
Journal of Artificial Intelligence Research 70 (2021) 473-495 Submitted 12/2019; published 01/2021

On Super Strong ETH

Nikhil Vyas nikhilv@mit.edu

Ryan Williams rrw@mit.edu

CSAIL, MIT

Cambridge, MA 02139 USA

Abstract

Multiple known algorithmic paradigms (backtracking, local search and the polynomial
method) only yield a 2n(1−1/O(k)) time algorithm for k-SAT in the worst case. For this
reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved
in 2n(1−f(k)/k) time for any unbounded function f. This hypothesis has been called the
“Super-Strong ETH”, modeled after the ETH and the Strong ETH.

It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances
near the “critical threshold”, where the clause-to-variable ratio is such that randomly chosen
instances are satisfiable with probability 1/2. We give a randomized algorithm which
refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any
clause-to-variable ratio. For example, given any random k-SAT instance F with n variables
and m clauses, our algorithm decides satisfiability for F in 2n(1−Ω(log k)/k) time, with high
probability (over the choice of the formula and the randomness of the algorithm). It turns
out that a well-known algorithm from the literature on SAT algorithms does the job: the
PPZ algorithm of Paturi, Pudlak, and Zane (1999).

The Unique k-SAT problem is the special case where there is at most one satisfying
assignment. Improving prior reductions, we show that the Super-Strong ETHs for Unique
k-SAT and k-SAT are equivalent. More precisely, we show the time complexities of Unique
k-SAT and k-SAT are very tightly correlated: if Unique k-SAT is in 2n(1−f(k)/k) time for
an unbounded f, then k-SAT is in 2n(1−f(k)/(2k)) time.

1. Introduction

The canonical NP-complete problem is k-SAT, for k ≥ 3: Given a Boolean formula in
conjunctive normal form with clauses of width at most k, is it satisfiable? In practice, k-SAT
is often cited as a “solved problem” (Gomes, Kautz, Sabharwal, & Selman, 2008), due to the
incredible performance of modern SAT solvers on instances arising from practice (mostly
hardware and software verification). However, it is very possible that in the future, the
demands and designs from practice will change significantly, leading to significantly different
SAT instances. In general, the worst-case complexity of k-SAT is far from understood,
in spite of tremendous effort devoted to finding faster worst-case algorithms. Because it
is widely believed that P 6= NP, the search has been confined to super-polynomial-time
algorithms. Although is trivial to obtain an algorithm running in 2n · mO(1) time on k-
SAT instances with m clauses and n variables, we cannot seem to improve the base of the
exponent below 2: there are are no known algorithms for k-SAT which run in (2−ε)n ·mO(1)

time for a universal constant ε > 0, independent of k. This apparent barrier to algorithms
led researchers to the following two popular hypotheses which strengthen P 6= NP:

©2021 AI Access Foundation. All rights reserved.

Vyas, & Williams

• Exponential Time Hypothesis (ETH) (Impagliazzo & Paturi, 2001) There is an
α > 0 such that no 3-SAT algorithm runs in 2αn time.

• Strong Exponential Time Hypothesis (SETH) (Calabro, Impagliazzo, & Paturi,
2009) There does not exist a constant ε > 0 such that for all k, k-SAT can be solved
in (2− ε)n time.

In fact, the present situation for worst-case k-SAT algorithms looks even worse than
hypothesized. The current best known algorithms for k-SAT all have running time bounds
of the form

2n(1−Ω(1
k)).

In other words, all time bounds have the form 2n(1− c
k) for some fixed constant c > 0. It is a

very interesting phenomenon that the same running time upper bound is achieved by radi-
cally different algorithmic paradigms, such as randomized backtracking (Paturi, Pudlák, &
Zane, 1999; Paturi, Pudlák, Saks, & Zane, 2005), local search (Schöning, 1999), the poly-
nomial method (Chan & Williams, 2016), and linear programming based methods (Brak-
ensiek & Guruswami, 2019). Even for simpler variants such as Unique-k-SAT (where we
are promised there is at most one satisfying assignment), no significantly faster algorithms
are known with a better dependence on k in the exponent. Hence it is possible that the

runtime behavior of 2n(1−Ω(1
k)) is actually optimal for k-SAT algorithms. This was termed

the “Super-Strong ETH” in a 2015 talk by the second author (Williams, 2015). We state
the Super-SETH as follows:

Super-SETH: Super Strong Exponential Time Hypothesis.
For every unbounded function f : N → N, there is no (randomized) algorithm

for k-SAT running in O(2
n
(

1− f(k)
k

)
) time.

Intuitively, Super-SETH says that the Ω(1/k) “savings” in the exponent is optimal: not
even an f(k)/k savings can be achieved, for any unbounded f . In this paper, we study
Super-SETH in two natural restricted scenarios:

• Random/Planted k-SAT. We consider two general cases: (a) finding solutions
to random k-SAT instances where each of the m clauses is drawn uniformly and
independently from all possible k-width clauses, and (b) finding solutions to planted
k-SAT instances, where a random (hidden) solution σ is sampled, then each clause is
drawn uniformly and independently from all possible k-width clauses that satisfy σ.

Random k-SAT has a well-known threshold behaviour in which, for αsat = 2k ln 2 −
Θ(1) and for all constant ε > 0, random k-SAT instances are SAT w.h.p. (with high
probability) for m < (αsat−ε)n and UNSAT w.h.p. for m > (αsat+ε)n. Note that, as
far as decidability is concerned, for instances below (respectively, above) the threshold
we may simply output “SAT” (respectively, “UNSAT”) and we will be correct w.h.p..
It has been conjectured (Cook & Mitchell, 1996; Selman, Mitchell, & Levesque, 1996)
that random instances at the threshold m = αsatn are the hardest random instances,
and it is difficult to determine their satisfiability. We are motivated by the following
strengthening of this conjecture.

Are random instances near the threshold as hard as the worst-case
instances of k-SAT?

474

On Super Strong ETH

• Unique k-SAT. This is the special case of finding a SAT assignment to a k-CNF,
when one is promised that there is at most one satisfying assignment. It is well-
known to be NP-complete under randomized reductions (Valiant & Vazirani, 1986).
As mentioned earlier, the best known algorithms for Unique-k-SAT have the same

running time behaviour of 2n(1−O(1
k)) as k-SAT. In fact some of the best-known k-

SAT algorithms (Paturi et al., 1999, 2005) have an easier analysis when restricted
to the case of Unique-k-SAT. PPSZ (Paturi et al., 2005), the current best known
algorithm for k-SAT (when k ≥ 5) has only been derandomized for Unique-k-SAT.

Could worst-case algorithms for Unique k-SAT be marginally faster
than those for k-SAT?

In principle, in this “ultra fine-grained” setting we are studying (where the exponential
dependence on k matters), both above special cases could potentially be just as hard as
k-SAT, or both of them could be easier. In this paper, we prove that Super-SETH is false
for Random k-SAT, and the Super-SETH for Unique k-SAT is equivalent to the general
Super-SETH: the dependence on k in the exponent is the same for the two problems.

1.1 Prior Work

As mentioned earlier, many algorithmic paradigms have been introduced for solving k-SAT
in the worst case, but none are known to run in 2n(1−ωk(1/k)) time. There also has been
substantial work on polynomial-time algorithms for random k-SAT that return solutions for
m below the threshold. Note that even though we know that these instances are satisfiable
w.h.p. that does not immediately give a way to find a solution. Chao and Franco (1990)
first proved that the unit clause heuristic (the key component of the PPZ algorithm) finds
solutions with high probability for random k-SAT when m ≤ c2kn/k for some constant
c > 0. The current best known polynomial-time algorithm in this regime is by Coja-
Oghlan (2010) and it can find a solution w.h.p. for random k-SAT when m ≤ c2kn log(k)/k
for some constant c > 0. Interestingly, we also know of polynomial time algorithms for large
m. Specifically, it is known that for a certain constant C0 = C(k) and m > C0 · n there
are polynomial-time algorithms finding solutions to planted k-SAT instances by Krivelevich
and Vilenchik (2006) and random k-SAT (conditioned on satisfiability) by Coja-Oghlan et
al. (2007). However, both of these results require that m ≥ 4kn/k (Vilenchik, 2019). To
our knowledge, no improvements over worst-case k-SAT algorithms have yet been reported
for random k-SAT very close to the threshold.

