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Abstract—In certain complexity-theoretic settings, it is
notoriously difficult to prove complexity separations which
hold almost everywhere, i.e., for all but finitely many
input lengths. For example, a classical open question is
whether NEXP is contained in i.o.-NP; that is, it is open
whether nondeterministic exponential time computation
can be simulated on infinitely many input lengths by an
NP algorithm. This difficulty also applies to Williams’
algorithmic method for circuit lower bounds [Williams,
J. ACM 2014]. [Murray and Williams, STOC 2018]
proved that nondeterminstic quasi-polynomial time is not
contained in ACCˆ0, while it remained an open problem
to show that EˆNP (2ˆO(n) time with an NP oracle) is not
contained in i.o.-ACCˆ0.

In this paper, we show how many infinitely-often circuit
lower bounds proved by the algorithmic method can be
adapted to establish almost-everywhere lower bounds.

First, we show there is a function f in EˆNP such
that, for all sufficiently large input lengths n, f cannot
be (1/2+exp(-nˆe))-approximated by exp(nˆe)-size ACCˆ0
circuits on inputs of length n (for all small e), improving
lower bounds in [Chen and Ren, STOC 2020] and [Viola,
ECCC 2020]. Second, we construct rigid matrices in PˆNP
for all but finitely many inputs, rather than infinitely often
as in [Alman and Chen, FOCS 2019] and [Bhangale et al.
2020].

Third, we show there is a positive c such that EˆNP
has constant-error probabilistic degree at least cn/(logˆ2
n) for all large enough n, improving an infinitely-often
separation by [Viola, ECCC 2020].

Our key to proving almost-everywhere worst-case lower
bounds is a new “constructive” proof of an NTIME hier-
archy theorem proved by [Fortnow and Santhanam, CCC
2016], where we show for every “weak” nondeterminstic
algorithm, a “refuter algorithm” exists that can construct
“bad” inputs for the hard language. We use this refuter al-
gorithm to construct an almost-everywhere hard function.
To extend our lower bounds to the average case, we prove
a new XOR Lemma based on approximate linear sums,
and combine it with PCP of proximity ideas developed
in [Chen and Williams, CCC 2019] and [Chen and Ren,
STOC 2020]. As a byproduct of our new XOR Lemma,
we obtain a nondeterministic pseudorandom generator for
poly-size ACCˆ0 circuits with seed length polylog(n), which
resolves an open question in [Chen and Ren, STOC 2020].

Keywords-computational complexity

I. INTRODUCTION

Proving unconditional circuit lower bounds for ex-

plicit functions (with the flagship problem of NP �⊂
P/poly) is one of the central problems in theoretical

computer science. In the 1980s, considerable progress

was made in proving lower bounds for constant-depth

circuits, as first steps towards lower bounds for general

circuits. The classical works [1], [2], [3], [4] culminated

in exponential lower bounds for AC0 (constant depth cir-

cuits consisting of unbounded fan-in AND/OR gates).

The works [5], [6] established exponential lower bounds

for AC0[q] (AC0 circuits with MODq gates) for prime

power q.

Unfortunately, the progress in the 1980s did not go

much further: lower bounds for AC0[m] have been ex-

tremely difficult to establish for composite m, although

it has been conjectured that AC0[m] cannot compute

the Majority function. In fact, it was a notorious open

question whether NEXP (nondeterministic exponential

time) has polynomial-size ACC0 circuits.1 Several years

ago, Williams [8] finally proved such a lower bound,

via an algorithmic approach to circuit lower bounds [9].

Combining many results from classical complexity, such

as the nondeterministic time hierarchy theorem [10],

[11], hardness vs randomness [12], and the PCP The-

orem [13], [14], Williams’ work shows how nontrivial

circuit-analysis algorithms can be generically applied to

prove circuit lower bounds.

Developments after NEXP �⊂ ACC0. The separation

NEXP �⊂ ACC0 had several drawbacks compared to the

classical lower bounds of the 80s. The most significant

drawback was that NEXP is a much larger class than

our ultimate goal NP (previous lower bounds for AC0

or AC0[p] usually work for functions in P). Murray and

Williams improved this state of affairs significantly by

showing NQP := NTIME[2polylog(n)] is not contained

in ACC0 [15].

Another drawback is that the algorithmic ap-

proach [8], [15] only yielded worst-case lower bounds,

1This had been stressed several times as one of the most embar-
rassing open questions in complexity theory, see [7]. Note that ACC0

denotes the union of AC0[m] for all constant m.
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while prior lower bounds for AC0 or AC0[p] can often

be adapted to hold in the average case (e.g., [16]). A

line of recent work [17], [18], [19], [20] generalizes

the algorithmic approach to the average-case setting,

culminating in the result that NQP cannot be (1/2 +
1/poly(n))-approximated by ACC0 circuits [20].

The Infinitely-Often Separation Drawback. All the

aforementioned developments significantly expand the

reach of the algorithmic method. However, there has

remained a subtle but important drawback of the algo-

rithmic method: it only achieves infinitely-often separa-

tions. For example, [15] shows there is an NQP function

f such that, for every polynomial-size ACC0 circuit

family {Cn}, there are infinitely many input lengths n
such that Cn fails to compute f on n-bit inputs. This

certainly implies the separation NQP �⊂ ACC0, but it

could be the case that for nearly every input length NQP
is easy for ACC0, and NQP is only hard on extremely

rare input lengths n, e.g., n = 222k
for k ∈ N. In a case

where the hard input lengths are so far apart, practically
the situation is not very different from NQP ⊂ ACC0.

In fact, it has remained open whether ENP is contained

infinitely-often in ACC0.

The Infinitely-Often Barrier in Complexity Theory.
Ideally, we desire almost-everywhere separations: we

want a function f = { fn : {0, 1}n → {0, 1}} so

that for all sufficiently large input lengths n, fn cannot

be computed by any ACC0 circuit (in notation, we

would say f /∈ i.o.-ACC0). Most previous lower bounds

for AC0 and AC0[p] are almost-everywhere: they show

f �∈ i.o.-AC0 or f �∈ i.o.-AC0[p] for some f . Indeed,

most combinatorial/algebraic lower bound approaches

argue hardness for each input length separately, so

they naturally give lower bounds for all input lengths.

