ‖DJ (uδ)‖U∗ ‖d‖U ≤ ‖DJ (uδ)‖U∗ . Without loss of
generality, we assume that

0 < k < ‖DJ (uδ)‖U∗ . (13)

This proves that Dδ = C
(

DJ (uδ)‖DJ (uδ)‖U∗ , k
‖DJ (uδ)‖U∗

)
is indeed a Bishop–Phelps cone.

As a consequence, we have the following result.

Proposition 2.6 If (2) holds, then there exists small enough ε̄ > 0 such that

Tw
Γ (u0) ⊂ Dδ, for every 0 ≤ δ ≤ ε̄. (14)

Proof Let v ∈ Tw
Γ (u0) be arbitrary. By Lemma 2.1, there is λv ≥ ‖v‖U , dv ∈ T such

that v = λvdv . On the other hand, by the previous two lemmas, we can assume that
there exists a small enough ε̄ > 0 and k > 0 such that

−DJ (uδ) (d) ≥ k, for every d ∈ T, 0 ≤ δ ≤ ε̄.
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From that−DJ (uδ) (dv) ≥ k andby linearity,weget−DJ (uδ)(v) = −DJ (uδ) (λvdv)

≥ λvk ≥ k ‖v‖U . Since v ∈ Tw
Γ (u0) is arbitrary, (14) follows by the definition of

cone Dδ . ��

3 Scalar and vector optimization over the optimal regularized
trajectory

In this section, we study three optimization problems over the optimal regularized
trajectory Γ . We begin with the following scalar optimization problem:

minimize − J (u), u ∈ Γ . (Q)

Condition (2) is equivalent the strict minimality of−J over the optimal regularized
trajectory Γ as we prove next:

Theorem 3.1 Let c > 0. The following statements are equivalent:

(a) u0 is a strict local minimizer of (Q).
(b) −DJ (u0)(d) ≥ c, for every d ∈ T.

Proof (a)⇒(b). By definition of strict minimality, for sufficiently small ε, we have

J (u0) − J (uε) ≥ c ‖u0 − uε‖U .

By using the Taylor expansion of J at u = u0, we have

J (u0) −
[
J (u0) + DJ (u0) (uε − u0) + 1

2
‖Su0 − Suε‖2H + κ

2
‖u0 − uε‖2U

]

≥ c ‖u0 − uε‖U ,

equivalently

− DJ (u0)

(
u0 − uε

‖u0 − uε‖U

)
+ 1

2

‖Su0 − Suε‖2H
‖u0 − uε‖U + κ

2
‖u0 − uε‖U ≥ c. (15)

Now, for anyd ∈ T, there exists εn → 0 such that u0−uεn‖u0−uεn‖U
⇀d, and sinceuεn → u0,

by continuity

−DJ (u0)

(
u0 − uεn∥∥u0 − uεn

∥∥
U

)

+ 1

2

∥∥Su0 − Suεn

∥∥2
H∥∥u0 − uεn

∥∥
U

+ κ

2

∥∥u0 − uεn

∥∥
U → −DJ (u0) (d) .

Applying this expression in (15), we finally get −DJ (u0) (d) ≥ c.
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(b)⇒(a). Assume that u0 is not a strict local minimizer of −J . Therefore, we can
take a sequence εn → 0 and J (u0)−J (uεn )

‖u0−uεn‖U
→ 0. Using a Taylor expansion of J at

u = u0 as before, this is equivalent to

−DJ (u0)

(
u0 − uεn∥∥u0 − uεn

∥∥
U

)

→ 0.

On the other hand, taking subsequences if necessary, we can take d ∈ T such that
u0−uεn‖u0−uεn‖U

⇀d. And this implies that −DJ (u0) (d) = 0, which contradicts condition

(b). ��
As a consequence of the previous theorem, Lemma 2.3 and [6, Proposition 3.3],

we have the following result.

Corollary 3.2 ‖u0 − uε‖U = O(βε), if and only if, u0 is a strict local minimizer of
(Q). In the particular case when (P) is regular, the strict minimality is equivalent to
the stability of the regularized optimal trajectory Φ.