Valiant and Vazirani (1986) gave a poly-time randomized reduction from SAT instances
F on n variables to Unique-SAT instances F ′ on n variables such that, if F is SAT then
F ′ has a unique satisfying assignment with probability at least Ω(1/n), and if F is UNSAT
then F ′ is UNSAT. This reduction is not directly applicable for us to convert k-SAT in-
stances into Unique-k-SAT instances, as they do not preserve the clause width (and when
we perform a reduction to reduce the clause width, the number of new variables increases
too much for exponential-time algorithms). To address this issue, Calabro et al. (2008) gave
a randomized polynomial-time reduction with one-sided error from k-SAT to Unique-k-SAT
which works with probability 2−O(n log2(k)/k). The probability bound was further improved
by Traxler (2008) to 2−O(n log(k)/k). Both of these reductions imply that k-SAT and Unique

475

Vyas, & Williams

k-SAT either both have 2δn time algorithms for some universal δ < 1, or neither of them do:
in other words, the SETH and the “SETH for Unique-k-SAT” are equivalent statements.
However these results are not sufficient for an equivalence with respect to Super-SETH:
for example, from these results it is still possible that k-SAT has no 2n(1−ωk(1/k)) time
algorithms, while Unique-k-SAT has a 2n(1−Ω(log k/k)) time algorithm.

1.2 Our Results

In the next two subsections we present our main results on Random k-SAT and Unique
k-SAT respectively.

1.2.1 Average-Case k-SAT Algorithms

First we present an algorithm which breaks the Super-Strong ETH for random k-SAT. In

particular, we give a 2n(1−Ω(log k
k))-time algorithm which finds a solution w.h.p. for random-

k-SAT (conditioned on satisfiability) for all values of m. In fact, our algorithm is an old
one from the SAT algorithms literature: the PPZ algorithm of Paturi et al. (Paturi et al.,
1999).

In order to show that PPZ breaks Super-Strong ETH in the random case, we first show
that PPZ yields a faster algorithm for random planted k-SAT for large enough m.

Theorem 1. There is a randomized algorithm that, given a planted k-SAT instance F
sampled from P (n, k,m)1 with m > 2k−1 ln(2), outputs a satisfying assignment to F in

2n(1−Ω(log k
k)) time with 1 − 2−Ω(n(log k

k)) probability (over the planted k-SAT distribution
and the randomness of the algorithm).

The main idea behind Theorem 1 is to effectively estimate how often unit propagation
can be applied to a random k-SAT instance. (Recall that “unit propagation” says that
any clause containing only one literal can be simplified, by simply setting the literal to its
appropriate value, reducing the number of variables by one.) In Lemma 6 we show that,
when variables are set randomly and unit propagation is being applied as aggressively as
possible, a surprisingly large number of variables (Ω(n log k)/k) will get assigned by unit
propagation, reducing the overall expected running time by a factor of 2Ω(n log k)/k.

Next, we give a reduction from random k-SAT (conditioned on satisfiability, we de-
note this distribution by R+) to planted k-SAT. Similar reductions/equivalences have been
observed before by Ben-Sasson et al. (2002) and Achlioptas and Coja-Oghlan (2008).

Theorem 2. Suppose there is an algorithm A for planted k-SAT P (n, k,m), for all m ≥
2k ln 2(1−f(k)/2)n, which finds a solution in time 2n(1−f(k)) and with probability 1−2−nf(k),
where 1/k < f(k) = ok(1). Then for any m′, given a random k-SAT instance sampled from
R+(n, k,m′), a satisfying assignment can be found in 2n(1−Ω(f(k))) time w.h.p.

Combining Theorems 1 and 2 yields:

Theorem 3. Given a random k-SAT instance F sampled from R+(n, k,m), we can find a

solution in 2n(1−Ω(log k
k

)) time w.h.p., for any m.

1. See “Three k-SAT Distributions” in Section 2 for formal definitions of different k-SAT distributions.

476

On Super Strong ETH

Remark 1. There are other interesting and natural hypotheses for random k-SAT that we
do not resolve. We obtain a randomized algorithm for random k-SAT which always reports
UNSAT on unsatisfiable instances, and finds a SAT assignment with high probability on
satisfiable instances. Feige’s Hypothesis for k-SAT (Feige, 2002) conjectures that there are
no efficient refutations for random k-SAT near the threshold, i.e., there are no efficient
algorithms which always report SAT on satisfiable instances, and report UNSAT on unsat-
isfiable instances with probability at least 1/2. Refuting Feige’s hypothesis in our setting
remains an intriguing open problem.

Theorems 1 and 3 imply that at least one of the following are true:

1. Either the random instances of k-SAT at the threshold are not the hardest instances
of k-SAT, or

2. Super-Strong ETH is false.

For the PPZ algorithm (randomized branching with unit propagation) and its general-

ization PPSZ (Paturi et al., 2005), time lower bounds of the form 2n(1−O(1
k

)) are in fact
known (Pudlák, Scheder, & Talebanfard, 2017; Scheder & Talebanfard, 2020). Thus we can
say that, with respect to the PPZ/PPSZ algorithm, random k-SAT instances are provably
more tractable than worst-case k-SAT instances.

In Section 5, we observe that our techniques can be used to get algorithms running faster

than 2n(1−Ω(log k
k)) for planted k-SAT and random k-SAT (conditioned on satisfiability),

depending on how large m/n is compared to the threshold density.

1.2.2 Unique k-SAT Equivalence

In Section 6 we give a “low exponential” time reduction from k-SAT to Unique-k-SAT,
which proves that the two problems are equivalent with respect to Strong-SETH. More
precisely, we show that there is a 2n(1−ωk(1/k)) time algorithm for Unique-k-SAT if and only
if there is a 2n(1−ωk(1/k)) time algorithm for k-SAT. In fact, our reduction has the following
stronger property:

Theorem 4. If Unique k-SAT is solvable in 2(1−f(k)/k)n time for some unbounded function
f , then k-SAT is solvable in 2(1−f(k)/k+O(log(f(k))/k))n time.

As mentioned earlier, the current best algorithm for k-SAT PPSZ (Paturi et al., 2005)
has a much easier analysis for Unique k-SAT, and in fact it was an open question to show
that its running time on general instances of k-SAT matches the running time for Unique
k-SAT; this was eventually resolved by Hertli (2014). Theorem 4 implies that, in order to
obtain faster algorithms for k-SAT which break Super-Strong ETH, it would be sufficient
to restrict ourselves to Unique k-SAT, which might simplify the analysis as in the case of
PPSZ.

2. Preliminaries

Notation. In this paper, we generally assume k ≥ 3 is an arbitrarily large integer.
Throughout the paper, we compare time bounds that have the form 2n(1−Ω(log k)/k) with

477

Vyas, & Williams

2n(1−O(1/k)) time, where the big-Ω and the big-O hide multiplicative constants which are
independent of both n and k; such notation only makes sense when k can grow unboundedly.
We will assume throughout the paper that for a formula F over n variables the number of
clauses m is less than poly(n).

We use the terms “solution”, “SAT assignment”, and “satisfying assignment” inter-
changeably. For an n-variable assignment s ∈ {0, 1}n and an index set I ⊆ [n], we use
s|I to denote the length-|I| substring of s projected on the index set I. We use the nota-
tion x ∈r χ to denote that x is randomly sampled from the distribution χ. By poly(n),
we mean some function f(n) which satisfies f(n) = O(nc) for a universal constant c ≥ 1.
Letting n be the number of variables in a k-CNF, a random event about k-CNF holds
w.h.p. (with high probability) if it holds with probability 1 − f(n), where f(n) → 0 as
n → ∞. We use log and ln to denote the logarithm base-2 and base-e respectively, and
H(p) = −p log(p) − (1 − p) log(1 − p) denotes the binary entropy function. For a function
f(x) we denote its derivative and double-derivative by f ′(x) and f ′′(x) respectively.

