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b Departamento de Matemática Aplicada, Universidad Nacional de Educación a Distancia, Calle
Juan del Rosal, 12, 28040 Madrid, Spain.

Emails: aaksma@rit.edu; ahk1190@rit.edu; msama@ind.uned.es
* Corresponding author: bxjsma@rit.edu

2000 Mathematics Subject Classification. 35R30, 49N45, 65J22, 65M30.

15.1 Introduction
Stochastic partial differential equations (SPDEs) involving random variables pa-
rameters appear in abundance in applied models. The typical examples include
the stochastic diffusion coefficient in the diffusion equation, the flexural rigid-
ity coefficient in the Cauchy-Euler beam and plate models, the stochastic Láme
parameters in the linear elasticity system equations, and the stochastic viscosity
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in the Stokes’s equations. The significance of stochastic equations, differential
and integral, was evident long ago; see the fundamental contributions by Engl
and Nashed [21, 22], Nashed and Engl [40], and Nashed and Salehi [41], and the
monograph by Bharucha-Reid [12]. Earlier research on SPDEs, besides estab-
lishing useful theoretical results, also developed some computational schemes.
However, it is only in recent years when concentrated research efforts on the sys-
tematic numerical treatment of SPDEs have been made. See the basic results de-
veloped by Ghanem and Spanos [25], Deb, Babuvska, and Oden [20], Babuvska
and Chatzipantelidis [5], Babuvska, Tempone, and Zouraris [7, 8], Babuvska,
Nobile, and Tempone [6], and the cited references.

Assume that (Ω,F ,µ) is a probability space, and D ⊂ Rm is a sufficiently
smooth bounded domain and ∂D is its boundary. Given random fields a : Ω×
D→ R and f : Ω×D→ R, the direct problem in this work seeks a random field
u : Ω×D→R that almost surely satisfies the following boundary value problem
(BVP) with random data:

−∇· (a(ω,x)∇u(ω ,x)) = f (ω,x), in D, (15.1a)
u(ω,x) = 0, on ∂D. (15.1b)

SPDE (15.1) appears in many applied models and has been extensively stud-
ied. SPDE (15.1) constitutes the direct problems in this study, and there are two
associated inverse problems. The first inverse problem seeks, from some statis-
tical information of u(x,ω), the statistical information of the random coefficient
a(x,ω). This inverse problem is commonly referred to as the parameter identifi-
cation problem. The second inverse problem seeks the right-hand side f , again
from some information concerning the solution u. This inverse problem is the
source identification problem. The latter problem is closely connected to the op-
timal control problem of finding the control θ(ω,x) when the source term has
the form f (ω,x)≡ f (ω,x)+θ(ω,x). In this work, we will focus on the inverse
problem of parameter identification.

The problem of estimating stochastic or deterministic parameters in stochas-
tic PDEs from a measurement of the solution of the SPDE has been widely stud-
ied in the last few years. We note that a common approach for inverse prob-
lems with data uncertainty is the Bayesian approach (see [23, 24, 45, 43]).
The so-called variational approach attracted quite a bit of attention in recent
years due to some of the shortcomings of the Bayesian approach. The varia-
tional approach is suitable for identifying distributed and spatially correlated
parameters in SPDEs. It involves posing an optimization problem whose so-
lution can provide information on statistical quantities associated with an un-
known parameter. The key advantages of the variational approach include ac-
cess to an array of efficient and reliable optimization algorithms, a theoretical
framework for convergence analysis, and the ability to embed the parameter
structure into the inversion framework. For some of the recent developments in
stochastic control problems and stochastic inverse problems, we refer the reader
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to [1, 4, 10, 13, 14, 15, 16, 17, 18, 32, 34, 35, 36, 37, 39, 42, 44, 46, 47, 48, 49, 50]
and the cited references.

The most commonly used optimization formulation for the stochastic inverse
problem of parameter identification is the following output least-squares:

J0(a) :=
1
2
E
[
‖ua(ω,x)− z(ω,x)‖2] , (15.2)

where ua(ω,x) is the solution of (15.1) for a(ω,x), z(ω,x) ∈ L2(Ω;L2(D)) is
the measured data, and ‖ · ‖ is a suitable norm, For example, L2(D)-norm was
considered in [1], whereas Wyk [48] employed H1(D)-norm; H1(D)-seminorm
is another possibility. Here E[·] is the expectation.

Recently, in the context of (15.1), the following modified output least-squares
(MOLS) objective functional was introduced in [33]:

J(a) =
1
2
E
[∫

D
a(ω,x)∇(ua(ω,x)− z(ω,x)) ·∇(ua(ω,x)− z(ω,x))dx

]
,

where ua(ω,x) is the weak solution of (15.1) for a(ω,x) and z(ω,x) is the mea-
sured data.

In [33], it was shown that the MOLS functional given above is convex. Sim-
ilar results for the inverse problem of identifying a stochastic flexural rigidity
coefficient in a fourth-order plate model are available in [30].

The primary objective of this work is to propose an equation error approach
for solving the inverse problem of parameter identification in stochastic PDE
(15.1). Besides advocating for the usefulness of the equation error approach for
inverse problems, the developed framework also pitches it as a reliable and effi-
cient fast alternative to other optimization formulations.

