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In this paper, we investigate the piezoelectric energy harvesting performance of inverted
flags with different aspect ratio subject to unidirectional flow. Flags with three different aspect
ratios were studied both numerically and experimentally to explore the different oscillatory
modes of the system and their different energy harvesting capability. Each flag is intrinsically
coupled with the piezoelectric patches attached to its surfaces. As the piezo-patches deform
with the inverted flag, they generate electrical power which is dependent on the flow, structural
and electrical parameters of the problem. Experiments on flags made of spring steel were
conducted in a wind tunnel, where the wind speed was swept up through the various vibration
modes of the inverted flags. The roles of flow conditions, structural parameters and electric
setup on the oscillatory behavior and power capturing efficiency of the inverted flag are assessed
and it is discussed that the aspect ratios of the flag can be leveraged to increase the energy
harvesting attainable during large amplitude two-sided flapping modes.

I. Nomenclature

<B = Mass per unit area of the flag
d = Density of the fluid
X8 9 = Bending and twisting coefficients
f′
8 9

= In-plane compression and tension in the flag
g = Gravity
! = Length of the flag
* = Freestream velocity
^1 = Bending stiffness of the flag
ℎ = Flag thickness
"∗ = Mass number
*∗ = Reduced velocity
 1 = Nondimensional bending stiffness of the flag
` = Dynamic viscosity
4C = Time step
f = Force per unit mass applied on the fluid by the flag
U = Inverted flag and piezoelectric patch coupling coefficient
V = Resistive coefficient that relates the linear capacitance and the linear conductivity between piezoelectric patches

II. Introduction
The research on renewable energy has been popular for decades, and energy harvesting from environmental wind

sources specifically is playing a significant role in the pursuit of sustainable energy generation [1]. Piezoelectric
materials can convert internal strain energy to electrical energy [2] and are well suited for energy harvesting in
small scale applications. The continuous motion required for energy production by piezoelectric harvesters is easily
attainable by taking advantage of aerodynamic instability phenomena, such as aeroelastic flutter [3, 4], vortex-induced
vibrations [5, 6], turbulence-induced forces [7, 8] and galloping [9, 10]. Flutter-based harvesters are typically made of
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piezoelectric patches bonded to flexible cantilevered structures imitating flags. Extensive studies have been conducted
to understand the dynamics and fluttering regimes of flexible plates subjected to axial flow in the regular flag orientation
as summarized in the review by Shelley and Zhang [11], where a regular flag orientation is defined as the configuration
with a fixed leading edge and a free trailing edge. The inverted flag, on the other hand, is an orientation where the
trailing edge is fixed and the leading edge is free to oscillate and can sustain flapping behavior with large deflection
amplitudes at relatively low flow speeds [12]. It has been found that the inverted flag configuration is more efficient
for energy harvesting than the regular flag configuration at low wind speeds [13]. The inverted flag has three distinct
modes of vibration due to its interaction with the flow: a stationary mode, a two-sided flapping mode, and a one-sided
flapping mode [14–18]. In addition to these computational approaches, water and wind tunnel experiments have also
been conducted which confirm that there are three flapping modes depending on the speed of the incoming flow and the
behavior of the shed vortexes behind the flag [15, 16]. The amount of power that can be generated from an inverted
flag is directly related to both its frequency and the amplitude of vibration, both of which are tightly coupled with
the flow field around the flag. Moreover, the geometrical aspect of the inverted flag, namely its aspect ratio and its
alignment with the flow, also affect the oscillatory behavior of the flag and hence its energy harvesting efficiency. To
better understand the energy harvesting efficiency of this system, it is crucial to investigate the physical mechanisms
which contribute to the dynamic response of the system. In particular, certain design aspects of the inverted flag can
influence this fluid-structure-electrical interaction problem, including the aspect ratio of the flag, the bending stiffness of
the flag properly scaled with the incoming fluid flow speed and related flow properties, the electrical property of the
piezoelectric material, and the unsteadiness of the incoming flow.