Three k-SAT Distributions. We consider three distributions for random k-SAT:

• R(n, k,m) is the distribution over formulas F of m clauses over n variables, where
each clause is drawn i.i.d. from the set of all k-width clauses. This is the standard
k-SAT distribution.

• R+(n, k,m) is the distribution over formulas F of m clauses over n variables where
each clause is drawn i.i.d. from the set of all k-width clauses and we condition F on
being satisfiable i.e. R(n, k,m) conditioned on satisfiability.

• P (n, k,m, σ) is the distribution over formulas F of m clauses over n variables where
each clause is drawn i.i.d. from the set of all k-width clauses which satisfy σ. P (n, k,m)
is the distribution over formulas F formed by sampling σ ∈ {0, 1}n uniformly and then
sampling F from P (n, k,m, σ).

Note that an algorithm solving the search problem (finding SAT assignments) for in-
stances sampled from R+ is stronger than deciding satisfiability for instances sampled from
R: given an algorithm for the search problem on R+, we may run it on a random instance
from R, returning SAT if and only if the algorithm returns a valid satisfying assignment.

2.1 Structural Properties of Planted and Random k-SAT

A few structural results about planted and random k-SAT will be useful in analyzing our
algorithms. In particular, we consider bounds on the expected number of solutions of
planted k-SAT instances and random k-SAT instances (conditioned on satisfiability).

A well-known conjecture is that the satisfiability of random k-SAT displays a threshold
behaviour for all k. The following lemma which states that the conjecture holds for all k
(larger than a fixed constant) was proven by Ding et al. (2015).

Lemma 1 (Ding et al., 2015). There is a constant k0 such that for all k > k0, there exists
an αsat = 2k ln 2−Θ(1) and for all constant ε > 0, we have that:

For m < (1− ε)αsatn, lim
n→∞

Pr
F∈rR(n,k,m)

[F is satisfiable] =1

For m > (1 + ε)αsatn, lim
n→∞

Pr
F∈rR(n,k,m)

[F is satisfiable] =0

478

On Super Strong ETH

We will also need the fact that, w.h.p., the ratio of the number of solutions and its
expected value is not too small, as long as m is a bit below the satisfiability threshold.
Quantitatively, we will take m ≤ αdn where αd = 2k ln 2− k (note that αd < αsat − 1).

Lemma 2 (Lemma 22 of Achlioptas & Coja-Oghlan, 2008). For F ∈r R(n, k,m), let S be
the set of solutions of F . Then E[|S|] = 2n(1 − 1

2k
)m. Furthermore, for αd = 2k ln 2 − k

and m ≤ αdn we have
lim
n→∞

Pr[|S| < E[|S|]/2O(nk/2k)] = 0.

Together, the above two results have the following useful consequence. Intuitively, the
below lemma states that if our random k-SAT instance is slightly below the threshold, then
(conditioned on being satisfiable) we can fairly tightly bound the expected number of SAT
assignments.

Lemma 3. For F ∈r R+(n, k,m) let Z denote the number of solutions of F . For all
constant δ > 0, if m < (1− ε)αsatn for some constant ε > 0, then for all large enough n,

2n(1− 1

2k
)m ≤ E[Z] ≤ (1 + δ)2n(1− 1

2k
)m

. Furthermore, for αd = 2k ln 2− k and m ≤ αdn,

lim
n→∞

Pr[Z < E[Z]/2O(nk/2k)] = 0.

Proof. Let F ′ ∈r R(n, k,m) and let Z ′ denote the number of solutions of F ′. By Lemma 2,
E[Z ′] = 2n(1 − 1

2k
)m. Letting pn denote the probability that F ′ is unsatisfiable, we have

E[Z ′] = (1−pn)E[Z]. As m < (1−ε)αsat, by Lemma 1, limn→∞ pn → 0, hence 2n(1− 1
2k

)m ≤
E[Z] ≤ (1 + δ)2n(1− 1

2k
)m for all constants δ.

Observe that Pr[Z < E[Z]/2O(nk/2k)] ≤ Pr[Z ′ < E[Z]/2O(nk/2k)], as Z is just Z ′ condi-

tioned on being positive. Furthermore Pr[Z ′ < E[Z]/2O(nk/2k)] ≤ Pr[Z ′ < E[Z ′]/2O(nk/2k)]

as E[Z] ≤ 2E[Z ′] from the previous paragraph. By Lemma 2, limn→∞ Pr[Z ′ < E[Z ′]/2O(nk/2k)] =
0.

We will use a planted k-SAT algorithm to solve random k-SAT instances conditioned on
their satisfiability. This idea was introduced in an unpublished manuscript by Ben-Sasson
et al. (2002). We will use the following lemma therein.

Lemma 4 (Lemma 3.3 of Ben-Sasson et al., 2002). For a given F in R+(n, k,m), let Z
denote its number of solutions. F is sampled from P (n, k,m) with probability Z · p, where
p only depends on n, k, and m.

Proof. For a fixed σ, P (n, k,m, σ) is just the uniform distribution over all k-SAT formulas
F with m clauses over n variables which satisfy σ. Let there be t of such formulas then
each one is sampled with probability 1/t. Note that t depends only on n, k,m and not on
σ.

Let F be a k-SAT formula with m clauses over n variables which has Z solutions. Then
by the definition of P (n, k,m) probability that a sample from P (n, k,m) equals F is Z/(t2n).
Setting p = 1/(t2n) completes the proof.

479

Vyas, & Williams

Corollary 1. For F ∈r R+(n, k,m) and F ′ ∈r P (n, k,m) let Z and Z ′ denote their number
of solutions respectively. Then for αd = 2k ln 2 − k and for m ≤ αdn, limn→∞ Pr[Z ′ <

E[Z]/2O(nk/2k)] = 0.

Proof. We have limn→∞ Pr[Z < E[Z]/2O(nk/2k)] = 0 by Lemma 3. Lemma 4 shows that
the planted k-SAT distribution P (n, k,m) is biased toward satisfiable formulas with more
solutions. The distribution R+(n, k,m) instead chooses all satisfiable formulas with equal

probability. Hence limn→∞ Pr[Z ′ < E[Z]/2O(nk/2k)] ≤ limn→∞ Pr[Z < E[Z]/2O(nk/2k)] =
0.

So far, our lemmas have only been applicable where m ≤ αdn ≤ (αsat − 1)n. Next we
prove a lemma bounding the number of expected solutions when m ≥ (αsat − 1)n.

Lemma 5. For m ≥ (αsat−1)n, the expected number of solutions of F ∈r R+(n, k,m) and

F ′ ∈r P (n, k,m) is at most 2O(n/2k) in both cases.

Proof. Lemma 4 shows that the planted k-SAT distribution P (n, k,m) is biased toward
satisfiable formulas with more solutions. In particular, the expected number of solutions of
F ′ ∈r P (n, k,m) upper bounds the expected number for F ∈r R+(n, k,m). So it suffices to
upper bound the expected number of solutions of F ′ ∈r P (n, k,m).

Let Z be the random variable denoting the number of solutions of F ′. Let σ denote the
planted solution in F , and let x be some assignment which has hamming distance i from σ.
For a clause C satisfied by σ but not by x, all of C’s satisfied literals must come from the i
bits where σ and x differ, and all its unsatisfied literals must come from the remaining n− i
bits. Letting j denote the number of satisfying literals in C, the probability that a randomly

sampled clause C is satisfied by σ but not by x is
∑k

j=1

(kj)
2k−1

(in)j(1 − i
n)k−j =

1−(1− i
n

)k

2k−1
.

480

On Super Strong ETH

We will now upper bound E[Z].