We divide the contents of this chapter into seven sections. In Section 2, we
collect preliminary results related to the stochastic PDE and discuss the solvabil-
ity of the associated variational form. Section 3 presents an overview of some
of the most commonly used techniques for solving stochastic PDEs. Section 4
is devoted to the study of the new equation error formulation for the consid-
ered stochastic inverse problem. We give the unique solvability of the regularized
stochastic optimization problem emerging from the equation error approach. We
provide discrete formulas in Section 5. Section 6 gives preliminary numerical
results. The chapter concludes with some general remarks.

15.2 Solvability of the Direct Problem
We begin with an overview of SPDEs and common computational techniques,
noting that a majority of the available literature focused on (15.1). Before dis-
cussing the solvability of (15.1) and the associated inverse problem, we first re-
call some function spaces. Given the domain D, for 1 ≤ p <∞, by Lp(D), we
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represent the space of pth Lebesgue integrable functions, that is

Lp(D) =

{
y : D 7→ R is measurable, and

∫
D
|y|p dx <+∞

}
.

The space L∞(D) consists of measurable functions that are bounded almost ev-
erywhere (a.e.) on D. We also recall that the Sobolev spaces are given by

H1(D) =
{

y ∈ L2(D), ∂xi y ∈ L2(D), i = 1, . . . ,n
}
,

H1
0 (D) =

{
y ∈ H1(D), y|∂D = 0

}
,

and H−1(D) = (H1
0 (D))∗ is the topological dual of H1

0 (D). For m ∈ N, higher-
order Sobolev spaces Hm(D) consist of L2(D) functions with all partial deriva-
tives up to order m reside in L2(D).

Moreover, we recall that given a real Banach space X , a probability space
(Ω,F ,µ), and an integer p ∈ [1,∞), the Bochner space Lp(Ω;X) consists of
Bochner integrable functions u : Ω→ X with finite p-th moment, that is,

‖u‖Lp(Ω;X) :=
(∫

Ω

‖u(ω)‖p
X dµ(ω)

)1/p

= E [‖u(ω)‖p
X ]

1/p
<∞,

where E[·] is the expectation. For details and properties of these spaces, see [38].
If p = ∞, then L∞(Ω;X) is the space of Bochner measurable functions

u : Ω→ X such that
ess sup

ω∈Ω
‖u(ω)‖X <∞.

Many useful features of Lp(D) spaces of Lebesgue integrable functions
translate naturally to Bochner spaces Lp(Ω;X). Moreover, it is known that
L∞(Ω;L∞(D)) ⊂ L∞(Ω×D), but L∞(Ω;L∞(D)) 6= L∞(Ω×D), in general.
Furthermore, the space Lp(Ω;Lq(D)), for p,q ∈ [1,∞), is isomorphic to{

v : Ω×D→ Rn|
∫

Ω

(∫
D
|v(ω,x)|q dx

)p/q

dµ(ω)<∞
}
.

A critical part of the study of SPDEs is the finite-dimensional noise rep-
resentation of the random fields by a finite number of mutually independent
random variables (see [7, 38]): Given M random variables ξk : Ω 7→ Γk, for
k = 1, . . . ,M, a function v ∈ L2(Ω;L2(D)) of the form v(ξ (ω),x) for x ∈ D and
ω ∈ Ω, where ξ = (ξ1,ξ2, . . . ,ξM) : Ω 7→ Γ⊂ RM and Γ := Γ1×Γ2 · · ·×ΓM, is
called a finite-dimensional noise.

If a random field v(ω,x) is finite-dimensional noise, a change of variables
can be performed for computing expectations. To be specific, denoting by σ , the
joint density of ξ , we have

‖v‖2
L2(Ω;L2(D)) = E

[
‖v‖2

L2(D)

]
=

∫
Γ

σ(y)‖v(y, ·)‖2
L2(D)dy.
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Therefore, by defining yk := ξk(ω) and setting y = (y1,y2, . . . ,yM), we associate
a random field v(ω,x) with a finite-dimensional noise by a function v(x,y) in the
weighted L2 space:

L2
σ (Γ;L2(D)) :=

{
v : Γ×D→ R :

∫
Γ

σ(y)‖v(·,y)‖2
L2(D)dy <∞

}
.

Assume that a(ω,x) and f (ω,x) are finite-dimensional noises and given by

a(ω,x) = a0(x)+
P∑

k=1

ak(x)ξk(ω), (15.3)

f (ω,x) = f0(x)+
L∑

k=1

fk(x)ξk(ω), (15.4)

where the real-valued functions ak and fk are uniformly bounded. Then, as a
consequence of the celebrated Doob-Dynkin lemma, a solution of (15.6) is finite-
dimensional noise and u is a function of ξ where ξ = (ξ1,ξ2, . . . ,ξM) : Ω 7→ Γ

and M := max{P,L}, see [38].
For the solvability of the variational problem (15.6), in the following we as-

sume that there are constants k0 and k1 with

0 < k0 ≤ a(ω,x)≤ k1 <∞, almost everywhere in Ω×D. (15.5)

For the variational form of BVP (15.1), we will use V̂ := L2(Ω;H1(D)) which
is a Hilbert space with the inner product defined by

〈u,v〉=
∫

Ω

〈u(ω,x),v(ω,x)〉H1(Ω) dµ(ω).