However, in structural complexity theory, arguments

often involve different input lengths simultaneously, and

it is common that in some settings almost-everywhere

separations are much harder to achieve than correspond-

ing infinitely-often separations. Two classical examples

include:

• (An Almost-Everywhere NTIME Hiearchy

is Open.) It is known that NTIME[2n] �⊂
NTIME[2n/n] [10], [11], but it is open whether

NTIME[2n] ⊂ i.o.-NTIME[n log n]. (Indeed, there

is an oracle O such that NEXPO ⊂ i.o.-NPO [21].)

• (An Almost-Everywhere Super-Linear Circuit

Lower Bounds for MATIME[2n] is Open.) It

is known that MA/1 �⊂ SIZE(nk) for all k
and MATIME[2n] �⊂ P/poly, but it is open

whether MATIME[2n] ⊂ i.o.-SIZE(O(n)). (In-

deed, it is even open whether Σ2TIME[2n] ⊂
i.o.-SIZE(O(n))).

Other examples include fixed-polynomial lower

bounds for the complexity classes NPNP [22],

ZPPNP [23], [24], S2P [25], [26], PP [27], [28], time-

space trade-off for solving SAT [29], [30], and hierarchy

theorems such as [31], [32], [33]. All of these lower

bounds only provide an infinitely-often separation, and

it is open to prove an almost-everywhere separation.

There are also interesting algorithmic results motivated

by complexity concerns, which are only guaranteed to

work for infinitely many input lengths (e.g., [34], [35],

[36]).

A. Our Results

In this work, we achieve almost-everywhere circuit

lower bounds with the algorithmic approach. To for-

mally discuss our results, we briefly recall two circuit-

analysis problems.

1) CAPP: Given a circuit C of size S, estimate the

probability that C accepts a uniformly random

input within an additive error of 1/S.

2) Gap-UNSAT: Given a circuit C, distinguish be-

tween the case that C is unsatisfiable and the case

that C has at least 2n/3 satisfying assignments.

1) Almost-Everywhere Circuit Lower Bounds From
Non-Trivial Derandomization: Our first result is that

“non-trivial derandomization” for a circuit class C
implies almost-everywhere C -circuit lower bounds for

ENP. In the following, we say that a circuit class C is

typical if C is closed under projections and negations.

(See the full version of the paper for a formal defini-

tion.)

Theorem I.1. There are universal constants ε ∈ (0, 1),
K ≥ 1 satisfying the following. Let C be typical, and
let s(n) be a nondecreasing time-constructible function
with n ≤ s(n) ≤ 2εn for all n. If Gap-UNSAT on
AND ◦ OR ◦ C -circuits of size s(n)K can be solved
deterministically in 2n/nω(1) time, then there are func-
tions in ENP that do not have C -circuits of size s(n/2),
for all sufficiently large n.

An Extension to Average-Case Lower Bounds. Com-

bining PCPs of Proximity and a new XOR Lemma

(see Section I-B2), we can extend the above theorem

to prove strong average-case lower bounds. Say that a

function f : {0, 1}n → {0, 1} cannot be (1/2 + ε)-
approximated by circuits of type C, if every circuit from

C computes f correctly on less than (1/2+ ε)2n of the

n-bit inputs. For a language L : {0, 1}� → {0, 1}, we

use Ln to denote its restriction to n-bit inputs.

Theorem I.2. Let C be typical. Suppose there is an
ε > 0 such that CAPP of 2nε

-size AND4 ◦C circuits can
be deterministically solved in 2n−nε

time. Then there is
a language L ∈ ENP and a constant δ > 0 such that,

2
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for all large enough n, Ln cannot be (1/2 + 2−nδ
)-

approximated by C -circuits of size 2nδ
.

The above results have several applications to com-

plexity lower bounds and pseudorandom generators. We

will discuss them separately.

2) Applications in Complexity Lower Bounds:
Almost-Everywhere Strong Average-Case Exponen-
tial Lower Bounds for ACC0 ◦ THR.2 Combining

Theorem I.2 and the corresponding #SAT algorithm

from [37] for ACC0 ◦ THR, the almost-everywhere

strongly average-case lower bound for ENP against

ACC0 ◦ THR follows immediately.

Recall that for a given d, m ∈ N, AC0
d[m] is the class

of circuit families of depth d, with unbounded fan-in

AND,OR,MODm gates, and ACC0 :=
⋃

d,m AC0
d[m].

Corollary I.3. For every integer d, m ≥ 1, there is an
ε = εd,m and a language L ∈ ENP such that Ln can-
not be (1/2 + 2−nε

)-approximated by AC0
d[m] ◦ THR

circuits of 2nε
size, for all sufficiently large n.

Corollary I.3 compares favorably with prior circuit

lower bounds for problems in ENP. Williams [8], [37]

proved that ENP cannot be worst-case computed by

2no(1)
size ACC0 ◦ THR circuits. Following the work

of Rajgopal et al. [38], Viola [39] recently proved ENP

cannot be (1/2 + 1/n1−ε)-approximated by 2no(1)
-size

AC0[⊕] circuits. Chen and Ren [20] recently proved that

ENP cannot be (1/2+ g(n)−1) approximated by g(n)-
size ACC0 circuits, where g is any sub-half-exponential

function.3 All of these lower bounds are only infinitely-

often separations, and yield strictly weaker average-case

lower bounds than Corollary I.3.

We also remark that [40] devised a notion of “sig-

nificant separation”, which is stronger than infinitely-

often separation while weaker than almost-everywhere

separation.4 They showed a significant separation of

NEXP and ACC0. This is incomparable with almost-

everywhere separation for ENP.

Almost-Everywhere Construction of Rigid Matrices
with an NP Oracle. The problem of efficiently con-

structing rigid matrices is a longstanding open problem

in complexity theory [41], [42].

Definition I.4. Let F be a field. For r, n ∈ N and

a matrix M ∈ Fn×n, the r-rigidity of M, denoted as

2ACC0 ◦ THR denotes the class of constant-depth circuits com-
prised of AND, OR and MODm gates (for a constant m > 1), with a
bottom layer of gates computing arbitrary linear threshold functions.

3We say that g is sub-half-exponential if g(g(n)) = 2no(1)
.

4Roughly speaking, “significant separation” means that when the
separation holds for an input length n, then there is another input
length at most polynomially larger than n such that the separation
also holds. That is, the hardness cannot be very “sparsely distributed”.

