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Abstract

This paper studies linearly constrained least-square optimization problems in Hilbert
spaces for which the KKT system is not necessarily available to analyze and compute
the solution. The primary objective is to develop new qualitative and quantitative
stability estimates for the regularization error in the conical regularization approach.
To attain this goal, we associate the notion of stability with the solvability of some
scalar and vector optimization problems defined in terms of the regularized trajectory
on the domain space and the regularized state trajectory on the constraint space. We
analyze three optimization formulations. The first formulation minimizes a scalar
objective function over the regularized trajectory. The second formulation consists of
vector optimizing the regularized trajectory on the domain space for a specific Bishop—
Phelps cone. The third formulation results in vector optimizing the regularized state
trajectory for the constraint cone. We provide numerical examples to illustrate the
efficacy of the developed framework.
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1 Introduction

Let U, H, and Y be separable Hilbert spaces. Let C C Y be a pointed, closed, and
convex cone, inducing a partial ordering <c on Y, that is, y; <c 2, if and only if,
y2 — y1 € C. We denote by Y* the dual space of ¥ and by

C*={u*eY*: u*(y) =0, forevery y € C},

we denote the positive dual cone of C. In this paper, we study the following convex
optimization problem:

1
minimize J (1) = 5 |Su — zdII%.I + g llu — udll%], subjectto Gu <¢c w, u € U,
(P)

where S : U — H and G : U — Y are bounded linear operators, x > 0 is a
given parameter, ug € U, z4 € H and w € Y are given elements. The optimization
problem (P), which is uniquely solvable with unique solution denoted by u(, encom-
passes a wide variety of problems in applied mathematics. The main obstacle in the
adequate treatment of infinite-dimensional problems with linear constraints like (P)
is the existence of the dual solutions. In strict contrast to such optimization problems
posed in a finite-dimensional setting, in infinite-dimensional optimization problems,
the existence of the dual solutions requires quite restrictive conditions. This critical
situation has been addressed in various theoretical and applied models, for example,
in PDE constrained optimization or in Mathematical Economics models, see [1,2] for
more details.

In this work, our interest is on the conical regularization methods for problem (P)
which construct a family of optimization problem by replacing the cone C by an
approximating family of cones. To be precise, for ¢ € (0, 1), we denote by {C,} C Y,
afamily of dilating cones associated with C. That is, {C, } is a family of closed, convex,
and pointed cones with nonempty interior such that, firstly, C\{0} C int(C,), forevery
¢ € (0, 1), and secondly, C = [ «~0 Ce. The regularized family (P;) is then obtained
by replacing C in (P) by C, as follows:

1
minimize J (1) = = || Su — zq||% + l lu —ugqll? , subjectto Gu <¢, w, u€U.
3 HT S U ] P
(Pe)

It was shown in [3] that the regularized solutions u, of (P.) converge in norm to
1o under an additional mild condition, see (A1). Moreover, u can be computed using
the KKT system: There is a multiplier u} € C; such that

DJ(ug) + ufoG =0, (1a)
wi(Gug —w) =0, (1b)
Gus: —w <c, 0, (1o
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where o denotes the usual composition operator.

In this work, we focus on the case when C; is a family of Henig dilating cones,
see [4,5]. An essential aspect of the study of the regularization methods is to establish
qualitative and quantitative estimates for the regularization error ||u — u.||;; . In this
context, in [6] (see also [7]), the following condition was considered: There exists a
constant ¢ > 0 such that

— DJ(ug)(d) > c, foreveryd € T, 2)
where the set T is defined by

Ug, —

T:=1{d €U :3¢, | 0such that 0
’|M5n _MOHX

—d as n— o0y .

Condition (2) guarantees an improved a priori convergence rate, see [6, Proposition
3.2], independently of the regularity of the problem, and hence it is of evident interest
to investigate conditions under which it holds. For instance, if (P) is regular, then (2) is
equivalent to the stability ate = 0 of the regularized optimal trajectory @ : [0, 1) — U,
defined by @ (¢) := u,, thatis, ||®(g) — @(0)||y = O(e). This is not true in general.
In Example 4.2 below, we show that (2) holds, albeit (P) is not regular. On the other
hand, the converse is true, that is, if @ is stable, then (P) is regular, and hence (2)
necessarily holds.

