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NONLINEAR QUASI-HEMIVARIATIONAL INEQUALITIES:
EXISTENCE AND OPTIMAL CONTROL*

SHENGDA ZENG', STANISLAW MIGORSKIf, AND AKHTAR A. KHANS

Abstract. In this paper, we investigate a generalized nonlinear quasi-hemivariational inequality
(QHI) involving a multivalued map in a Banach space. Under general assumptions, by using a fixed
point theorem combined with the theory of nonsmooth analysis and the Minty technique, we prove
that the set of solutions for the hemivariational inequality associated to the QHI problem is nonempty,
bounded, closed, and convex. Then, we prove the existence of a solution to QHI. Furthermore, an
optimal control problem governed by QVI is introduced, and a solvability result for the optimal
control problem is established. Finally, an approximation of an elastic contact problem with the
constitutive law involving a convex subdifferential inclusion is studied as an illustrative application,
in which approximate contact boundary conditions are described by a multivalued version of the
normal compliance contact condition with frictionless effect and a frictional contact law with the slip
dependent coefficient of friction.
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1. Introduction. In numerous complicated physical processes and engineering
applications, mathematical models often lead to inequalities instead of the more com-
monly seen equations. In this context, two classes of inequality problems have been
widely studied, namely, variational inequalities and hemivariational inequalities. Vari-
ational inequalities emerge from applied models with an underlying convex structure
and have been studied extensively since the early sixties. Some representative ref-
erences include [4, 6, 8, 9, 16, 33, 44] on mathematical theories and [17, 29] on
numerical treatment. On the other hand, hemivariational inequalities, introduced
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by Panagiotopoulos in the early 1980s, stem from engineering problems involving
non-smooth, nonmonotone, and possibly multivalued relations describing deformable
bodies; see [46]. Compared to the theory of variational inequalities, the analysis
of hemivariational inequalities is more involved and makes use of the properties of
Clarke’s subgradient, defined for locally Lipschitz, possibly nonconvex functions. Sub-
stantial advances have been made on modeling, analysis, numerical approximation,
and computer simulations of hemivariational inequalities. Comprehensive references
in the area include [7, 45, 47] in the earlier years and [32, 38, 40, 43] more recently.

In the study of classical variational and hemivariational inequalities, the con-
straint set, if present, remains independent of the sought solution. However, in many
critical situations arising in engineering and economic models, such as Nash equilib-
rium problems with shared constraints and transport optimization feedback control
problems, the constraint set depends explicitly on the unknown solution. This de-
pendence leads naturally to the notion of quasi-variational and quasi-hemivariational
inequalities. Recently, numerous authors have contributed to strengthening the the-
ory and applicability of quasi-variational and quasi-hemivariational inequalities. In
the following, we provide a brief review of some of the related developments. Gwinner
et al. [20] investigated inverse problems of identifying variable parameters in vari-
ational and quasi-variational inequalities by using an abstract nonsmooth regular-
ization approach. They discretized the inverse problem and gave the convergence
analysis for the discrete problems. In the same vein, by employing Mosco-type conti-
nuity properties and Kluge’s fixed point theorem for the multivalued map, Khan and
Motreanu [25] presented existence results for elliptic and evolutionary variational and
quasi-variational inequalities. Liu, Motreanu, and Zeng [35] have examined a notion
of well-posedness for differential mixed quasi-variational inequalities in Hilbert spaces.
Khan and Sama [27] have proved existence results for an optimal control problem for a
quasi-variational inequality with multivalued pseudomonotone maps, and when some
noise contaminates the data for the underlying quasi-variational inequality, they pro-
vided a convergence analysis of the control. Khan, Tammer, and Zalinescu [28] have
employed an elliptic regularization technique to study an ill-posed quasi-variational
inequality with contaminated data and showed that a sequence of bounded regularized
solutions converges strongly to a solution of the original quasi-variational inequality.
For more details on this topic, the reader is referred to Alleche and R&adulescu [1],
Aussel, Sultana, and Vetrivel [3], Khan, Migérski, and Sama [24], Migdrski, Khan,
and Zeng [39], Aussel, Gupta, and Mehra [2], Gwinner [19], Liu and Zeng [36], Khan
and Motreanu [26], and the cited references therein.

Before any advancement, let us first introduce the problem that will play the
central role in this study. Let V be a real reflexive Banach space with the norm || - v,
V* be the dual space of V', and X and Y be two Banach spaces. Let C' be a nonempty,
closed, and convex subset of V, K: C — 2¢ and T: V — 2Y" be two multivalued
maps, ¢: V x V — R be a function, J: X — R be a locally Lipschitz functional,
v:V = X and w: V — Y be two operators, and f € Y*.

PROBLEM 1.1. Given f € Y*, we consider the generalized nonlinear quasi-hems
variational inequality of finding uw € C and u* € T(u) such that u € K(u) and

(1.1) (w0 —u) + p(v,u) + T (yu;y(v —u)) > (f, 7(v — u))y-xy for allv € K (u).

The main contribution of this research is threefold. First, we aim to deliver
solvability conditions for the above quasi-hemivariational inequality. Second, we in-
vestigate an optimal control problem associated to the above quasi-hemivariational
inequality. Finally, we provide novel applications of our abstract results to an
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approximate elastic contact model. We recall that the constitutive law in the model is
described by a convex subdifferential inclusion, while the contact boundary conditions
are considered with the following two perspectives:

(i) a multivalued version of the normal compliance contact condition with fric-

tionless effect,

(ii) a frictional contact law with the slip dependent coefficient of friction.

The adopted methodology to achieve the main goals is as follows. For the solv-
ability of the optimal control problem, Problem 4.1, we first verify that the solution
map with respect to f is bounded, weakly upper semicontinuous, and weakly closed.
Then, by applying these results, we prove the existence of the optimal control problem
by employing a Weierstrass type theorem and the concept of the Kuratowski upper
limit.

The outline of the paper is as follows. Section 2 collects the necessary notation
and preliminary results. In section 3, we prove an existence result for a generalized
nonlinear quasi-hemivariational inequality by applying the Kluge fixed point princi-
ple. In section 4, we formulate an optimal control problem governed by the quasi-
hemivariational inequality and provide an existence theorem for the optimal control
problem. Section 5 provides an application of these results to an approximate elastic
contact problem.

2. Preliminaries. In this section, we briefly review basic notation and results
which are needed in the paper. For more details, we refer to the monographs [7, 12,
13, 58].

Throughout the paper, we denote by (-,-)y«xy the duality pairing between a
Banach space Y and its dual Y*. The symbols “—” and “—” stand for the weak and
the strong convergence in various spaces. The norm in a normed space Y is denoted
by || - |ly. Given a subset D of Y, we write | D]y := sup{|[v|ly | v € Y}. If no
confusion arises, we often drop the subscripts. Furthermore, we denote by £(Y7,Y3)
the space of linear and bounded operators from a normed space Y; to a normed space
Y5 endowed with the usual norm || - || (v, vs)-

We first recall definitions and properties of semicontinuous multivalued maps.

DEFINITION 2.1. Let X and Y be topological spaces, and let F: X — 2V be a
multivalued map. The map F is called

(i) upper semicontinuous at x € X if for every open set O C'Y with F(x) C O, there
exists a neighborhood N (x) of x such that F(N(x)) := Uyen() F(y) C O, and
if this holds for every x € X, then F is called upper semicontinuous;

(ii) closed at xg € X if for every sequence {(xy,yn)} C Gr(F) such that (xn,yn) —
(xo,y0) in X XY, we have (xg,yo) € Gr(F), where Gr(F) is the graph of F
defined by Gr(F) := {(z,y) € X XY | y € F(x)}. We say that F is closed
(or F has a closed graph) if it is closed at every xoy € X.

PROPOSITION 2.2. Let F: X — 2Y with X andY topological spaces. The follow-
ing statements are equivalent:
(i) F is upper semicontinuous.
(ii) For each closed set C C Y, F~(C):={zx € X | F(z) N C # 0} is closed in X.
(iii) For each open set O CY, F*(O):={x € X | F(x) C O} is open in X.
THEOREM 2.3. Let X, Y be topological spaces and F': X — 2Y be an upper semi-
continuous multivalued map such that for each x € X the set F(x) is compact in Y.
If {xo} is a net in X with o — x9 and yo, € F(zy) for each a, then there exist
yo € F(zo) and a subnet {yg} of {ya} such that yg — yo.
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Let (X, ]-||x) be a Banach space. A function J: X — R is called locally Lipschitz
continuous at u € X if there exists a neighborhood N(u) of u and a constant L, > 0
such that

|J(w) = J(v)] < Ly||w —v||x for all w,v €& N(u).
DEFINITION 2.4. Given a locally Lipschitz function J: X — R, we denote by

J%(u;v) the generalized (Clarke) directional derivative of J at the point u € X in the
direction v € X defined by

J%(u;v) = limsup J(w+ ) = J(w).

A—=0t, w—u A
The generalized gradient of J: X — R at u € X is given by
dJ(u) ={&e€ X* | J%u;v) > (£,v)x-xx forall ve X}

The generalized gradient and generalized directional derivative of a locally Lip-
schitz function enjoy nice properties and rich calculus. Here we collect some basic
results (see [40, Proposition 3.23]).