In this study, we will explore the flapping dynamics and electrical property of the flag for different aspect ratios and
discuss how this can be utilized to enhance its energy harvesting. The robustness of an energy harvester to modifications
in the geometry is checked and we explore how to maximize the power generation by the flag. Flow speed ranges
in which high amplitude, two-sided flapping occurs are reported for flags with three different aspect ratios, and the
influence of aspect ratio on the energy capture is examined.

III. Numerical Formulation

Fig. 1 Inverted piezoelectric flag with incoming fluid flow and the representation of an infinitesimal piezo-patch
along with its attached electrical network

A. Governing equations for fluid-structure-electrical coupling of inverted flags
The structural dynamics of the inverted flag without the electrical action is governed by momentum equation written

in the flag curvilinear coordinate system (0 ≤ B1 ≤ 1, 0 ≤ B2 ≤ 1) as [13, 19]:
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<B

m2X
mC2

=

2∑
8, 9=1

[
m

mB8

(
f′8 9

mX
mB 9

)
− m2

mB8mB 9

(
^1

m2X
mB8mB 9

)]
− F (1)

where <B is the mass of the flag per unit area, d is the density of the fluid, ^1 encapsulates the bending and twisting
coefficients. Here we assumed that all ^1 coefficient are similar. f′

8 9
are the in-plane stretching and compressible forces

in the flag, and F′ is the force in the Lagrangian frame exerted on the flag by the fluid. The nondimensional form of the
equation can be further expressed as:

m2X
mC2

=

2∑
8, 9=1

[
m

mB8

(
f8 9

mX
mB 9

)
− m2

mB8mB 9

(
^1

<B*
2!

m2X
mB8mB 9

)]
− d!

2

<B

F (2)

Following Michelin and Doare [20], we further assume that the surfaces of the flag are covered with infinitesimal
piezoelectric patches with discrete sizes much smaller than L, the length of the flag. The electrical output is coupled to
the deformation of the flag through mutual interaction between the electric voltage of the patches as a result of the stretch
or compression of the patches and charge transfer through the thickness of the flag. The coupling between the electrical
voltage of the discrete patch, + (B, C), the charge per unit length, &, and the deformation of the flag is expressed as,

&(B1, B2, C) = 2+ + j^ (3)
mQ
mC

= −6+ (4)

where 2 is the linear capacitance of the piezoelectric element, g is the linear conductivity coefficient, ^ is the mean
curvature at (B1, B2), and j is the coupling coefficient related to the material properties of the piezoelectric patches.By
considering the electrically induced stiffness in the piezoelectric shell equation, the combined electrical-structural
equation can be written as,

m2X
mC2

=

2∑
8, 9=1

[
m

mB8

(
f8 9

mX
mB 9

)
− m2

mB8mB 9

(
"∗

*∗2
m2X
mB8mB 9

)]
+
√
"∗

*∗

2∑
8=1

[
m

mB8
(U^+)

]
− "∗F (5)

V
m+

mC
= −+ + UV

√
"∗

*∗
m

mC
(^) (6)

The non-dimensional parameters used to characterize the coupled structural-electrical equations can be listed as:

"∗ =
d!2

<B

, *∗ = *!

√
d!

^1
, U =

j
√
^12

, V =
2*

6 !
(7)

where !,*, and ^1 are the length, the incoming freestream velocity, and the bending stiffness of the flag, respectively.
Other parameters are the mass number, "∗ which is the ratio of the inertia of the fluid to the inertia of the structure,
and the dimensionless Lagrangian forcing, F = F′/d*2 . The non-dimensional bending stiffness is calculated from
the thickness of the plate (ℎ), the Poisson’s ratio of the flag (h) and the Young’s modulus (�).The inverted flag has
boundary conditions as follows: the fixed boundary is imposed at B1=1 and the free boundary condition is implemented
on on other boundaries.