To impose the boundary conditions, we will use V = L2(Ω;H1
0 (Ω))⊂ V̂ .

To derive the variational formulation, we take u∈ L2(Ω;H2(D)) and multiply
(15.1) by a test function v ∈ V and by integrating the product on both sides,
invoking the Green’s identity, and using the boundary conditions, we obtain∫

Ω

∫
D

a(ω,x)∇u(ω ,x) ·∇v(ω,x)dxdµ(ω) (15.6)

=

∫
Ω

∫
D

f (ω,x)v(ω,x)dxdµ(ω), for everyv ∈V.

Therefore, we are looking for elements u∈V such that (15.6) holds for all v∈V .
For the solvability of (15.6), we introduce the following notation

s(u,v) =
∫

Ω

∫
D

a(ω,x)∇u(ω ,x)∇v(ω ,x)dxdµ(ω), (15.7)

m(v) =
∫

Ω

∫
D

f (ω,x)v(ω,x)dxdµ(ω), (15.8)
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and, for a fixed a(ω,x), write (15.6) as the problem of finding u ∈V with

s(u,v) = m(v), for every v ∈V. (15.9)

Since a(ω,x) ∈ L∞(Ω×D) and V ⊂ L2(Ω;L2(D)) ∼= L2(Ω×D), we can
show that

|s(u,v)| ≤ ‖a(ω,x)‖L∞(Ω×D)‖u(ω,x)‖V‖v(ω,x)‖V ,

which proves that the bilinear form s is continuous.
Furthermore, the bilinear form s(·, ·) is coercive as well because

s(u,v) = E
[∫

D
a(ω,x)∇v(ω ,x) ·∇v(ω,x)dx

]
≥ α‖v(ω,x)‖2

V ,

where α is a positive constant involving the Poincare’s constant.
For the given f ∈ L2(Ω;H1(D)∗) and for any v ∈ V, for the functional m(·),

we have

|m(v)|=
∣∣∣∣E[∫

D
f (ω,x)v(ω,x)dx

]∣∣∣∣≤ ‖ f (ω,x)‖H1(Ω;H1(D)∗)‖v(ω,x)‖V ,

which proves the continuity of m. Hence, the unique solvability of (15.6) ensues
from the Lax-Milgram lemma.

For the inverse problem of parameter identification, analytic properties of the
parameter-to-solution map a 7→ ua(ω,x), that assigns to a, the unique solution
ua(ω,x) of (15.6), are crucial. For this, we define K ⊂ B := L∞(Ω;L∞(D)) to be
the set of feasible parameters with a nonempty interior. We emphasize that the
feasible parameters in K must satisfy (15.5). We recall the following result that
gives the Lipschitz continuity of the parameter-to-solution map.

Proposition 15.2.1 [33] The map K 3 a(ω,x) 7→ ua(ω,x) is Lipschitz continu-
ous.

We next recall the following result that gives a derivative characterization of
the parameter-to-solution map:

Theorem 15.2.2 [33] Let a(ω,x) be in the interior of K. Then, the derivative
δua(ω,x) := Dua(δa(ω,x)) of ua(ω,x) in the direction δa(ω,x) is the unique
solution of the stochastic variational problem: Find δua(ω,x) ∈V such that∫

Ω

∫
D

a(ω,x)∇δua(ω,x) ·∇v(ω,x)dxdµ(ω) (15.10)

=−
∫

Ω

∫
D

δa∇ua(ω,x) ·∇v(ω,x)dxdµ(ω), for every v ∈V.
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The above derivative characterization plays a central role in developing a
gradient-based optimization framework for solving the inverse problem and is
instrumental in obtaining discrete formulas for the gradient of various objective
functionals.

We note that under (15.3) and (15.4), the variational problem (15.6) reduces
to the following parametric variational problem, which is commonly used for
numerical simulations: Find u(y,x) ∈Vσ := L2

σ (Γ;H1
0 (D)) such that∫

Γ

σ(y)
∫

D
a(y,x)∇u(y,x) ·∇v(y,x)dxdy

=

∫
Γ

σ(y)
∫

D
f (y,x)v(y,x)dxdy, for all v(y,x) ∈Vσ .

(15.11)

15.3 Numerical Techniques for Stochastic PDEs
In the following, we briefly describe three of the commonly used numerical
methods for solving SPDEs.

15.3.1 Monte Carlo Finite Element Type Methods
A heavily used approach for the numerical treatment of (15.11) is the sampling-
based Monte Carlo Finite Element Method (MC-FE) approach, where for the
deterministic component, a finite element discretization scheme is used. For the
MC-FE method, s realizations of the random variable y j := (y1

j , . . . ,y
m
j ), j =

1, . . . , s, are generated, and for each realization y j, a solution of u j = u(y j,x)
of (15.11) is obtained involving the realizations of a(y,x) and f (y,x). From the
solution samples, the desired statistics ensues. For instance, the `-th moment of
the solution u(y,x) is obtained by

E
[
u(·,x)`

]
≈ 1

s

s∑
j=1

u(y j,x)`.