ProposiTiON 2.5. Let J: X — R be a locally Lipschitz function. Then, the
following holds:

(i) For every x € X, the function X > v — J%x;v) € R is positively homoge-
neous and subadditive, i.e., JO(x; ) = AJ?(z;v) for all X >0, v € X, and
JO(z5 01 +v9) < J(w501) + JO(x;00) for all vy, va € X, respectively.

(ii) For every v € X, it holds that J°(z;v) = max { ({,v)x+xx | £ € 8J(x) }.

(iii) The function X x X > (u,v) — JO(u;v) € R is upper semicontinuous.

We conclude this section with the following two fixed point theorems for multi-
valued maps which will play a critical role in the existence results for the inequality
problems.

THEOREM 2.6 (see [57]). Let K # () be a convex subset of a Hausdor{f topological
vector space E. Let G: K — 25 be o multivalued map such that

(i) for each u € K, the set G(u) is a nonempty convex subset of K,

(i) for eachv € K, G™1(v) = {u € K | v € G(u)} contains a relatively open subset
O, (O, may be empty for some v),

(iii) Upex Ov = K,

(iv) there exists a nonempty set Ko contained in a compact convexr subset K1 of K
such that D = (¢, OE 1s either empty or compact, where OE denotes the
complement of O,.

Then, there exists ug € K such that ug € G(ug).

THEOREM 2.7 (see [30]). Let Z be a reflerive Banach space and C C Z be
nonempty, closed, and convexr. Assume that ¥: C — 2€ is a multivalued map such
that for every u € C, the set ¥(u) is nonempty, closed, and convex, and the graph of
U is sequentially weakly closed. If either C is bounded or V(C) is bounded, then the
map ¥ has at least one fized point in C.

3. Existence results. In this section, we are interested in giving existence re-
sults for the generalized quasi-hemivariational inequality. For this, we impose the
following hypotheses on the data:
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(He) C is a nonempty, closed, and convex subset of V.

(Hy) J: X — R is a locally Lipschitz function.

(Hy) 7v: V — X is a linear, bounded operator with its adjoint v*: X* — V*.

(Hop) m: V — Y is a linear, bounded operator with its adjoint 7*: Y* — V* and

fey~
(Hr) T: C — 2" is a multivalued map such that
(i) T: C — 2V is upper semicontinuous and compact and convex valued;
(ii) the multivalued map C' 3 u — T'(u) + v*0J(yu) € V* is (p, h)-stably
pseudomonotone with respect to {7*f}, i.e., for all u, v € C if there
exist u* € T'(u) and 7, € dJ(yu) such that

(" + 9"y — 7" f,0 —u) + p(v,u) 20,
then
(" +7"ne =7 f,v —u) + @(v,u) = h(v —u)
for all v* € T(v) and all n, € 9J(yv), where h: V — R is such that
h(tu)

limsup ——= >0 forall ueV,
t—0t 3

and, for any sequence {v,} C V with v,, — v in V, satisfies

(3.1) h(v) < limsup h(vy,).
n— 00
(H,) ¢: V xV — R is such that
(i) for each u € V, the function V 3 v +— ¢(v,u) is convex and lower semi-
continuous;
(ii) for each v € V, the function V' 3 u — ¢(v,u) is concave and upper
semicontinuous;
(iii) for all v € V, we have ¢(v,v) = 0.
(Hg) K: C — 2 is such that for all u € C, the set K(u) C C is nonempty, closed,
convex, and
(i) for any sequence {z,} C C with x,, = x, and for any y € K(x), there
exists a sequence {y,} C C such that y, € K(z,) and y, — v, as
n — 0o;
(i) for all sequences {z,} and {y,} in C with y,, € K(x,), if z, = x and
Yn — Yy, then y € K(x).
(Hc,) There is a bounded subset Cy of V with K (u)NCy # 0 for each u € C. Further,
if C' is unbounded, then for all vy € Cy, it holds that

(3.2)

lim inf - ey (U, u—vo) +inf, co7(yu) (Mu ¥ — v0) x+xx — (o, u) oo,
w€eC, ||lully —oo K1R%

Remark 3.1. The notion of (¢, h)-stable pseudomonotonicity used in hypothesis
(Hr)(ii) has been considered in several works; see [37, 56, 59]. If u — T'(u)+v*9J (yu)
is monotone, then it is (¢, h)-stably pseudomonotone with A = 0. On the other hand,
when ¢ is defined by p(v,u) = ¢(v) — ¢(u) with a convex and lower semicontinuous
function ¢: V' — R, then hypothesis (H,) holds automatically.

An interesting example of the function ¢ is given in the following.
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Ezample 3.2. Let V = L?(Q) and K = {u € V | u(z) > 0 for a.e. z € Q}, where
Q) is a bounded domain in RY. Then, the function ¢: K x K — R defined by

o(v,u) :/v(x)u(x) dx — Hu||2L2(Q) for u,ve K
Q

satisfies assumption (H). Moreover, ¢(v,u) + ¢(u,v) < 0 for all u, v € K.

For the solvability of Problem 1.1, we first consider the following generalized
hemivariational inequality.

PROBLEM 3.3. For a given f € Y*, find u € C such that there exists u* € T(u)
and the following inequality holds:

(3.3) (u*,v—u) + (v, u) + J2(vu;y(v —u)) > (f,7(v —u))y-xy forallveC.

In what follows, the solution set of Problem 3.3 will be denoted by SOL(C; T, J,
©, f). The following result of Minty type provides the nonemptiness, convexity, and
closedness of SOL(C; T, J, ¢, f).

THEOREM 3.4. Assume that (Hc), (Hj), (Hy), (Ho), (Hr), (Hy,), and (3.2)
hold. Then,

(i) an element u € C is a solution to Problem 3.3 if and only if it solves the following
inequality: find u € C such that for allv* € T(v), n, € dJ(yv) and allv € C,
we have
(3.4) (v, v—u)+o(v, u)+ (N, Y(v—u))x-xx = (f,7(v—u))y-xy +h(v—u);

(ii) the solution set SOL(C;T, J, v, f) is nonempty, bounded, and weakly closed in V;
(iil) if, in addition, h is a convex function, then SOL(C;T, J,p, f) is convex in V.

Proof. (i) Let u € C be a solution to Problem 3.3. Then, there exists u* € T'(u)
such that inequality (3.3) holds. Let v € C. Tt follows from Proposition 2.5(ii) that
one can find an element &, € dJ(vyu) such that

T (yus (v — ) = (G, v(v — ) xxx
This equality combined with (3.3) implies
0 < (u'—n" f,v—w) (v, )+ (yus y (v—u)) = (u 7" f, v=u)+p(v, u)+(€u, Y (V—1)) x* x X -
The latter, due to the (¢, h)-stable pseudomonotonicity of T'(-) + y*0.J(7-), entails
(0", v —u) + p(v,u) + (e, Y(v —u)) xxx > (f, (v —u))y-xy + h(v—u)
for all v* € T, n, € dJ(yv) and all v € C. Hence, u solves problem (3.4).

Conversely, assume that u € C is a solution to problem (3.4). Let w € C and

t € (0,1) be arbitrary. We now insert v = v; := tw + (1 — t)u into (3.4) to get
tfym(w = w)y-xy + h(t(w — u))
< t@fv w— U> + (p(vh U) + t<771)“"}/(’w - u)>X* x X
(for all n,, € OJ(yv:))

<t w — u) + tip(w, w) + (1 — D)p(u, u) + £y y(w — )

= (v}, w — u) + to(w, u) + tJ°(yv; y(w — u))
for all vf € T(v:), where we used (H,)(i), (ili) and the definition of the Clarke
subgradient. Therefore,
(3.5)

(07 w4 (0, 0) 41 (o Y (w—) 2 (w2

. for all v; € T(ve).
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Fix a sequence {v;} with v € T'(v;) for t € (0,1). Recalling that T is upper
semicontinuous with compact values (see hypothesis (Hr)(i)), it follows from Theo-
rem 2.3 that there exists a subnet of {v; } which converges to a point of T'u, as t — 0.
Without any loss of generality, we may suppose that

(3.6) v — u*(w) for some u*(w) € T(u), as t— 0F.

Passing to the upper limit, as ¢t — 07, in inequality (3.5) and taking into account

htw > 0 for all u € V, we

(3.6), Proposition 2.5(iii), and the fact that limsup, 5+ =

have

(w(w), w —u) + p(w,u) + I (yus y(w — u))

> limsup (v}, w — u) + o(w, u) + limsup JO (yos; y(w — u))
t—0t t—0t

> limsup [(v;, w — u) + p(w, u) + J° (o3 v(w — w))]

t—0t
> (f,m(w—u))yxxy + limsup M
t—0t+ t

> (fym(w —u)y«xy-

Summing up, we have shown that for each w € C, there exists an element u*(w) €
T'(u) such that

(3.7) (W (w), w —u) + p(w,u) + I (yus;y(w = u)) = (f,7(w —u))y-xy.