E[Z] =
∑

y∈{0,1}n
Pr[y satisfies F ′]

=

n∑
i=1

(
n

i

)
Pr[Assignment x that differs from σ in i bits satisfies F ′]

=

n∑
i=1

(
n

i

)
Pr[A random clause satisfying σ satisfies x]m

=
n∑
i=1

(
n

i

)
(1− Pr[A random clause satisfying σ does not satisfy x])m

=

n∑
i=1

(
n

i

)(
1− 1− (1− i/n)k

2k − 1

)m
[As shown above]

≤
n∑
i=1

(
n

i

)
e
−m

(
1−(1−i/n)k

2k−1

)
[As 1− x ≤ e−x]

≤
n∑
i=1

(
n

i

)
e
−(αsat−1)n

(
1−(1−i/n)k

2k−1

)

≤ 2O(n/2k)
n∑
i=1

(
n

i

)
e
−((2k−1) ln 2)n

(
1−(1−i/n)k

2k−1

)
[As m ≥ (2k ln 2−O(1))n]

≤ 2O(n/2k)
n∑
i=1

(
n

i

)
2−n(1−(1−i/n)k)

≤ 2O(n/2k)
n∑
i=1

2n(H(i/n)−1+(1−i/n)k) ≤ 2O(n/2k) max
0≤p≤1

2n(H(p)−1+(1−p)k).

Let f(p) = H(p) − 1 + (1− p)k. Then f ′(p) = − log
(

p
1−p

)
− k(1 − p)k−1 and f ′′(p) =

−1
p(1−p) + k(k − 1)(1 − p)k−2. Thus f ′′(p) = 0 ⇐⇒ p(1 − p)k−1 = 1

k(k−1) . Note that f ′′(p)

has only two roots in [0, 1], hence f ′(p) has at most 3 roots in [0, 1]. It can be verified
that for sufficiently large k, f ′(p) indeed has three roots at p = Θ(1/2k), Θ(log k/k), and

1/2−Θ(k/2k). At all these three values of p, f(p) = O(1/2k). Hence E[Z] ≤ 2O(n/2k).

3. Planted k-SAT and the PPZ Algorithm

In this section, we establish that the PPZ algorithm solves random planted k-SAT instances
faster than 2n−n/O(k) time.

Reminder of Theorem 1. There is a randomized algorithm that given a planted k-SAT
instance F sampled from P (n, k,m) with m > 2k−1 ln(2), outputs a satisfying assignment to

F in 2n(1−Ω(log k
k)) time with 1−2−Ω(n(log k

k)) probability (over the planted k-SAT distribution
and the randomness of the algorithm).

We will actually prove a stronger claim:

481

Vyas, & Williams

For any σ and F sampled from P (n, k,m, σ), we can find a set S of 2n(1−Ω(log k
k))

variable assignments in 2n(1−Ω(log k
k)) time, such that σ ∈ S with probability

1− 2−Ω(n(log k
k)) (the probability is over the planted k-SAT distribution and the

randomness of the algorithm).

Theorem 1 yields an algorithm that (always) finds a solution for k-SAT instance F sampled

from P (n, k,m), and runs in expected time 2n(1−Ω(log k
k

)). In fact, the algorithm of Theorem 1
is a simplification of the PPZ algorithm (Paturi et al., 1999), a well-known worst case
algorithm for k-SAT. PPZ runs in polynomial time, and outputs a SAT assignment (on any
satisfiable k-CNF) with probability p ≥ 2−n+n/O(k). It can be repeatedly run for O(n/p)
times to obtain a worst-case algorithm that is correct whp. We consider a simplified version
which is sufficient for analyzing planted k-SAT:

Algorithm 1 Algorithm for planted k-SAT

1: procedure Simple-PPZ(F)
2: i← 1
3: while i ≤ n do
4: if there is a unit clause C in the formula then
5: Assign the variable in C so that C is true
6: else if xi is unassigned then
7: Assign xi randomly. Set i← i+ 1
8: else
9: Set i← i+ 1

10: Output the assignment if it satisfies F .

Our Simple-PPZ algorithm (Algorithm 1) only differs from PPZ in that PPZ also per-
forms an initial random permutation of variables. For us, a random permutation is unnec-
essary: a random permutation of the variables in the planted k-SAT distribution yields the
same distribution of instances. That is, the original PPZ algorithm would have the same
behavior as Simple-PPZ over the distribution of instances from planted k-SAT.

Let the set of variables be x1, x2, . . . , xn. We will start with a few useful definitions.

Definition 1 (Paturi et al., 1999). A clause C is critical with respect to variable xi and
SAT assignment σ if xi is the only variable in C whose corresponding literal is satisfied by
σ.

Definition 2. A variable xi in F is good for an assignment σ if there is a clause C in F
which is critical with respect to xi and σ, and i is the largest index among all variables in
C. We say that xi is good with respect to C in such a case. A variable which is not good
is called bad.

Observe that for every good variable xi, if all variables xj for j < i are assigned correctly
with respect to σ, then Simple-PPZ sets xi correctly, due to the unit clause rule. As such,
given a formula F with z good variables for σ, the probability that Simple-PPZ finds σ is
at least 2−(n−z): if all n− z bad variables are correctly assigned, the algorithm is forced to
set all good variables correctly as well. Next, we prove a high-probability lower bound on
the number of good variables in a random planted k-SAT instance.

482

On Super Strong ETH

Lemma 6. For m > n2k−1 ln 2, a planted k-SAT instance sampled from P (n, k,m, σ) has

Ω(n log k/k) good variables with respect to σ, with probability 1− 2−Ω(n log k
k).

Proof. Let F ∈r P (n, k,m, σ) and let L be the last (when sorted by index) n ln k/(2k)
variables. Let Lg, Lb be the good and bad variables respectively, with respect to σ, among
the variables in L. Let E be the event that |Lg| ≤ n ln k/(500k). We will prove a strong
upper bound on the probability that E occurs. For all xi ∈ L, we have that i ≥ n(1 −
ln k/(2k)). Observe that if a clause C is such that xi ∈ Lb is good for σ with respect to C,
then C does not occur in F . We will lower bound the probability of such a clause occurring
in F , with respect to a fixed variable xi ∈ L. Recall that in planted k-SAT, each clause is
drawn uniformly at random from the set of clauses satisfied by σ. Fixing σ and a variable
xi and sampling one clause C, we get that

Pr
C which satisfies σ

[xi ∈ L is good with respect to C]

=
number of clauses for which xi ∈ L is good

total number of clauses satisfying σ
=

(
i−1
k−1

)(
n
k

)
(2k − 1)

≥ 1

2

(
i

n

)k−1 k

2kn
[As i ≥ n(1− ln k/(2k))]

≥ 1

2

(
i

n

)k k

2kn
≥ 1

2

(
1− ln k

2k

)k k

2kn
[As i ≥ n(1− ln k/(2k))]

≥ 1

2

(
e− ln k/k

)k k

2kn
[As k is large, and e−w ≤ 1− w/2 for small enough w > 0]

≥ 1

2k+1n

If the event E is true, then |Lb| = |L| − |Lg| > n ln k/(4k). Consider such a fixed set Lb.
Under our sampling procedure, every time we sample a clause C, the probability that C
makes some variable xi ∈ Lb good is at least n ln k

4k ·
1

2k+1n
≥ ln k

k2k+3 , as the sets of clauses
which make different variables good are disjoint sets. Now we upper bound the probability
of E occurring:

Pr[E] ≤
n ln k/(500k)∑

i=1

Pr[exactly i vars among the last n ln k/(2k) vars are good]

≤
n ln k/(500k)∑

i=1

(
n ln k/(2k)

i

)(
1− ln k

k2k+3

)m
≤ n

(
n ln k/(2k)

n ln k/(500k)

)(
1− ln k

k2k+3

)n2k−1 ln 2

. [As m > n2k−1 ln 2]

Applying the inequality 1 − x ≤ e−x for x > 0, the above is at most

n

(
n ln k/(2k)

n ln k/(500k)

)(
e
− ln k

k2k+3

)n2k−1 ln 2
≤ n

(
n ln k/(2k)

n ln k/(500k)

)(
2−

n ln k
16k

)
≤ 2−δ

n ln k
k

for appropriately small but constant δ > 0, which proves the lemma statement.

483

Vyas, & Williams

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 6, we know that with probability at least 1 − p for p =

2−Ω(n(log k
k)), the number of good variables with respect to a hidden planted solution σ in F

is at least γn log k/k for a constant γ > 0. For such instances, a single run of PPZ outputs
σ with probability at least 2−n(1−γ log k/k). Repeating PPZ for poly(n)2n(1−γ log k/k) times
implies a success probability at least 1−1/2n. Hence the overall error probability is at most

p+ 1/2n ≤ 2−Ω(n(log k
k)).

