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Abstract—In certain complexity-theoretic settings, it is
notoriously difficult to prove complexity separations which
hold almost everywhere, i.e., for all but finitely many
input lengths. For example, a classical open question is
whether NEXP is contained in i.0.-NP; that is, it is open
whether nondeterministic exponential time computation
can be simulated on infinitely many input lengths by an
NP algorithm. This difficulty also applies to Williams’
algorithmic method for circuit lower bounds [Williams,
J. ACM 2014]. [Murray and Williams, STOC 2018]
proved that nondeterminstic quasi-polynomial time is not
contained in ACC"0, while it remained an open problem
to show that E'NP (2°O(n) time with an NP oracle) is not
contained in i.0.-ACC"0.

In this paper, we show how many infinitely-often circuit
lower bounds proved by the algorithmic method can be
adapted to establish almost-everywhere lower bounds.

First, we show there is a function f in E"NP such
that, for all sufficiently large input lengths n, f cannot
be (1/2+exp(-n"e))-approximated by exp(n“e)-size ACC"0
circuits on inputs of length n (for all small e), improving
lower bounds in [Chen and Ren, STOC 2020] and [Viola,
ECCC 2020]. Second, we construct rigid matrices in P"NP
for all but finitely many inputs, rather than infinitely often
as in [Alman and Chen, FOCS 2019] and [Bhangale et al.
2020].

Third, we show there is a positive ¢ such that E'NP
has constant-error probabilistic degree at least cn/(log™2
n) for all large enough n, improving an infinitely-often
separation by [Viola, ECCC 2020].

Our key to proving almost-everywhere worst-case lower
bounds is a new ‘“constructive” proof of an NTIME hier-
archy theorem proved by [Fortnow and Santhanam, CCC
2016], where we show for every ‘“weak’” nondeterminstic
algorithm, a “refuter algorithm” exists that can construct
“bad” inputs for the hard language. We use this refuter al-
gorithm to construct an almost-everywhere hard function.
To extend our lower bounds to the average case, we prove
a new XOR Lemma based on approximate linear sums,
and combine it with PCP of proximity ideas developed
in [Chen and Williams, CCC 2019] and [Chen and Ren,
STOC 2020]. As a byproduct of our new XOR Lemma,
we obtain a nondeterministic pseudorandom generator for
poly-size ACC"0 circuits with seed length polylog(n), which
resolves an open question in [Chen and Ren, STOC 2020].
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I. INTRODUCTION

Proving unconditional circuit lower bounds for ex-
plicit functions (with the flagship problem of NP ¢
P /poly) is one of the central problems in theoretical
computer science. In the 1980s, considerable progress
was made in proving lower bounds for constant-depth
circuits, as first steps towards lower bounds for general
circuits. The classical works [1], [2], [3], [4] culminated
in exponential lower bounds for ACC (constant depth cir-
cuits consisting of unbounded fan-in AND/OR gates).
The works [5], [6] established exponential lower bounds
for AC[q] (AC? circuits with MOD, gates) for prime
power g.

Unfortunately, the progress in the 1980s did not go
much further: lower bounds for ACO[m] have been ex-
tremely difficult to establish for composite 1, although
it has been conjectured that AC°[m] cannot compute
the Majority function. In fact, it was a notorious open
question whether NEXP (nondeterministic exponential
time) has polynomial-size ACCY circuits.! Several years
ago, Williams [8] finally proved such a lower bound,
via an algorithmic approach to circuit lower bounds [9].
Combining many results from classical complexity, such
as the nondeterministic time hierarchy theorem [10],
[11], hardness vs randomness [12], and the PCP The-
orem [13], [14], Williams’ work shows how nontrivial
circuit-analysis algorithms can be generically applied to
prove circuit lower bounds.

Developments after NEXP ¢ ACCC. The separation
NEXP ¢ ACC® had several drawbacks compared to the
classical lower bounds of the 80s. The most significant
drawback was that NEXP is a much larger class than
our ultimate goal NP (previous lower bounds for AC’
or AC?[p] usually work for functions in P). Murray and
Williams improved this state of affairs significantly by
showing NQP := NTIME[2P°W108(")] s not contained
in ACC? [15].

Another drawback is that the algorithmic ap-
proach [8], [15] only yielded worst-case lower bounds,

I'This had been stressed several times as one of the most embar-
rassing open questions in complexity theory, see [7]. Note that ACC?
denotes the union of AC®[m] for all constant 1.
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while prior lower bounds for AC or ACY[p] can often
be adapted to hold in the average case (e.g., [16]). A
line of recent work [17], [18], [19], [20] generalizes
the algorithmic approach to the average-case setting,
culminating in the result that NQP cannot be (1/2 +
1/poly(n))-approximated by ACC circuits [20].

The Infinitely-Often Separation Drawback. All the
aforementioned developments significantly expand the
reach of the algorithmic method. However, there has
remained a subtle but important drawback of the algo-
rithmic method: it only achieves infinitely-often separa-
tions. For example, [15] shows there is an NQP function
f such that, for every polynomial-size ACCY circuit
family {Cy}, there are infinitely many input lengths n
such that Cy fails to compute f on n-bit inputs. This
certainly implies the separation NQP ¢ ACCC, but it
could be the case that for nearly every input length NQP
is easy for ACCO, and NQP is only hard on extremely

rare input lengths n, e.g., n = 222k for k € IN. In a case
where the hard input lengths are so far apart, practically
the situation is not very different from NQP C ACCY.
In fact, it has remained open whether ENP is contained
infinitely-often in ACCY.