Next, we assume that v € C is not a solution to Problem 3.3. Then for each
u* € T'(u) there is v € C such that

(u*,v —u) + p(v,u) + JO('yu;'y(v —u)) < (fym(v—u))y xy-

We denote R(u) = T'(u) +7*9J (yu). From the geometric version of the Hahn—-Banach
theorem (see, e.g., [5, Theorem 1.7]), we infer that for each v* € R(u), there exists
v € C such that

(3-8) ("0 = u) < —p(v,u) + (f,m(v = u)y-xy.
For any v € C, we now consider the set S, C R(u) defined by
Sy i={v" € R(u) | (v*,v—u) < —pv,u)+ (f,m(v—u))y-xy}

Moreover, it is not difficult to prove that for every v € C, the set S, is weakly open
in V*. Besides, we observe that {S,},cc is an open covering of R(u). The latter
combined with the facts that V is reflexive and R(u) is weakly compact and convex
in V* ensures that R(u) has a finite subcovering in {S,}yec. Let {Su,, Svay- -y Su, }
be the finite subcovering indicated by the points {v1,va,...,v,}. Let k1, Ko,..., kn
be a partition of unity for R(u), where for each i = 1,2,...,n, k;: R(u) — [0,1] is
a weakly continuous function such that >."" , x;(v*) = 1 for all v* € R(u) (see [18,
Lemma 7.3]). Subsequently, we introduce a function A': R(u) — V defined by

N@*) = Z ki(v")(v;) for all v* € R(u).

i=1
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Obviously, the function N is also weakly continuous due to the weak continuity of &;
fori=1,2,...,n. For any v* € R(u), the estimate

(W N(*) —u) = (v*,Zm(v*)vi —u) < Zfﬁi(v*)@*,vi —u)

< - Z ki(v*)p(vi, u) + Z Ki(V)(fs (v — u))y=xy

=1 i=1

and the convexity of v — (v, u) imply

(W N@*) —u) < —p (Z mi(v*)vi,u> + <f,7r ( Ki(v")v; — u>>
i=1 i=1 Y*xY
(3.9)  =—oW(v"),u)+ (f, (N (") = u))y-xy
for all v* € R(u). Let us also define two functions ®: C' — 25" and ¥: R(u) — 28
by
®(v) := {v* € R(u) | (v, v —u) > —p(v,u) + (f,7(v—u))y-xy} forall veC
and
U(v*) := (N (v*)) for all v* € R(u).

We observe that (3.7) ensures that ® has nonempty, weakly compact, and convex
values. Also, we assert that ® is upper semicontinuous from V to the weak topology
of V*. From Proposition 2.2(ii), it is enough to verify that for each weakly closed set
D in V*, the set

o (D):={veC | dw)ND #0}

is closed in V. Let {v,} C ® (D) be a sequence such that v, — v, as n — oo. Then,
for each n € N, we are able to find v} € R(u) satisfying

(3'10) <U:;7 Un — u> > _(P('Unvu) + <fa W(”n - u)>Y*><Y-

From the weak compactness of R(u), without any loss of generality, we may suppose
that v} — v* in V*  as n — oo, for some v* € R(u). Using the continuity of the
function v — (v, u) (see, e.g., [15, Corollary 2.5]) and passing to the upper limit, as
n — o0, in (3.10), we have

W v —u) > —p(,u) + {(f,7(v —u))y xy,

ie., v* € ®(v). The weak closedness of D implies v* € D. Therefore, we find that
v* € ®(v) N D, namely, v € &~ (D). Applying Proposition 2.2(ii) we obtain that ® is
weakly upper semicontinuous.

On the other hand, the continuity of the function N and [23, Theorem 1.2.8]
imply that ¥ is also weakly upper semicontinuous. For function ¥, we are now in
a position to employ the Tychonov fixed point principle (see [18, Theorem 8.6]) to
conclude that there exists v* € R(u) such that

(" N(v*) —u) 2 —pN (v),u) + (f, N(v7) — u).
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This leads to a contraction with (3.9). Consequently, we conclude that u € C' solves
Problem 3.3 as well, i.e., there exists u* € T'(u) such that (3.3) holds. This completes
the proof of part (i).

(ii) In this part of the proof, we shall distinguish two cases: C is bounded and C
is unbounded.

First, we consider the situation that C' is bounded. We argue by contradiction
and suppose that Problem 3.3 has no solution, i.e., for each v € C, we can find v € C
such that

sup )<U*,v —u) + (v, u) + I (yusy(v — ) < {f,m(v = u))y-xy-
uw*eT (u

Based on this fact, we introduce a multivalued map G: C' — 2¢ defined by

G(u) = {vecw sup <u*7v—u>+¢(v,u)+J°(vu;v(v—U))<<fﬂf(v—U)>Y*xy}

u* €T (u)

for all w € C'. Under the assumption that Problem 3.3 has no solution, we get

(a) for each u € C, the set G(u) is nonempty,

(b) the multivalued map G has no fixed point in C| i.e., u & G(u) for all u € C.
It is obvious that if we trigger the contradiction that the multivalued map G admits
a fixed point in C, then we can conclude that Problem 3.3 has at least a solution in
C. To do so, we shall apply the fixed point theorem, Theorem 2.6, to verify that the
set of fixed points of G is nonempty. Indeed, we have the following four claims.

Claim 1. For each u € C, the set G(u) is convex in C.

For u € C fixed, let v1, v € G(u) and ¢ € (0,1) be arbitrary, and denote
vy = tv; + (1 — t)vg. Then, for i = 1, 2, we have

(u*, v —u) + (v, u) + J(yu; y(v; — u)) < (f,m(v; —u))y-xy forall u* e T(u).

The convexity of v — ¢(v,u) together with positive homogeneity and subadditivity
of w+— JO(u;w) (see Proposition 2.5(i)) implies
(u*,vp —u) + @(vg, u) + J° (yu; y(ve — u))
< t[(u*, v —w) + p(vr, w) + IO (yu; v (o1 — )]
+ (1= t) [(u",v2 — u) + p(v2,u) + T (yu; y(v2 — )]
<t(f,m(vy —u))y=xy + (1 =) (f, m(va — u))y+xy
= (fim(ve —u))y=xy

for all u* € T'(u), which means that

sup )<U*7Ut —u) + (v, u) + I (yu; y (v — w)) < (f,m(ve = w))yexy
u*eT (u

Hence, the set G(u) is convex.
Further, for each v € C fixed, we introduce the set O, defined by

Oy =quelC inf (v v—u)+¢(v,u)+ inf v, Y(U — 1)) x+
{uect i wro-u et e (- )

< (om0 = w))yxy + h(v — u>}.
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Claim 2. For each v € C, the set O, is weakly open, and G~!(v) contains O,,
where G~1(v) is defined by
G lw)y={ueC |veGu))l.

Evidently, the claim is equivalent to the statement that the complement set OE
is weakly closed and [G_l(v)}c cOb Letue [G_l(v)}c be arbitrary, videlicet,

sup )<U*,v —u) + p(v,u) + I (yu; (v = w) > (f, 70— u))yexy.
uw*eT (u

Recalling that T has compact values, we can use Proposition 2.5(ii) again to find
(311) <1A1:* +’7*€,’U—U>+§0(1},U) > <f771'(’()—u)>yx><y,
where ©* € T'(u) and £ € 0J(yu) are such that

sup )<U*,U—U>=<ﬂ*,v—U> and  J°(yu;y(v —u)) = (€, 7(v —w))x-xx-
u*€T (u

By (3.11) and the (¢, h)-stable pseudomonotonicity of T'(-) +~v*0J(v-), we have
(0% v = u) + (1, Y0 = W) xoxx + (v, u) 2 {f, 70 = u))y-xy +h(v—u)
for all v* € T'(v), for all n, € dJ(yv).

Taking the infimum in the above inequality with v* € T'(v) and 7, € dJ(yv), respec-
tively, we have

inf (v, 0o —u)+ inf (0, 7(v —w)xexx +o(v,u) = (f, (0 —u)yexy +h(v—u),
v*eT (v) Ny €0J (yv)

which means that u € OF, and hence inclusion [G’l(v)]c c OF is valid.

To demonstrate the weak closedness of O, let {u, } € OF be a weakly convergent
sequence, i.e., u, — u in V', as n — oo, for some u € C. Then, for n € N, we have

(3.12) (", v—un)+ N, Y0 —un)) x+xx + (v, un) > (f,m(v—tp))y+xy +h(v—u,)

for all v* € T(v) and all n, € dJ(yv). Since u — @(v,u) is concave and upper
semicontinuous, it is weakly upper semicontinuous. Passing to the upper limits, as
n — 00, in inequality (3.12) and using (3.1), we get

(070 =) + (v, u) + (1o, (v = 1)) xxx
> limsup(v*, v — u,) + limsup ¢ (v, uy,)

+ limsup(ny, ¥(v = n)) x+xx
n—oo
> lim (f,7(v — un))y+xy + limsup h(v — uy)

2 (f;m(v—w))y-xy +h(v—u)
for all v* € T'(v), n, € 0J(yv) and all v € C. Hence

nf (o —wy i (o0 — w))xexx + 9(0,8) > (70 — )y + b — w)
v* €T (v) 1y €0J (V)

for all v € C. Hence u € OE, confirming that OE is weakly closed in V, or O, is
weakly open for each v € C.
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Claim 3. It holds that (J,.» O, = C.

It is easy to see that |J,co O, C C. It remains to show that | J .o O, D C. Let
u € C be fixed. Note that Problem 3.3 has no solution, so invoking assertion (i), we
conclude that there exists v € C' such that

inf (v*,0— inf (0, 7(v —u))x~ — )y~ — ).
v*lenT(U)@ N u>+nvelég(w)<nﬁ(v u))x+xx +p(v,u) < (f,m(v—u))y=xy +h(v—u)

This, in view of the definition of O,, ensures that v € O,, and hence | O,>C
holds.