The Navier-Stokes momentum and continuity equations for incompressible fluids are the governing equations for the
fluid flow: [

mu
mC
+ ∇ · (uu)

]
= −∇? + 1

'4
∇2u + f (8)

∇ · u = 0 (9)

where u is the velocity of the fluid flow, ? is the dynamic pressure, '4 = d*!/` is the Reynolds number, ` is the
dynamic viscosity, and f is the force per unit mass applied on the fluid by the flag.
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B. Numerical implementation
A Crank-Nicolson second-order implicit time advancement scheme was used to solve the fluid, structural, and

electric equations:

a) Fluid Equations:

u𝑛+1 − u𝑛
�𝑡

+ 1

2

(
𝑁 (u𝑛+1) + 𝑁 (u𝑛)

)
= −∇𝑝𝑛+ 1

2 + 1

2𝑅𝑒
∇2 (u𝑛+1 + u𝑛) + f𝑛 (10)

∇ · u𝑛+1 = 0 (11)

b) Structural Equation:

X𝑛+1 − 2X𝑛 + X𝑛−1

Δ𝑡2
= KX𝑛+1 + 𝛼

√
𝑀∗

𝑈∗ H(𝜅𝑛+1𝑉𝑛) − F𝑛 +HT (12)

c) Electric Equation:

𝑉𝑛+1 −𝑉𝑛

�𝑡
= −𝑉𝑛+1 + 𝛼𝛽

√
𝑀∗

𝑈

𝜅𝑛+1 − 𝜅𝑛

�𝑡
(13)

where K is the non-dimensional nonlinear discrete operator which includes the stretching and bending effects, H
is the discrete operator of divergence on the surface of the flag, and HT includes the boundary condition vector,

which consists of the known positions at the fixed boundary. The interaction forces f𝑛 and F𝑛 are related by

f (x, 𝑡) =
∫
Γ
F (𝑠1, 𝑠2, 𝑡) 𝛿 [x − X (𝑠1, 𝑠2, 𝑡)] 𝑑𝑠1𝑑𝑠2, where Γ is the surface of the flag and 𝛿 is the Dirac-delta function.

Here, 𝑁 (u) operator denotes the nonlinear convective term and k is sub-iteration used at each time step for solving the

flow equations.

C. Simulation setup

Fig. 2 The schematic figure of the fluid domain and the inverted piezoelectric flag

Figure 2 shows the rectangular computational domain surrounding the inverted flag and a sample vortex structure

around the flag. The size of the computational domain was fixed at −4𝐿 ≤ 𝑥 ≤ 9.8𝐿, −4.5𝐿 ≤ 𝑦 ≤ 4.5𝐿, −4.5 ≤
𝑧 ≤ 4.5𝐿, and the fluid grid size is selected as 252×128×128 following the grid convergence study. The grid points
surrounding the flag are more refined with Δ𝑥 = Δ𝑦 = 0.025𝐿. The Reynolds number used for the current simulations
is set at 400, and the mass ratio (𝑀∗) is 0.1. A uniform velocity was assumed at the inlet and side boundaries and a

convective outflow boundary condition was assumed at the outlet. A zero normal gradient boundary condition was used

for pressure on all boundaries. Simulations were run for flags with constant length L and width to length aspect ratios

ranging from slender to wide flags. The computational parameters have been checked to ensure their adequacy for the

current study.
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D. Experimental setup

Fig. 3 Experimental setup for the inverted flags where (left) an inverted flag was clamped in an airfoil-shaped
support section and pointed into the flow, and (right) a high speed camera was placed above the test section of
the wind tunnel to capture a top view of the flag.

The experiments on inverted flags with AR = 1 were conducted in a wind tunnel under increasing wind speeds as

shown in Figure 3. The inverted flag sample was clamped by eight of half-inch airfoil-shaped(NACA 0010) aluminum

sections which was cut by wire electrical discharge machining from a raw aluminum 6061 sheet. A high-speed camera

was used to capture the top view of the flapping motion of the inverted flag within the test section as shown in Figure 3.