The Infinitely-Often Barrier in Complexity Theory.
Ideally, we desire almost-everywhere separations: we
want a function f = {f, : {0,1}" — {0,1}} so
that for all sufficiently large input lengths #, f;; cannot
be computed by any ACCY circuit (in notation, we
would say f ¢ i.0.-ACCY). Most previous lower bounds
for AC? and ACO[p} are almost-everywhere: they show
f & i.0.-AC? or f ¢ i.0.-AC%[p] for some f. Indeed,
most combinatorial/algebraic lower bound approaches
argue hardness for each input length separately, so
they naturally give lower bounds for all input lengths.
However, in structural complexity theory, arguments
often involve different input lengths simultaneously, and
it is common that in some settings almost-everywhere
separations are much harder to achieve than correspond-
ing infinitely-often separations. Two classical examples
include:

e (An  Almost-Everywhere ~NTIME  Hiearchy
is Open.) It is known that NTIME[2"] ¢
NTIME[2" /n] [10], [11], but it is open whether
NTIME[2"] C i.0.-NTIME[nlogn]. (Indeed, there
is an oracle O such that NEXP® C i.0.-NP© [21].)

e (An Almost-Everywhere Super-Linear Circuit
Lower Bounds for MATIME[2"] is Open.) It
is known that MA,; ¢ SIZE(n*) for all k
and MATIME[2"] ¢ P/poly. but it is open
whether MATIME[2"] C 1.0.-SIZE(O(#n)). (In-
deed, it is even open whether X, TIME[2"] C
1.0.-SIZE(O(n))).

Other examples include fixed-polynomial lower
bounds for the complexity classes NPNP - [22],
ZPPNP 23], [24], S,P [25], [26], PP [27], [28], time-
space trade-off for solving SAT [29], [30], and hierarchy
theorems such as [31], [32], [33]. All of these lower
bounds only provide an infinitely-often separation, and
it is open to prove an almost-everywhere separation.
There are also interesting algorithmic results motivated
by complexity concerns, which are only guaranteed to
work for infinitely many input lengths (e.g., [34], [35],
[36]).

A. Our Results

In this work, we achieve almost-everywhere circuit
lower bounds with the algorithmic approach. To for-
mally discuss our results, we briefly recall two circuit-
analysis problems.

1) CAPP: Given a circuit C of size S, estimate the
probability that C accepts a uniformly random
input within an additive error of 1/8S.

2) Gap-UNSAT: Given a circuit C, distinguish be-
tween the case that C is unsatisfiable and the case
that C has at least 2" /3 satisfying assignments.

1) Almost-Everywhere Circuit Lower Bounds From
Non-Trivial Derandomization: Our first result is that
“non-trivial derandomization” for a circuit class &
implies almost-everywhere %-circuit lower bounds for
ENP. In the following, we say that a circuit class % is
typical if € is closed under projections and negations.
(See the full version of the paper for a formal defini-
tion.)

Theorem L.1. There are universal constants € € (0,1),
K > 1 satisfying the following. Let € be typical, and
let s(n) be a nondecreasing time-constructible function
with n < s(n) < 29" for all n. If Gap-UNSAT on
AND o OR o @-circuits of size s(n)X can be solved
deterministically in 2" /n®Y) time, then there are func-
tions in ENP that do not have €-circuits of size s(n/2),
for all sufficiently large n.

An Extension to Average-Case Lower Bounds. Com-
bining PCPs of Proximity and a new XOR Lemma
(see Section I-B2), we can extend the above theorem
to prove strong average-case lower bounds. Say that a
function f : {0,1}" — {0,1} cannot be (1/2 + ¢)-
approximated by circuits of type C, if every circuit from
C computes f correctly on less than (1/2 + €)2" of the
n-bit inputs. For a language L : {0,1}* — {0,1}, we
use L, to denote its restriction to n-bit inputs.

Theorem L.2. Let € be typical. Suppose there is an
¢ > 0 such that CAPP of 2 -size ANDy o € circuits can
be deterministically solved in 2" time. Then there is
a language L € ENP and a constant & > 0 such that,
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for all large enough n, L, cannot be (1/2 + 2—”6)_
approximated by € -circuits of size 2”5.

The above results have several applications to com-
plexity lower bounds and pseudorandom generators. We
will discuss them separately.

2) Applications in Complexity Lower Bounds:
Almost-Everywhere Strong Average-Case Exponen-
tial Lower Bounds for ACC’ o THR.2 Combining
Theorem 1.2 and the corresponding #SAT algorithm
from [37] for ACCY o THR, the almost-everywhere
strongly average-case lower bound for ENP against
ACCY o THR follows immediately.

Recall that for a given d,m € IN, AC[m] is the class
of circuit families of depth d, with unbounded fan-in
AND, OR, MOD,, gates, and ACC® := |, ACY[m].

Corollary 1.3. For every integer d,m > 1, there is an
€ = ¢4, and a language L € ENP such that L, can-
not be (1/2 + 27")-approximated by ACY[m] o THR
circuits of 2" size, for all sufficiently large n.

Corollary 1.3 compares favorably with prior circuit
lower bounds for problems in ENP. Williams [81, [37]
proved that ENP cannot be worst-case computed by
2" size ACCO o THR circuits. Following the work
of Rajgopal et al. [38], Viola [39] recently proved ENP
cannot be (1/2 4 1/n'~¢)-approximated by 2" size
AC[@] circuits. Chen and Ren [20] recently proved that
ENP cannot be (1/24 g(n)~1) approximated by g()-
size ACC? circuits, where g is any sub-half-exponential
function.® All of these lower bounds are only infinitely-
often separations, and yield strictly weaker average-case
lower bounds than Corollary I.3.

We also remark that [40] devised a notion of “sig-
nificant separation”, which is stronger than infinitely-
often separation while weaker than almost-everywhere
separation.* They showed a significant separation of
NEXP and ACC. This is incomparable with almost-
everywhere separation for ENP.

Almost-Everywhere Construction of Rigid Matrices
with an NP Oracle. The problem of efficiently con-
structing rigid matrices is a longstanding open problem
in complexity theory [41], [42].

Definition I.4. Let [F be a field. For r,n € IN and
a matrix M € F"*" the r-rigidity of M, denoted as

2ACC% o THR denotes the class of constant-depth circuits com-
prised of AND, OR and MOD,,, gates (for a constant m > 1), with a
bottom layer of gates computing arbitrary linear threshold functions.

3We say that g is sub-half-exponential if g(g(n)) = o',

4Roughly speaking, “significant separation” means that when the
separation holds for an input length 7, then there is another input
length at most polynomially larger than n such that the separation
also holds. That is, the hardness cannot be very “sparsely distributed”.