RM(r), is the minimum Hamming distance between

M and a matrix of rank at most r.

Alman and Chen [43] recently showed that rigid

matrices over the field F2 (similar results hold for all

fields of constant order) with interesting parameters

(considered by [44] for connections to communica-

tion complexity) could be constructed infinitely often
in PNP via the algorithmic method. Their proof has

been simplified and improved by Bhangale et al. [45].

Formally, [45] construct a PNP algorithm M which, for

infinitely many n, M(1n) outputs a matrix Hn such that

RHn(2
log1−ε n) ≥ δn2 over F2.

Applying similar ideas from the proof of Theorem I.1

and Theorem I.2, we can strengthen their construction

to an almost-everywhere one.

Theorem I.5. There is a δ > 0 such that, for all
finite fields F and ε > 0, there is a PNP algorithm
which on input 1n outputs an n× n matrix H satisfying
RH(2log1−ε n) ≥ δn2 over F, for all large enough n.

Almost-Everywhere Probabilistic Degree Lower
Bounds. The notion of probabilistic degree for Boolean

functions has been studied extensively for decades. Let

us recall the definition.

Definition I.6. The ε-error probabilistic degree of a

function f : {0, 1}n → {0, 1} is the minimum d such

that there is a distribution D on F2-polynomials of

degree at most d such that PrP∼D [P(x) �= f (x)] ≤ ε.

When ε is not specified, it is assumed to be 1/3 by

default.

Very recently, Viola [39] proved an Ω(n/ log2 n)
probabilistic degree lower bound for ENP using the

algorithmic method. We extend his result to the almost-

everywhere case.

Theorem I.7. There is a language L : {0, 1}� → {0, 1}
in ENP such that Ln has 1/3-error probabilistic degree
Ω(n/ log2 n), for all sufficiently large n.

Almost-Everywhere Exponential Correlation
Bounds against n1/2−δ-Degree F2-Polynomials.
Combining the proof technique of the main theorem

and an improved XOR Lemma (introduced in

the next subsection), we can also prove a strong

inapproximability result for low-degree polynomials

for a problem in ENP.

Theorem I.8. For all δ > 0, there is a language
L : {0, 1}� → {0, 1} in ENP such that Ln cannot be
(1/2 + 2−nΩ(1)

)-approximated by n1/2−δ degree F2-
polynomials for all sufficiently large n.

The previous best known correlation bound against

n1/2−δ-degree F2-polynomials was only 1/2 + n−δ

3
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for the Majority function [5], [6], [46], and this de-

gree/approximation tradeoff is indeed tight for Major-

ity [47].

3) Applications to Pseudorandom Generators: Fol-

lowing the known connection between average-case

hardness and PRG construction, we obtain two different

PRG constructions for ACC0, both with the near-optimal

polylog(n) seed length. Our first PRG works for all

input lengths, while is only computably in ENP. Our

second construction obtains a nondeterministic pseudo-
random generator (NPRG) (see the full version of the

paper for a formal definition), which is a weaker class

compared to ENP-computable PRGs. But the NPRG

only works for infinitely many input lengths.

The following ENP-computable PRG is a direct con-

sequence of our average-case lower bound for ACC0

(Corollary I.3).

Theorem I.9. For all constants d and m, there is δ =
δ(d, m) and an ENP-computable PRG which takes n-bit
seed and outputs 2nδ

-bit strings fooling AC0
d[m] circuits

of size 2nδ
, for all large enough n.

Our proof technique can also be used to construct

an infinitely-often PRG against ACC0 circuits with

polylog(n) seed length. This significantly improves

upon the previous work By Chen and Ren [20], and

answers one of their open questions.

Theorem I.10. For all constants d and m, there is δ =
δ(d, m) > 0 and an i.o.-NPRG which takes n-bit seeds
and outputs 2nδ

-bit strings fooling AC0
d[m] circuits of

size 2nδ
.

Remark I.11. We remark that our NPRG and ENP-

computable PRG also work for other circuit classes

C , given non-trivial CAPP algorithm for slightly larger

circuit classes C ′. See the full version of the paper for

the details.

B. Two Technical Tools

To achieve our almost-everywhere strongly average-

case lower bounds, we develop two new technical

tools. The first is a “constructive” proof of the almost-

everywhere sublinear witness NTIME hierarchy of Fort-

now and Santhanam [48] which builds a PNP algorithm

that can explicitly find inputs on which the weak algo-

rithm make mistakes. The second is an XOR Lemma

based on computations by approximate linear sums. We

believe both results are interesting in their own right,

and will likely have other applications in computational

complexity. In the following we state both of them infor-

mally. Check Section II for a more in-depth discussion

on these two new tools, and why they come up naturally

in our lower bound proofs.

1) An Almost-Everywhere (Sublinear Witness)
NTIME Hierarchy with Refuter: A critical piece

of Williams’ proof that NEXP �⊂ ACC0 (and later

work) is the NTIME hierarchy [10], [11]. However, as

mentioned earlier, that hierarchy is only known to hold

infinitely-often; consequently, the resulting circuit lower

bounds fail to be almost-everywhere, and extending

the NTIME hierarchy to hold almost-everywhere is

notoriously open.

Nevertheless, Fortnow and Santhanam [48] man-

aged to prove an almost-everywhere NTIME hierar-

chy for a restricted subclass of NTIME, where the

“weak” nondeterministic machines (being diagonalized

against) use witnesses of length less than n bits.

Let NTIMEGUESS[t(n), g(n)] be the class of lan-

guages decided by nondeterministic algorithms running

in O(t(n)) steps and guessing at most g(n) bits.

Fortnow and Santhanam proved there is a language L
in nondeterministic O(T(n)) time that is not decidable,

even infinitely-often, by nondeterministic o(T(n))-time

n/10-guess machines:

Theorem I.12. For every time-constructible function
T(n) such that n ≤ T(n) ≤ 2poly(n), NTIME[T(n)] �⊂
i.o.-NTIMEGUESS[o(T(n)), n/10].

Our most important new ingredient is the construction

of a “refuter” for the hierarchy of Theorem I.12: an

algorithm with an NP oracle which can efficiently

find bad inputs for any NTIMEGUESS[o(T(n)), n/10]
machine.