The MC-FE approach is robust, easily implementable, uses existing finite ele-
ment solvers, and does not impose regularity restrictions on the data. However, a
glaring pitfall is a slow convergence, with asymptotic order 1√

s , requiring a large
sample size for an acceptable approximation.

One of the many generalization of the MC-FE method, the Multilevel Monte
Carlo Finite Element (MLMC-FE) method (see Giles [27], Barth et al. [11]),
significantly reduces its computational cost. The key idea of the MLMC-FE is to
employ hierarchical finite element spaces, acquiring sample solution on varying
mesh-sizes and gradually decreasing the sample size on each finer mesh, finding
a fine compromise between the convergence and discretization error.



An Equation Error Approach for Identifying a Random Parameter � 361

15.3.2 The Stochastic Collocation Method
The stochastic collocation method (see [7]) is based on combining collocation
on Γ and finite element discretization of D. It is similar to the MC-FE method
in that it samples the random data, but without choosing the sampling point ran-
domly. Given collocation points, {y j}s

j=1 in Γ, the collocation scheme defines an
approximate solution as the Lagrangian interpolant

uP(y,x) =
s∑

k=1

u(yk,x)Lk(y),

where Lk : Γ 7→R is the Lagrange polynomial satisfying Lk(ys) = δks, and u(yk,x)
is the solution of the parametric PDE (15.11) at yk.

Employing the Galerkin finite element discretization for the spatial compo-
nent and denoting the finite element basis by {φ1, . . . ,φN}, the complete approx-
imate solution is given by

uhP(y,x) =
s∑

k=1

N∑
l=1

uk
l φl(x)Lk(y).

The commonly used collocation points are those generated by Smolyak’s algo-
rithm and lie on a sparse grid. For high stochastic dimension, Smolyak sparse
grids have fewer points than the full tensor product, but only a slightly slow or-
der of convergence. There are many variants of the stochastic collocation method.
Bäck et al. [9] presented a comprehensive comparison of the stochastic Galerkin
and stochastic collocation methods.

15.3.3 The Stochastic Galerkin Method
The stochastic Galerkin method (see [38]) builds around the parametric varia-
tional problem (15.11). Let Vh be an N-dimensional subspace of H1

0 (D) and Sk
be a Q-dimensional subspace of L2

σ (Γ) with

Vh = span{φ1,φ2, . . . ,φN},
Sk = span{ψ1,ψ2, . . . ,ψQ},

where we assume that the basis {ψ1,ψ2, . . . ,ψQ} is orthonormal with respect to
σ . In stochastic Galerkin, the NQ-dimensional subspace Vσ can be constructed
by tensorising the basis functions φi and ψ j:

Vhk :=Vh⊗Sk := span{φiψ j| i = 1, . . . ,N, j = 1, . . . ,Q}.

The stochastic Galerkin solution uhk ∈Vhk then satisfies for all v ∈Vhk:∫
Γ

σ(y)
∫

D
a(y,x)∇uhk(y,x) ·∇v(y,x)dxdy =

∫
Γ

σ(y)
∫

D
f (y,x)v(y,x)dxdy.
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In the above variational equations, taking the representation

uhk =

N∑
k=1

Q∑
m=1

Ukmφk(x)ψm(y),

a sparse linear system emerges which gives an approximate solution.

15.4 An Equation Error Approach
For inverse problems of identifying deterministic parameters, the extensively
studied equation error approach is considered a compromise between an
optimization-based iterative scheme and a direct solution method for finding
the unknown parameter. Although the equation error approach is an optimiza-
tion formulation, it bears no connection to the underlying PDE while solving the
optimization problem. The OLS-based or MOLS-based optimization problems
need to solve the underlying PDEs at every update, a strategy that makes these
methods computationally demanding. In contrast, the equation error approach
results in a speedy process for inverse problems. Moreover, being an optimiza-
tion problem, the equation error approach allows for the natural inclusion of
the regularization for stability. However, a drawback of not being related to the
PDEs is that it heavily relies on the supplied data quality and performs poorly
under high data contamination. For details on the equation error approach, see
[2, 3, 19, 26, 28, 29].

For the stochastic inverse problem of estimating a(ω,x) from the data
z(ω,x) ∈ L2(Ω;H1

0 (D)), we propose the following equation error formulation:

JE(a(ω,x)) :=
1
2
E
[
‖e(a,z)‖2

H1(D)

]
=

1
2

∫
Ω

‖e(a,z)‖2
H1(D) dµ(ω), (15.12)

where e(·, ·) ∈ L2(Ω;H1
0 (D)) is such that for every v ∈ L2(Ω;H1

0 (D)), we have

〈e(a,u),v〉L2(Ω;H1
0 (D))

=

∫
Ω

∫
D
[a(ω,x)∇u(ω ,x) ·∇v(ω,x)− f (ω,x)v(ω,x)] dxdµ(ω). (15.13)

For regularizing the equation error objective, we define the following admis-
sible set

A :=
{

a ∈ H := L2(Ω;H(D)) : 0 < k0 ≤ a(ω,x)≤ k1 a.s. Ω×D
}
,

where the regularization space H, a separable Hilbert space, is compactly embed-
ded into B := L∞(Ω;L∞(D)), and H(D) is continuously embedded in L∞(Ω).