Claim 4. The set [, cc

Suppose that (), . OF is nonempty. Claim 2 indicates that Noee OF is weakly
closed, thanks to the weak closedness of OE. On the other hand, since C is bounded,
closed, and convex, and V is reflexive, so C' is weakly compact in V. Therefore, we
infer that the set [, OE is weakly compact, which proves the claim.

To summarize, we have verified all conditions of Theorem 2.6. Therefore, we
deduce that G admits a fixed point in C. This leads to a contradiction. Thus,
Problem 3.3 has at least one solution in C'.

Next, we consider the case that C' is unbounded. Let n € N. We are able to
choose n € N large enough such that C,, = {u € C | |lul]ly < n} # 0. Consider the
following inequality problem: find w,, € C), and ) € T(u,) such that

vel

OE is weakly compact if it is nonempty.

(3.13) (ul, v—1un)+0(v, Un )+ T (Yp; y(v—1n)) > (f, m(v—up))y~xy for allv € C,,.

Note that the first part of the proof provides u, € C,, which solves (3.13). We now
make the following claim.
Claim 5. There exists Ny € N such that

(3.14) l[un llv < No.

Suppose that for each n € N, we have ||u, |y = n. Let vg € Cp be fixed. Observe
that

(3.15) 0= (ug, tn — v0) = (v0, Un) + (G, ¥(tn = v0)) x+xx + (fs (V0 — un))y=xy
with u’;kL € T(un)v gun, € aJ(’Vun)v and <£un77(1}0 - un)>X*><X = JO(’VUTL;’V('UO - un))
We now apply (3.2) and (3.15) to find a function r: Ry — R with r(s) — +oo, as

s — 400, such that

0 Z <u:“un - rU0> - QD(UOa un) + <£un;7(un - vO)>X*><X + <f77T(UO - un)>Y*><Y

> inf  (u),u, —vo) — p(vo,un) +  inf Y (up — v «
= %ET(UH)< 0) — ¢ (vo, un) EE@J(’yun)<€ gl 0)) X*x X
— | flly= 7T||/:(V,Y)HUO — Un|lv

Y *

3.16) = r([lunllv)llunlly = Iflly- 1wl vy lunllv = [[flly - lI7lleey)lluollv-

Recall that |lun|ly — oo, as n — oo, and r(s) — +o0, as s — +oo. It is easy to
find N1 € N large enough such that r(|lun, [|v)llun, [lv = lflly-[I7llzcvy) lun v —
Ilflly=lI7llzev,yylluolly < 0. This leads to a contradiction with (3.16). So, we infer
that (3.14) is satisfied.

Let Ny € N and uy, € Cn, be such that (3.14) holds. For any w € C, (3.14)
allows us to choose ¢ € (0,1) small enough so that v; = tw + (1 — t)un, € Ch,.
Inserting v = vy in (3.13) for n = Ny, we get
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(U, w — uny) + @(w, uny) + J° (Yung; v(w — uny))]
= t(uy,, w — un,) + to(w, un,)
+ (1= ) p(uny, uny) + I (yuny; Y(w — un,))

>t w — uny) + @(ve, uny ) + I (Yung; v(vr — ung))

> f,m(w —un, )y xy-
Here, we have used hypotheses (H,)(i), (iii) and positive homogeneity of v — J9(u;v).
We obtain

(g w = ung) + (W, uny) + I (Vg Y(w = uny)) 2 (fym(w = uny))y-xy-

Because w € C' is arbitrary and u}y, € T(un,), we find that uy, € C is a solution to
Problem 3.3.

It remains to show that SOL(C; T, J, ¢, f) is bounded and weakly closed. For the
boundedness of the solution set, let u € SOL(C; T, J, ¢, f). Then, a simple calculation
based on the coercivity condition (3.2) (see (3.16)) gives

r(llullv)llullv = 11£]

Hence, it is clear that u stays in a bounded set in V. So, the solution set to Prob-
lem 3.3, SOL(C; T, J, p, f), is bounded.

For the weak closedness of the solution set, let {u,} C SOL(C;T,J, ¢, f) be a

sequence converging weakly to some u € C. By assertion (i) of the theorem, we have

velImllcovylullv = 1 fllyv =7l covyvy lluolly < 0.

(05,0 = up) + o(v,un) + (Mo, V(0 — un)) x-xx = (f,m(0 = up))yxy + (v — un)
for all v* € T(v), n, € dJ(yv) and all v € C. Passing to the upper limit as n — oo in
the above inequality, and using hypotheses (H,)(ii) and (3.1), we obtain

(6,0 — ) + (0, 0) + (10, 7(0 = ) x-xx > limsup(v*,v - uy) + limsup (v, w,)

n—o0 n—oo

+ lim sup(ny, Y(v — Un)) x*xx

n— oo

> lim (f,7(v — un))y*xy + limsup h(v — u,)
n—oo n—00

> (f,m(v—1u))y=xy +h(v—1u)
for all v* € T'(v), n, € OJ(yv) and all v € C. Invoking assertion (i) again, we see that
u € SOL(C; T, J, ¢, f), and thus SOL(C; T, J, ¢, f) is weakly closed.
(iil) Suppose, in addition, that h is convex. Let u1, us € SOL(C; T, J, ¢, f) and
t € (0,1) be arbitrary, and denote u; = tuy + (1 — t)ug. Then, from assertion (i), for
i =1, 2, we have
<’U*,’U - UZ> + (v, 1) + (o, Y(v — wi)) x+xx = (f,m(v — Ui)>Y*><Y + h(v —u;)
for all v* € T(v), n, € 8J(yv) and all v € C. By the concavity of function u > ¢(v,u)
(see (Hy) (ii)), we get
(v —ue) + (v, ue) + (Mo, ¥ (v — w)) x-xx
> t[(v*, 0 —u1) + @(v,u1) + (M, ¥ (0 = u1)) xx x|
(U= D00 = u2) + (0,12) + 7027(0 = 2)) x-xx]
> t[(f,m(v —wi))yexy + h(v —u1)]
+ (L=t [(f, (v —u2))yexy + h(v—ug)]
> (fym(v—w))yexy + h(v—u)
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for all v* € T(v), n, € dJ(yv) and all v € C. Again, exploiting assertion (i), we
conclude that u; € SOL(C; T, J, ¢, f), hence SOL(C; T, J, , f) is a convex set. d

A careful reading of the proof of Theorem 3.4 allows one to state the following
result.

PROPOSITION 3.5. Besides hypotheses (H¢), (Hy), (H,), (Ho), (Hy), and (3.2),

assume that T: C' — V* satisfies the following:

(i) T is hemicontinuous.

(ii) The multivalued map uw — T'(u) +~*9J(yu) is (¢, h)-stably pseudomonotone with
respect to {m* f}, where h: V. — R enjoys the same conditions as in (Hrp)(ii).

Then, the following conclusions hold:

(i) uw € C is a solution to the following hemivariational inequality: find v € C such
that

(3.17)  (T(u),v —u) +p(v,u) + I (yus y(v — w)) = {f, (v —w))y-xy
for all v € C if and only if it solves the inequality
(T(v),v —u) + v, u) + (o, (v —w)x-xx = (f;7(v —u))y-xy + h(v—u)

for all n, € 0J(yv) and all v € C.
(ii) The set of solutions to problem (3.17) is nonempty, bounded, and weakly closed
V.
(iil) If, in addition, h is convex, then the set of solutions to problem (3.17) is convex
in V.
Remark 3.6. We note that Theorem 3.4 extends recent results given in [34, Lemma
3.3 and Theorem 3.4]. In fact, for Problem 3.3, we do not require that the operator
~v: V — X is compact, and we consider a more general function ¢ than in [34]. This
extends the scope of applications of hemivariational inequality. Moreover, the key
idea of the proof of Theorem 3.4 is entirely different from the one used in [34], where
instead of the Fan—Knaster—-Kuratowski—-Mazurkiewicz theorem, we employed a fixed
point principle.
In particular, if ¢ is specialized to ¢(v,u) = ¢(v) — ¢(u), where ¢: V — R is a
convex and lower semicontinuous function, then we obtain the following.

COROLLARY 3.7. Let ¢: C'— R be a convex and lower semicontinuous function.
Assume that (Hc), (Hy), (Hy), (Ho), (Hr), and (3.2) with p(v,u) = ¢(v) — ¢(u) for
all v, w € C, are fulfilled. Then,

(i) u € C is a solution to the following hemivariational inequality: find u € C such
that there u* € T'(u) which satisfies

(3.18)  (u v —u) + ¢(v) = d(u) + I (yus y(v — w)) = (f, (v —w))y-xy
for all v € C if and only if it solves the inequality
(W0 —u) + o(v) — d(w) + (o, Y(v —w)x+xx = (f,7(v —u))y+xy + h(v—u)

for all v* € T(v), n, € 0J(yv) and all v € C;
(ii) the solution set of problem (3.18) is nonempty, bounded, and weakly closed in V;
(iil) if, in addition, h is convex, then the solution set of problem (3.18) is convex in V.