Theorem I.13 (Refuter with an NP Oracle, Informal).
For every time-constructible function T(n) such that
n ≤ T(n) ≤ 2poly(n), there is a language L ∈
NTIME[T(n)] and an algorithm R such that:

1) Input. The input to R is a pair (M, 1n), with the
promise that M describes a nondeterministic Tur-
ing machine running in o(T(n)) time and guessing
at most n/10 bits.

2) Output. For every fixed M and all sufficiently large
n, R(M, 1n) outputs a string x ∈ {0, 1}n such
that M(x) �= L(x).

3) Complexity. R runs in poly(T(n)) time with
adaptive access to an SAT oracle.

Since R can find counterexamples to any faster algo-
rithm attempting to decide L, we call R a refuter.

Applying the refuter construction of Theorem I.13

instead of the general NTIME hierarchy in the original

proof of [8], we can achieve almost-everywhere circuit

lower bounds.

Other Explicit Refuters for Complexity Separa-
tions: It is instructive to compare our refuter construc-

tion to other refuter constructions, such as [49], [50],

[51]. They showed that, assuming certain complexity

4
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separations (NP �= P, NP �⊂ BPP or NP �⊂ P/poly),

one can construct a refuter which takes a corresponding

algorithm A claimed to solve SAT, and outputs for

infinitely many n a counter-example xn of length n
such that A fails to solve SAT on xn. All these refuters

are conditional, in the sense that they assumed the

(unproven) hypothesis such as NP �= P, while our

refuter is designed to witness the already proven NTIME
hierarchy theorem of [48].

2) An XOR Lemma Based on Approximate Lin-
ear Sums of Circuits: Our second important technical

ingredient—critical to our average case lower bounds—

is a new XOR Lemma based on approximate linear

sums of circuits. The XOR Lemma (originally due to

Yao [52]) says that if an n-bit Boolean function f cannot

be weakly approximated (e.g., 0.99-approximated) by

small circuits, then the kn-bit Boolean function f⊕k

cannot be strongly approximated (e.g., (1/2+ 2−Ω(k))-
approximated) by smaller and simpler circuits.5

It is tempting to apply the XOR Lemma directly,

to try to prove strong average-case lower bounds for

ACC0 (or AC0[2]) given that weak bounds are known.

However, when we apply the XOR Lemma to a re-

stricted circuit class C , the most refined analysis of

the XOR Lemma [53], [54] still only shows that 0.99-

inapproximability for MAJORITYt2 ◦ C computing f
implies (1/2 + 1/t)-inapproximability for C comput-

ing f⊕k, where k = O(log t). That is, applying the

XOR Lemma to show strong-average case lower bounds

for ACC0, evidently requires proving weak average-case

lower bounds for MAJORITY ◦ ACC0. But this task

seems just as hard as proving strong average-case lower

bounds in the first place!

We avoid this issue by proving a new kind of

XOR Lemma, based on Levin’s proof of the XOR

Lemma [55]. For a circuit class C , we define the class

of linear combinations [0, 1]Sum ◦C , where an n-input

circuit C from the class has the form C(x) := ∑i αi ·
Ci(x), where each αi ∈ R and Ci ∈ C , and C satisfies

the promise that C(x) ∈ [0, 1] for all x ∈ {0, 1}n. The

complexity of C is defined to be the maximum of ∑i |αi|
and the sum of the sizes of each Ci.

Our new XOR Lemma shows that if a Boolean

function f cannot be well-approximated by linear com-

binations of C -circuits on average, then f⊕k is strongly

average-case hard for C -circuits. The flexibility af-

forded by linear combinations allows us to improve our

results to strong average-case lower bounds.

Theorem I.14 (New XOR Lemma, Informal). For every
δ < 1

2 , for every function f : {0, 1}n → {0, 1}, if there
is no [0, 1]Sum ◦ C circuit C : {0, 1}n → [0, 1] of

5The function f⊕k partitions its kn-bit input into k blocks

x1, x2, . . . , xk of length n each, and outputs
⊕k

i=1 f (xi).

complexity poly(s, n, 1/δ) such that Ex∈{0,1}n |C(x)−
f (x)| ≤ δ, then f⊕k cannot be 1/2 + 1/s approxi-
mated by s-size C circuits, for k = Θ

(
δ−1 log s

)
.

II. TECHNICAL OVERVIEW

In this section we provide more intuition behind

our almost-everywhere lower bounds. We split the dis-

cussion into two parts, one for each main technical

ingredient.

• In Section II-A, we demonstrate how to use our

new refuter concept (and why it comes up nat-

urally) to prove almost-everywhere ENP lower

bounds. With this powerful concept, we can au-

tomatically strengthen most of the previous ENP

lower bounds proved via the algorithmic method,

except for the strong average-case lower bounds

in [20].

• In Section II-B, we show how to use an XOR

Lemma for approximate linear combinations of

circuits, to prove a strong average-case almost-

everywhere lower bounds for ENP.

A. Almost-Everywhere Lower Bounds for ENP and the
Refuter

To explain the intuition behind our almost-

everywhere circuit lower bounds, it is instructive to

first recall how Williams [8] proved that ENP does not

have 2no(1)
-size ACC0 circuits, and understand why that

approach only achieves an infinitely-often separation.

1) Review of ENP not in ACC0: A Nondeterministic
Algorithm ALhard That Can’t Be Improved. By the

NTIME hierarchy [10], [11], we know there is a lan-

guage Lhard ∈ NTIME[2n] \NTIME[2n/n]. Let ALhard

be a nondeterministic O(2n)-time algorithm deciding

Lhard.

A “Cheating” Algorithm APCP Trying to Speed Up
ALhard . Assume we have non-trivial derandomization

algorithms for ACC0, i.e., there is a 2n/nω(1)-time

algorithm for deciding Gap-UNSAT on ACC0-circuits

of n inputs and 2no(1)
size. A key idea in [8], [9] is

to combine probabilistically checkable proofs (PCPs)

and non-trivial Gap-UNSAT algorithms to design a

nondeterministic algorithm APCP that tries to “speed

up” the algorithm ALhard , as follows:

• Given an input x ∈ {0, 1}n, APCP applies an

efficient PCP reduction (e.g., [56]) to ALhard(x).
For � = n + O(log n), we obtain a verifier oracle

circuit VPCPx(r) : {0, 1}� → {0, 1} with the

following properties.