We proved that PPZ runs in time 2n(1−Ω(log k
k

)) when m is “large enough”, i.e., m >
n2k−1 ln 2. When m ≤ n2k−1 ln 2, we observe that the much simpler approach of merely ran-
domly sampling assignments already works, with high probability! This is because by Corol-
lary 1 (in the Preliminaries), the number of solutions of F ∈r P (n, k,m) for m ≤ n2k−1 ln 2

is at least 2n/22−O(nk/2k) with high probability. When this event happens, randomly sam-
pling poly(n)2n/22O(nk/2k) assignments will uncover a solution with high probability.

4. Reducing from Random k-SAT to Planted Random k-SAT

In this section we observe a reduction from random k-SAT to planted k-SAT, which yields
the desired algorithm for random k-SAT (see Theorem 3). The following lemma gives
a reduction which preserves the number of clauses and is similar to results in Achliop-
tas (Achlioptas & Coja-Oghlan, 2008), and we present it here for completeness.

Lemma 7 ((Achlioptas & Coja-Oghlan, 2008)). Suppose there exists an algorithm A for
planted k-SAT P (n, k,m), for some m ≥ 2k ln 2(1 − f(k)/2)n, which finds a solution in
time 2n(1−f(k)) and with probability greater than 1 − 2−nf(k), where 1/k < f(k) = ok(1).2

Then given a random k-SAT instance sampled from R+(n, k,m), we can find a satisfiable
solution in 2n(1−Ω(f(k))) time with 1− 2−nΩ(f(k)) probability.

Proof. Let F be sampled from R+(n, k,m), and let Z denote its number of solutions with s
its expected value. As f(k) > 1/k and m ≥ 2k ln 2(1− f(k)/2)n, Lemma 3 and 5 together
imply that s ≤ 2 · 2nf(k)/2.

We will now run Algorithm A. Note that if Algorithm A gives a solution it is correct
hence we can only have error when the formula is satisfiable but algorithm A does not
return a solution. We will now upper bound the probability of A making an error.

Pr
F∈R+(n,k,m),A

[A returns no solution]

≤
∑

σ∈{0,1}n
Pr

F∈R+(n,k,m),A
[σ satisfies F but A returns no solution]

≤
∑

σ∈{0,1}n
Pr

F∈R+(n,k,m),A
[A returns no sol | σ satisfies F] Pr

F∈R+(n,k,m)
[σ satisfies F]

≤
∑

σ∈{0,1}n
Pr

F∈P (n,k,m,σ),A
[A returns no solution] Pr

F∈R+(n,k,m)
[σ satisfies F]

2. Note we can assume wlog that f(k) > 1/k, as we already have a 2n(1−1/k) algorithm for worst-case
k-SAT.

484

On Super Strong ETH

where the last inequality used the fact that R+(n, k,m) conditioned on having σ as a solution
is the distribution P (n, k,m, σ). Now note that PrF∈R+(n,k,m)[σ satisfies F] = s/2n, and
P (n, k,m) = P (n, k,m, σ), where σ is sampled uniformly from {0, 1}n. Hence the expression
simplifies to

s

2n

(
2n Pr

F∈P (n,k,m),A
[A does not return a solution]

)
= s Pr

F∈P (n,k,m),A
[A does not return a solution].

Since s ≤ 2 ·2nf(k)/2, the error probability is ≤ 2 ·2nf(k)/22−nf(k) ≤ 2 ·2−nf(k)/2 = 2−Ω(nf(k)).

Next, we give another reduction from random k-SAT to planted k-SAT. This theorem is
different from Lemma 7, in that, given a planted k-SAT algorithm that works in a certain
regime of m, it implies a random k-SAT algorithm for all values of m.

Reminder of Theorem 2. Suppose there is an algorithm A for planted k-SAT P (n, k,m),
for all m ≥ 2k ln 2(1−f(k)/2)n, which finds a solution in time 2n(1−f(k)) and with probability
1 − 2−nf(k), where 1/k < f(k) = ok(1). Then for any m′, given a random k-SAT instance
sampled from R+(n, k,m′), a satisfying assignment can be found in 2n(1−Ω(f(k))) time w.h.p.

Proof. Let F be sampled from R+(n, k,m), and let Z denote its number of solutions with s
its expected value. The expected number of solutions of F ′ sampled from R(n, k,m′) serves
as a lower bound for s. Hence if m′ ≤ 2k ln 2(1 − f(k)/2)n ≤ αdn, then s > 2nf(k)/2 and

furthermore, as we have f(k) > 1/k, Lemma 3 implies that, limn→∞ Pr[Z < s/2O(nk/2k)] =

0. So if we randomly sample O(2n2O(nk/2k)/s) ≤ 2n(1−Ω(f(k))) assignments, one of them will
satisfy F w.h.p. Otherwise if m′ ≥ 2k ln 2(1 − f(k)/2)n then we can use the algorithm A
combined with Lemma 7 to solve it in required time.

Finally, we combine Algorithm 1 for planted k-SAT and the reduction in Theorem 2 to
obtain an algorithm for finding solutions of random k-SAT (conditioned on satisfiability).
This disproves Super-SETH for random k-SAT.

Reminder of Theorem 3. Given a random k-SAT instance F sampled from R+(n, k,m)

we can find a solution in 2n(1−Ω(log k
k

)) time w.h.p.

Proof. By Theorem 1 we have an algorithm for planted k-SAT running in 2n(1−Ω(log k
k

))

time with 1 − 2−Ω(n(log k
k)) probability for all m > (2k−1 ln 2)n. This algorithm satisfies

the required conditions in Theorem 2 with f(k) = Ω(log k/k) for large enough k. The
implication in Theorem 2 proves the required statement.

Just as in the case of planted k-SAT, when m < n(2k ln 2− k) we can find solutions of
R+(n, k,m) w.h.p., by merely random sampling assignments. The correctness of random
sampling follows from Lemma 3.

485

Vyas, & Williams

5. Planted and Random k-SAT for large m

In Sections 3 and 4 we gave algorithms for random k-SAT that work at the threshold and
for all other values of the clause density. In this section, we work in the regime where the
number of clauses m is bounded away from the threshold, and give an improved running
time analysis for this case. The proofs follow a similar structure to the proofs in Section 3
and 4. As mentioned before, polynomial-time algorithms finding solutions to random k-SAT
instances currently require m to be at least 4k

k n. To our knowledge, no improved algorithms

were known for 2kn < m < 4k

k n other than the worst case k-SAT algorithms.

Lemma 8. For 2kn < m < 2k+o(k)n, a planted k-SAT instance sampled from P (n, k,m, σ)
has Ω(nz) good variables with respect to σ, with probability 1−2−Ω(nz) where z = (ln(m/n)−
k ln 2)/k.

Proof. In this proof, by “good/bad variables” we mean “good/bad variables with respect
to σ” (see Section 3 to recall the definition of good/bad).

Let F ∈r P (n, k,m, σ) and let L be the last (when sorted by index) nz/2 variables.
Let Lg, Lb be the good and bad variables respectively, with respect to σ, among L. Let E
denote the event that |Lg| ≤ nz/500.

We will prove a strong upper bound on the probability that E occurs. For any xi ∈ L,
we have that i ≥ n(1 − z/2). If a clause C is good with respect to xi ∈ Lb, then we know
that C does not occur in F . Next, we will lower bound the probability of such a clause
occurring with respect to a fixed variable xi ∈ L. Recall that in planted k-SAT, each clause
is drawn uniformly at random from the set of all clauses satisfying σ. We derive:

Pr[C is good with respect to xi ∈ L]

=
Number of clauses which will make xi ∈ L good

Total number of clauses which satisfy σ

=

(
i−1
k−1

)(
n
k

)
(2k − 1)

≥ 1

2

(
i

n

)k k

2kn
[since i ≥ n(1− z/2), z = o(1)]

≥ 1

2

(
1− z

2

)k k

2kn
[since i ≥ n(1− z/2)]

≥ 1

2

(
e−z
)k k

2kn
[since z = o(1) and e−w ≤ 1− w/2 for small enough w > 0]

≥ e−zk

2k+1n

If the event E is true, then |Lb| = |L| − |Lg| > nz/4. Consider such a fixed set Lb. Under
our sampling procedure, every time we sample a clause C, the probability that C makes
some variable xi ∈ Lb good is at least nz

4 ·
e−zk

2k+1n
≥ ze−zk

2k+3 , as the sets of clauses which
make different variables good are disjoint sets. Now we upper bound the probability of E
occurring:

486

On Super Strong ETH

Pr[E] ≤
nz/500∑
i=1

Pr[Exactly i good variables among the last nz/2 variables]

≤
nz/500∑
i=1

(
nz/2

i

)(
1− ze−zk

2k+3

)m

≤ n
(
nz/2

nz/500

)(
1− ze−zk

2k+3

)nezk2k

[since m = ezk2kn]

≤ n
(
nz/2

nz/500

)(
e
− ze−zk

2k+3

)nezk2k

[since 1− x ≤ e−x for x > 0]

≤ n
(
nz/2

nz/500

)(
e−

nz
8

)
≤ 2−δnz,

for appropriately small but constant δ > 0. This proves the lemma statement.