We are now in a position to develop an existence result to the generalized quasi-
hemivariational inequality, Problem 1.1. In what follows, we denote by I'(f) the set
of solutions to Problem 1.1 for f € Y*.
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THEOREM 3.8. Assume that (Hc), (Hy), (H,), (Ho), (Hr) with h being convec,
(H,), (Hk), and (Hc,) hold. Assume, in addition, that v is compact, and for any
sequences {v,}, {un} C C such that v, — v and u, = u in'V for some u, v € C, we
have

(3.19) lim sup @(vp, un) < @(v,u).

n—oo

Then, the following conclusion holds:

(i) An element u € C is a solution to Problem 1.1 if and only if it solves the following
inequality problem: find u € C such that w € K(u) and for all v* € T(v),
Ny € 0J(yv) and all v € K(u), we have

(3:20) (v, v—w)+p(v, u)+ (1, V(v =) xxx = {f;T(V=u))y+xy +h(v=u).

(ii) The solution set of Problem 1.1, T'(f), is nonempty, bounded, and weakly closed.

Proof. (i) Tt follows by arguments similar to those used in the proof of Theo-
rem 3.4(i).

(ii) We will first show that I'(f) # 0 for all f € Y*. Let f € Y* be fixed. Given
an element w € C, we now consider the generalized hemivariational inequality: find
u € K(w) such that there exists u* € T'(u) and

(3.21) (u*,v—u)+@(v,u) + I (yu; y(v —u)) > (f,7(v—u))y-xy forall v € K(w).

Next, we define the so-called variational selection S: C' — 2¢, which associates to any
w € C the set of solutions to inequality (3.21), that is,

S(w) := {u € K(w) | u solves the problem (3.21)}.

It is not difficult to see that any fixed point of multivalued map S is a solution to
quasi-hemivariational inequality, Problem 1.1. Based on this fact, we will verify that
I(f) # 0 for all f € Y* via showing that the variational selection S satisfies the
assumptions imposed on the map ® in Theorem 2.7.

For each w € C, it follows from Theorem 3.4 that the set S(w) is nonempty,
bounded, closed, and convex. We claim that the graph of variational selection S
is sequentially weakly closed. To this end, let {w,}, {u,} be sequences such that
Uup € S(wy) with w, — w and w,, = w in V, as n — oo, for some w, v € C. From
assertion (i), we can see that u, € K(w,) and for all v* € T'(v), n, € 0J(yv) and all
v € K(w,), we have

(3'22) <U*’U_un>+<p(v?un)+<nv>'7(v_un)>X*><X > <f,7T(U—Un)>Y*xy+h(v—un).

Recalling that (wp,u,) € Gr(K) with (wp,u,) — (w,u) in C x C, by hypothesis
(Hg)(ii), we have v € K(w). On the other hand, for any z € K(w), condition
(Hg)(i) allows us to find a sequence {v,} C C with v, € K(w,) for all n € N such
that v, — z, as n — 0o. Let us fix a sequence {v}} in V* with v} € T'(v,). Keeping
in mind that 7T is upper semicontinuous with compact values and v, — z in V, as
n — oo, from Theorem 2.3, we are able to find z* € T'(z) and a subsequence of {v},
still denoted by {v}}, such that v} — z* in V*, as n — oco. Inserting v = v, and
v* = v} into (3.22), and passing to the upper limit, as n — oo, using (3.1), (3.19),
and the upper semicontinuity of the function (u,v) — JO(u;v), we get
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(27,2 —u) + ¢(z,u) + I (yz;7(v — )
> lim (v}, v — ) + msup @(vp, up) + limsup JO(yvn; ¥(vn — un))

n—oo n— oo n—oo
Z lim <’U:;, Un — un> + lim sup @(’Una un) + lim Sup<nvn77<vn_un)>X*><X
n—00 n—00 n—00

> lim sup [<v:m'Un = Un) + (U, Un) + (Mo, V(Vn — un)>X*><X]

n—00
> lim (f, (v, — upn))y=xy + limsup h(v, — un)
n—oo n—00
> (f,m(z —u))y-xy + h(z —u)

for all n,, € 0J(yv,). This implies that for each z € K(w), there exists z* € T'(z)
such that

(2%, 2 —u) + (z,u) + I (yz9(2 = w) 2 (f,7(2 = W)y xy + h(z - u).
Let y € K(w) and t € (0,1) be arbitrary. Taking z = z; := ty + (1 — t)u € K(w) into
the above inequality, we obtain

h(t(y —u))
(3.23) (2, y —u) + oy, u) + T (vzi9(y —w) 2 (f,m(y — W)y + ==
Moreover, Theorem 2.3 ensures, by passing to a subsequence if necessary, that there
is an element u* € T'(u) such that z; — u* in V*, as t — 07. Further, passing to the
upper limit, as ¢ — 07, in (3.23), we have

(3.24) (', y —u) + @y, u) + I (yu; y(y — )
> lim (=, y —u) + @(y, u) + limsup J(yzi:7(y — u))
h(t(y — u))

> (f,m(y —u))y=xy + limsup
t—0t t

> <f7 ﬂ-(y - u)>Y*><Y
for all y € K(w) with u* € T(u). Hence, u € S(w), proving that the graph of S is
sequentially weakly closed.

Furthermore, we claim that the set S(C) is bounded. We will apply 3.2, similarly
as in (3.16). Arguing by contradiction, assume that S(C) is unbounded, and then
there are sequences {w,} and {u,} such that w, € S(w,) and ||u,|y — oo, as
n — oo. By definition of S, for each n € N, there exists u) € T(u,) such that
un € K(w,) and

(3.25)
(wh, v—=up) oV, un)+ N s YO—R)) x5 xx = (fym(v—1p))y+xy forall v € K(uy,),

where 7, € 0J(yuy) is such that (0., ,v7(v —un)) x xx = JO(Ytn; (v — uy)). Next,
it follows from (3.25) and assumption H(Cp) that there exist a function r: Ry — R
with r(s) = 400, as s — 00, and a sequence {v,} C Cy with v, € Cy N K (w,,) such
that

0> inf *7 - inf ) - * - )
Z Bl o) ¥y (it = Un) e x — @(n n)

+ (f,m(vn = un))y xy
2 r([[unllv)lunllv = [1f]
2 r([[unllv)lunllv = [1£]
>

r(llunllv)llunllv: =111

7TH£(V;Y)||U71 _unHV
ey (lonllv + llunllv)

7lleevivy (Mo, + llunllv),

Y *

Y *

Y *
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where Mg, > 0 is such that ||v|ly < Mg, for all v € Cy. The latter combined with
the facts that r(s) — +oo, as s — oo, and ||u,|lv — o0, as n — oo, leads to a
contradiction. We deduce that the set S(C') is bounded.

Having verified all hypotheses of Theorem 2.7 for the map S, we deduce that S has
a fixed point. Consequently, for each f € Y*, we have I'(f) # 0. Since I'(f) € S(C),
the set T'(f) is bounded as well.

Finally, it remains to prove that for each f € Y™*, the set I'(f) is weakly closed.
Let {u,} C I'(f) be such that u, — w in C, as n — oo. Then, for each n € N, by
assertion (i), one has u, € K(u,) and

(3.26) (v*,v—up)+e(v,un)+ M, YW —un))xexx > (f, T(0—un))y*xy +h(v—1uy)

for all v* € T'(v), n, € 0J(yv) and all v € K (uy,). Moreover, hypothesis (Hg)(ii) and
convergence u, — u in V with u,, € K(uy,) imply v € K(u). On the other hand, for
any z € K(u), using condition (Hg)(i), there exists a sequence {v,} C C such that
v, € K(uy) and v, — z, as n — co. Fix a sequence {v}} C V* with v} € T'(v,). The
convergence v, — z, as n — 00, and Theorem 2.3 show that there exist an element
z* € T'(z) and a subsequence of {v}}, still denoted by {v}}, such that v} — z*, as
n — oo. Inserting v = v, and v* = v into (3.26), and passing to the upper limit, as
n — 0o, we conclude

("2 = u) + @(z,u) + I (v237(v =) > {f,7(2 = w))y=xy + h(z = v)

with z* € T(z) and for all 2 € K(u). The same reasoning as in (3.23) and (3.24)
guarantees that we can find an element u* € T'(u) such that

(u*,y —u) + oy, u) + I (vusy(y — w) = (f,m(y — w))y-xvy
for all y € K(u). Hence u € T'(f), which completes the proof that T'(f) is weakly
closed. 0

In a particular case, if T' is a single-valued map , then by Proposition 3.5 and
Theorem 3.8, we obtain the following.

COROLLARY 3.9. Besides (H¢), (Hy), (Hy), (Ho), (Hy), (Hk), (He,), and
(3.19), assume that v is compact and T': C — V* satisfies the following conditions:
(i) T is continuous,

(i) the multivalued map u — T(u) +y*0J(yu) is (¢, h)-stably pseudomonotone with
respect to {m* f}, where h: V' — R is a convex function such that all conditions
in H(T)(ii) are fulfilled.

Then, the following conclusions hold:

(i) u € C is a solution to the following quasi-hemivariational inequality: find u € C
such that w € K(u) and

(327)  (Tw,v—u) +p(v,u) + I (yu; y(v — w) > (f, (v —u))yxy

for all v € K(u) if and only if it solves the following inequality problem: find

u € C such that u € K(u) and

(Tv,v —u) + @(v,u) + (N, 7(V — u)) x-xx 2 (f,7(v = u))y-xy +h(v—u)

for all n, € dJ(yv) and all v € K(u).