– (Simplicity) VPCPx is an oracle circuit with

gates for a function O : {0, 1}� → {0, 1}.

VPCPx has very simple structure, so that if O
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is an ACC0-circuit, then the composed circuit

VPCPO
x is also in ACC0.

– (Completeness) If x ∈ Lhard, then there is an

oracle O such that Prr∈{0,1}� [VPCPO
x (r) =

1] = 1.

– (Soundness) If x �∈ Lhard, then for all oracles

O, Prr∈{0,1}� [VPCPO
x (r) = 1] ≤ 1/3.

• Next, APCP guesses an ACC0-circuit C of size

2no(1)
. By the simplicity property, VPCPC

x (with

oracle C) is also an ACC0-circuit of 2no(1)
size.

Running the assumed Gap-UNSAT algorithm for

ACC0 on the circuit D = ¬VPCPC
x , we can

distinguish between the case that D is unsatisfiable

(which happens for some O, if x ∈ Lhard) and

the case that Prx[D(x)] ≥ 2/3 (which happens

for all O, if x /∈ Lhard). Therefore, we accept

if and only if our Gap-UNSAT algorithm returns

”unsatisfiable”.

Intuitively, APCP wants to “cheat” in the computation

of Lhard by only considering oracles of small circuit
complexity.

The ENP Lower Bound. Note that the nondetermin-

istic algorithm APCP indeed runs faster than 2n time:

the running time of APCP is dominated by the run-

ning time of the non-trivial derandomization algorithm,

which is o(2n/n). Therefore, we know that APCP ∈
NTIME[o(2n/n)], and hence it cannot compute Lhard

by the NTIME hierarchy theorem.

We conclude that, for infinitely many n, there is a

“bad input” xn ∈ {0, 1}n such that APCP(xn) rejects

but xn ∈ Lhard.6 For those xn ∈ Lhard, the complete-

ness of the PCP implies there is an oracle O such

that VPCPO
xn(r) = 1 for all r, but no such oracle ad-

mits 2no(1)
-size ACC0-circuit —otherwise, APCP would

have guessed it, and APCP(xn) would accept instead.

Therefore, constructing a description of the oracle O
is tantamount to constructing a function without small

ACC0 circuits.

We can now design the hard ENP language as follows:

on an input x of length 2n + O(log n), split x into

two parts x1 and x2 such that |x1| = n. Using an NP
oracle, we search for the lexicographically-first oracle

O : {0, 1}� → {0, 1} for the verifier VPCPx1 (that is,

VPCPO
x1
(r) = 1 for all r). Finally, we output O(x2). If

there is an xn ∈ {0, 1}n such that APCP(xn) rejects but

xn ∈ Lhard, this ENP algorithm has high ACC0 circuit

complexity on input length 2n + O(log n).

Input and Advice. In the above, the input x is split

into two parts x1 and x2. The part x1 behaves as

6Note it is impossible that APCP(xn) accepts but xn /∈ Lhard, as
APCP only guesses over a proper subset of all possible witnesses.

“advice” specifying the “bad input” on which APCP and

Lhard differ. The part x2 is the input to the constructed

oracle O. Luckily for us, the advice is roughly the

same length as the input length to the oracle, so it

does not affect the hardness of the overall function. For

example, a hardness result superpolynomial in |x2| is

also superpolynomial in |x1|+ |x2|, since we assumed

|x1| = O(|x2|)).
The NTIME Hierarchy Barrier. Let us examine the

above proof outline more carefully. The analysis shows

that the language decided by our ENP algorithm is hard

on inputs of length 2n, provided that APCP and Lhard

give different outputs when they are restricted to inputs

of length n. From the NTIME hierarchy and the fact that

APCP ∈ NTIME[O(2n/n)], we conclude there must be

infinitely many such n.
The above argument would yield an almost-

everywhere separation, if we could show that Lhard

and APCP are different on all sufficiently large input
lengths. However, this would apparently require show-

ing NTIME[2n] �⊂ i.o.-NTIME[2n/n], and such an

almost-everywhere separation is a notoriously hard open

problem—it is even open whether NEXP ⊂ i.o.-NP!

It seems hopeless to make progress using the above

framework, without making breakthrough progress on

an almost-everywhere NTIME hierarchy.

First Observation: APCP Guesses Short Witnesses.
Here we make an important observation that bypasses

the above barrier. For the above proof to work, Lhard

only needs to be hard for the specific algorithm APCP,

not necessarily all nondeterministic o(2n/n)-time algo-
rithms. In other words, we do not need the full power

of an almost-everywhere NTIME hierarchy. Therefore,

it is natural to examine what properties of the specific

algorithm APCP we can exploit.
One way in which APCP is very different from a

general O(2n)-time nondeterministic algorithm is that it

makes a considerably smaller number of guesses: only

2no(1)
. Such restricted versions of NTIME have been

studied before, under the guise of bounded nondeter-
minism. We use NTIMEGUESS[t(n), g(n)] to denote

the class of languages decidable by nondeterministic

algorithms using O(t(n)) steps and guessing at most

g(n) witness bits. Fortnow and Santhanam [48] showed

that when g(n) is sublinear, one can establish an almost-

everywhere NTIME hierarchy (Theorem I.12).

Trying a New Approach. A natural proposal is to

apply Theorem I.12 instead of the general NTIME
hierarchy. For that purpose, we have to choose our

parameters carefully so that APCP makes few guesses.

Let us check what happens when we rely on Fortnow

and Santhanam’s almost-everywhere hierarchy instead

in our design of APCP. Our pseudocode below will fail,
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but studying how to fix it will lead to a correct lower

bound proof.

1) Suppose we have a non-trivial circuit analysis

algorithm (for CAPP or Gap-UNSAT) for ACC0-

circuits of size 2nε
. Set k < 1

ε and T(n) = 2logk n.

Let Lhard be a language in NTIME[T(n)] but not

in i.o.-NTIMEGUESS[o(T(n)), n/10]. Let ALhard

be an O(T(n))-time nondeterministic algorithm

deciding L.

2) Given an input x of length n, APCP applies

the PCP reduction (e.g. [56]) to ALhard(x). For

� = logk n + O(log log n), we obtain a verifier

oracle circuit VPCPx : {0, 1}� → {0, 1}, with

three properties.