Assuming that (2) holds, we now focus on the following vector optimization

Dδ-minimize Φ(x), x ∈ [0, 1), (P(Φ, Dδ))

recalling that Dδ ⊂ U is defined by Dδ = {
u ∈ U : −DJ (uδ)(u) ≥ k ‖u‖U

}
, with

k > 0 and 0 ≤ δ ≤ ε̄ as stated in condition (c) in Lemma 2.4. Therefore, (P(Φ, Dδ))

is well defined, and since Dδ is a Bishop–Phelps cone by Remark 2.5, for (P(Φ, Dδ)),

there are local Pareto minimizers as a consequence of Bishop–Phelps lemma, see [10,
p.159] and [9]. In fact, we now prove that ε = 0 is a local proper minimizer of
(P(Φ, Dδ)).

Theorem 3.3 Let any 0 ≤ δ ≤ ε̄. If condition (2) holds, then ε = 0 is a local proper
minimizer of (P(Φ, Dδ)). If in addition Φ is τw -pseudoconvex at (0, Φ(0)), then
ε = 0 is a strongly minimizer of (P(Φ, Dδ)).

Proof We fix 0 ≤ δ ≤ ε̄. If (2) holds, following Lemma 2.4 we can take that

−DJ (uδ)

(
uε − u0

‖uε − u0‖U

)
≥ k,

for ε small enough. In particular, this implies that −DJ (uδ)(Φ(ε) − Φ(0)) > 0 for
ε small enough. Now, since −DJ (uδ) ∈ D�

δ by definition, applying [10, Theorem
5.21], we get that ε = 0 is a local proper minimizer of (P(Φ, Dδ)).

On the other hand, by Remark 2.2, condition Tw
Γ (u0) ⊂ Dδ in Proposition 2.6 can

be equivalently rewritten in the following form

Dw
c Φ(0, u0)(x) ⊂ Dδ, for every x ∈ dom(Dw

c Φ(0, u0)(x)). (16)

Finally, by pseudoconvexity we have Φ (ε) ⊂ Φ (0)+ Dw
c Φ(0, u0)(ε) ⊂ Φ (0)+ Dδ

and u0 is a strongly minimal. ��
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As a consequence of this result and regularized KKT conditions (1), we get the
following.

Corollary 3.4 Let any 0 ≤ δ ≤ ε̄. If condition (2) holds, then ε = 0 is a strict local
minimizer of the scalar function (−DJ (uδ) ◦ Φ) (x). In particular, when δ > 0, ε = 0
is a strict local minimizer of the scalar function μ∗

δ ◦ G ◦ Φ.

Finally, we now consider the following vector optimization problem

C-minimize (G ◦ Φ) (x), ∈ [0, 1). (P(G ◦ Φ,C))

We note that in all the results, we are working under (2), and hence condition (10)
of Lemma 2.4 is valid. We begin with the following result. We recall that Φ is said to
stable at ε = 0, if there exists a constant c > 0 such that ‖Φ(ε) − Φ(0)‖U ≤ cε for
ε small enough.

Proposition 3.5 Let 0 ≤ δ ≤ ε̄. If Φ is stable at ε = 0, then

dom(μ∗
δ ◦ G ◦ Φ)(0,

(
μ∗

δ ◦ G
)
(u0)) = R+

and

D↑
(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x) ≥ k min

v∈Dw
c Φ(0,u0)(x)

‖v‖Y > 0, for every x �= 0.