In this paper, we associate (2) with the solvability of one scalar optimization problem
and two vector optimization problems, all related to the regularized trajectory. To be
precise, for the scalar optimization problem, we minimize —J over (the image of) the
regularized optimal trajectory I" := @ ([0, 1)):

minimize — J (u), subjecttou € I". Q)

In Theorem 3.1, we prove that (2) is equivalent to the strict local minimality of
uo. Then, we pose a vector optimization problem to minimize the optimal regularized
trajectory with respect to an ordering cone in the space U. More specifically, for § > 0
sufficiently small, we consider the following vector optimization problem

Ds-minimize @ (x), x € [0, 1), (P(®, Dy))

where Ds :={u € U : =DJ (us)(u) > c |lully}.

Under condition (2), Ds is a Bishop—Phelps cone and problem (P (@, Ds)) is well-
defined and solvable. Moreover, in Theorem 3.3, we prove that condition (2) implies
that ¢ = 0 is a proper minimizer of problem (P (P, Ds)), and a strongly minimizer,
if @ is pseudoconvex. We then consider another vector optimization problem for the
optimal regularized state trajectory G o @ with respect to the constraint cone C:
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C-minimize (G o ®) (x), x € [0, 1). (P(G o ®, C))

In Theorem 3.6, we show that the stability of @ implies that O is a strict local
minimizer of (P(G o @, C)). We also give illustrative examples which support the
provided stability results.

Notation and preliminaries

We now briefly describe the notations that will be used in this paper, recalling some
notions in optimization and set-valued analysis, see [8]. Given a Hilbert space X, we
denote its inner product and norm by (-, -)x and ||-||x , respectively. We designate
the strong and the weak convergence in any space by — and —. For a sequence
{Cxn, yn)} and a element {(xo, yo)} in X x ¥, by {(xn, yu)} — (x0, yo), We mean

that x, — x¢ and y,—yo. The quasi-interior of the dual cone C* is defined by
CY = {A* € Y*: A*(c) > O for every ¢ € C\{0}}. Given A* € X* with |[A*| y» = 1,
and ¢ € (0, 1), by C(A*, ¢) C X we denote the Bishop—Phelps cone

C*o={veX: 2" =clvlx}

which is a closed, convex, and pointed cone (see [9,10]). We note that the notion of
Henig dilating cones that we will recall shortly, was introduced by Henig [4,5] in a
finite-dimensional setting, and later on extended to general spaces by Borwein and
Zhuang [11]. As Y is separable, the cone C has a closed convex base ® C Y such
that

C=Jo:0e6} and 0¢ 6.
A>0

Without any loss of generality (see [8, Theorem 2.2.7]), we assume that the base ©&
is given by a strictly positive functional 8* € C?, thatis, @ = {y € C : g*(y) = 1},
where we normalize to ||8*|ly+ = 1. Given ¢ > 0, the Henig dilating cone C; is then
given by

C. =cl[cone (® + e¢By)], 3)

where By = {y € Y : ||y|ly < 1} denotes the closed unit ball in Y. It is known that
the Henig cone is a solid, pointed, closed, and convex cone such that C = ) e>0 Ce
(see [11, Theorem 1.1]).

Given S C X and s € S, the contingent cone 7' (S, x) of S atx isthesetofallv € X
such that there are {#,} C Ry and {s,} C S such thats, — x and #,(s, —5) — v.
If we replace the convergence by the weak convergence, we obtain the notion of the
weak contingent cone denoted by 7% (S, x). For A C X x Y and (xq, yo) € A, the

quasi-weak contingent cone of A at (xg, yo), denoted by 75" (A, (xg, yo)), is defined
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as the set of all (v, w) € X x Y such that there exist {t,} C Ry and {(x,, y,)} C A
such that (xu, yn) — (x0, yo) and t, (Xn — X0, yn — y0) = (v, w).

For a set-valued map F : X = Y, we denote by dom(F) :={x € X : F(x) # 0}
its effective domain and by graph(F) = {(x,y) € X xY : y € F(x)},
epi(F) = {(x,y) €¢ X xY :y e FxX)+C},Im(F) = {y € Y : y €
F(x)} its graph, epigraph and image respectively. The contingent derivative of F' at
(x0, y0) € graph(F) (see [12]) is the set-valued map D.F (xo, yo) : X = Y such that
graph(D. F (xq, y0)) = T (graph(F), (xo, ¥0)), while the t"-contingent derivative of
F at (xo, yo) € graph(F) (see [13]) is the set-valued map DY F(xo, yo) : X =3 Y
such that

graph(D’ F (xo, yo)) = T*" (graph(F), (xo, y0)).