• (Simplicity) VPCPx calls an oracle

O : {0, 1}� → {0, 1}. VPCPx has very simple

structure such that if O is an ACC0-circuit, then

so is the composed circuit VPCPO
x .

• (Completeness) If x ∈ Lhard, then there is an

oracle O such that Prr∈{0,1}� [VPCPO
x (r) =

1] = 1.

• (Soundness) If x �∈ Lhard, then for all oracle O,

Prr∈{0,1}� [VPCPO
x (r) = 1] ≤ 1/3.

3) Next, APCP guesses an ACC0-circuit C of size

2�
ε
= o(n) (since k < ε−1). Note that VPCPC

x
is also an ACC0-circuit of 2O(�ε) size, by the

simplicity property. Then, we use our non-trivial

circuit analysis algorithm to estimate the accep-

tance probability of VPCPC
x (·), and accept if and

only if the estimate is ≥ 1/2.

This new APCP runs in o(T(n)) time, and guesses

at most n/10 bits of witness, so its language is in

NTIMEGUESS[o(T(n)), n/10]. Hence, for all large

enough n, there is an xn ∈ {0, 1}n such that xn ∈ Lhard

while APCP rejects xn. Consequently, by a similar

analysis as in Section II-A1, we have: (1) there is an

oracle O such that VPCPO
x (r) = 1 for all r, and (2)

no such oracle has 2�
ε

size ACC0 circuits.

Therefore, for all large enough n, there is an xn ∈
{0, 1}n such that the lexicographically-first correct ora-

cle On : {0, 1}�(n) → {0, 1} for VPCPx does not have

2�(n)
ε

size ACC0 circuits. On input x of length m, we

can set n ≈ 2m1/k
so that �(n) = m, use an NP oracle

to find the On, and output On(x).

An Input and Advice Problem. The above plan sounds

nice, but there is a major problem: we now need a

much longer advice! Following the Section II-A1, on

an input x of length n, we must split x = x1x2 such

that |x2| ≈ log T(|x|) ≈ logk(n), use x1 as advice to

specify the ”bad input”, construct the oracle O for PCP

and finally outputs O(x2). In this way, we can only

obtain a hardness of 2|x2|ε < n/10, which becomes a

trivial lower bound compared to the input length n.

Solution: A ‘Refuter’ Algorithm for Theorem I.12.
As discussed above, we cannot afford appending xn
to the end of the input as in Section II-A1. There-

fore, in order to make sense of the above proposal,

we have to generate the required xn ourselves. Our

key observation is that, since we are proving lower

bounds for ENP anyway, we can also try to use an NP
oracle to algorithmically find the desired xn such that

APCP(xn) �= Lhard(xn), given n.

To this end, we introduce the concept of a refuter
R. For our purpose, R is a deterministic algorithm

with access to an NP oracle which takes as input the

(code of) a nondeterministic algorithm A, and 1n for

n ∈ N, with the promise that A runs in o(T(n))
time and guesses at most n/10 bits of witness. For all

large enough n, R outputs a string xn ∈ {0, 1}n such

that A(xn) �= Lhard(xn). We call such an algorithm a

refuter for Lhard, since it can explicitly refute any faster

algorithm A attempting to decide Lhard.

How can we construct a refuter R? A natural idea is

to enumerate all input strings of length n, then use an

NP oracle to find the first x ∈ {0, 1}n such that A(x) �=
Lhard(x). This algorithm can find the required input

xn correctly since such an xn exists by Theorem I.12.

However, this method is extremely inefficient, having

running time Ω(2n).

Open Up The Black Box! We observed that the

hard language Lhard established by Theorem I.12 is

quite special. Given its structure, we can indeed design

a algorithm which binary-searches over all inputs of

length n to find the desired xn. With a careful analysis

of the Lhard language, we design a refuter for Lhard that

runs in time O(T(n) · log(2n)) ≤ O(n · T(n)).
Our final ENP algorithm with a SAT oracle works

as follows. On an input of y length m, set n ≈ 2m1/k

so that �(n) = m, invoke the refuter to find an input

xn ∈ {0, 1}n such that APCP(xn) �= Lhard(xn), then

use the SAT oracle to find the lexicographically-first

oracle O : {0, 1}m → {0, 1} such that VPCPO
xn(r) =

1 for all r. Finally, our algorithm outputs O(y). The

running time can be bounded by O(T(n) · n) ≈ 2m

with the help of the SAT oracle. It is not hard to see

that the language decided by this ENP algorithm will

be almost-everywhere hard for 2no(1)
-size ACC0-circuits,

which completes the proof.

Finally, we end this subsection by providing some

intuitions on how the refuter for Theorem I.12 is con-

structed.

The A.E. NTIME Hierarchy. Before explaining our

refuter, it’s instructive to review the proof ideas of

Theorem I.12.
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Let A be an NTIMEGUESS[o(T(n)), n/10] ma-

chine. We define a new algorithm A′ based on A and

show that A fails to compute A′ on all large enough

input lengths. Specially, A′ works as follows: On an

input x of length n, A′ rejects immediately if A rejects

the witness (the n/10-bit prefix of) x on input 0n.

Otherwise, A′ simply outputs A(x + 1). Here x + 1
denotes the lexicographically next string after x. If there

is no such x + 1 (i.e., x = 1n), A′ just outputs 1.

One can check that A′ runs in NTIME[T(n)]. Now

we fix a large enough n, and suppose for the sake of

contradiction that A(x) = A′(x) for every x ∈ {0, 1}n.

(That is, A is a speed up version of A′.) There are two

cases now depending on the value of A(0n):

1) A(0n) = 1. Consequently, we also have A′(0n) =
1. This is only possible if A′ accepts every input

of length n, which implies, by the definition of

A′, that A reject every witness on the input 0n.

Hence it follows that A(0n) = 0 and consequently

A′(0n) = 0 as well, contradiction!

2) A(0n) = 0. Since now A rejects every witness on

the input 0n, we have A′(0n) = A′(0n + 1) =
· · · = A′(1n) = 1 by the definition A′, contradic-

tion to the assumption that A′(0n) = A(0n).

The above A′ is only hard for A. To design a hard

language against every NTIMEGUESS[o(T(n)), n/10]
algorithm, we can add the description of that al-

gorithm as part of input, which only adds a con-

stant overhead. Now, the resulting algorithm AHARD
interprets the first log n bits as the code of a

NTIMEGUESS[o(T(n)), n/10] machine, and the rest

being the witness mentioned in the definition of A′
above.