(ii) The solution set of problem (3.27) is nonempty, bounded, and weakly closed.
Remark 3.10. Note that if J(w) = 0 for all w € X, 7 is the identity operator of

V (ie., mu = u for all u € V), h(u) = 0 for all u € V, and p(v,u) = ¢(v) — ¢(u),
where ¢: K — R is a convex, and lower semicontinuous function, then Corollary 3.9
reduces to the recent result in [39, Theorem 2.3].
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4. Optimal control in quasi-hemivariational inequalities. In this section,
we study the optimal control problem governed by a generalized quasi-hemivariational
inequality.

Given a function g: V x Y* — R, we consider the following optimal control
problem.

PROBLEM 4.1. Find f € Y* such that

(4.1) e arg min F(f) with F(f)= inf glu.f)

where T'(f) C V stands for the set of solutions to Problem 1.1 corresponding to f € Y*.

We assume that g in the above definition of the cost function F' satisfies the
following condition:
(Hy) g: V xY* — R is weakly lower semicontinuous on V' x Y*, and for all (v, f) €
V xY* we have

9(v, ) = co + el f]

We begin with the following.

y+ with ¢y € R, ¢; > 0.

LEMMA 4.2. Under assumptions of Theorem 3.8, the following conclusions hold:

(i) For each bounded set B in Y™, the set I'(B) is bounded in V as well.
(ii) If 7: V = Y is compact and {f,} is a sequence weakly convergent to f in Y*,

then

w-limsup T'(f,) C T'(f),
n—oo
where w-limsup,,_,.. I'(fn) stands for the sequential Kuratowski upper limit
of {T'(fn)} with respect to the weak topology of V', namely,
w-limsup T'(f,) ::{u € C|13{un, }H{un}, tn, €T (fn,)s
n—oo

Un, — u in'V, as k—00}.

Proof. (i) Let B be a bounded set in Y*. If the set I'(B) is unbounded, then we
are able to find sequences {f,} C B and {u,} C V with u,, € I'(f,) for all n € N
such that ||u, ||y — 00, as n — oo. Therefore, for each n € N, there exists u) € T'(uy,)
such that u, € K(u,) and

(uy, v—"1un) + (p(v,un)+J0(7un;’y(v—un)) > (frn, (0 —up))y<xy forall ve K(up).

Arguing as in (3.16), from hypothesis H(Cj), we can pick up a sequence {v,} C Cy
with v, € Co N K(uy,) and find a function r: Ry — R with r(s) — +o00, as s — 00,
such that

0> <u:uun - Un> - JO('V“TL;'Y(’Un - un)) - 90(0715 Un) + <fn,7T(Un - Un)>Y*><Y

> : f ~% _ . f _ X
> ol (s n —wn) b G (= o)) e

- ‘P(Um un) + <fn,7r(11n - Un)>Y*><Y
r(llunllv)llunlly = [l fally= 7l v llvn — unllv

>
> r(lunllv)llunllv — Mall7ll covivy (Mey + unllv ),

(4.2)

where Mp, Mg, > 0 are such that ||v]|y < Mg, for all v € Cy and || f||y~ < Mp for
all f € B. Taking into account the facts r(s) — +o0, as s = 400, ||un|ly — o0, as
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n — oo, and inequality (4.2), we are lead to a contradiction. Consequently, for each
bounded set B in Y*, the set I'(B) is bounded in V.
(ii) Let {f»} C Y* be such that f,, = f in Y*, as n — oo, and
u € w-limsup I'(fy).
n—oo
By virtue of definition of the Kuratowski upper limit, there is a sequence {u,, } C C
with w,, € I'(fn,) such that

(4.3) Up, —~u inV, ask — oo.

Hence, for each k € N, Theorem 3.8(i) provides u,, € K (uy,) such that

(4.4)

<U*v v— unk> +<p(’U, unk) + <77U7 ’Y(U 7unk)>X*XX > <f7lk-a 7T(U 7unk)>Y*XY + h(U 7“”1@)
for all v* € T'(v), ny, € 8J(~yv) and all v € K(uy, ). Combining (Hg)(i), convergence
(4.3), and u,, € K(un,), we have u € K(u). Moreover, let us fix z € K(u). Hy-
pothesis (Hg )(ii) allows one to get a sequence {vy} C V with vy, € K (uy, ) such that
vy — z, as k — oo. Next, fix a sequence {vj} C V* such that v} € T(vy). From
condition H(T')(i) and Theorem 2.3, we deduce, along a relabeled subsequence if nec-
essary, that v; — 2z* as k — oo for some z* € T'(z). We insert v = v, and v* = v},
into (4.4). Applying the compactness of operator 7 and hypotheses (3.1), (3.19), and
passing to the upper limit, as n — oo, we conclude

(=%, 2 —u) + 9(z,u) + I (yz;9(2 — w) 2 {f,7(2 — w))y + h(z — u)
for all v € K(u). An argument exploited in the proof of Theorem 3.8(ii) provides
u* € T(u) such that
(v =) +p(v,u) + I (vus y(v = w) = (f,7(v = w))y-xy
for all v € K(u). This means that u € T'(f), so the desired conclusion is proved. 0O
The following result is a direct consequence of Lemma 4.2.

LEMMA 4.3. Under assumptions of Theorem 3.8, if, in addition, 7: V — Y is
compact, then the multivalued map Y* 3 f — T'(f) C C is weakly closed and weakly
upper semicontinuous.

Proof. Let {f,} be a sequence weakly convergent to f in Y* and uw,, € T'(f,) C C
be such that w, — v in V, as n — oo. By Lemma 4.2(ii), it follows that u € T'(f),
which means that the graph of the multivalued map Y* 3 f +— I'(f) C C is closed in
Y* x V equipped with weak topologies.

Since, by Theorem 3.8(ii), for any f € Y*, T'(f) is a bounded set in a reflexive
Banach space V, it is weakly compact. Applying [12, Proposition 4.1.16], we deduce
that the multivalued map is also weakly upper semicontinuous. ]

We have the following result on the optimal control problem.

THEOREM 4.4. Besides the hypotheses of Theorem 3.8, assume that (Hg) holds.
Then the set of solutions to Problem 4.1 is nonempty and weakly compact.

Proof. We will use a Weierstrass type theorem. First, we will show that function
F:Y* — R given in Problem 4.1 is weakly lower semicontinuous. We need to show
that for each A € R, the set Sy = {f € Y* | F(f) < A} is weakly closed. Let
{fn} C S\ and assume f, — f in Y*, as n — oo. By the definition of F', we know
that we can find u,, € T'(f,) such that

F(fn) :g(unafn) and F(fn) <A
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It follows from Theorem 3.8(ii) that the set I'(f) is bounded and weakly closed in
V. Hence and from the reflexivity of V', one can assume that w,, — u in V for some
u € V. Moreover, by Lemma 4.2(ii), it follows that v € I'(f). Therefore, by H(g), we
have

that is, F'(f) < A, which implies f € S). So S is weakly closed in Y*, which shows
that F': Y* — R is weakly lower semicontinuous as claimed.

Now, we consider Problem 4.1. We set ¢ := infrecy- F(f) € R and let {f,,} C Y*
be a minimizing sequence for F', namely,

(4.5) o= lim F(fy).

We use hypothesis H(g) to deduce that {f,} is bounded in Y*. Therefore, from
the reflexivity of Y, there exists f* € Y* such that, passing to a subsequence still
denoted in the same way, one has

(4.6) fo—f" InY* as n— oo
Since F': Y* — R is weakly lower semicontinuous, we get

0 < F(f*) < liminf F(£,) = o,

which proves that f* € Y* is a solution to the optimal control problem, Problem 4.1.
It remains to verify that the set of solutions to Problem 4.1 is weakly compact.
Let {f.} be a sequence of solutions to Problem 4.1, i.e., F(f,) < F(k) for all k € Y*.
The hypothesis H(g) implies that the sequence {f,} is bounded in Y*. Therefore,
we may find f* € Y such that, by passing to a subsequence still denoted as {f,},
convergence (4.6) holds. By the weak lower semicontinuity of F', it follows F(f*) <
liminf,, o F(fn) < F(k) for all & € Y*. We conclude that f* is a solution to
Problem 4.1. This shows that the set of solutions to Problem 4.1 is weakly compact.
The proof is complete. ad

5. An application to approximate elastic contact problems. To illustrate
the applicability of the theoretical results derived in sections 3 and 4, in this section,
we study an approximation of a complicated static elastic contact model involving a
multivalued version of the normal compliance contact condition with frictionless effect,
a frictional contact law with slip dependent coefficient of friction, and an additional
constraint on the displacement. This model is an excellent approximation of real
contact models. An optimal control problem for the aforementioned approximate
contact model is also considered.

The physical setting of the model is as follows. We suppose that the nonlinear
elastic body occupies a bounded domain 2 in R¢, d = 2, 3, with a Lipschitz continuous
boundary I' := 02, where the boundary is given by I' = I'p UT'y UT'¢, UT'¢,, where
I'p, 'y, T'e,, and T, are pairwise disjoint and measurable sets with m(I'p) > 0.

The classical formulation of the approximated contact model reads as follows.