Rai(r), is the minimum Hamming distance between
M and a matrix of rank at most 7.

Alman and Chen [43] recently showed that rigid
matrices over the field IF, (similar results hold for all
fields of constant order) with interesting parameters
(considered by [44] for connections to communica-
tion complexity) could be constructed infinitely often
in PNP via the algorithmic method. Their proof has
been simplified and improved by Bhangale et al. [45].
Formally, [45] construct a pNP algorithm M which, for
infinitely many n, M (1") outputs a matrix Hy, such that
RH, (210%178”) > 6n? over TFs.

Applying similar ideas from the proof of Theorem I.1
and Theorem I.2, we can strengthen their construction
to an almost-everywhere one.

Theorem L5. There is a 6 > 0 such that, for all
finite fields F and € > 0, there is a PNP algorithm
which on input 1" outputs an n X n matrix H satisfying
RH(ZIOgl_g”) > én® over F, for all large enough n.

Almost-Everywhere Probabilistic Degree Lower
Bounds. The notion of probabilistic degree for Boolean
functions has been studied extensively for decades. Let
us recall the definition.

Definition 1.6. The ¢-error probabilistic degree of a
function f : {0,1}" — {0,1} is the minimum d such
that there is a distribution D on IFp-polynomials of
degree at most d such that Prp p[P(x) # f(x)] < e.
When ¢ is not specified, it is assumed to be 1/3 by
default.

Very recently, Viola [39] proved an Q(n/log®n)
probabilistic degree lower bound for ENP using the
algorithmic method. We extend his result to the almost-
everywhere case.

Theorem L.7. There is a language L : {0,1}* — {0,1}
in ENP such that L, has 1/3-error probabilistic degree
Q(n/log? n), for all sufficiently large n.

Almost-Everywhere Exponential Correlation
Bounds against 7'/279-Degree IF,-Polynomials.
Combining the proof technique of the main theorem
and an improved XOR Lemma (introduced in
the next subsection), we can also prove a strong
inapproximability result for low-degree polynomials
for a problem in ENP.

Theorem 1.8. For all 6 > 0, there is a language
L:{0,1}* — {0,1} in ENP such that L, cannot be
(1/2+4 2*”0(1>)-appr0ximated by n1/279 degree F,-
polynomials for all sufficiently large n.

The previous best known correlation bound against
n1/2_5-degree IF>-polynomials was only 1/2 4+ n—?¢
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for the Majority function [5], [6], [46], and this de-
gree/approximation tradeoff is indeed tight for Major-
ity [47].

3) Applications to Pseudorandom Generators: Fol-
lowing the known connection between average-case
hardness and PRG construction, we obtain two different
PRG constructions for ACCO, both with the near-optimal
polylog(n) seed length. Our first PRG works for all
input lengths, while is only computably in ENP. Our
second construction obtains a nondeterministic pseudo-
random generator (NPRG) (see the full version of the
paper for a formal definition), which is a weaker class
compared to ENP-computable PRGs. But the NPRG
only works for infinitely many input lengths.

The following ENP-computable PRG is a direct con-
sequence of our average-case lower bound for ACC?
(Corollary 1.3).

Theorem 1.9. For all constants d and m, there is § =
6(d, m) and an ENP-computable PRG which takes n-bit
seed and outputs 21’ _pit strings fooling ACg [m] circuits
of size 2”5, for all large enough n.

Our proof technique can also be used to construct
an infinitely-often PRG against ACCY circuits with
polylog(n) seed length. This significantly improves
upon the previous work By Chen and Ren [20], and
answers one of their open questions.

Theorem 1.10. For all constants d and m, there is 6 =
d(d, m) > 0 and an i.0.-NPRG which takes n-bit seeds
and outputs 21’ _bit strings fooling ACg [m] circuits of
size 2.

Remark L11. We remark that our NPRG and ENP-
computable PRG also work for other circuit classes
&, given non-trivial CAPP algorithm for slightly larger
circuit classes 6”. See the full version of the paper for
the details.

B. Two Technical Tools

To achieve our almost-everywhere strongly average-
case lower bounds, we develop two new technical
tools. The first is a “constructive” proof of the almost-
everywhere sublinear witness NTIME hierarchy of Fort-
now and Santhanam [48] which builds a PNP algorithm
that can explicitly find inputs on which the weak algo-
rithm make mistakes. The second is an XOR Lemma
based on computations by approximate linear sums. We
believe both results are interesting in their own right,
and will likely have other applications in computational
complexity. In the following we state both of them infor-
mally. Check Section II for a more in-depth discussion
on these two new tools, and why they come up naturally
in our lower bound proofs.

1) An  Almost-Everywhere  (Sublinear — Witness)
NTIME Hierarchy with Refuter: A critical piece
of Williams’ proof that NEXP ¢ ACC’ (and later
work) is the NTIME hierarchy [10], [11]. However, as
mentioned earlier, that hierarchy is only known to hold
infinitely-often; consequently, the resulting circuit lower
bounds fail to be almost-everywhere, and extending
the NTIME hierarchy to hold almost-everywhere is
notoriously open.

Nevertheless, Fortnow and Santhanam [48] man-
aged to prove an almost-everywhere NTIME hierar-
chy for a restricted subclass of NTIME, where the
“weak” nondeterministic machines (being diagonalized
against) use witnesses of length less than #n bits.
Let NTIMEGUESS(t(n),g(n)] be the class of lan-
guages decided by nondeterministic algorithms running
in O(f(n)) steps and guessing at most g(n) bits.
Fortnow and Santhanam proved there is a language L
in nondeterministic O(T(n)) time that is not decidable,
even infinitely-often, by nondeterministic o(T(n))-time
n/10-guess machines:

Theorem 1.12. For every time-constructible function
T(n) such that n < T(n) < 2P NTIME[T(n)] ¢
i.0.-NTIMEGUESS[o(T(n)), n/10].