When Y is finite-dimensional, both derivatives coincide. For a scalarmap F : X = R
by D4 F(xo, yo), we denote the contingent epiderivative by (see [14])

Dy F(x0, yo)(x) = min{u : u € Dc(F + Ry)(x0, yo) (%)}
for all x € dom(D.(F + R)(x0, ¥0))-

A set-valued F' : X = Y map is said to be t* -pseudoconvex at (x, y) € graph(F) if
F(x) Cy+ DYF(x,y)(z — x) for every z € dom(DY F(x, y)). This condition is a
natural generalization of convexity and it holds in particular when F is pseudoconvex
in the usual sense given in [15] or when 7" (graph(F), (x, y)) is a convex set by
following standard arguments (see for example [14,16]).

We review some vector optimization notions, see [10]. Givenamap f : S C X —
Y, we denote a generic vector optimization problem by

C-minimize f(x), subjecttox € S. (P(f,0C))

A point x € S is called a local Pareto minimizer of (P(f, C)), if there exists a
neighborhood A of x such that

(fE=O()fNA) = [,

where f(SNA):= [J f(x).Analogously, apointx € S is called a local strongly
xeSNA
minimizer of (P(f, C)), if

fSNA) C fx)+C.

When A = X, we say simply that x is a Pareto or a strongly minimizer of (P (f, C)).
Furthermore, if x is a local Pareto minimizer of (P(f, C)) and

T(f(SNA)+C.0)[)~C = (0},
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then x is a local proper minimizer of (P(f, C)), see [17].

We will also consider the following notion of strict local minimizer introduced
in [18]. A point x € § is said to be a strict local minimizer (of order 1) of (P(f, C)),
if there exists a constant o > 0 and a neighborhood U of x such that

(f@ +O) (B (F@). e llx —Flly) =0, forevery x € S N A\(F).

In the scalar case, Y = R, C = R collapses to the known notions in scalar optimiza-
tion (see [19]):

f(x) = f(xX)+oallx —x||y forevery x € SN A\{x}.

Proper minimizers and strict minimizers are proper subsets of Pareto minimizer
(see [18]), all these optimality notions coincide with the notion strongly minimizers
provided that strongly minimizers exist.

Finally, following [6], throughout this paper we impose two conditions which avoid
pathological cases:

(A1) Gup—w #0.
(A2) u # ug, for &€ small enough.

2 Some basic results

In this section, we study some basic properties of the set T and condition (2) which
will be used later. For this, we first recall that the image of the regularized optimal
trajectory is given by

I'=o(0,1)) ={us : us = ®(¢), forsome ¢ € [0, 1)}.

We first give the following technical result that can also be derived from Lemma
3.1 and the proof of Theorem 5.1 in [6]. However, for the sake of completeness, we
provide a direct proof.

Lemma 2.1 Given any (0,0) # (r,v) € graph(DF @ (0, uo)), there exists a positive
scalar Ay > 0, with L, > ||v|ly , and dy € T such that

(r,v) = Ay(rv, dy). “)

In particular, we have (ry, d,) € graph(DY® (0, ug)). Furthermore, if U is finite-
dimensional, then A, = ||v||y, dy = ||v||(_]l v, for every v # Q.

Proof By the definition of DY ® (0, uo), given (0, 0) # (r, v) € graph(DY® (0, up)),
thereare {1, } C Ry, {(en, ue,)} C graph(DY @ (0, ug)) suchthat {t, (e, us, — uo)} —
S, w

(r, v). Since by hypothesis (A2), us, 7 ug, , we can define sequences {A,}, {r,}, and
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Ug, — UQ

— C U.
e, = uolly

{dn} by Ay = th(us,, _MO)”U 1y = —2——, and d, :=

T [luen—uolly

Then,

{An (rn, dn)} = {tn(gns Ug, — MO)} s_;) (r,v). (%)

Since {tn (g, — uo)} is weakly convergent, it is bounded, and hence {},} is bounded.
Keeping the same notation for subsequences, let {1,,} be a subsequence that converges
to some A, > 0. We claim that A, > 0. In fact, if A, = 0, then (r,v) = (0,0)
which contradicts the hypothesis. Furthermore, since every norm is weakly lower
continuous, and {tn (g, — uo)} —v, we have that A, > ||v]y. On the other hand,
since U is reflexive, by taking subsequences, if necessary, we conclude that d,, =
Mgn — Up
Hue,, —uo || U
Applying [6, Lemma 3.1], r, — ry, for some r, > 0, and consequently (r,v) =
Ay (ry, dy), which proves (4). If U is finite-dimensional, for v # 0, we can assume that
1y (ug, — uo) — v, and hence A, — ||v||y and d, — ||U||Z,1 v, therefore A, = ||v||y,