We now propose the following regularized equation error problem:

min
a∈A

Jκ

E (a) :=
1
2
E
[
‖e(a,z)‖2

H1(D)

]
+

κ

2
‖a(ω,x)‖2

H , (15.14)
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where z(ω,x) ∈ L2(Ω;H1
0 (D)) is the measured data, κ > 0 is a fixed regulariza-

tion parameter, and ‖ · ‖2
H is the quadratic regularizer.

We have the following existence result:

Theorem 15.4.1 For each κ > 0, the equation error based optimization problem
(15.14) has a unique solution.

Proof. Since Jκ
E (a)≥ 0 for all a ∈ A, there exists a minimizing sequence {an} in

A, such that lim
n→∞

Jκ

E (an) = inf
a∈A

Jκ

E (a). By the definition of the regularized equation

error functional, the sequence {an} is bounded in the H-norm. This, however,
implies the existence of a subsequence, still denoted by {an}, that converges
to some ā ∈ A in the B-norm. In view of the definition of e(·, ·), for every v ∈
L2(Ω;H1

0 (D)), we have

〈e(an,z),v〉L2(Ω;H1
0 (D)) = E

[∫
D
[an∇z(ω ,x) ·∇v(ω,x)− f (ω,x)v(ω,x)] dx

]
,

〈e(ā,z),v〉L2(Ω;H1
0 (D)) = E

[∫
D
[ā∇z(ω ,x) ·∇v(ω,x)− f (ω,x)v(ω,x)] dx

]
.

Subtracting the above two equations and setting v = e(an,z)− e(ā,z), we get

‖e(an,z)− e(ā,z)‖2
L2(Ω;H1

0 (D)) = E
[∫

D
(an− ā)∇z ·∇(e(an,z)− e(ā,z))dx

]
≤ ‖an− ā‖L∞(Ω;L∞(D))‖e(an,z)− e(ā,z)‖L2(Ω;H1

0 (D))‖z‖L2(Ω;H1
0 (D)),

which confirms that ‖e(an,z)− e(ā,z)‖2
L2(Ω;H1

0 (D))→ 0.
Consequently,

Jκ

E (ā) =
1
2
E
[
‖e(ā,z)‖2

H1(D)

]
+

κ

2
‖ā(ω,x)‖2

H

≤ lim
n→∞

1
2
E
[
‖e(an,z)‖2

H1(D)

]
+ liminf

n→∞

κ

2
‖an(ω,x)‖2

H

≤ liminf
n→∞

{
1
2
E
[
‖e(ā,z)‖2

H1(D)

]
+

κ

2
‖an(ω,x)‖2

H

}
= inf{Jκ

E (a) | a(ω,x) ∈ A} ,

confirming that ā(ω,x) is a solution of (15.14). The uniqueness follows from the
strong convexity of the regularizer and convexity of the equation error objective.
The proof is complete. 2
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15.5 Discrete Formulae
We will now give some discrete formulas for numerical simulations. Recall that
the parametric variational problem seeks u ∈Vσ := L2

σ (Γ,H
1
0 (D)) such that∫

Γ

σ(y)
∫

D
a(y,x)∇u(y,x) ·∇v(y,x)dxdy =

∫
Γ

σ(y)
∫

D
f (y,x)v(y,x)dxdy,

for all v ∈Vσ .
Given a finite-dimensional subspace Vhk of Vσ , an element uhk ∈ Vhk is the

stochastic Galerkin solution if∫
Γ

σ(y)
∫

D
a(y,x)∇uhk(y,x) ·∇v(y,x)dxdy

=

∫
Γ

σ(y)
∫

D
f (y,x)v(y,x)dxdy, for all v ∈Vhk.

Assume that Vh is an N-dimensional subspace of H1
0 (D) and Sk is a Q-

dimensional subspace of L2
σ (Γ) such that

Vh = span{φ1,φ2, . . . ,φN},
Sk = span{ψ1,ψ2, . . . ,ψQ}.

We assume that the basis {ψ1,ψ2, . . . ,ψQ} is orthonormal with respect to σ , that
is, ∫

Γ

σ(y)ψn(y)ψm(y)dy=δnm,

where δnm is the Kronecker delta: δnm = 1 for n = m, δnm = 0 for n 6= m. To
obtain a finite-dimensional subspace of Vσ , we use the commonly used process
of tensorising the basic functions φi and ψ j. That is, we define the following
NQ-dimensional subspace for solving the discrete variational problem:

Vhk =Vh⊗Sk := span{φiψ j| i = 1, . . . ,N, j = 1, . . . ,Q}.