Our most important new ingredient is the construction
of a “refuter” for the hierarchy of Theorem I.12: an
algorithm with an NP oracle which can efficiently
find bad inputs for any NTIMEGUESS[o(T (1)), n/10]
machine.

Theorem 1.13 (Refuter with an NP Oracle, Informal).
For every time-constructible function T(n) such that
n < T(n) < 2PW0) there is a language L €
NTIME[T(n)] and an algorithm R such that:

1) Input. The input to R is a pair (M,1"), with the
promise that M describes a nondeterministic Tur-
ing machine running in o(T (n)) time and guessing
at most n/10 bits.

2) Output. For every fixed M and all sufficiently large
n, R(M,1") outputs a string x € {0,1}" such
that M(x) # L(x).

3) Complexity. R runs in poly(T(n)) time with
adaptive access to an SAT oracle.

Since R can find counterexamples to any faster algo-
rithm attempting to decide L, we call R a refuter.

Applying the refuter construction of Theorem 1.13
instead of the general NTIME hierarchy in the original
proof of [8], we can achieve almost-everywhere circuit
lower bounds.

Other Explicit Refuters for Complexity Separa-
tions: It is instructive to compare our refuter construc-
tion to other refuter constructions, such as [49], [50],
[51]. They showed that, assuming certain complexity
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separations (NP # P, NP ¢ BPP or NP & Ppqy),
one can construct a refuter which takes a corresponding
algorithm A claimed to solve SAT, and outputs for
infinitely many n a counter-example x, of length n
such that A fails to solve SAT on x;,. All these refuters
are conditional, in the sense that they assumed the
(unproven) hypothesis such as NP # P, while our
refuter is designed to witness the already proven NTIME
hierarchy theorem of [48].

2) An XOR Lemma Based on Approximate Lin-
ear Sums of Circuits: Our second important technical
ingredient—critical to our average case lower bounds—
is a new XOR Lemma based on approximate linear
sums of circuits. The XOR Lemma (originally due to
Yao [52]) says that if an n-bit Boolean function f cannot
be weakly approximated (e.g., 0.99-approximated) by
small circuits, then the kn-bit Boolean function (f@k
cannot be strongly approximated (e.g., (1/2 427 CW)).
approximated) by smaller and simpler circuits.

It is tempting to apply the XOR Lemma directly,
to try to prove strong average-case lower bounds for
ACC® (or AC°[2]) given that weak bounds are known.
However, when we apply the XOR Lemma to a re-
stricted circuit class %, the most refined analysis of
the XOR Lemma [53], [54] still only shows that 0.99-
inapproximability for MAJORITY 2 o € computing f
implies (1/2 + 1/t)-inapproximability for 4" comput-
ing f¥ where k = O(logt). That is, applying the
XOR Lemma to show strong-average case lower bounds
for ACC?, evidently requires proving weak average-case
lower bounds for MAJORITY o ACCY. But this task
seems just as hard as proving strong average-case lower
bounds in the first place!

We avoid this issue by proving a new kind of
XOR Lemma, based on Levin’s proof of the XOR
Lemma [55]. For a circuit class 4, we define the class
of linear combinations [0, 1]Sum o %, where an n-input
circuit C from the class has the form C(x) := Y a; -
C;i(x), where each a; € R and C; € €, and C satisfies
the promise that C(x) € [0,1] for all x € {0,1}". The
complexity of C is defined to be the maximum of }_; |a;|
and the sum of the sizes of each C;.

Our new XOR Lemma shows that if a Boolean
function f cannot be well-approximated by linear com-
binations of ¢-circuits on average, then f Pk is strongly
average-case hard for %-circuits. The flexibility af-
forded by linear combinations allows us to improve our
results to strong average-case lower bounds.

Theorem 1.14 (New XOR Lemma, Informal). For every
o< %, for every function f :{0,1}" — {0,1}, if there
is no [0,1]Sum o € circuit C : {0,1}" — [0,1] of

SThe function f®F partitions its kn-bit input into k blocks
X1,X2,...,X; of length n each, and outputs @;‘:1 f(x).

complexity poly(s,n,1/0) such that E ¢ 101y |C(x) —
f(x)| < 6, then fF cannot be 1/2 4 1/s approxi-
mated by s-size € circuits, for k = © ((571 log s).

II. TECHNICAL OVERVIEW

In this section we provide more intuition behind
our almost-everywhere lower bounds. We split the dis-
cussion into two parts, one for each main technical
ingredient.

e In Section II-A, we demonstrate how to use our
new refuter concept (and why it comes up nat-
urally) to prove almost-everywhere ENP  lower
bounds. With this powerful concept, we can au-
tomatically strengthen most of the previous ENP
lower bounds proved via the algorithmic method,
except for the strong average-case lower bounds
in [20].

e In Section II-B, we show how to use an XOR
Lemma for approximate linear combinations of
circuits, to prove a strong average-case almost-
everywhere lower bounds for ENP.

A. Almost-Everywhere Lower Bounds for ENP and the
Refuter

To explain the intuition behind our almost-
everywhere circuit lower bounds, it is instructive to
first recall how Williams [8] proved that ENP does not
have 2"0(1)-SiZC ACCY circuits, and understand why that
approach only achieves an infinitely-often separation.

1) Review of ENP not in ACC?: A Nondeterministic
Algorithm A;..« That Can’t Be Improved. By the
NTIME hierarchy [10], [11], we know there is a lan-
guage LN € NTIME[2"] \ NTIME[2" /#n]. Let Aj hara

be a nondeterministic O(2")-time algorithm deciding
Lhard.