—d,, for some element d, € T. From (5), A,ry, — r, Apdy—Aydy.

d, = ||v||5] v. The proof is complete. O

Remark 2.2 Lemma 2.1 implies that InDY’ @ (0, ug) = cone(T). Since, T}/ (ug) =
ImDY ® (0, up), we deduce

T (up) = cone (T) =ImDY P (0, up). 6)

If in addition U is finite dimensional, then Tj(up) = T’ (up), and hence
T={lvly'v: veTro\{o}h

Now we review and give some new useful characterizations of property (2). As we
said before, (2) implies an improved a priori convergence rate for the regularization
error. For this, for each ¢ € [0, 1), we define

Be = —DJ (uo)(ue — uo). @)

Since u, — ug, {B:} C Ry is a sequence of positive reals converging to 0. In
general, we have |lug — u.|ly = O (\/E) However, if (2) holds, then |lug — u.|| =
O (B¢) , as we show next. This rate is known when the problem is quasi-regular (see [6,
Proposition 3.2]) and regular, where, in this case, O (8;) = O (¢) (see [6, Section 3]
and [7, Section 3]).

Lemma 2.3 The following statements are equivalent:

(@) llug —uolly = O(Be), where B is given in (7).
(b) There exists a constant ¢ > 0 such that

—DJ(ug) (d) > c foreveryd € T.

@ Springer



2134 A.Khan, M. Sama

(¢) The following condition holds:
TNker DJ (ug) = 0. )

(d) 0 ¢ T and the following condition holds:

(T (up)\{0}) Nker DJ (ug) = 9. )
Proof (a) = (b). Let d € T be arbitrary. By definition there exists &, — 0
with IIMHEHTOII d. For B, as in (7), by hypothesis there is a constant ¢ > 0,

1
independent of ¢, such that ||u€n — up ”U < —=DJ(up)(ug, — up). Consequently,
c

—DJ (up) (ﬁ) > ¢, and by passing to limitn — oo, we get —D J (uq) (d) >
en U
c.

(b) = (a). Assume that (a) does not hold. Then, we can define a sequence ¢, — 0
such that

o=l ol
Be, —DJ (uo)(ue, —u0)  _p Jug) (M)

lluen—uolly

_MHepTHO
” Ugp —UO || U

assume, taking subsequences if necessary, that {

which is equivalent to {DJ (uo) ( )} — 0. Since U is reflexive, we can

Ug,, —UQ
llue, —uolly

Consequently DJ (up)(d) = 0 which contradicts (b).

(b) = (c). This condition is straightforward.

(c) = (b). See [7, Proposition 3.1].

(c) = (d). First of all, as a direct consequence of (8), we have 0 ¢ T. Now, take
any 0 # v € Tf (ug). Since T;? (ug) = cone(T) by (6), we can finda > 0,d € T
such that v = ad. Furthermore, d ¢ ker DJ (up) by hypothesis (8). From this, it is
immediate that v ¢ ker DJ (ug), thus (8) holds.

(d) = (c). By hypothesis 0 ¢ T, and T CT}¥ (1) by (6), therefore T ST} (10)\{0}
and (8) follows from (9). O

—d, for some d € T.

A interesting fact is that the disjunction ker D J (up) (| T = @ holds true in a neigh-
borhood of ug.

Lemma 2.4 The following statements are equivalent:

(a) ker DJ(up) (T = 4.
(b) There exists small enough & > 0 such that

ker D J (us) ﬂ']l‘ =0, forevery() <4 <e.
(c) There exists small enough € > 0 and a constant k > 0 such that

— DJ(us) (d) >k, foreveryd e T,0<§ <e. (10)
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Proof (b)=(a). It is straightforward.
(a)=(b). Assume that (b) does not hold. Then, we can take sequences &, — 0 and
{d,} C T such that

DJ(u,,)(dy) = 0. (11)

Every element of T is norm bounded by 1, and hence by taking subsequences if
necessary, we consider d,—d, where d € T because T is weakly sequentially closed
by definition. Since u,, — uo, taking limits in (11), we have DJ (u¢)(d) = 0, and
hence d € ker DJ (up) (T, contradicting (a).

(b)=(c). Assume that (10) does not hold. Then we can take sequences &, — 0,
and {d,;} C T such that

DJ (ug,)(dy,) — 0. (12)

Reasoning as before d,—dy as n — oo, for some dy € T. By continuity
D J(uo)(dp) = 0, contradicting (b).
(c)=(a). It is a consequence of Lemma 2.3. O

Based on the previous result, in the sequel by Ds C U, we denote the cone
Ds ={ueU:—DJ(us) (u) > klu|y}foreach0 <§ <e.