Therefore, any v ∈Vh⊗Sk has the representation

v(y,x) =
N∑

i=1

Q∑
j=1

Vi jφi(x)ψ j(y) =
Q∑

j=1

[
N∑

i=1

Vi jφi(x)

]
ψ j(y) =

Q∑
j=1

Vj(x)ψ j(y),

where

Vj(x)≡
N∑

i=1

Vi jφi(x).
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Setting, Vj :=
[
V1 j, · · · ,VN j

]> ∈ RN , we introduce the following vectorized
notation:

V = vec(Vi j)

= [V11, · · · ,VN1,V12, · · · ,VN2, · · · ,V1Q, · · · ,VNQ]
>

= [V1,V2, · · · ,VQ]
> ∈ RQN×1.

Inspired by the use of the KL expansion (see [38]), we assume that the un-
known random field a(·, ·) admits a finite linear expansion:

a(y,x) = a0(x)+
M∑

s=1

ysas(x) =
M∑

s=0

ysas(x), (15.15)

where, by convention, we take y0 = 1. We discretize the spatial components as
by using a P-dimensional space

Ah = span{ϕ1, ...,ϕP}.

Using the vector notation once again, we have

a(y,x) =
P∑

i=1

Ai0ϕi(x)+
M∑

s=1

(
P∑

i=1

Aisϕi(x)

)
ys =

M∑
s=0

Asys (15.16)

where the vectors As(x)≡ (Ais) ∈ RP for s = 0 . . . ,M, and

A = [A0,A1, · · · ,AM]
> ∈ RP(M+1)×1.

Recall that the discrete variational problem seeks uhk(y,x)∈Vh⊗SQ such that∫
Γ

σ(y)ψn(y)
(∫

D
a(y,x)∇uhk(y,x)∇φi(x)dx

)
dy

=

∫
Γ

σ(y)ψn(y)
(∫

D
f (y,x)φi(x)dx

)
dy,

for every i = 1, . . . ,N, n = 1, . . . ,Q.
Then using in the above variational problem the representation

uhk =

N∑
k=1

Q∑
m=1

Ukmφk(x)ψm(y),

we obtain∫
Γ

σ(y)ψn(y)
(∫

D
a(y,x)∇

(
N∑

k=1

Q∑
m=1

Ukmφk(x)ψm(y)

)
∇φi(x)dx

)
dy

=

∫
Γ

σ(y)ψn(y)
(∫

D
f (y,x)φi(x)dx

)
dy.
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By substituting the expansion (15.16) in the above identity, and performing a
simple calculation, we obtain, for every i = 1, . . . ,N, n = 1, . . . ,Q :

N∑
k=1

Q∑
m=1

Ukm

∫
Γ

σ(y)ψn(y)ψm(y)
(∫

D
a(y,x)∇φk(x)∇φi(x)dx

)
dy

=

(
K(A0)+

M∑
s=1

gs
nnK(As)

)
Un +

∑
N 6=N

M∑
s=1

gs
nmK(As)Um

where for every s ∈ {0, . . . ,M}, we define K(As) ∈ Rn×n and gs
nm ∈ R by

K(As)i,k =

∫
D

As(x)∇φk(x)∇φi(x)dx,

gs
nm =

∫
Γ

σ(y)ψn(y)ψm(y)ysdy.

Now, for s ∈ {0, . . . ,M}, we set

Gs = (gs
nm) ∈ RQ×Q,

where, the case s = 0, by orthonormality, corresponds to the unit matrix as fol-
lows

G0 =

(∫
Γ

σ(y)ψn(y)ψm(y)dy
)
= I.

On the other hand, we discretize the right-hand side as follows

(Fn)i =

∫
Γ

σ(y)ψn(y)
∫

D
f (y,x)φi(x)dxdy, for every n ∈ {1, ...,Q}.

Summarizing, the discrete variational problem reads(
K(A0)+

M∑
s=1

gs
nnK(As)

)
Un+

∑
m6=n

M∑
s=1

gs
nmK(As)Um =Fn, for every n= 1, . . . ,Q,

which corresponds to solving the linear system K(A)U = F for U =
[U1,U2, · · · ,UQ]

>, where F = [F1,F2, · · · ,FQ]
> and the matrix K(A) is given by:

K(A) :=

[
M∑

s=0

Gs⊗K(As)

]
,

where ⊗ is the Kronecker product.
The parametric analogue of (15.13) defining ehk(·, ·) ∈Vσ satisfies, for every

v ∈Vσ ,

〈ehk(a,u),v〉Vσ
=

∫
Γ

∫
D
[a(ω,x)∇u(ω ,x) ·∇v(ω,x)− f (ω,x)v(ω,x)] dxdµ(ω).