Theorem 5. Given a planted k-SAT instance F sampled from P (n, k,m) with 2k+o(k)n >
m > 2kn define z = (ln(m/n) − k ln 2)/k and z′ = z + ln k/k, we can find a solution of F
in 2n(1−Ω(z′)) time with at least 1−2−Ω(nz′) probability (over the planted k-SAT distribution
and the randomness of the algorithm).

Proof. By Lemma 8, we know that with probability at least 1 − p for p = 2−Ω(nz), the
number of good variables in F (wrt the hidden planted solution σ) is at least γnz for some
γ > 0. For such instances, one run of the PPZ algorithm will output σ with probability at
least 2−n(1−γz). Repeating the PPZ algorithm for poly(n)2n(1−γz) times implies a success
probability of at least 1 − p for p′ = 2−n. The overall error probability is at most p+ p′ ≤
2−Ω(nz).

Also by Theorem 1, there exists a random k-SAT algorithm running in 2n(1−Ω(log k
k

)) time

with 1 − 2−Ω(n(log k
k)) success probability. Together, these algorithms imply an algorithm

running in 2n(1−Ω(z′)) time with 1−2−Ω(nz′) probability (over the planted k-SAT distribution
and the randomness of the algorithm).

Theorem 6. Given a random k-SAT instance F sampled from R+(n, k,m) with 2k+o(k)n >
m > 2kn define z = (ln(m/n)−k ln 2)/k and z′ = z+ ln k/k, we can find a solution of F in
2n(1−Ω(z′)) time with 1 − 2−Ω(nz′) probability (over the random k-SAT distribution R+ and
the randomness of the algorithm).

Proof. This follows directly from composing the algorithm in Theorem 5 and the reduction
in Lemma 7 where we set f(k) = z′.

As an example, the above theorem implies: For F ∈r R+(n, k,m) and m = 2k+
√
kn we

have a 2n(1−Ω(1/
√
k)) algorithm which works with 1 − 2−Ω(n/

√
k) probability.

Next we will increase m even further, and prove there are more good variables for the
PPZ algorithm in this case.

487

Vyas, & Williams

Lemma 9. Let ε ∈ (0, 1) and t = 2
1−ε > 2. Given a planted k-SAT instance F sampled

from P (n, k,m, σ) with m ≥ tkn, F has at least εn(1 − 2/k) good variables with respect to
the assignment σ, with probability 1− 2−Ω(εn).

Proof. The proof is similar to that of Lemma 8. As in that proof, by “good/bad variables”
we mean “good/bad variables with respect to the assignment σ”.

Let F ∈r P (n, k,m, σ) and let L be the last (when sorted by index) εn variables. Let
Lg, Lb be the good and bad variables respectively, with respect to σ, among L. Let E be
the event that |Lb| > γεn, where γ = 2/k. When E is false we have |Lg| > |L| − |Lb| ≥
εn− γεn = εn(1− 2/k) which is what we want to prove.

Analogously to previous cases, we want to give a strong upper bound on the probability
that event E occurs. For any xi ∈ L, we have that, i ≥ n(1 − ε). If clause C is good with
respect to xi ∈ Lb, then we know C does not occur in F . As before, our next step is to lower
bound the probability of such a clause occurring with respect to a fixed variable xi ∈ L.
Recall that in planted k-SAT, each clause is drawn uniformly at random from the set of all
clauses which satisfy σ. Therefore

Pr[C is good with respect to xi ∈ L] =
Number of clauses which will make xi ∈ L good

Total number of clauses which satisfy σ

=

(
i−1
k−1

)(
n
k

)
(2k − 1)

≥ 1

2

(
i

n

)k k

2kn
[since i ≥ n(1− ε) = Ω(n)]

≥ 1

2
(1− ε)k k

2kn
[since i ≥ n(1− ε)]

=
k (1− ε)k

2k+1n

If E is true, then |Lb| > γεn. So the probability of sampling a clause such that there

exists a variable xi ∈ Lb which is good with respect to the clause is at least γεk(1−ε)k
2k+1 , as

the sets of clauses which make different variables good are disjoint sets. Our upper bound
on the event E is then calculated as follows:

488

On Super Strong ETH

Pr[E] ≤
εn(1−γ)∑
i=1

Pr[Exactly i good variables among the last εn variables]

≤
εn(1−γ)∑
i=1

(
εn

i

)(
1− γεk (1− ε)k

2k+1

)m

≤ 2εn

(
1− γεk (1− ε)k

2k+1

)tkn
[since m > tkn]

≤ 2εn

(
1− ε (1− ε)k

2k

)tkn
[γ = 2/k]

≤ 2εn
(

1− ε2k

tk2k

)tkn
[since 1− ε = 2/t]

≤ 2εn
(

1− ε

tk

)tkn
≤ 2εne−εn [since 1− x ≤ e−x for x > 0]

≤ 2−δεn,

for appropriately small but constant δ > 0. This proves the lemma statement.

Theorem 7. Let ε ∈ (0, 1) and t = 2
1−ε > 2. Given a planted k-SAT instance F sampled

from P (n, k,m) with m ≥ tkn, we can find a solution of F in 2n(1−ε(1−2/k))poly(n) time
with 1− 2−Ω(εn) probability (over the planted k-SAT distribution and the randomness of the
algorithm).

Proof. By Lemma 9, there is probability at least 1 − p for p = 2−Ω(εn) that the number
of good variables in F is at least εn(1 − 2/k) with respect to the hidden planted solution
σ. For such instances, one run of the PPZ algorithm outputs σ with probability at least
2−n(1−ε(1−2/k)). Repeating PPZ for poly(n)2n(1−ε(1−2/k)) times implies success probability
at least 1−p′ for p′ = 2−n. The overall error probability is at most p+p′ ≤ 2−Ω(n(1−2/t)).

In order to use Theorem 7 to obtain algorithms for R+, we need a more refined version
of Lemma 7.

Lemma 10. Suppose there is an algorithm A for planted k-SAT P (n, k,m) for some m ≥
αsatn which finds a solution in time 2n(1−f(k)) and with probability ≥ 1 − p. Then, given
a random k-SAT instance F sampled from R+(n, k,m), we can find a solution to F in

2n(1−f(k)) time with at least 1− p · 2O(n/2k) probability.

Proof. Let F be sampled from R+(n, k,m), let Z denote the number of solutions, and let s

be its expected value. Since m ≥ αsatn, Lemma 5 implies s ≤ 2O(n/2k).

Suppose we simply run Algorithm A. If Algorithm A gives a solution, it is correct, hence
our only source of error is when the formula is satisfiable but algorithm A does not return a

489

Vyas, & Williams

solution. We can upper bound the probability of A making an error in this way as follows:

Pr
F∈R+(n,k,m),A

[A does not return a solution]

≤
∑

σ∈{0,1}n
Pr

F∈R+(n,k,m),A
[σ satisfies F but A does not return a solution]

≤
∑

σ∈{0,1}n
Pr

F∈R+(n,k,m),A
[A does not return a solution | σ satisfies F] Pr

F∈R+(n,k,m)
[σ satisfies F]

≤
∑

σ∈{0,1}n
Pr

F∈P (n,k,m,σ),A
[A does not return a solution] Pr

F∈R+(n,k,m)
[σ satisfies F],

where the last inequality used the fact that (by definition) R+(n, k,m) conditioned on
having σ as a solution is exactly P (n, k,m, σ).