Remark 2.5 Assuming that any condition of Lemma 2.4 holds, constant k > 0 in (10)
verifies

k< inf — DJus) d),

T 0<6<z&,deT

and, consequently, we have k < ||DJ (us) ||+ 1dlly < II1DJ (us)lly=. Without loss of
generality, we assume that

0<k<|DJws)lys- (13)
This proves that Ds = C (H De‘(lld(:)aﬂ)y* » DT (5 8)||U*> is indeed a Bishop—Phelps cone.

As a consequence, we have the following result.
Proposition 2.6 If (2) holds, then there exists small enough & > 0 such that
T (uo) C Ds, forevery0 <3 <Eé. (14)
Proof Let v € T} (ug) be arbitrary. By Lemma 2.1, there is A, > [[v]ly, dy € T such
that v = A,d,. On the other hand, by the previous two lemmas, we can assume that

there exists a small enough € > 0 and k > 0 such that

—DJ(us) (d) >k, forevery d e T, 0<§ <e.
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Fromthat —DJ (us) (dy) > k and by linearity, we get —D J (us) (v) = —DJ (us) (Aydy)
> dyk > k|lvlly . Since v € T (ug) is arbitrary, (14) follows by the definition of
cone Ds. O

3 Scalar and vector optimization over the optimal regularized
trajectory

In this section, we study three optimization problems over the optimal regularized
trajectory I". We begin with the following scalar optimization problem:

minimize — J(u), u € I'. (Q)

Condition (2) is equivalent the strict minimality of —J over the optimal regularized
trajectory I as we prove next:

Theorem 3.1 Let ¢ > 0. The following statements are equivalent:

(a) ug is a strict local minimizer of (Q).
(b) —DJ(uo)(d) = c, foreveryd € T.

Proof (a)=>(b). By definition of strict minimality, for sufficiently small &, we have
J (o) — J(ue) = ¢ lluo — uelly -
By using the Taylor expansion of J at u = ug, we have
1 K
J (ug) — [J(uo) + DJ (o) (e = uo) + 5 1Suo — Sucllyy + = lluo - ugn%,}
> cllup — uelly »

equivalently

o — ue ) 1 [|Sug — Sucllz
luo —uelly )~ 2 o — uelly

K
—DJ(uo)< +5||M0—ue||u >c. (15

uo—Uuey,

Now, forany d € T, thereexists e, — 0 such that Moo=, T —d,andsince ug, — uo,
——

by continuity

P
_ 1| Sug—S
IIuIZO uugn ) e e +g””0_”8n |y = =DJwo) @)

—ter |y

—DJ(MO)(

2 Juo — us,

U

Applying this expression in (15), we finally get —DJ (ug) (d) > c.
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(b)=(a). Assume that ug is not a strict local minimizer of —J . Therefore, we can

take a sequence ¢, — 0 and W — 0. Using a Taylor expansion of J at
enllu

u = ug as before, this is equivalent to

uy — Ug
—DJ —_— 0.

On the other hand, taking subsequences if necessary, we can take d € T such that

ﬁ—\d . And this implies that —D J (1) (d) = 0, which contradicts condition
en llU
o

As a consequence of the previous theorem, Lemma 2.3 and [6, Proposition 3.3],
we have the following result.

Corollary 3.2 |lug — uclly = O(Be), if and only if, ug is a strict local minimizer of
(Q). In the particular case when (P) is regular, the strict minimality is equivalent to
the stability of the regularized optimal trajectory ®.

Assuming that (2) holds, we now focus on the following vector optimization
Ds-minimize @ (x), x € [0, 1), (P(®, Dy))

recalling that Ds C U is defined by Ds = {u € U : =D J (us)(u) > k ||ully}, with
k > 0and 0 < § < ¢ as stated in condition (¢) in Lemma 2.4. Therefore, (P (®, Dy))
is well defined, and since Ds is a Bishop—Phelps cone by Remark 2.5, for (P (@, Dy)),
there are local Pareto minimizers as a consequence of Bishop—Phelps lemma, see [10,
p-159] and [9]. In fact, we now prove that ¢ = 0 is a local proper minimizer of
(P(®, Ds)).

Theorem 3.3 Let any 0 < § < &. If condition (2) holds, then ¢ = 0 is a local proper
minimizer of (P(®, Ds)). If in addition @ is t -pseudoconvex at (0, @(0)), then
e = 0 is a strongly minimizer of (P(®, Ds)).