Constructing the Refuter. The above proof is noncon-

structive (in the sense that it does not tell us on which

input A and A′ differ) since it is a proof by contradic-

tion. Our observation here is that the definition of the

algorithm A′ allows us to consider a linear ordering of

all inputs of length n (formed lexicographically, string x
is followed by x + 1). Let us focus on the second case

above that A(0n) = 0 (the first case can be handled

similarly, check the full version of the paper for details).

Since A rejects every witness on input 0n, we have

A′(x) = A(x + 1) for every x, except for A′(1n) = 1.

Consider the following list of outputs A(0n),A(0n +
1), . . . ,A(1n),A′(1n). Since the first and last outputs

differ, one can use a binary search to find two adjacent

different elements with O(log(2n)) = O(n) queries to

the list (check the full version of the paper for details).

This is exactly what we want, since A(x) �= A(x + 1)
means A(x) �= A′(x). Finally, an access to the above

list can be simulated by an NP query, and we obtain

the desired PNP refuter.

Generalization to Other Lower Bounds. Our refuter

framework is general enough that many similar ENP

lower bound proofs (based on Williams’ algorithmic

paradigm) can be adapted to the almost-everywhere

setting as well, e.g., the construction of rigid matrices

in [43], [45] and the probabilistic degree lower bound

in [39]. See the full version of the paper for details.

B. Strong Average-Case Hardness Lower Bounds via a
New XOR Lemma

In this subsection, we first explain why it is difficult

to prove strong average-case lower bounds for ACC0,

and then show how we get around previous barriers

with an improved XOR Lemma based on approximate

linear combinations of circuits.

The Hardness Amplification Barrier. The traditional

approach to average-case lower bounds is through

hardness amplification, which ultimately aims to show

how worst-case lower bounds imply average-case lower

bounds. The key barrier to proving stronger average-

case lower bounds for ACC0 (or even AC0[2]) is the

lack of an appropriate hardness amplification theorem

for both classes. It is known that proving such an

amplification theorem requires computing majority [57],

[58]. That is, to establish strong average-case lower

bounds for ACC0, one apparently needs to start with

at least a worst-case MAJORITY ◦ACC0 lower bound,

which seems as hard as proving strong the average-case

lower bounds for ACC0 itself.

In a recent work, Chen and Ren [20] managed to

bypass the above barrier and prove a strong average-case

lower bounds for NQP against ACC0, via a sophisticated

win-win argument. However, this argument fails to

achieve either almost-everywhere separations or sub-

exponential hardness due to inherent limitation. Since

the knowledge of [20] is not required to understand our

new approach, see the full version of this paper for a

discussion on the limitations of the techniques of [20].

We show it is possible to remove the win-win ar-

gument. By directly applying a new XOR Lemma, we

can prove almost-everywhere strong average-case lower

bounds of sub-exponential hardness.

Algorithms and Lower Bounds for (Approximate)
Linear Sums of C . The key concept behind the new

XOR Lemma is that of linear combinations of circuits.

Here we recall their definition (from [59], [18], [20]).

Let C be a class of functions from {0, 1}n → {0, 1}.

We say L : {0, 1}n → R is a Sum ◦ C circuit, if

L(x) := ∑t
i=1 αi · Ci(x), where each αi ∈ R and

each Ci ∈ C . We define the complexity of L to be

max
(
∑t

i=1 |αi|, ∑t
i=1 SIZE(Ci)

)
.

We say f : {0, 1}n → {0, 1} admits a S̃umδ ◦ C -

circuit, if there is a Sum ◦ C -circuit L : {0, 1}n → R
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such that |L(x)− f (x)| ≤ δ for all x. We set δ = 1/3
by default when it is omitted. We also use the notation

S̃um ◦ ACC0 to denote the class of languages which

can be computed by a S̃um ◦ ACC0-circuit family of

polynomial complexity.

For us, the most important aspect of linear combina-

tions of circuits is that they can preserve algorithms.

For example, if there are non-trivial algorithms solv-

ing #SAT for C , then we can compute Ex[L(x)] as

∑t
i=1 αi · Ex[Ci(x)], where Ex[Ci(x)] is computed by

solving #SAT for Ci ∈ C . Hence, if a Boolean function

f has a S̃umδ ◦ C -circuit L, then

E
x
[ f (x)]− E

x
[L(x)] ≤ max

x
| f (x)− L(x)| ≤ δ. (1)

Therefore, we are able to estimate the acceptance

probability of f in non-trivial time using non-trivial

#SAT algorithms for C . With the above observa-

tion, [18] applied the non-trivial #SAT algorithms for

ACC0 in [8] to obtain a non-trivial CAPP algorithm for

S̃um ◦ ACC0, from which they proved ENP cannot be

computed by S̃um ◦ACC0 circuits of 2no(1)
complexity.

Our Contribution: Direct Hardness Amplification
With a Non-Standard XOR Lemma: As mentioned ear-

lier, prior win-win arguments fail to achieve almost-

everywhere separations. Can one avoid a win-win ar-

gument and establish average-case hardness directly?

We show this is possible! Starting from a “�1-

approximation lower bound” against Sum ◦ ACC0-

circuits (slightly stronger than �∞-inapproximability),

we show how strong average-case lower bounds can

be established directly by applying a new non-standard

version of the XOR Lemma (recalled below).

A Non-Standard XOR Lemma: For a Boolean func-

tion f and δ < 1/2, if there is no Sum ◦ C -circuit

C : {0, 1}n → [0, 1] of complexity poly(s, 1/δ, n) such

that Ex∈{0,1}n |C(x) − f (x)| ≤ δ, then f⊕k cannot

be 1/2 + 1/s approximated by s-size C circuits, for

k = Θ
(
δ−1 log s

)
.

Note that we only consider circuits C such that

C(x) ∈ [0, 1] for all x, which is crucial in our proof.

We denote the class of such circuits as [0, 1]Sum ◦ C .

�1 Approximation Bounds Against Sum ◦C . Building

on prior work on S̃um ◦ C -circuits ([18], [20]) with

modifications, we show there is a function f ∈ ENP that

cannot be approximated by [0, 1]Sum ◦ ACC0 within

a small constant �1 distance. Applying the new XOR

Lemma above, we can establish an almost-everywhere

strong average-case lower bound for ENP against ACC0.