(15.17)
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For a discrete form of the regularized equation error functional, we first obtain
a discrete form of three inner products in Vσ . For vhk,whk ∈Vσ with the following
representations

vhk =

N∑
k=1

Q∑
m=1

Vkmφk(x)ψm(y),

whk =

N∑
k=1

Q∑
m=1

Wkmφk(x)ψm(y),

we have

〈vhk,whk〉0 :=
∫

Γ

σ(y)
∫

D
vhkwhkdxdy

=

∫
Γ

∫
D

 N∑
i1=1

Q∑
j1=1

Vi1 j1φi1(x)ψ j1(y)

 N∑
i2=1

Q∑
j2=1

Wi2 j2φi2(x)ψ j2(y)

σ(y)dxdy

=
N∑

i1,i2=1

Q∑
j1, j2=1

Vi1 j1Wi2 j2

(∫
D

φi1(x)φi2(x)dx
)(∫

Γ

ψ j1(y)ψ j2(y)σ(y)dy
)

=

Q∑
j1, j2=1

V̂>j1 MuŴj2

(∫
Γ

ψ j1(y)ψ j2σ(y)dy
)

=V> (I⊗Mu)W, (15.18)

where V̂j1 = [V1 j1 , . . . ,VN, j1 ]
> ∈ RN , V = [V̂1, . . . ,V̂Q]

> ∈ RNQ, I ∈ RQ×Q is the
identity matrix, and Mu ∈ RN×N are given by

(Mu)i1i2 =

∫
D

φi1(x)φi2(x)dx.

Analogously, for computing semi-norms, we have

〈vhk,whk〉1 :=
∫

Γ

∫
D
∇vhk ·∇whkσ(y)dxdy

=

∫
Γ

∫
D
∇

 N∑
i1=1

Q∑
j1=1

Vi1 j1φi1(x)ψ j1(y)

 ·∇
 N∑

i2=1

Q∑
j2=1

Wi2 j2φi2(x)ψ j2(y)

σ(y)dxdy

=
N∑

i1,i2=1

Q∑
j1, j2=1

Vi1 j1Wi2 j2

(∫
D
∇φi1(x) ·∇φi2(x)dx

)(∫
Γ

ψ j1(y)ψ j2(y)σ(y)dy
)

=

Q∑
j1, j2=1

V̂>j1 KŴj2

(∫
Γ

ψ j1(y)ψ j2 σ(y)dy
)

=V> (I⊗Ku)W, (15.19)
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where Ku ∈ RN×N is given by

(Ku)i1i2 =

∫
D
∇φi1(x) ·∇φi2(x)dx.

Finally, combining the above two estimates, we have the following form:

〈vhk,whk〉Vσ
=

∫
Γ

σ(y)
∫

D
[vhkwhk +∇vhk ·∇whk]dxdy

=V> (I⊗ (Ku +Mu))W.

Assume that the discrete ehk(a,z) and the data zhk have the representations:

ehk =

N∑
k=1

Q∑
m=1

Ekm(A,Z)φk(x)ψm(y),

zhk =

N∑
k=1

Q∑
m=1

Zkmφk(x)ψm(y),

where E(A,Z),Z ∈ RNQ.
Then, in view of the above calculations, we obtain from (15.17) that

(I⊗ (Ku +Mu))E(A,Z) = K(A)Z−F =

[
M∑

s=0

Gs⊗K(As)

]
Z−F,

or equivalently,

E(A,Z) = (I⊗ (Ku +Mu))
−1

[[
M∑

s=0

Gs⊗K(As)

]
Z−F

]

= I⊗ (Ku +Mu)
−1

[[
M∑

s=0

Gs⊗K(As)

]
Z−F

]
. (15.20)

The above expression at once gives the discrete formula for the equation error
formulation (without the regularization term):

JE(A) =
1
2
‖E(A,Z)‖2 =

〈
K(A)Z−F,(I⊗ (Ku +Mu))

−1
(K(A)Z−F)

〉
,

where K(A) =
[

M∑
s=0

Gs⊗K(As)

]
.

A formula for the gradient of JE can be computed using the linearity of E
with respect to A. Moreover, a discrete formula for a norm regularizer can also
be easily obtained by the formulas given above for various inner products.
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15.6 Computational Experiments
In this section, we present results of some numerical experiments for one-
dimensional problems where we use the equation error method with stochastic
Galerkin. We assume that the desired parameter is in form of a finite linear com-
bination:

a(ω,x) = a0 (x)+
M∑
`=1

a` (x)Y` (ω) ,

and that the joint distribution of (Y1,Y2, . . . ,YM) is known a priori. Piecewise lin-
ear finite elements are used and we use the H1 semi-norm regularization for the
objective functional. Relative errors in the mean and variance of a and u are
computed by the error functional defined below. For the mean and variance of
the coefficient a, we use

ε
SG
mean (a) =

√∫
D (E[ā(·,x)]−E[aSG (·,x)])2 dx√∫

DE[ā(·,x)]2dx
,

ε
SG
var (a) =

√∫
D (Var[ā(·,x)]−Var[aSG (·,x)])2 dx√∫

DVar[ā(·,x)]2dx
.

Similarly, the relative error functional for the mean and variance of u are defined
by

ε
SG
mean (u) =

√∫
D (E[ū(·,x)]−E[u(aSG)(·,x)])2 dx√∫

DE[ū(·,x)]2dx
,

ε
SG
var (u) =

√∫
D (Var[ā(·,x)]−Var[u(aSG)(·,x)])2 dx√∫

DVar[ū(·,x)]2dx
.

Example 15.6.1 This example has a single random variable Y1 and we as-
sume that Y1 ∼ U [0,1] (i.e., Y1 is uniformly distributed on [0,1]). Moreover,
SPDE (15.1) is satisfied by the following data set on the domain D = (0,1):

ā(ω,x) = 1+Y1 (ω) ,

ū(ω,x) = x (1− x)+Y1 (ω)sin(πx) ,

f (ω,x) = (1+Y1 (ω))
(
2+π

2Y1 (ω)sin(πx)
)
.