Proof We fix 0 < § < &.1If (2) holds, following Lemma 2.4 we can take that
—DJ(us) (M) > k.
llue — uolly

for ¢ small enough. In particular, this implies that —DJ (us)(®@(¢) — @(0)) > 0 for
¢ small enough. Now, since —DJ (us) € Dg by definition, applying [10, Theorem
5.21], we get that ¢ = 0 is a local proper minimizer of (P(®, Ds)).

On the other hand, by Remark 2.2, condition T}” (ug) C Ds in Proposition 2.6 can
be equivalently rewritten in the following form

DY (0, up)(x) C Ds, forevery x € dom(DY P (0, up)(x)). (16)

Finally, by pseudoconvexity we have @ (¢) C @ (0) + DY ® (0, ug)(e) C @ (0) + Ds
and u is a strongly minimal. O
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As a consequence of this result and regularized KKT conditions (1), we get the
following.

Corollary 3.4 Let any 0 < § < &. If condition (2) holds, then ¢ = 0 is a strict local
minimizer of the scalar function (—D J (us) o @) (x). In particular, whens > 0, ¢ =0
is a strict local minimizer of the scalar function o G o @.

Finally, we now consider the following vector optimization problem

C-minimize (G o @) (x), € [0, 1). (P(Go®,())

We note that in all the results, we are working under (2), and hence condition (10)
of Lemma 2.4 is valid. We begin with the following result. We recall that @ is said to
stable at ¢ = 0, if there exists a constant ¢ > 0 such that ||@(¢) — @ (0)||y < ce for
¢ small enough.

Proposition 3.5 Let 0 < § < &. If @ is stable at ¢ = 0, then
dom (i1} 0 G 0 ®)(0, (15 0 G) (uo)) = Ry
and

Dy (,u}‘ oGo 47) (0, (,u:;“ o G) (ug))(x) > k min lvlly > 0, foreveryx # 0.
veDP P (0,up)(x)

a7)

Proof The equality dom(us o G o @)(0, (M§ o G) (uop)) = R4 follows from the
stability of :uj; o G o @, see for example [20, Lemma 4.4]. Reasoning as in (16),
DY® (0, up)(x) C Ds and we have that

— DJ(us)(v) = k|lvlly, foreveryve DY®(0,up)(x). (18)
Moreover, as DJ (us) = uj o G € U* by KKT condition (1a) and linearity, we have

—DJ (us) (DY ®(0, up)(x)) = De (=D J (us) o @) (0, —DJ (us)(uo))) (x)
= D, (1} 0 G o @) (0, (14} 0 G) () (x)

for every x > 0. Therefore

D (£} 0 G 0 @) (0. (1} 0 G) (0))(x) = —DJ (us) (DX (0. ug) (x)) .

and since py o G o @ is scalar stable map, we can apply [21, Theorem 4.4] (see
also [22]) to get
Dy (uj 0 G o @) (0, (1f 0 G) (u0))(x) = min D¢ (uj 0 G o @) (0, (1} o G) (u0))(x)

= min — DJ(us)(v)
veD¥ P (0,ug)(x)
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for every x > 0. Combining this equality with (18), we have

Dt (i 0 G o @) (0, (i 0 G = i —-DJ
1 (145 0 G 0 @) (0, (15 © G) (u)) (x) e (us)(v)
>k  min lvlly -

veDY P (0,up)(x)

For x > 0, we claim that DY ® (0, uo)(x) # 0. Indeed, if DY@ (0, up)(x) = 0, by
Lemma 2.1 we have (x,0) = A,(ry,dy), implying that dy = 0 € T, and hence
violating (2) since @ is stable. Therefore, DY ® (0, ug)(x) # 0 and

Dy (,u}‘ oGo @) (0, (,u}‘ o G) (ug))(x) > k min lvlly > O forevery x # 0,
veDY P (0,up)(x)
(19)
and the proof is complete. O

In particular, condition (17) corresponds with a sufficient condition of strict min-
imality given in [23, Corollary 3.12] for stable maps, see also [19], which confirms
Corollary 3.4. In terms of the vector problem (P (G o @, C)), condition (17) corre-
sponds to a scalarization of a sufficient strict minimality condition. For this, let us
consider the following condition stated in terms of the contingent derivative

0¢ D:.(Go®+ C)(0, Gug)(x) for every x > 0. (20)

Condition (20), where itis implicitly assumed that dom D, (G o ® +C)(0, Gup) = R4,
corresponds to a sufficient condition of strict minimality for problem (P (G o @, C))
established in [24, Theorem 5.5].