A “Cheating” Algorithm Apcp Trying to Speed Up
Ahad. Assume we have non-trivial derandomization
algorithms for ACCY, ie., there is a 2"/n“(M) _time
algorithm for deciding Gap-UNSAT on ACCP-circuits
of n inputs and 2”0(1> size. A key idea in [8], [9] is
to combine probabilistically checkable proofs (PCPs)
and non-trivial Gap-UNSAT algorithms to design a
nondeterministic algorithm Apcp that tries to “speed
up” the algorithm A; nara, as follows:
o Given an input x € {0,1}", Apcp applies an
efficient PCP reduction (e.g., [56]) t0 A;para (x).
For ¢ = n+ O(logn), we obtain a verifier oracle
circuit VPCP,(r): {0,1}¢ — {0,1} with the
following properties.
— (Simplicity) VPCP, is an oracle circuit with
gates for a function O: {0,1}* — {0,1}.
VPCP, has very simple structure, so that if O

Authorized licensed use limited to: MIT Libraries. Downloaded on December 16,2021 at 15:37:24 UTC from IEEE Xplore. Restrictions apply.



is an ACCO—circuit, then the composed circuit
VPCP,(? is also in ACCO.

— (Completeness) If x € Lhard | then there is an
OTacle O such that Pr, gqy0 [VPCPY (r) =
1| = 1.

— (Soundness) If x ¢ Lhard_ then for all oracles
O, Pr, (g1 [VPCPY (r) = 1] < 1/3,

o Next, Apcp guesses an ACCO-circuit C of size
o By the simplicity property, VPCPg (with
oracle C) is also an ACC-circuit of 21" size.

Running the assumed Gap-UNSAT algorithm for

ACCY on the circuit D = —|VPCP§, we can

distinguish between the case that D is unsatisfiable

(which happens for some O, if x € Lhard) and

the case that Pry[D(x)] > 2/3 (which happens

for all O, if x ¢ Lhard). Therefore, we accept
if and only if our Gap-UNSAT algorithm returns

“unsatisfiable”.

Intuitively, Apcp wants to “cheat” in the computation
of Lh2d by only considering oracles of small circuit
complexity.

The ENP Lower Bound. Note that the nondetermin-
istic algorithm Apcp indeed runs faster than 2" time:
the running time of Apcp is dominated by the run-
ning time of the non-trivial derandomization algorithm,
which is 0(2"/n). Therefore, we know that Apcp €
NTIME[0(2"/n)], and hence it cannot compute Lhard
by the NTIME hierarchy theorem.

We conclude that, for infinitely many 7, there is a
“bad input” x, € {0,1}" such that Apcp(x,) rejects
but x, € Lhard 6 For those x, € Lhard, the complete-
ness of the PCP implies there is an oracle O such
that VF’CP?n (r) = 1 for all r, but no such oracle ad-

mits 2" -size ACCO-circuit —otherwise, Apcp would
have guessed it, and Apcp(x,) would accept instead.
Therefore, constructing a description of the oracle O
is tantamount to constructing a function without small
ACCO circuits.

We can now design the hard ENP language as follows:
on an input x of length 2n + O(logn), split x into
two parts x1 and xo such that |x;| = n. Using an NP
oracle, we search for the lexicographically-first oracle
O: {0,1}' — {0,1} for the verifier VPCPy, (that is,
VF’CF’J(?1 (r) =1 for all r). Finally, we output O(xy). If
there is an x, € {0, 1}" such that Apcp(x;,) rejects but
x, € Lherd this ENP algorithm has high ACC? circuit
complexity on input length 2n + O(logn).

Input and Advice. In the above, the input x is split
into two parts x; and xp. The part x; behaves as

Note it is impossible that Apcp (x,) accepts but x,, ¢ LM, as
Apcp only guesses over a proper subset of all possible witnesses.

“advice” specifying the “bad input” on which Apcp and
Lhard (differ. The part x, is the input to the constructed
oracle O. Luckily for us, the advice is roughly the
same length as the input length to the oracle, so it
does not affect the hardness of the overall function. For
example, a hardness result superpolynomial in |xp| is
also superpolynomial in |xq] 4 |x2|, since we assumed
[x1] = O([x2])).

The NTIME Hierarchy Barrier. Let us examine the
above proof outline more carefully. The analysis shows
that the language decided by our ENP algorithm is hard
on inputs of length 21, provided that Apcp and Lhard
give different outputs when they are restricted to inputs
of length n. From the NTIME hierarchy and the fact that
Apcp € NTIME[O(2" /n)], we conclude there must be
infinitely many such #.

The above argument would yield an almost-
everywhere separation, if we could show that Lhard
and Apcp are different on all sufficiently large input
lengths. However, this would apparently require show-
ing NTIME[2"] ¢ i.0.-NTIME[2"/n], and such an
almost-everywhere separation is a notoriously hard open
problem—it is even open whether NEXP C i.0.-NP!
It seems hopeless to make progress using the above
framework, without making breakthrough progress on
an almost-everywhere NTIME hierarchy.

First Observation: Apcp Guesses Short Witnesses.
Here we make an important observation that bypasses
the above barrier. For the above proof to work, L hard
only needs to be hard for the specific algorithm Apcp,
not necessarily all nondeterministic 0(2" /n)-time algo-
rithms. In other words, we do not need the full power
of an almost-everywhere NTIME hierarchy. Therefore,
it is natural to examine what properties of the specific
algorithm Apcp we can exploit.

One way in which Apcp is very different from a
general O(2")-time nondeterministic algorithm is that it
makes a considerably smaller number of guesses: only
2" Such restricted versions of NTIME have been
studied before, under the guise of bounded nondeter-
minism. We use NTIMEGUESS[t(n), g(n)] to denote
the class of languages decidable by nondeterministic
algorithms using O(t(n)) steps and guessing at most
g(n) witness bits. Fortnow and Santhanam [48] showed
that when g(#) is sublinear, one can establish an almost-
everywhere NTIME hierarchy (Theorem 1.12).

Trying a New Approach. A natural proposal is to
apply Theorem 1.12 instead of the general NTIME
hierarchy. For that purpose, we have to choose our
parameters carefully so that Apcp makes few guesses.
Let us check what happens when we rely on Fortnow
and Santhanam’s almost-everywhere hierarchy instead
in our design of Apcp. Our pseudocode below will fail,
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but studying how to fix it will lead to a correct lower
bound proof.

1) Suppose we have a non-trivial circuit analysis
algorithm (for CAPP or Gap-UNSAT) for ACCP-
circuits of size 2. Set k < Land T(n) = 2logtn,
Let L2 be a language in NTIME[T ()] but not
in i.0.-NTIMEGUESS[o(T(n)),/10]. Let A, para
be an O(T(n))-time nondeterministic algorithm
deciding L.