(17)

Proof The equality dom(μ∗
δ ◦ G ◦ Φ)(0,

(
μ∗

δ ◦ G
)
(u0)) = R+ follows from the

stability of μ∗
δ ◦ G ◦ Φ, see for example [20, Lemma 4.4]. Reasoning as in (16),

Dw
c Φ(0, u0)(x) ⊂ Dδ and we have that

− DJ (uδ)(v) ≥ k ‖v‖Y , for every v ∈ Dw
c Φ(0, u0)(x). (18)

Moreover, as DJ (uδ) = μ∗
δ ◦ G ∈ U∗ by KKT condition (1a) and linearity, we have

−DJ (uδ)
(
Dw
c Φ(0, u0)(x)

) = Dc ((−DJ (uδ) ◦ Φ) (0,−DJ (uδ)(u0))) (x)

= Dc
(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x)

for every x ≥ 0. Therefore

Dc
(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x) = −DJ (uδ)

(
Dw
c Φ(0, u0)(x)

)
,

and since μ∗
δ ◦ G ◦ Φ is scalar stable map, we can apply [21, Theorem 4.4] (see

also [22]) to get

D↑
(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x) = min Dc

(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x)

= min
v∈Dw

c Φ(0,u0)(x)
− DJ (uδ)(v)
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for every x ≥ 0. Combining this equality with (18), we have

D↑
(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x) = min

v∈Dw
c Φ(0,u0)(x)

− DJ (uδ)(v)

≥ k min
v∈Dw

c Φ(0,u0)(x)
‖v‖Y .

For x > 0, we claim that Dw
c Φ(0, u0)(x) �= 0. Indeed, if Dw

c Φ(0, u0)(x) = 0, by
Lemma 2.1 we have (x, 0) = λx (rx , dx ), implying that dx = 0 ∈ T, and hence
violating (2) since Φ is stable. Therefore, Dw

c Φ(0, u0)(x) �= 0 and

D↑
(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x) ≥ k min

v∈Dw
c Φ(0,u0)(x)

‖v‖Y > 0 for every x �= 0,

(19)

and the proof is complete. ��
In particular, condition (17) corresponds with a sufficient condition of strict min-

imality given in [23, Corollary 3.12] for stable maps, see also [19], which confirms
Corollary 3.4. In terms of the vector problem (P(G ◦ Φ,C)), condition (17) corre-
sponds to a scalarization of a sufficient strict minimality condition. For this, let us
consider the following condition stated in terms of the contingent derivative

0 /∈ Dc(G ◦ Φ + C)(0,Gu0)(x) for every x > 0. (20)

Condition (20), where it is implicitly assumed that domDc(G◦Φ+C)(0,Gu0) = R+,
corresponds to a sufficient condition of strict minimality for problem (P(G ◦ Φ,C))

established in [24, Theorem 5.5].

Theorem 3.6 Assume domDc(G ◦ Φ + C)(0,Gu0) = R+. If Φ is stable at ε = 0,
then ε = 0 is a strict local minimizer of vector optimization problem (P(G ◦ Φ,C)).

Proof By Proposition 3.5, condition (17) holds. Let us now prove that (20) holds.
On the contrary, assume that (20) does not hold, and we have 0 ∈ Dc(G ◦ Φ +
D)(0,Gu0)(x) for some x > 0. By definition of τw-contingent derivative, since Y is
reflexive and G ◦ Φ is stable, by applying [25, Lemma 3.8], we have

0 ∈ Dc(G ◦ Φ + C)(0,Gu0)(x) ⊆ Dw
c (G ◦ Φ + C)(0,Gu0)(x)

= Dw
c (G ◦ Φ)(0,Gu0)(x) + C .

Consequently, we can take an element v̄ ∈ Dw
c (G ◦ Φ)(0,Gu0)(x) ∩ −C and we

have μ∗
δ (v̄) ≤ 0 since μ∗

δ ∈ C∗
δ ⊆ C∗. On the other hand, by following proof of [25,

Proposition 3.9], we have

D↑
(
μ∗

δ ◦ G ◦ Φ
)
(0,

(
μ∗

δ ◦ G
)
(u0))(x) = min

v∈Dw
c (G◦Φ)(0,Gu0)(x)

μ∗
δ (v) ≤ μ∗

δ (v̄) ≤ 0,

which contradicts (17). Therefore (20) holds and applying [24, Theorem 5.5] the point
ε = 0 is a strict local minimizer of problem (P(G ◦ Φ, D)). ��
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When Y is finite dimensional, it is well known that Dc(G ◦Φ +C)(0,Gu0) = R+
provided that Φ is stable, see for example [22]. In this case, we have the following:

Corollary 3.7 Assume Y is finite dimensional. If Φ is stable at ε = 0, then ε = 0 is a
strict local minimizer of vector optimization problem (P(G ◦ Φ,C)).