Theorem 3.6 Assume domD (G o @ + C)(0, Gug) = Ry. If @ is stable at ¢ = 0,
then ¢ = 0 is a strict local minimizer of vector optimization problem (P(G o @, C)).

Proof By Proposition 3.5, condition (17) holds. Let us now prove that (20) holds.
On the contrary, assume that (20) does not hold, and we have 0 € D.(G o @ +
D)(0, Gup)(x) for some x > 0. By definition of 7%-contingent derivative, since Y is
reflexive and G o @ is stable, by applying [25, Lemma 3.8], we have

0 € De(Go® + C)(0, Gug)(x) € D (G o ® + C)(0, Gug)(x)
= D" (G o ®)(0, Guo)(x) + C.

Consequently, we can take an element v € DX (G o @)(0, Gup)(x) N —C and we
have u3(v) < 0 since uj € C; € C*. On the other hand, by following proof of [25,
Proposition 3.9], we have

Dy (15 0 G o @) (0, (15 0 G) (u0))(x) = 3 () < i@ <0,

min
veDY¥ (God)(0,Gugp)(x)

which contradicts (17). Therefore (20) holds and applying [24, Theorem 5.5] the point
& = 01is a strict local minimizer of problem (P (G o @, D)). O
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When Y is finite dimensional, it is well known that D.(G o @ 4+ C)(0, Gug) = R
provided that @ is stable, see for example [22]. In this case, we have the following:

Corollary 3.7 Assume Y is finite dimensional. If @ is stable at ¢ = 0, thene = 0 is a
strict local minimizer of vector optimization problem (P(G o @, C)).

4 Examples

In this section, we present two illustrative examples which are taken from [6].

Example 4.1 Let U = Y = H = R? be equipped with their Euclidean norm and the
ordering cone C = R, x {0}. Givenr = (1, 1), we consider the following constrained
optimization problem:

minimize J (1) = ulu — rTu, subjecttou € C, ueU. (P)

This example represents a problem of type (P) with unique solution given by
up = (%, 0). In this example, the optimal regularized trajectory @ is stable, and
consequently (P) is regular and property (2) holds.

Considering the basis ® = {(1,0)} of C, the family {C.}.~o of Henig dilating
cones associated with C has the following analytical expression

_1 _1
C. = {(xl,xz) T —Eex (1 —£2> : < xp < €xy <1 —£2> : , X1 > O}.
The conically regularized problem is then given by
minimize J(u) = ulu—r'u subjecttou € C,, ue€U. (Py)

Following [6, Example 1], the optimal regularized trajectory is given by

ugztp(s):(l—_gz(\/l—&—i-s), §(8+\/1—52)>.

2

Furthermore,
e 1
J(l/ls) = —5\/ 1 —82— Z

and

2

F={(—"1_82< 1—82~|—£),§(8+\/1—82>> :86[0,1)}. Q1)
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To verify Theorem 3.1, we note that we have ||u, — uglly = ‘/758, and hence by taking

1
o = z,weget

V1—g2+

2

3

L2
—¢&
4

FN-

=

FNg-

1
—Jue) = =J (o) + 5 llue —uoly =

N = N ™

— > &

el

and this last inequality holds for every ¢ € [O, 7] . Thus ug is alocal strict minimizer

of —J over I' as claimed.
On the other hand, taking k = @, we compute the cone

2
Do ={(u1,u2) € U : =DJ(up)(u) = kllully} = {(Ml, up) €U s —pfu > % IIMIIU} ,

where po = (0, —1) is the KKT multiplier associated with problem (P). Conse-
quently,

2
DO::(MI,MZ)GUZuzz%_ u%—i—u%}

In Fig. 1b, we see that ¢ = 0 is a strong minimizer of vector optimization problem
(P(®, Dy)), that is,

P (e) € @(0) + Do,

as it was claim by Theorem 3.3. Analogously, since @ is stable, point ¢ = 0 is a strict
local minimizer of vector optimization problem (P(G o @, D)), that is, there exists
a > 0 such that

(Go®)(e) ¢ (Go®)(0)+ B(O,ae) — D,

as claimed in Theorem 3.6 and Corollary 3.7. Indeed, taking o < JT, it holds for small
e, see Fig. lc.