2) Given an input x of length n, Apcp applies
the PCP reduction (e.g. [56]) to Ajnara(x). For
¢ = log"n 4+ O(loglogn), we obtain a verifier
oracle circuit VPCP,: {0,1}¢ — {0,1}, with
three properties.

e (Simplicity) VPCP, calls an oracle
0:{0,1}* — {0,1}. VPCP, has very simple
structure such that if O is an ACCO-circuit, then
so is the composed circuit VPCP?.

e (Completeness) If x € Lhard | then there is an
oracle O such that Prre{o,l}f[VPCPJ(?(”) =
1] =1.

o (Soundness) If x ¢ L2 then for all oracle O,
Pr,c (43¢ [VPCPY (r) = 1] < 1/3.

3) Next, Apcp guesses an ACCO-circuit C of size
2 = o(n) (since k < e1). Note that VPCPS
is also an ACCO-circuit of 20(¢) size, by the
simplicity property. Then, we use our non-trivial
circuit analysis algorithm to estimate the accep-
tance probability of VPCPS (-), and accept if and
only if the estimate is > 1/2.

This new Apcp runs in o(T(n)) time, and guesses
at most n/10 bits of witness, so its language is in
NTIMEGUESS[o(T(n)),n/10]. Hence, for all large
enough 7, there is an x;,, € {0,1}" such that x,, € L hard
while Apcp rejects x,. Consequently, by a similar
analysis as in Section II-Al, we have: (1) there is an
oracle O such that VPCPY (r) = 1 for all r, and (2)
no such oracle has 2¢ size ACC? circuits.

Therefore, for all large enough #n, there is an x, €
{0,1}" such that the lexicographically-first correct ora-
cle Oy: {0,134 — {0,1} for VPCP, does not have
20 size ACCO circuits. On input x of length m, we
can set 1 ~ 2" 5o that £(n) = m, use an NP oracle
to find the Oy, and output Oy (x).

An Input and Advice Problem. The above plan sounds
nice, but there is a major problem: we now need a
much longer advice! Following the Section II-Al, on
an input x of length n, we must split x = x7xp such
that |x,| ~ log T(|x|) ~ logk(n), use x; as advice to
specify the ”bad input”, construct the oracle O for PCP
and finally outputs O(x7). In this way, we can only
obtain a hardness of 2/*2l° < » /10, which becomes a

trivial lower bound compared to the input length n.

Solution: A ‘Refuter’ Algorithm for Theorem I.12.
As discussed above, we cannot afford appending x,
to the end of the input as in Section II-Al. There-
fore, in order to make sense of the above proposal,
we have to generate the required x, ourselves. Our
key observation is that, since we are proving lower
bounds for ENP anyway, we can also try to use an NP
oracle to algorithmically find the desired x, such that
Apcp(xn) # LM (x,,), given n.

To this end, we introduce the concept of a refuter
R. For our purpose, R is a deterministic algorithm
with access to an NP oracle which takes as input the
(code of) a nondeterministic algorithm A, and 1" for
n € IN, with the promise that A runs in o(T(n))
time and guesses at most /10 bits of witness. For all
large enough 7, R outputs a string x, € {0,1}" such
that A(x,) # Lh2d(x,). We call such an algorithm a
refuter for Lh2"d  since it can explicitly refute any faster
algorithm A attempting to decide L"2"d.

How can we construct a refuter R? A natural idea is
to enumerate all input strings of length 7, then use an
NP oracle to find the first x € {0, 1}" such that A(x) #
Lhard(x). This algorithm can find the required input
X, correctly since such an x;, exists by Theorem 1.12.
However, this method is extremely inefficient, having
running time Q(2").

Open Up The Black Box! We observed that the
hard language Lh2rd established by Theorem 1.12 is
quite special. Given its structure, we can indeed design
a algorithm which binary-searches over all inputs of
length n to find the desired x,. With a careful analysis
of the L' Janguage, we design a refuter for Lhard that
runs in time O(T(n) -log(2")) < O(n - T(n)).

Our final ENP algorithm with a SAT oracle works
as follows. On an input of y length m, set n =~ ot/
so that £(n) = m, invoke the refuter to find an input
xy € {0,1}" such that Apcp(x,) # Lh9(x,), then
use the SAT oracle to find the lexicographically-first
oracle O: {0,1}" — {0,1} such that VPCP;(?,, (r) =
1 for all r. Finally, our algorithm outputs O(y). The
running time can be bounded by O(T(n) -n) ~ 2™
with the help of the SAT oracle. It is not hard to see
that the language decided by this ENP algorithm will
be almost-everywhere hard for 2”0(1) -size ACCO—circuits,
which completes the proof.

Finally, we end this subsection by providing some
intuitions on how the refuter for Theorem 1.12 is con-
structed.

The A.E. NTIME Hierarchy. Before explaining our
refuter, it’s instructive to review the proof ideas of
Theorem 1.12.
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Let A be an NTIMEGUESS[o(T(n)),1n/10] ma-
chine. We define a new algorithm A’ based on A and
show that A fails to compute A’ on all large enough
input lengths. Specially, A’ works as follows: On an
input x of length 1, A’ rejects immediately if A rejects
the witness (the n/10-bit prefix of) x on input 0".
Otherwise, A’ simply outputs A(x + 1). Here x + 1
denotes the lexicographically next string after x. If there
is no such x +1 (i.e., x = 1), A’ just outputs 1.

One can check that A’ runs in NTIME[T (1)]. Now
we fix a large enough 7, and suppose for the sake of
contradiction that A(x) = A’(x) forevery x € {0,1}".
(That is, A is a speed up version of A’.) There are two
cases now depending on the value of A(0"):

1) A(0") = 1. Consequently, we also have A’ (0") =
1. This is only possible if A’ accepts every input
of length n, which implies, by the definition of
A’, that A reject every witness on the input 0".
Hence it follows that A(0") = 0 and consequently
A’(0") = 0 as well, contradiction!