4 Examples

In this section, we present two illustrative examples which are taken from [6].

Example 4.1 Let U = Y = H = R
2 be equipped with their Euclidean norm and the

ordering coneC = R+ ×{0}. Given r = (1, 1), we consider the following constrained
optimization problem:

minimize J (u) = uT u − rT u, subject to u ∈ C, u ∈ U . (P)

This example represents a problem of type (P) with unique solution given by
u0 = ( 1

2 , 0
)
. In this example, the optimal regularized trajectory Φ is stable, and

consequently (P) is regular and property (2) holds.
Considering the basis Θ = {(1, 0)} of C , the family {Cε}ε>0 of Henig dilating

cones associated with C has the following analytical expression

Cε =
{
(x1, x2) : −εx1

(
1 − ε2

)− 1
2 ≤ x2 ≤ εx1

(
1 − ε2

)− 1
2
, x1 ≥ 0

}
.

The conically regularized problem is then given by

minimize J (u) = u�u − r�u subject to u ∈ Cε, u ∈ U . (Pε)

Following [6, Example 1], the optimal regularized trajectory is given by

uε = Φ(ε) =
(√

1 − ε2

2

(√
1 − ε2 + ε

)
,

ε

2

(
ε +

√
1 − ε2

))

.

Furthermore,

J (uε) = −ε

2

√
1 − ε2 − 1

4

and

Γ =
{(√

1 − ε2

2

(√
1 − ε2 + ε

)
,
ε

2

(
ε +

√
1 − ε2

))

: ε ∈ [0, 1)
}

. (21)
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To verify Theorem 3.1, we note that we have ‖uε − u0‖U =
√
2
2 ε, and hence by taking

α = 1
2 , we get

−J (uε) ≥ −J (u0) + 1

2
‖uε − u0‖U ⇐⇒ ε

2

√
1 − ε2 + 1

4
≥ 1

4
+

√
2

4
ε

⇐⇒ 1

2
≥ ε2,

and this last inequality holds for every ε ∈
[
0,

√
2
2

]
. Thus u0 is a local strict minimizer

of −J over Γ as claimed.
On the other hand, taking k =

√
2
2 , we compute the cone

D0 = {(u1, u2) ∈ U : −DJ (u0)(u) ≥ k ‖u‖U } =
{

(u1, u2) ∈ U : −μT
0 u ≥

√
2

2
‖u‖U

}

,

where μ0 = (0,−1) is the KKT multiplier associated with problem (P). Conse-
quently,

D0 =
{

(u1, u2) ∈ U : u2 ≥
√
2

2

√
u21 + u22

}

.

In Fig. 1b, we see that ε = 0 is a strong minimizer of vector optimization problem
(P(Φ, D0)), that is,

Φ(ε) ⊆ Φ(0) + D0,

as it was claim by Theorem 3.3. Analogously, since Φ is stable, point ε = 0 is a strict
local minimizer of vector optimization problem (P(G ◦ Φ, D)), that is, there exists
α > 0 such that

(G ◦ Φ) (ε) /∈ (G ◦ Φ) (0) + B(0, αε) − D,

as claimed in Theorem 3.6 and Corollary 3.7. Indeed, taking α < 1
4 , it holds for small

ε, see Fig. 1c.

Example 4.2 Let U = H = R, Y = L2[0, 1] be the Lebesgue space of square inte-
grable functions, and C = L2+[0, 1] = { f ∈ L2[0, 1] : f (x) ≥ 0 a.e. in [0, 1]} be
the associated cone of nonnegative functions. In this case G : R → L2[0, 1] is the
linear bounded map defined by G(u) = −uF , for every u ∈ R, where uF denotes the
constant map given by uF (t) = u, for every t ∈ [0, 1]. Analogously, w ∈ L2[0, 1] is
given by w(t) = −t, for every t ∈ [0, 1].