Figure 15.1 shows realizations of the exact and the estimated coefficients a(ω,x),
and corresponding point-wise errors in the coefficient in the top row. The second
row figures are realizations of the simulated solution u = u(a) (each curve shows
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Figure 15.1: A comparison of 30 realizations of the coefficient a and the solution u in the
inverse problem of identifying a in Example 15.6.1. Mesh size is h = 1/50 and the regulariza-
tion parameter is κ = 10−6. The thick red line represents the mean of the random fields a and
u, and the red dotted lines represent ±1 standard deviation from the mean.

a solution of the direct problem using the estimated coefficient a for a fixed
value of ω) along with the exact solution u and corresponding point-wise errors.
Relative errors for the mean and variance of a and u for various values of the
R = dim(Vh) (mesh size is h = 1/(R+1)) are shown in the Table 15.1.

Table 15.1: Relative errors for the equation error method with stochastic Galerkin for Exam-
ple 15.6.1. The numbers correspond to the case where the regularization parameter κ is fixed
at 10−6.

dim(Vh) εSG
mean (a) εSG

var (a) εSG
mean (u) εSG

var (u)
50 2.1425e−4 9.1465e−4 7.7522e−5 6.5774e−4
100 5.3570e−5 2.2874e−4 1.9385e−5 1.6448e−4
150 2.3810e−5 1.0167e−4 8.6157e−6 7.3105e−5
200 1.3393e−5 5.7189e−5 4.8464e−6 4.1122e−5

Example 15.6.2 We take D = (0,1), and assume that the two random vari-
ables involved are independent from each other and Y1,Y2 ∼U [0,1]. Moreover,
SPDE (15.1) is satisfied by the following data set:

ā(ω,x) = 3+ x2 +Y1 (ω)cos(πx)+Y2 (ω)sin(2πx) ,
ū(ω,x) = x (1− x)Y1 (ω) .

Realizations of the exact coefficient, the identified coefficient, the exact solution,
and the simulated solution are shown in Figure 15.2 along with the corresponding
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errors. Relative errors for the mean and variance of a and u for various values of
the Q = dim(Vh) are shown in the Table 15.2.

Figure 15.2: A comparison of 30 realizations of a and u in the inverse problem of identifying
a in Example 15.6.2. Mesh size is h = 1/200 and the regularization parameter is κ = 10−5.
The thick red line represents the mean of the random fields a and u, and the red dotted lines
represent ±1 standard deviation from the mean.

Table 15.2: Relative errors for the equation error method with stochastic Galerkin for Exam-
ple 15.6.2. The numbers correspond to the case where the regularization parameter κ is 10−6.

dim(Vh) εSG
mean (a) εSG

var (a) εSG
mean (u) εSG

var (u)
50 0.0036 0.0096 1.7321e−4 3.4020e−4
100 0.0034 0.0098 4.3343e−5 8.5117e−5
150 0.0033 0.0097 1.9267e−5 3.7835e−5
200 0.0033 0.0095 1.0838e−5 2.1283e−5

Example 15.6.3 We consider an example from [31]. In the example, we have
D = (0,1) and the coefficient and the solution have the following expansions:

ū(ω,x) = x
(
1− x2)+ M∑

n=1

sin(2nπx)Yn,

ā(ω,x) =
(
1+ x3)+ M∑

n=1

cos
(nπx

2M

)
Yn.

Here, Y1,Y2, . . . ,YM are independent and uniformly distributed on [0,1].
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Figure 15.3: A comparison of 20 realizations of a and u in the inverse problem of identifying
a in Example 15.6.3. The thick bold lines represent the means of the random fields a and u.

Results of the numerical experiments with 5 random variables (M = 5 case)
are shown in Figure 15.3. We note that the computational time is dependent on
the number of random variables present in the problem (for stochastic Galerkin
method, stiffness matrices are assembled for each term a` in the finite linear ex-
pansion of the coefficient a). Equation error method is very efficient in solving
the inverse problem compared to other traditional methods such as output least
squares (OLS) since the direct problem is not solved at every optimization iter-
ation. For Example 15.6.2 (two random variables), the method takes less than a
minute in MATLAB for any reasonable mesh size h that gives a good resolution
of both the solution u and the coefficient a (for example, h = 1/100 or 1/200).
Computational efforts are scaled proportionally for problems with more random
variables (see Example 15.6.3) in one-dimensional case.

15.7 Concluding Remarks
We presented an overview of the recent developments in a stochastic inverse
problem and proposed a new approach using equation error method in this work.
Preliminary numerical results we obtained demonstrate that the equation error
approach is very efficient and delivers good quality identifications for the coeffi-
cient. However, a thorough comparison with other methods that use optimization
formulations (especially for problems in two- or three-dimensions) is necessary.
Sensitivity of the method for data with noise should be also studied carefully.
Convergent behavior of the method is observed numerically, and we note that
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any advance towards developing a rigorous error estimate for the identified coef-
ficient would be of particular importance.
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