2) A(0") = 0. Since now A rejects every witness on
the input 0", we have A’(0") = A'(0" +1) =
... = A’(1") = 1 by the definition A’, contradic-
tion to the assumption that A’(0") = A(0").

The above A’ is only hard for A. To design a hard
language against every NTIMEGUESS[o(T (1)), n/10]
algorithm, we can add the description of that al-
gorithm as part of input, which only adds a con-
stant overhead. Now, the resulting algorithm Ayarp
interprets the first logn bits as the code of a
NTIMEGUESS[o(T(n)),n/10] machine, and the rest
being the witness mentioned in the definition of A’
above.

Constructing the Refuter. The above proof is noncon-
structive (in the sense that it does not tell us on which
input A and A’ differ) since it is a proof by contradic-
tion. Our observation here is that the definition of the
algorithm A’ allows us to consider a linear ordering of
all inputs of length n (formed lexicographically, string x
is followed by x 4 1). Let us focus on the second case
above that A(0") = 0 (the first case can be handled
similarly, check the full version of the paper for details).
Since A rejects every witness on input 0", we have
A'(x) = A(x + 1) for every x, except for A'(1") = 1.

Consider the following list of outputs .A4(0"), A(0" +
1),..., A(1"), A’(1"). Since the first and last outputs
differ, one can use a binary search to find two adjacent
different elements with O(log(2")) = O(n) queries to
the list (check the full version of the paper for details).
This is exactly what we want, since A(x) # A(x + 1)
means A(x) # A’(x). Finally, an access to the above
list can be simulated by an NP query, and we obtain
the desired PNP refuter.

Generalization to Other Lower Bounds. Our refuter
framework is general enough that many similar ENP
lower bound proofs (based on Williams’ algorithmic
paradigm) can be adapted to the almost-everywhere
setting as well, e.g., the construction of rigid matrices
in [43], [45] and the probabilistic degree lower bound
in [39]. See the full version of the paper for details.

B. Strong Average-Case Hardness Lower Bounds via a
New XOR Lemma

In this subsection, we first explain why it is difficult
to prove strong average-case lower bounds for ACCC,
and then show how we get around previous barriers
with an improved XOR Lemma based on approximate
linear combinations of circuits.

The Hardness Amplification Barrier. The traditional
approach to average-case lower bounds is through
hardness amplification, which ultimately aims to show
how worst-case lower bounds imply average-case lower
bounds. The key barrier to proving stronger average-
case lower bounds for ACCY (or even AC’[2]) is the
lack of an appropriate hardness amplification theorem
for both classes. It is known that proving such an
amplification theorem requires computing majority [57],
[58]. That is, to establish strong average-case lower
bounds for ACCY, one apparently needs to start with
at least a worst-case MAJORITY o ACC? lower bound,
which seems as hard as proving strong the average-case
lower bounds for ACCY itself.

In a recent work, Chen and Ren [20] managed to
bypass the above barrier and prove a strong average-case
lower bounds for NQP against ACCY, via a sophisticated
win-win argument. However, this argument fails to
achieve either almost-everywhere separations or sub-
exponential hardness due to inherent limitation. Since
the knowledge of [20] is not required to understand our
new approach, see the full version of this paper for a
discussion on the limitations of the techniques of [20].

We show it is possible to remove the win-win ar-
gument. By directly applying a new XOR Lemma, we
can prove almost-everywhere strong average-case lower
bounds of sub-exponential hardness.

Algorithms and Lower Bounds for (Approximate)
Linear Sums of %. The key concept behind the new
XOR Lemma is that of linear combinations of circuits.
Here we recall their definition (from [59], [18], [20]).
Let ¢ be a class of functions from {0,1}" — {0,1}.
We say L: {0,1}" — R is a Sumo € circuit, if
L(x) := Yl ;@& - Ci(x), where each a; € R and
each C; € ¥. We define the complexity of L to be
max (Yi_; |ag], Xi_q SIZE(C)). -

We say f: {0,1}" — {0,1} admits a Sumgs o ¢-
circuit, if there is a Sum o €-circuit L: {0,1}" — R
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such that |L(x) — f(x)| < 6 for all x. We set § =1/3
by default when it is omitted. We also use the notation
Sum o ACCY to denote the class of languages which
can be computed by a Sum o ACCO-circuit family of
polynomial complexity.

For us, the most important aspect of linear combina-
tions of circuits is that they can preserve algorithms.
For example, if there are non-trivial algorithms solv-
ing #SAT for ¢, then we can compute [Ex[L(x)] as

!, a;-Eyx[Ci(x)], where Ey[C;(x)] is computed by
solving #SAT for C; € €. Hence, if a Boolean function
f has a Sums o @-circuit L, then

E[f(x)] ~ E[L(x)] < max |f(x) - L(x)| < 5. (1)

Therefore, we are able to estimate the acceptance
probability of f in non-trivial time using non-trivial
#SAT algorithms for 4. With the above observa-
tion, [18] applied the non-trivial #SAT algorithms for
ACCY in [8] to obtain a non-trivial CAPP algorithm for
Sum o ACCY, from which they proved ENP cannot be
computed by Sum o ACC? circuits of 27" complexity.

Our Contribution: Direct Hardness Amplification
With a Non-Standard XOR Lemma: As mentioned ear-
lier, prior win-win arguments fail to achieve almost-
everywhere separations. Can one avoid a win-win ar-
gument and establish average-case hardness directly?

We show this is possible! Starting from a “/;-
approximation lower bound” against Sum o ACCC-
circuits (slightly stronger than {-inapproximability),
we show how strong average-case lower bounds can
be established directly by applying a new non-standard
version of the XOR Lemma (recalled below).

A Non-Standard XOR Lemma: For a Boolean func-
tion f and § < 1/2, if there is no Sum o ¢-circuit
C:{0,1}" — [0,1] of complexity poly(s,1/5,n) such
that Eycroqye [C(x) — f(x)| < J, then K cannot
be 1/2 + 1/s approximated by s-size € circuits, for
k=0 (6'logs).