Example4.2 Let U = H = R, Y = L?[0, 1] be the Lebesgue space of square inte-
grable functions, and C = L3[0,1] = {f € L?[0,1] : f(x) > 0 a.e.in[0, 1]} be
the associated cone of nonnegative functions. In this case G : R — L2[0, 1] is the
linear bounded map defined by G (¢) = —ur, forevery u € R, where ur denotes the
constant map given by u(t) = u, for every ¢ € [0, 1]. Analogously, w € L*[0, 1] is
given by w(t) = —t, forevery ¢ € [0, 1].

We consider the problem:

2

1
minimize J(u) = Eu , subject to G(u) SLi[o,l] w, uel. (P)
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Tr(P(0)) = cone(T)

(G o ®)(0)

W
P(0)

(a) Optimal regularized (state) trajectory.

(G0 ®)(0) + B(0.a0.3) — D (G 0 2)(0

(G o®)(0,3) & (G o ®)(0) + B(0,a0.3) — D

(b) Tllustration of Theorem 3.6. (C) Tllustration of Theorem 3.10.

Fig. 1 Example 1

Problem (P) is also a problem of type (P), where uy = 1 is the unique solution.
This example corresponds with [6, Example 2], see also [26, Example 3.20]. It is an
example, where (P) is not regular, @ is not stable, but condition (2) still holds. Indeed,
we have that T = {—1} and —DJ (ug)(—1) = 1.

Let {C¢}e~0 be the family of dilating cones for C, where we take the basis ® =
{f € L%r[O, 1]: fol f(s)ds = 1] . For each ¢ > 0, the conically regularized problem
is given by

1
minimize J(u) = §u2 subjectto G(u) <c, w, ueU. (Py)

We solve numerically regularized problem (P ) by using a finite element discretiza-
tion of the dual problem by using CVX in Matlab (see [27]). The numerical result are
given in Table 1.
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I::LIES Example 2. Numerical . ‘e e — | _JTZ?:J{)‘(UO)
le-01 0.8435 0.1565 0.9218
le-02 0.9601 0.0399 0.9800
le-03 0.9910 0.0090 0.9955
le-04 0.9980 0.0020 0.9990
le-05 0.9995 0.0005 0.9998
1e-06 0.9996 0.0004 0.9998

Fourth column in Table 1 that shows M > 0, which agrees with the fact

that ug is a strict local mlnlmlzer of —J. as predlcted by Theorem 3.1. On the other
hand, taking for example k = 2, we have
1
2
u

={ueR —ua—Zk}:R_,

|ue]

Ds = {ucR: —DJ(us)u) >k ul} = {u cR: —uaﬁ

for § small enough. Therefore, Ds = R_ and the vector optimization problem
(P(®, Ds)) = (P(®,R_)) corresponds to a scalar maximization problem

maximize @ (x), x €[0,1). (P(®,RL))

From Table 1 we check that ug = ®@(0) > ®(¢) = u, and ¢ = 0 solves (P?R-)
as predicted by Theorem 3.3.

5 Conclusions

This paper presented new qualitative and quantitative stability estimates for the conical
regularization approach for linearly constrained least-squares optimization problems
in Hilbert spaces. The key component of contribution is to clarify the role of property,
appearing in previous works, that provides improved convergence rates. We character-
ized this condition as the optimality condition corresponding to different optimization
problems associated with the original one least-squares optimization problems. We
show that this condition corresponds to a necessary and sufficient optimality condi-
tion for the strict minimality of the objective function over the regularized trajectory.
Moreover, we proved that this condition is also a necessary optimality condition for
two vector optimization problems. In the first vector optimization problem, we opti-
mize the regularized trajectory with respect to a Bishop—Phelps cone, and we proved
that it is a necessary condition of proper minimality, and strong minimality under an
additional assumption. In the second vector optimization problem, we optimized the
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regularized state trajectory with respect to the constraint cone, and we proved that it
is a necessary condition for strict minimality in a vector sense for the case when the
problem is regular, ensuring that in that case, it is a necessary condition for the stability
of the regularized trajectory.

The given results depict a natural occurrence of vector optimization problems and
the use of essential tools from the set-valued analysis in the stability analysis of
linearly constrained least-squares problems in infinite-dimensional spaces. Although
the importance of strict minimality is well-known (see [28—30] and references therein),
in the study of stability and convergence analysis of numerical methods, to the best of
our knowledge, this is the first work where tools from vector optimization have been
employed to establish the stability of regularization methods.

Finally, as a future research direction, it would be interesting to apply the results
of this paper to PDE-constrained optimization with state constraints. Conical reg-
ularization methods, see [3], arise in the context of such optimal control problems,
where establishing an optimal regularization rate is crucial for optimal error estimates,
see [31-34].
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