PROBLEM 5.1. Find a displacement field w: Q — R? and a stress field o: Q — S?
such that
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(5.1)
o c&(e(u)) + 0pp(e(u)) in Q,
(5.2)
Dive + f, =0 in
(5.3)
u=0 on FD,
(5.4)
ov=7Fy on I'y,
(5.5)
{ —0y, € ), (T, u)
0 on FCI,
or =
(5.6)
-0, =5
ur Te,,
oz llza < plllur eS|, =0 = p(llr|ga)|S|——— if u, £0 7" T
w7 ||Ra
(5.7)

/ le(w) 2. da < U2 (w).
Q

In Problem 5.1, we adopt the standard notation; see [40, 52, 54]. The unit outward
normal vector on the boundary and the position vector in the body are denoted by
vand x € Q = QU I, respectively. Let (S, | - [ls«) be the space of second-order
symmetric tensors on R?. The standard inner products and norms in R% and S¢
are denoted by uw - v = uv;, |vllge = (v - )2 for w = (u;), v = (v;) € R%, and
o T =0Ty, |Tllse = (7 : T)2 for & = (04;), T = (7i;) € S%, accordingly. All
indices ¢, j, k, [ run from 1 to d, and the summation convention over repeated indices
is used. For a vector £ on the boundary, its normal and tangential components are
defined by £, =& v and £, = £ — £, v. Analogously, for the tensor o, its normal and
tangential components on the boundary are given by 0, = (ov)-v and 0, = ov—o, V.
We denote the displacement vector, the stress tensor, and the linearized strain tensor
by u = (u;), o = (0y;), and

1 .
e(u) = (gi5(w)), eij(u) = i(u” +uji), 4,j=1,....d
For simplicity, we often will not indicate explicitly the dependence on the variable .
We briefly provide a description of equations and conditions in Problem 5.1. The
inclusion (5.1) represents an elastic constitutive law for the locking material in which
£ is a nonlinear elasticity operator, ¢ g stands for the indicator function of a constraint
set B C S% ie.,
0 ifee B J
¢p(e) = for € €89,

+o00  otherwise

and 0¢p denotes the convex subdifferential operator of function ¢g. Note that lock-
ing materials belong to a class of hyperelastic bodies for which the strain tensor is
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constrained to stay in a convex set B. The theory of locking materials was initiated
by Prager; see [48, 49, 50]. The set B describes the properties of the material. Several
forms of B are met in the literature for models of an ideal-locking effect, of materi-
als with limited compressibility, and of the behaviour of rubber and some types of
plastic materials. A model of torsion of a cylindrical bar made of a locking material
was studied in [11]. The variational-hemivariational inequalities for locking materials
have been studied only recently in [42, 52].

The relation (5.2) is the equilibrium equation, where “Div” represents the diver-
gence operator given by

00;j
Dive = (Uij,j) = (83;;)
and f stands for the density of volume forces. The boundary conditions (5.3) and
(5.4) characterize the physical phenomena that the elastic body is clamped on I'p
and it is subjected to surface tractions of density f on I'y.

The approximate contact condition (5.5) represents a subdifferential condition
supplemented with the frictionless condition. The latter means that the tangential
part of the stress (called the friction force) vanishes on ', , i.e., o = 0. The friction-
less condition is a sufficiently good approximation of the reality in some situations; it
was used in several publications (see [21, 40, 51, 54] and the references therein). The
condition in the normal direction is called an approximate contact law in which 97,
represents the generalized subgradient of the prescribed function j,: I'c, x R — R in
the second variable. Note that many contact laws of classical elasticity are particular
cases of the condition (5.5), and in most of these cases the function j,(x,-) is con-
vex, hence leading to monotone boundary conditions; see, for example, the Winkler
boundary condition obtained for j,(x,r) = %7“2, k > 0. The nonmonotone approx-
imate contact law (5.5) can be single-valued and multivalued; see [41, Examples 16
and 17]. In particular, if p,: R — R is a continuous function, then we can choose
Ju(r) = forpy(s) ds for r € R to obtain 9j,(r) = p,(r) for r € R. Therefore, the
general normal compliance contact condition of the form —o, = p,(u,) on I'¢, can
be equivalently written as in (5.5). Other examples of nonmonotone contact laws can
be found in [47, section 2.4], [45, section 1.4], [55, section 8.1], and [40, section 6.3].

The frictional contact law (5.6) has been considered in [53]. Condition —o, = S
on I'c, states the normal stress is prescribed on this part of the boundary, where
S:T'¢, — R is the given function. The associated frictional condition represents a
relation between the tangential displacement w, and the tangential stress o, and
w: o, x R — [0, 4+00) is the coefficient of friction which depends on the slip ||u,||ga.
This nonstandard frictional law is a mathematical model suitable for proportional
loadings. It is also a first approximation of a more realistic model, based on a friction
law involving the time derivative of u,; see, for instance, [10]. The nonmonotone slip
dependent friction laws can be also found in [42]. Moreover, in the model, we consider
constraint (5.7) in which the quantity

/ le(au(e)) |20 da
Q

represents the deformation of the elastic body corresponding to the displacement wu,
and U: L2(;RY) — R is a given constraint function.

To establish the variational formulation of Problem 5.1, let us introduce the func-
tion spaces:
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V={ve HY(RY) |v(x) =00onTp}, Q= L*Q;S9).

Since m(I'p) > 0, it is not difficult to verify that V' is a Hilbert space endowed with
the inner product

(u,v)y = /Qs(u(w)) ce(v(x))de foru,veV

and the associated norm || - ||y,. Further, @ is a Hilbert space equipped with the inner
product

(o, T)g = / o(x):T(x)de forallo, T€Q
Q

and the associated norm || - [|g. In what follows, we denote by v1: V — L*(T'c,; R?),
Yo: V. = L*(T¢y;RY), and v3: V. — L?(Tn;R?) the trace operators. From the
Sobolev trace theorem, we have ||v||p 2, ey < [[villllulv for all v € V, i = 1,

2. In addition, we introduce the space Y = L2(Q;R?) x L(Tx;R?) equipped with
the canonical product topology and consider the map 7: V — Y defined

(5.8) mv = (v,y3v) forallv e V.

Next, we introduce the set C := {v € V | e(v) € B for a.e. * € Q} and the
multivalued map K: C — 2¢ defined by

(5.9) Ku)={vel||v|v <U(u)} forallueC.

The elasticity operator £ and the set B are supposed to satisfy the following
conditions:

£: QxS — $%is such that
(a) £(-,¢€) is Lebesgue measurable on € for all e € S%,

the function x — &£(x, 0g) belongs to L*(;S),
(b) there exists a constant Lg > 0 such that
(5.10) 1E(w,e1) — E(w,€2)lsa < Leller — e2llsa

for all £1,e5 € S? and a.e. € Q,
(c) there exists a constant mg > 0 such that

(E(z,e1) — E(m,€2)) t (81 — £2) > meller — &2

for all €1,e5 € S? and for a.e. x € .

(5.11) B is a closed convex subset of S such that 0« € B,
' S e L?*T¢,), S(x) >0 forae. xeclg,.
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The potential function j, fulfills the following assumption:
Jjv:Teo, x R — R is such that
(a) ju(-,7) is measurable on ', for all r € R,
the function & + j,(z,0) belongs to L'(T'¢, ),

(b) ju(a,-) is locally Lipschitz continuous, a.e. € I'¢c,
(c) there exists a constant m;j, > 0 such that
5.12 (G = C)(r1 —r2) > —my, |y — ro|?
(

for all r; € R, ; € 0j,(x,7;),i=1,2 and a.e. x € Ty,
(d) either j,(x,-) or —j,(x,-) is regular for a.e. x € I'¢,,
(e) there exist 6 € [1,2), a;, > 0 and 5;, > 0 such that

Jo(@,ri =) < ag, + By, Irl’
forall » € R and a.e. ¢ € I'¢,.

The coeflicient of friction u satisfies the condition
(5.13)
w: Lo, x [0, +00) — [0,400) is such that

(a) w(-,r) is measurable on I'¢, for all r > 0,
(b) r+— p(x,r)r is convex on [0, +00) a.e. x € I'¢,,
(¢) r+ p(xz,r) is continuous and nondescreasing on [0, +00), a.e. & € I'¢,.

An example of the function p which satisfies condition (5.13) is given by u(r) =
ap + +/r for r > 0 with ag > 0. The constraint function U satisfies the following
conditions:

(5.14)
U: L?(;R?) — R is continuous, U(w) > p for all w € L?(; R?) with some p > 0.

Finally, we suppose that the densities of volume forces and surface tractions have
the following regularity:

(5.15) fo € L*(4RY) and  fy € L2(Tn;RY).

Under the above functional framework, we now assume that there exists a pair of
functions (u, o), which is smooth enough such that (5.1)—(5.7) hold. Let v € K(u).
We multiply the equation of equilibrium (5.2) by v —u, and then employing the Green
formula (see, e.g., [40, Theorem 2.25]), one has

(0,6(v) — e(u))g = (Forv — W) 2(rpe) + /6 (@ (o(e) - u(a) dr.

Keeping in mind the identity
/ o(x)v- (v(x) —u(x))dl
aQ
= /r o(x)v- (v(z) —u(x))dl —|—/ o(xz)v - (v(x) —u(x))dl
+ /FC1 o(x)v- (v(x) —u(x))dl + /Fc2 o(x)v - (v(z) —u(x))dl,

we use boundary conditions (5.3) and (5.4) to show that
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(0,6(v) —e(u))q = (fo,v —wr2ray + | Fn(®@) (v(z) —u(z))dl

I'n

—&—/F o(x)v - (v(x) —u(x))dl +/F o(x)v - (v(x) —u(x))dl.