Note that PrF∈R+(n,k,m)[σ satisfies F] = s/2n and P (n, k,m) is just P (n, k,m, σ) where
σ is sampled uniformly from {0, 1}n. Hence the above expression simplifies to

=
s

2n

(
2n Pr

F∈P (n,k,m),A
[A does not return a solution]

)
= s Pr

F∈P (n,k,m),A
[A does not return a solution].

Since s ≤ 2O(n/2k), the error probability is at most p · 2O(n/2k).

Theorem 8. Let ε ∈ (0, 1) and t = 2
1−ε > 2. For a large enough k, given a random

k-SAT instance F sampled from R+(n, k,m) with m ≥ tkn, we can find a solution of F in
2n(1−ε(1−2/k))poly(n) time with 1− 2−Ω(εn) probability (over the planted k-SAT distribution
and the randomness of the algorithm).

Proof. The algorithm in Theorem 7 and the reduction in Lemma 10 imply that we can
find a solution of F in 2n(1−ε(1−2/k))poly(n) time with 1 − 2O(n/2k)2−Ω(εn) = 1 − 2−Ω(εn)

probability, for a large enough k.

6. k-SAT and Unique k-SAT

In this section we give a randomized reduction from k-SAT to Unique k-SAT which implies
their equivalence for Super Strong ETH:

Reminder of Theorem 4. If Unique k-SAT is solvable in 2(1−f(k)/k)n time for some
unbounded f(k), then k-SAT is solvable in 2(1−f(k)/k+O((log f(k))/k))n time.

We start with a slight modification of the Valiant-Vazirani lemma.

Lemma 11 (Weighted-Valiant-Vazirani). Let S ⊆ {0, 1}k = R be a set of assignments on
variables x1, x2, . . . xk, with 2j−1 ≤ |S| < 2j. Suppose that for each s ∈ S there exists a
weight ws ∈ Z+, and let w̄ denote the average weight over all s ∈ S. There is a randomized
polytime algorithm Weighted-Valiant-Vazirani that on input (R, j) outputs a matrix
A ∈ Fj×n2 and a vector b ∈ Fj2 such that

Pr
A,b

[|{x | Ax = b ∧ x ∈ S}| = 1, ws ≤ 2w̄] >
1

16
.

490

On Super Strong ETH

If the condition in the probability expression is satisfied, we say Weighted-Valiant-Vazirani
on (R, j) has succeeded.

Proof. The original Valiant-Vazirani Lemma (Valiant & Vazirani, 1986) gives a randomized
polytime algorithm to generate A, b such that for all s ∈ S, PrA,b[{s} = {x | Ax = b ∧ x ∈
S}] > 1

8|S| . Moreover, by Markov’s inequality, we have Prs∈S [ws ≤ 2w̄] ≥ 1/2. Hence the

set of s ∈ S with ws ≤ 2w̄ has size at least |S|/2. This implies PrA,b[∃s, {s} = {x | Ax =

b ∧ x ∈ S}, ws ≤ 2w̄] >
(

1
8|S|

)(
|S|
2

)
= 1

16 .

Proof of Theorem 4. LetA be an algorithm for Unique k-SAT which runs in time 2(1−f(k)/k)n.

Algorithm 2 Algorithm for k-SAT.

Input: k-SAT formula F
We assume that there is an algorithm A for Unique k-SAT running in time 2n(1−f(k)/k).

1: for i = 0 to 2n(1−f(k)/k) do
2: sample random solution s
3: if s satisfies F then
4: Return s
5: Divide n variables into n/k equal parts R1, R2 . . . Rn/k and let xi denote the variables

in set Ri
6: Define p = p1 = p2 . . . = pf(k) = 1/(2f(k)) and pj = pj/f(k) for f(k) ≤ j ≤ k
7: F0 = F
8: for u = 1 to 2cn log(f(k))/k do
9: for i = 1 to n/k do

10: Sample zi from [k] choosing zi = j with probability pj
11: (Ai, bi) = Weighted-Valiant-Vazirani(Ri, zi)
12: Fi = Fi−1 ∧ (Aix

i = bi)

13: s = A(Fn/k)
14: Return s if it satisfies F
15: Return unsatisfiable

Let S be the set of SAT assignments to F . Suppose |S| ≥ 2nf(k)/kn. Then the probability
that the random search in lines 1 to 4 never finds a solution is

(1− n2nf(k)/k/2n)2n(1−f(k)/k) ≤ e−n.

Thus if |S| ≥ 2nf(k)/kn then the algorithm finds a solution w.h.p. From now on, we assume
|S| < 2nf(k)/kn.

In line 6, we define a sequence of probabilities p1, p2, . . . , pk. Note that

k∑
i=1

pi =

f(k)∑
i=1

pi +

k∑
i=f(k)+1

pi ≤ 1/2 + 1/(2f(k))

∞∑
j=1

(1/2f(k))j/f(k)

≤ 1

2
+

1

f(k)(1− (1/2f(k))1/f(k))
≤ 1,

491

Vyas, & Williams

as f(k) is unbounded, and limx→∞ x(1− (1/2x)1/x) =∞.

We will now analyze the ith run of the loop from line 9 to line 14. Let S0 = S, and let
Si be the set of solutions to the formula Fi defined in line 12.

Let Ei be the event that:

1. 2zi−1 ≤ |{s|Ri
| s ∈ Si−1}| < 2zi . [As defined in line 10]

2. for all s ∈ Si, the restriction on Ri is the same, i.e., |{s|Ri
| s ∈ Si}| = 1.

3. |Si−1|/|Si| ≥ 2zi−2, |Si| 6= 0.

Let yi satisfy 2yi−1 ≤ |{s|Ri
| s ∈ Si−1}| < 2yi . In Line 11 we apply Weighted-

Valiant-Vazirani to (Ri, zi) with the set of assignments being {s|Ri
| s ∈ Si−1} where an

assignment v has weight wv = |{s | v = s|Ri
∧ s ∈ Si−1}| i.e. wv = number of solutions

of Fi−1 with v as the restriction on Ri. For Weighted-Valiant-Vazirani to apply, we
require that zi indeed represents an estimate of number of possible assignments to variables
of Ri in a satisfying assignment i.e. 2zi−1 ≤ |{s|Ri

| s ∈ Si−1}| < 2zi which is exactly the
condition 1 in Ei. Stated in other words, we require zi = yi. If the call to Weighted-
Valiant-Vazirani succeeds, then we have that only a unique assignment to Ri remains,
i.e, |{s|Ri

| s ∈ Si}| = 1 which is the condition 2 of Ei. Denote this unique assignment to Ri
variables by u. Lemma 11 also states that if Weighted-Valiant-Vazirani succeeds then

|Si| = wu ≤ 2w̄ = 2 ·

∑
s∈Si−1,v=s|Ri

wv

|{s|Ri
| s ∈ Si−1}|

≤ 2 · |Si−1|
2yi−1

=
|Si−1|
2yi−2

Hence condition 3 is also implied if zi = yi and Weighted-Valiant-Vazirani succeeds.

Hence for Ei to be true we need that the sample zi is equal to yi, and Weighted-
Valiant-Vazirani on (Ri, zi) succeeds.

Let E =
⋂
iEi. If event E occurs, then the restrictions of all solutions on each Ri’s are

the same, and there is a solution as |Sn/k| 6= 0, hence there is a unique satisfying assignment.
We wish to lower bound the probability of E occurring.