Videos were then analyzed with MATLAB to obtain the dynamic response of the inverted flags. The experiment on the

inverted flag started from zero wind speed. Different vibration modes were observed as the wind speed was incremented

by 0.447 m/s at a time. The peak-to-peak displacement was then extracted from these videos as a function of the wind

speed for each sample.

IV. Results

A. Flapping Dynamics of an Inverted Flag

Fig. 4 (a) Peak-to-peak displacement amplitude of the flag against U∗ for AR= 0.25 (black), 1-experimental
(red) , computational (blue),and 1.5 (green) b) strouhal number of the flag against nondimensional freestream
velocity (U∗) for AR= 0.25 (black), 1-experimental (red) , computational (blue),and 1.5 (green)

Initially, we assumed that there is no electrical coupling. Three distinct vibration modes were observed experimentally

and numerically using the inverted flag model for a length to width ratio of 1. For low non-dimensional speed values

of 𝑈∗ ≤ 1.8 and 𝑈∗ ≤ 2.1, corresponding to numerical and experimental results, it was observed that the inverted

flag remains motionless ( Figure 4a). This is referred to as the stationary mode. The second vibration mode, is a

5



two-sided, self-sustained flapping mode. The flag experiences its highest amplitude at this stage and oscillate in its most

energetic mode. The amplitude also increases as𝑈∗ increases within this region and is observed both numerically and
experimentally at intermediate velocity values of 1.82 ≤ 𝑈∗ ≤ 3, and 2.3≤ 𝑈∗ ≤ 3.5 respectively. The last vibration

mode is a one-sided flapping or deflected mode. This mode is observed for higher velocity values of𝑈∗ > 3 numerically

and𝑈∗ > 3.5 experimentally.

An increase in AR results in a larger flapping region while reduction in AR leads to a smaller flapping region as

plotted in Figure 4a. For a slender flag, AR = 0.25, the critical flapping velocity shifts to the right at 𝑈∗ = 1.9 and

experiences two-sided flapping at 1.92 ≤ 𝑈∗ ≤ 2.65 while at𝑈∗ > 2.7 the flag remains deflected. For wider flags, at

AR = 1.5, the critical flapping velocity shifts slightly to the left, where the flag exhibits a stationary mode at𝑈∗ ≤ 1.7,

flapping mode at 1.71 ≤ 𝑈∗ ≤ 3.5, and deflected mode at 𝑈∗ > 3.5. An increase in flag aspect ratio leads to more

efficient two-sided flapping response over a wider range of non-dimensional velocity.

For AR = 1, zero frequency is observed at low𝑈∗ both experimentally and numerically as shown in Figure 4b. At
the flapping region, the flag experiences its highest Strouhal number(defined as 𝑆𝑡 = 𝑓 𝐴/𝐿 with 𝑓 and 𝐴 being the

frequency and amplitude of the vibration) at the onset of flapping both numerically and experimentally at𝑈∗ = 1.82,
and𝑈∗ = 2.3, respectively. As𝑈∗ increases through the flapping region, the 𝑆𝑡 continues to decrease even though the
amplitude remains constant. This reduction is due to a delayed symmetric motion at the tip of the flag when it reaches

the maximum amplitude at high𝑈∗. At higher𝑈∗, the flag takes its deflected stationary mode and 𝑆𝑡 returns back to
zero.

For slender (AR = 0.25) and wide (AR = 1.5) flags as shown in Figure 4b, the flag experiences the same frequency

trend as the flag with AR = 1. When AR = 0.25, the flag shows the lowest St among the tested cases. This is because the

width of the flag is narrow and the leading-edge vortex (LEV) which contributes to the flapping dynamics of the flag is

smaller. As AR increases, the LEV starts to play a more significant role in its flapping dynamics, thereby causing the

flag to flap at a higher frequency. An increase in 𝑆𝑡 also occurs at AR = 1.5, in which the LEV becomes more stable and

attains its shape over most of the flag width.