C2

Hence, we have

(0, 6(v) — e(w))@ = {F 7(v — w))y-uy + / o(x)v - (v(z) — u(x)) dT
(5.16) +/F o(x)v- (v(x) —u(x))dl,

where f = (f,, fn) € Y*. Taking into account boundary condition (5.5) and the
equality

/F a(m)u-(v(:c)—u(a:))dl":/r a,,(:c)(v,,(m)—uu(a:))df—i—/r o+ (m)-(0s (@) — s () dT,

we obtain

—/ o(@)v - (v(@) — u(x)) dl = —/ o () (v () — iy () dT
Pey ey

(5.17) < /F 32, uy (x); v, (2) — uy(x)) dT.
On the other hand, relation (5.6) yields
(5.18)

/F o(x)v - (v(x) —u(x))dl > g S(x)(uy,(x) — v, (x)) dl

+/ plllur (@)[lra) 1S ()] [[wr (@) || o dF—/ plllur (@)[|lra) 1S (2)][[ 0 (2)[|ga dT-

Loy Loy

Next, using inclusion (5.1), it is clear that there exists &£(x) € dpp(e(u(x))) such that
o(z) = E(z,e(u(x))) + &(=)
for a.e. x € Q. Hence, we have
(0,6(v) —e(u))q = (E(e(u)) + & e(v) — e(u)
< (E(e(w)), e(v) — e(w))o + / s(e@) dz | o(e(u(@)do
Recall that u € C and v € K(u), so the above inequality can be rewritten as
(5.19) (0,6(v) —e(u))q < (E(e(u)),e(v) —e(u))q-

Combining (5.16)—(5.19), we obtain the following variational formulation of Prob-
lem 5.1.

PROBLEM 5.2. Find a displacement field w € C such that uw € K(u) and for all
v € K(u), we have

(5.20)
(E(e(u)),e(v) —e(u))q
+ /r (z,u,(x);v,(x) — uy(x)) dl + S(x) (v, (x) — uy (x)) dT

1 Loy

+/ llur (@)][r)[S (@) ([0 ()]s = lltr (@) [|lga) dT = (f, (0 — w))yexy.

Te,
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THEOREM 5.3. Under assumptions (5.10)~(5.15), if meg > mj;, ||71]|* holds, then
the solution set of Problem 5.2 is nonempty, bounded, and weakly closed in V.

Proof. We will apply Corollary 3.9. To this end, in what follows, we will verify
all its hypotheses. Let X = L?(I'; R?) and denote Cyp = {0y}, and v = ;. It follows
from assumptions 0 € B and (5.14) that Cy C K (u) for all u € V. We now introduce
the operator T: V' — V* and functions ¢: V x V — R and J: X — R defined by

(5.21) (Tu,v)y«xv = (E(e(u)),e(v))q,

o(v,u) = g S(x)(vy(x) — uy(x)) dl
(5.22) +/F (@, |u- () ||pa)|S(@)|(|lvr () |ra — [|wr(@)||ga) dT,
(5.23) J(w) = /F (@, wy(@)) dT,

respectively, for u,v € V and w € X. Next, let u, v € V. Hypothesis (5.10) and
Holder’s inequality imply

|ITuw — Tv]

v = sup [(Tu — Tv,w)y|
weV, |[wlv=1

= sup /Q|(8(€(u(a:))) —E(e(v(x)))) : e(w(x))| dx

wev, |w]y=1

( [ leteut@n) - @ dw) "< Lellu—vlly

IN

for all uw,v € V, and
(Tu — Tv,u — V)y«xy

= /Q (E(e(ul@) — £ (@) : ((u(@) — e(v(@)) de > me|u -]}

Hence, T is Lipschitz continuous and strongly monotone with constants Le and mg,
respectively.

From assumption (5.12) and [40, Theorem 3.47], we conclude that J: X — R is
locally Lipschitz continuous and

JO(u;v) = /F 3@, uy (2); v, (2)) dT for all u,v € X,
=
(5.24) 0J(u) = g 0jy(x,uy(x))dl' for all u e X,
U — 7*5&](’;;) is relaxed monotone with constant m; = m;, ||v||?.
Moreover, for all u, v € V, £, € J(yu), and &, € 9J(yv), the estimate
(Tu = Tv,u—v) + (€, — &, 7 = v))x-xx > (me —my, [7[*)u—olf, >0

shows that the multivalued map u — Tu + y*0J(yu) is monotone. Note that Cy =
{0y}, and therefore, for all u € V and & € dJ(yu), we have

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/30/21 to 222.180.188.123. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

NONLINEAR QUASI-HEMIVARIATIONAL INEQUALITIES 1271

<TU’7 'LL> + <£7’YU’>X*><X - LP(OV,’LL) = <T'LL—TOV,’U,> + <T0V7u> - <£7 —’}/U>X*><X_§0(0V,’u)
> mel|ully — | TOv [[v=|ullv = J°(vu; —yu)

+ /F |S()] (uw (@) + p([[ur ()| 2a) [ ur () |a) AT

> me|ully — 170y [[v+ [[ully — J°(yu; —yu) +/ |S()|u () dT

o,

> me||ully = ITOv [[v=l[ullv = 1S]l L2002l ullv = aj, m(Te,)
2-0
= Bl m(Te) = [V,
where we have used condition (5.12)(e) and properties (5.24). Hence,

- (T, w)yv +infe g0 (& 78) x5 x — 0(0v, u) e
uev, ||y —oo ||y ’

due to 6 < 2.

On the other hand, from definition (5.22) of ¢, it is not difficult to observe that
for each u € V, the function v — (v, u) is convex and lower semicontinuous, and for
all v € V, we have ¢(v,v) = 0, that is, H(p)(i) and (iii) hold. To verify condition
H(p)(ii), we need to show that the function

(5.25) u»—)/ 1@, [ (@) 50 [t (@) [0 AT for w € V
Fcz

is convex. The latter follows directly from hypothesis (5.13)(b). The continuity of the
function r — p(x,r) for a.e. & € I'¢, implies that the function (5.25) is continuous. In
conclusion, we deduce that ¢ enjoys all conditions in hypotheses (H,). Additionally,
by using the Sobolev embedding theorems, we can see that 7: V — Y and v: V — X
are both linear, bounded, and compact operators.

Since Cp C K(u) for all w € V, the convexity and continuity of u — ||u|y
imply that for each w € V the set K(u) is nonempty, convex, and closed. Further,
we shall show that the multivalued map K satisfies condition (Hg). Let {u,} C C
be a sequence such that w,, = w in V. For any v € K(u), we define the sequence
{on} C C by

(ES Ulun) v
U

Recall that U(w) > p > 0 for all w € V, the embedding of V to L?({;RY) is
compact, and U: L?(€2;R%) — R is continuous. Hence, the sequence {v,,} converges
to v strongly in V. Also, a simple calculation shows that

U(uy,)

s el < Utew)

||'Un||V =

where the last inequality follows from the fact that v € K(u), ie., ||v]v < U(u).
This means that for each n € N, v,, € K(u,) and v, — v in V. Thus, condition
(Hg)(i) is valid.

Subsequently, let {u,}, {v,} C C be two sequences satisfying

v, € K(uy,), u, ~u and v, ~v inV,asn — co.
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The definition of K and the weak lower semicontinuity of the norm || - ||y imply
lv|lv <liminf ||v,||v <liminf U(u,) = U(w).
n—oo n—oo

Hence, we have v € K (u), and condition (Hg)(ii) follows.

Consequently, all hypotheses of Corollary 3.9 have been verified. Invoking this
corollary, we deduce that the solution set of Problem 5.2 is nonempty, bounded, and
weakly closed in V. This completes the proof. 0

We move our attention to an optimal control problem associated with Problem 5.1.
We denote f = (fy, fn) € Y* and consider the following cost functional £: Y* — R
defined by

(5.26) LU= inf  Glw) +m(f).

Here, X(f) stands for the solution set of Problem 5.2 corresponding to f € Y*, and
g:V —->Rand m: Y — R are defined by

(5.27) g(u) :== p1 /ﬂ ||s(u(oc))\|§d dx + pg/ |lu,, () — ()| dT,

To,
(5.28) m(f) = p3 Hfo||2L2(Q;Rd) + P4 ||fNH%2(FN;]Rd)
for some positive parameters (weights) p;, i = 1,...,4, and ¢ € L*(I'¢,) is a given

function (desired target). The first term in function g represents the deformation in
the body corresponding to the displacement w, while the second term allows one to
minimize the corresponding normal displacement u, to be as close as possible to the
“desired displacement” 1.

The optimal control problem we are interested in is formulated as follows.

PROBLEM 5.4. Find f € Y* such that

(5.29) f € arg min L(f).
ey+

THEOREM 5.5. Assume that hypotheses of Theorem 5.3 hold. Then, the set of
solutions of Problem 5.4 is nonempty and weakly compact in Y*.

Proof. 1t follows from the Sobolev embedding theorem that the function g is
weakly lower semicontinuous and g(u) > 0 for all u € V. Moreover, the function
m is convex and continuous, so the function g(u, f) := g(u) + m(f) satisfies (Hy).
Therefore, the desired conclusion is a consequence of Theorems 4.4 and 5.3. 0

Finally, it would be of interest to focus future investigations on construction of
suitable and reliable numerical techniques to find optimal state and control. To this
end, it is important to derive optimality conditions for the optimal control problem
(4.1). For the related differentiability of the cost function we refer to [31], and to [22]
for numerical strategies in multivalued contact problems.
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