We consider the problem:

minimize J (u) = 1

2
u2, subject to G(u) ≤L2+[0,1] w, u ∈ U . (P)
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(a)

(b) (c)

Fig. 1 Example 1

Problem (P) is also a problem of type (P), where u0 = 1 is the unique solution.
This example corresponds with [6, Example 2], see also [26, Example 3.20]. It is an
example, where (P) is not regular, Φ is not stable, but condition (2) still holds. Indeed,
we have that T = {−1} and −DJ (u0)(−1) = 1.

Let {Cε}ε>0 be the family of dilating cones for C, where we take the basis Θ ={
f ∈ L2+[0, 1] : ∫ 1

0 f (s)ds = 1
}

. For each ε > 0, the conically regularized problem

is given by

minimize J (u) = 1

2
u2 subject to G(u) ≤Cε w, u ∈ U . (Pε)

We solve numerically regularized problem (Pε) by using a finite element discretiza-
tion of the dual problem by using CVX in Matlab (see [27]). The numerical result are
given in Table 1.
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Table 1 Example 2. Numerical
results ε uε |uε − u0| −J (uε)+J (u0)|uε−u0|

1e-01 0.8435 0.1565 0.9218

1e-02 0.9601 0.0399 0.9800

1e-03 0.9910 0.0090 0.9955

1e-04 0.9980 0.0020 0.9990

1e-05 0.9995 0.0005 0.9998

1e-06 0.9996 0.0004 0.9998

Fourth column in Table 1 that shows −J (uε)+J (u0)|uε−u0| > 0, which agrees with the fact
that u0 is a strict local minimizer of −J . as predicted by Theorem 3.1. On the other
hand, taking for example k = 1

2 , we have

Dδ = {u ∈ R : −DJ (uδ)(u) ≥ k |u|} =
{
u ∈ R : −uδ

u

|u| ≥ 1

2

}

=
{
u ∈ R : −uδ

u

|u| ≥ k

}
= R−,

for δ small enough. Therefore, Dδ = R− and the vector optimization problem
(P(Φ, Dδ)) = (P(Φ,R−)) corresponds to a scalar maximization problem

maximize Φ(x), x ∈ [0, 1). (P(Φ,R−))

From Table 1 we check that u0 = Φ(0) > Φ(ε) = uε and ε = 0 solves (PΦ,R−)

as predicted by Theorem 3.3.

5 Conclusions

This paper presented new qualitative and quantitative stability estimates for the conical
regularization approach for linearly constrained least-squares optimization problems
in Hilbert spaces. The key component of contribution is to clarify the role of property,
appearing in previous works, that provides improved convergence rates. We character-
ized this condition as the optimality condition corresponding to different optimization
problems associated with the original one least-squares optimization problems. We
show that this condition corresponds to a necessary and sufficient optimality condi-
tion for the strict minimality of the objective function over the regularized trajectory.
Moreover, we proved that this condition is also a necessary optimality condition for
two vector optimization problems. In the first vector optimization problem, we opti-
mize the regularized trajectory with respect to a Bishop–Phelps cone, and we proved
that it is a necessary condition of proper minimality, and strong minimality under an
additional assumption. In the second vector optimization problem, we optimized the
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regularized state trajectory with respect to the constraint cone, and we proved that it
is a necessary condition for strict minimality in a vector sense for the case when the
problem is regular, ensuring that in that case, it is a necessary condition for the stability
of the regularized trajectory.

The given results depict a natural occurrence of vector optimization problems and
the use of essential tools from the set-valued analysis in the stability analysis of
linearly constrained least-squares problems in infinite-dimensional spaces. Although
the importance of strictminimality is well-known (see [28–30] and references therein),
in the study of stability and convergence analysis of numerical methods, to the best of
our knowledge, this is the first work where tools from vector optimization have been
employed to establish the stability of regularization methods.

Finally, as a future research direction, it would be interesting to apply the results
of this paper to PDE-constrained optimization with state constraints. Conical reg-
ularization methods, see [3], arise in the context of such optimal control problems,
where establishing an optimal regularization rate is crucial for optimal error estimates,
see [31–34].
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