Pr[E] =
∏
i

Pr[Ei |
∧
j<i

Ej]

≥
∏
i

Pr[zi = yi |
∧
j<i

Ej] ·
∏
i

Pr[WVV(Ri, zi) | ∀j < i,Ej]

≥
∏
i

pyi
∏
i

(
1

16

)
[By Lemma 11]

≥ 16−n/k
∏
i

pyi

(1)

When E holds, |S| = |S0| =
∏
i|Si−1|/|Si|, as |Sn/k| = 1, Furthermore

∏
i|Si−1|/|Si| ≥∏

i 2yi−2, by condition 3. Since |S| ≤ 2nf(k)/kn, we have
∏
i 2yi−2 ≤ 2nf(k)/kn. Taking

492

On Super Strong ETH

logarithms,
∑

i yi ≤ O(n/k) + nf(k)/k ≤ O(nf(k)/k). Therefore

Pr[E] ≥ 16−n/k
∏
i

pyi [Restating equation (1)]

≥ 16−n/k
∏

yi≤f(k)

pyi
∏

yi>f(k)

pyi

≥ 16−n/k · (1/2f(k))n/k ·
∏

yi>f(k)

(1/2f(k))(yi/f(k))

≥ 16−n/k · (1/2f(k))n/k · (1/2f(k))
∑

yi>f(k)(yi/f(k))

≥ 16−n/k · (1/2f(k))n/k · (1/2f(k))O(n/k)

≥ 16−n/k · 2−O(n log f(k)/k) ≥ 2−O(n log f(k)/k).

(2)

As mentioned earlier, if E occurs, then there is a unique SAT assignment and it is
found by our Unique k-SAT algorithm A. The probability E does not happen over all
2cn(log f(k))/k runs of the loop on line 8 is at most 1 − 2−O(n(log f(k))/k))2cn(log f(k))/k � 2−n,
for sufficiently large c. The total running time is 2n(1−f(k)/k) + 2cn(log f(k))/k · 2(1−f(k)/k)n ≤
2(1−f(k)/k+O((log f(k))/k))n.

Theorem 4 immediately implies an “ultra fine-grained” equivalence between k-SAT and
Unique-k-SAT:

Corollary 2. Unique k-SAT is in 2(1−ωk(1/k))n time ⇔ k-SAT is in 2(1−ωk(1/k))n time.

7. Conclusion

We have shown two significant results regarding the hypothesis that k-SAT cannot be
solved much faster than 2n(1−Θ(1/k)) time (the Super Strong ETH). First, we showed that
for random k-SAT instances, simple unit-clause propagation combined with random variable
choice (and random restarts with no backtracking) can be used to solve SAT faster than
what is known in the worst case, refuting the Super Strong ETH for random instances. Our
algorithm runs in 2n(1−Θ(log k)/k) time. We also showed even slightly faster algorithms for
solving Unique k-SAT would imply similar algorithms for general k-SAT. Thus, to refute
the Super Strong ETH, we may assume without loss of generality that the k-SAT instances
given to our algorithms have at most one satisfying assignment.

This paper is an extended version of the conference paper (Vyas & Williams, 2019)
which appeared in SAT’19. Very recently, another algorithm for random k-SAT has been
presented (based on local search, instead of unit-clause propagation) that achieves a faster

running time of 2n(1−Ω(log2 k)/k) (Lincoln & Yedidia, 2020).

8. Acknowledgment

Authors were supported by NSF CCF-1741615 and NSF CCF-1909429.

493

Vyas, & Williams

References

Achlioptas, D., & Coja-Oghlan, A. (2008). Algorithmic barriers from phase transitions. In
Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Sympo-
sium on, pp. 793–802. IEEE.

Ben-Sasson, E., Bilu, Y., & Gutfreund, D. (2002). Finding a randomly planted assignment
in a random 3cnf..

Brakensiek, J., & Guruswami, V. (2019). Bridging between 0/1 and linear programming via
random walks. In Charikar, M., & Cohen, E. (Eds.), Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pp. 568–577. ACM.

Calabro, C., Impagliazzo, R., Kabanets, V., & Paturi, R. (2008). The complexity of unique
k-sat: An isolation lemma for k-cnfs. Journal of Computer and System Sciences, 74 (3),
386–393.

Calabro, C., Impagliazzo, R., & Paturi, R. (2009). The complexity of satisfiability of small
depth circuits. In Parameterized and Exact Computation, 4th International Work-
shop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected
Papers, pp. 75–85.

Chan, T. M., & Williams, R. (2016). Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pp. 1246–1255.

Chao, M.-T., & Franco, J. (1990). Probabilistic analysis of a generalization of the unit-clause
literal selection heuristics for the k satisfiability problem. Information Sciences: an
International Journal, 51 (3), 289–314.

Coja-Oghlan, A. (2010). A better algorithm for random k-sat. SIAM Journal on Computing,
39 (7), 2823–2864.

Coja-Oghlan, A., Krivelevich, M., & Vilenchik, D. (2007). Why almost all satisfiable k-cnf
formulas are easy..

Cook, S. A., & Mitchell, D. G. (1996). Finding hard instances of the satisfiability problem: A
survey. In Satisfiability Problem: Theory and Applications, Proceedings of a DIMACS
Workshop, Piscataway, New Jersey, USA, March 11-13, 1996, pp. 1–18.

Ding, J., Sly, A., & Sun, N. (2015). Proof of the satisfiability conjecture for large k. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pp. 59–68.

Feige, U. (2002). Relations between average case complexity and approximation complexity.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21,
2002, Montréal, Québec, Canada, pp. 534–543.

Gomes, C. P., Kautz, H. A., Sabharwal, A., & Selman, B. (2008). Satisfiability solvers. In
Handbook of Knowledge Representation, pp. 89–134.

Hertli, T. (2014). 3-sat faster and simpler - unique-sat bounds for PPSZ hold in general.
SIAM J. Comput., 43 (2), 718–729.

494

On Super Strong ETH

Impagliazzo, R., & Paturi, R. (2001). On the complexity of k-sat. J. Comput. Syst. Sci.,
62 (2), 367–375.

Krivelevich, M., & Vilenchik, D. (2006). Solving random satisfiable 3cnf formulas in ex-
pected polynomial time. In Proceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26,
2006, pp. 454–463.

Lincoln, A., & Yedidia, A. (2020). Faster random k-cnf satisfiability. In Czumaj, A., Dawar,
A., & Merelli, E. (Eds.), 47th International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), Vol. 168 of LIPIcs, pp. 78:1–78:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Paturi, R., Pudlák, P., Saks, M. E., & Zane, F. (2005). An improved exponential-time
algorithm for k -sat. J. ACM, 52 (3), 337–364.

Paturi, R., Pudlák, P., & Zane, F. (1999). Satisfiability coding lemma. Chicago J. Theor.
Comput. Sci., 1999.

Pudlák, P., Scheder, D., & Talebanfard, N. (2017). Tighter hard instances for PPSZ. In
44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, pp. 85:1–85:13.

Scheder, D., & Talebanfard, N. (2020). Super strong ETH is true for PPSZ with small
resolution width. In Saraf, S. (Ed.), 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), Vol. 169
of LIPIcs, pp. 3:1–3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Schöning, U. (1999). A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,
17-18 October, 1999, New York, NY, USA, pp. 410–414.

Selman, B., Mitchell, D. G., & Levesque, H. J. (1996). Generating hard satisfiability prob-
lems. Artificial intelligence, 81 (1-2), 17–29.

Traxler, P. (2008). The time complexity of constraint satisfaction. In Parameterized and
Exact Computation, Third International Workshop, IWPEC 2008, Victoria, Canada,
May 14-16, 2008. Proceedings, pp. 190–201.

Valiant, L. G., & Vazirani, V. V. (1986). NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47 (3), 85–93.

Vilenchik, D. (2019) personal communication.

Vyas, N., & Williams, R. R. (2019). On super strong ETH. In Theory and Applications of
Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9-12, 2019, Proceedings, pp. 406–423.

Williams, R. (2015). Circuit analysis algorithms. Talk at Simons Institute for Theory of
Computing, available at https://youtu.be/adJvi7tL-qM?t=925.

495

https://youtu.be/adJvi7tL-qM?t=925

	Introduction
	Prior Work
	Our Results
	Average-Case k-SAT Algorithms
	Unique k-SAT Equivalence

	Preliminaries
	Structural Properties of Planted and Random k-SAT

	Planted k-SAT and the PPZ Algorithm
	Reducing from Random k-SAT to Planted Random k-SAT
	Planted and Random k-SAT for large m
	k-SAT and Unique k-SAT
	Conclusion
	Acknowledgment
	References