Note that we only consider circuits C such that
C(x) € [0,1] for all x, which is crucial in our proof.
We denote the class of such circuits as [0,1]Sum o €.

¢1 Approximation Bounds Against Sum o €. Building
on prior work on Sum o @ -circuits ([18], [20]) with
modifications, we show there is a function f € ENP that
cannot be approximated by [0,1]Sum o ACCY within
a small constant /1 distance. Applying the new XOR
Lemma above, we can establish an almost-everywhere
strong average-case lower bound for ENP against ACCY.

The proof is involved, but the key insight is to see
that inapproximability lower bound argument in (1)
does not require the circuit L to approximate f on
every point. That is, suppose f is a Boolean function
and L: {0,1}" — R is a Sum o ¢ circuit satisfying

Ex |L(x) — f(x)] < 6. In such a case, we say that f
can be f-approximated by L within distance J. Note
we still have that
E[f(x)] - E[L(x)] < E|f(x) - L(x)| <.

Let us use S/ang o % to denote the class of Boolean
functions which can be ¢;-approximated by a family
of Sum o ¢ circuits within distance 6. By the above
reasoning, non-trivial CAPP algorithms for Sumo 0%
still follow from non-trivial #SAT algorithms for %
circuits! In spirit, this means we should be able to prove
lower bounds against Sum(; o ACCY, as we have a non-
trivial CAPP algorithm for them (thanks to the #SAT
algorithm for ACCY of Williams [8D).

Intuition for the new XOR Lemma. Now we sketch
how the new XOR Lemma is proved. It is based on
a careful examination of Levin’ s proof of the XOR
Lemma [55]. Let ¢ = ¢ = % - (1—0)k We will
prove the contrapositive, i.e., if f @k can be (1/2 4+ ¢)-
approximated by a %-circuit C of size s, then we
can construct a [0,1]Sum o ¥-circuit of complexity
O(s - n-&72) which ¢;-approximates f within error
O(9).

The proof is by induction on k. For the case k = 1,
we can take the [0,1]Sum o @-circuit to be the circuit
C itself. For the case k > 1, we argue as follows. For
an input x to fK, we write x = yz such that |y| = n

and |z| = (k — 1)n. For each y € {0,1}", we consider
the quantity:
T(y) :=Prlf*(y,2) = C(y,2)] @)

Prf*N(e) = fy) @ Cly,z)] - ()
r[f(y): Clyz)e fPF D). @

That is, T(y) measures (2) how well C(y,z) approxi-
mates f &k when the first input is fixed to y; (3) how well
f(y) ® C(y,z) approximates f&(*=1); (4) how often
does C(y,z) ® fE*-1)(z) correctly predlct f(y), when
z is uniformly random. By (2) and our assumption on
C, we have

E[T(y)

N

= gg[f@k(y,z) =C(y,z)] >1/2+=.

Now there are two cases.

1. Seme T(y) is far from 1/2. Suppose there is a y €
{0,1}" satisfying |T(y) —1/2| > ¢/ (1 —6). By (3),
FOU*=1)(z) can be computed correctly by either f(y) @
C(y,z) or by its negation on at least a 1/2 + ¢,/ (1 —
0) =1/2 + ¢ fraction of inputs (we treat y as fixed
in the circuit). That is, this case can be reduced to the
case of k — 1.
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2. All T(y)’s are close to 1/2. This is the more
interesting case. Suppose |T(y) —1/2| < ¢/(1 —9)
for all y. Consider the following algorithm A trying to
predict f(y) for every y: take a uniformly random sam-
ple z € {0,111 "and output C(y,z) @ Ok (z).
For each y, by the interpretation (4), it follows that .A(y)
predicts f(y) correctly with probability T(y).

To ease our later discussion, in the following we
specify a natural bijection between functions from
{0,1}" — [0,1] and probabilistic functions on {0,1}"
with outputs in {0,1}. For a probabilistic function
F:{0,1}" — {0,1}, we define I r such that I (x) :=
Pr[F(x) = 1]. Conversely, for a function f: {0,1}" —
[0,1], we define P; such that P¢(x) outputs 1 with
probability f(x), and 0 otherwise.

In the following, we define the correlation of two
functions g, h: {0,1}" — [0,1] as

E 1(28(x)=1)-(2h(x) = 1)]. (5)

COI'(g, h) . x<{0,1}"

When viewing g,k as two probabilistic functions, the
quantity above is exactly

Pr{Py(x) = Py (x)] — Pr(P(x) # Py (x)]

X

:2I;r[]Pg(x) =P, (x)] — 1.

The following two properties of A are crucial for us:

1) The algorithm A has a non-trivial correlation with
f(y). More precisely, Cor(I4, f) > 2e since
Cor(ly, f) = 2-PryA(y) = f(y)] —1
2E,[T(y)] —1 > 2e.

2) On each input y, the algorithm A has little bias
on its output. That is, I4(y) € [1/2 —¢/(1 —
5),1/2+¢/(1—9)] for every y.

By a random sampling and applying a Chernoff
bound, we can use a Sum of O((6)~2 - n)-many %-
circuits to approximate I 4 (x) within error &6 for every
input x. We call this new Sum o %-circuit D. The
following two properties of D follow from the above
two properties of A.

1) The circuit D and the function f(y) have a correla-
tion larger than 2¢ - (1 — §). That is, Cor(D, f) >
2¢e-(1—9).

2) For every input y, D(y) € [1/2—¢,1/2+¢].
(Note that ed +¢/(1 — ) =¢.)

Now, observe that both of the bias on every input and
the total correlation are all roughly e, we can finally
scale D properly to obtain a [0,1]Sum o €~circuit D’,
which has a correlation larger than (1 — §) with f.
Formally, we define D’ so that

D/(y) =+ (D(y); /2

The second property of D implies that D’ is a
[0,1]Sum o €-circuit. And the first property of D im-
plies that D" has a correlation (1 —J) with f (due
to the definition (5)), which further implies that D’
{1-approximates f with error O(J). For the precise
calculation, we refer to the full version of the paper.
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