The proof is involved, but the key insight is to see

that inapproximability lower bound argument in (1)

does not require the circuit L to approximate f on

every point. That is, suppose f is a Boolean function

and L : {0, 1}n → R is a Sum ◦ C circuit satisfying

Ex |L(x)− f (x)| ≤ δ. In such a case, we say that f
can be �1-approximated by L within distance δ. Note

we still have that

E
x
[ f (x)]− E

x
[L(x)] ≤ E

x
| f (x)− L(x)| ≤ δ.

Let us use Ŝumδ ◦ C to denote the class of Boolean

functions which can be �1-approximated by a family

of Sum ◦ C circuits within distance δ. By the above

reasoning, non-trivial CAPP algorithms for Ŝumδ ◦ C
still follow from non-trivial #SAT algorithms for C
circuits! In spirit, this means we should be able to prove

lower bounds against Ŝumδ ◦ ACC0, as we have a non-

trivial CAPP algorithm for them (thanks to the #SAT
algorithm for ACC0 of Williams [8]).

Intuition for the new XOR Lemma. Now we sketch

how the new XOR Lemma is proved. It is based on

a careful examination of Levin’s proof of the XOR

Lemma [55]. Let ε = εk = 1
2 · (1 − δ)k. We will

prove the contrapositive, i.e., if f⊕k can be (1/2 + ε)-
approximated by a C -circuit C of size s, then we

can construct a [0, 1]Sum ◦ C -circuit of complexity

O(s · n · ε−2) which �1-approximates f within error

O(δ).
The proof is by induction on k. For the case k = 1,

we can take the [0, 1]Sum ◦ C -circuit to be the circuit

C itself. For the case k > 1, we argue as follows. For

an input x to f⊕k, we write x = yz such that |y| = n
and |z| = (k − 1)n. For each y ∈ {0, 1}n, we consider

the quantity:

T(y) :=Pr
z
[ f⊕k(y, z) = C(y, z)] (2)

=Pr
z
[ f⊕(k−1)(z) = f (y)⊕ C(y, z)] (3)

=Pr
z
[ f (y) = C(y, z)⊕ f⊕(k−1)(z)]. (4)

That is, T(y) measures (2) how well C(y, z) approxi-

mates f⊕k when the first input is fixed to y; (3) how well

f (y) ⊕ C(y, z) approximates f⊕(k−1); (4) how often

does C(y, z)⊕ f⊕(k−1)(z) correctly predict f (y), when

z is uniformly random. By (2) and our assumption on

C, we have

E
y
[T(y)] = Pr

y,z
[ f⊕k(y, z) = C(y, z)] ≥ 1/2 + ε.

Now there are two cases.

1. Some T(y) is far from 1/2. Suppose there is a y ∈
{0, 1}n satisfying |T(y)− 1/2| > ε/(1 − δ). By (3),

f⊕(k−1)(z) can be computed correctly by either f (y)⊕
C(y, z) or by its negation on at least a 1/2 + εk/(1 −
δ) = 1/2 + εk−1 fraction of inputs (we treat y as fixed

in the circuit). That is, this case can be reduced to the

case of k − 1.
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2. All T(y)’s are close to 1/2. This is the more

interesting case. Suppose |T(y) − 1/2| ≤ ε/(1 − δ)
for all y. Consider the following algorithm A trying to

predict f (y) for every y: take a uniformly random sam-

ple z ∈ {0, 1}(k−1)·n, and output C(y, z)⊕ f⊕(k−1)(z).
For each y, by the interpretation (4), it follows that A(y)
predicts f (y) correctly with probability T(y).

To ease our later discussion, in the following we

specify a natural bijection between functions from

{0, 1}n → [0, 1] and probabilistic functions on {0, 1}n

with outputs in {0, 1}. For a probabilistic function

F : {0, 1}n → {0, 1}, we define IF such that IF (x) :=
Pr[F (x) = 1]. Conversely, for a function f : {0, 1}n →
[0, 1], we define P f such that P f (x) outputs 1 with

probability f (x), and 0 otherwise.

In the following, we define the correlation of two

functions g, h : {0, 1}n → [0, 1] as

Cor(g, h) := E
x←{0,1}n

[(2g(x)− 1) · (2h(x)− 1)]. (5)

When viewing g, h as two probabilistic functions, the

quantity above is exactly

Pr
x
[Pg(x) = Ph(x)]− Pr

x
[Pg(x) �= Ph(x)]

=2 Pr
x
[Pg(x) = Ph(x)]− 1.

The following two properties of A are crucial for us:

1) The algorithm A has a non-trivial correlation with

f (y). More precisely, Cor(IA, f ) > 2ε since

Cor(IA, f ) = 2 · Pry[A(y) = f (y)] − 1 =
2 Ey[T(y)]− 1 ≥ 2ε.

2) On each input y, the algorithm A has little bias

on its output. That is, IA(y) ∈ [1/2 − ε/(1 −
δ), 1/2 + ε/(1 − δ)] for every y.

By a random sampling and applying a Chernoff

bound, we can use a Sum of O((εδ)−2 · n)-many C -

circuits to approximate IA(x) within error εδ for every

input x. We call this new Sum ◦ C -circuit D. The

following two properties of D follow from the above

two properties of A.

1) The circuit D and the function f (y) have a correla-

tion larger than 2ε · (1 − δ). That is, Cor(D, f ) >
2ε · (1 − δ).

2) For every input y, D(y) ∈ [1/2 − ε, 1/2 + ε].
(Note that εδ + ε/(1 − δ) = ε.)

Now, observe that both of the bias on every input and

the total correlation are all roughly ε, we can finally

scale D properly to obtain a [0, 1]Sum ◦ C -circuit D′,
which has a correlation larger than (1 − δ) with f .

Formally, we define D′ so that

D′(y) = 1 + (D(y)− 1/2)ε−1

2
.

The second property of D implies that D′ is a

[0, 1]Sum ◦ C -circuit. And the first property of D im-

plies that D′ has a correlation (1 − δ) with f (due

to the definition (5)), which further implies that D′
�1-approximates f with error O(δ). For the precise

calculation, we refer to the full version of the paper.
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