B. Effect of Vortical Structures on Flapping Dynamics

Fig. 5 Q-criterion vortical structure around the flag for AR = 0.25, 0,75,1.0 and 1.5.

The flapping of an inverted flag is a results of a vortex-induced vibration and to better understand the relation

between the flapping dynamics and flow field, we plot the vortical structures using the Q-criterion (Q). Here, we show

the 3D vortices of the flag at an iso-surface of Q = 2. In can be observed that in all cases, the leading-edge vortex

6



(LEV) and side edge vortices (SEVs) interact with the flag to allows periodical flapping motion. At the initiation of
flapping motion, a vortical core develops at the leading edge, quickly followed by the SEVs. When the flag reaches its
maximum deflected position, the combination of vortices pushes it in the opposite direction, enabling the symmetric
oscillation. In Figure 5, for slender flags, i.e. AR = 0.25, at t = C0 + 5/9, a small strip of LEV can be seen when the flag
is parallel to the flow. As the flag deforms further, at t = C0 + 9/9, the side vortices start to push the flag upwards until it
reaches maximum deflection. LEV plays a minimal role in this AR due to the small width to length ratio of the flag,
making the flapping dynamics mainly a function of SEVs. As AR increases, AR = 0.75 - 1.0, both LEV and SEVs have
similar impacts on the flapping dynamics of the flag. At t = C0 + 7/9, a strong vortex is formed before the flag reaches its
maximum deformation. Here, LEV becomes more dominant and connects SEVs from both edges to form a vortex ring
in the wake as can be seen in Figure 5. For wider flags, AR = 1.5 - 2.0, LEV is the sole dominant vortex feature and
SEVs play much smaller role through the flapping cycle. At t = C0 + 7/9, the vortex behind the flag seen in the previous
AR breaks up while the LEV becomes more prominent due to the increase in width of the flag. Flags with higher AR
experience the stronger vortices, since the LEV does not substantially deflect by the SEVs. Stronger LEV here keeps the
flag flapping over a larger range of*∗ compared with other ARs as seen in Figure 4. Here we can see that AR = 1.5 has
the lowest critical flapping velocity.

C. Piezoelectric Energy Harvesting

Reynolds Number 400
*∗ 2.09

Mass Ratio 0.1
U 0.1 - 0.5
V 0.1 - 10
AR 0.25 - 1.5

Table 1 Piezoelectric energy harvesting parameters.

In this section, we assume that the flag is made up of piezoelectric patches and we examine how the aspect ratio
affects the energy harvesting performance of the system. As mentioned in section III, the surfaces of the flag is
covered with infinitesimal piezoelectric patches with discrete lengths much smaller than L. The piezoelectric energy
(%?) is calculated from normalizing the harvested power is calculated from normalizing the harvested power (P=

1
) V" ∗

∫ )

0

∫ 1
0 +

2 3B) with the kinetic energy flux of the fluid around the flag (d*3!) [20].From the results presented
above in section IV.B, we select ARs = 0.25, 0.75, and 1.5, and fixed Re = 400 and*∗ = 2.09. This values are chosen
as representative cases that ensures the flag undergoes a sustained two-sided flapping motion for all AR. U, which
quantifies the electromechanical coupling strength of piezoelectric patches, takes a value between 0.1 - 0.5. Also V,
which is a resistive coefficient that relates the linear capacitance and the linear conductivity between piezoelectric
patches changes between 0.1 – 10. Table 1 summarizes the parameters used in this section.
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1. Low electromechanical coupling (𝛼 = 0.1)

Fig. 6 Flapping amplitude of the flag during energy harvesting when 𝛼 = 0.1 for AR = 0.25 (blue), 0.75 (green),
1.5 (red) a) 𝛽 = 1, b) 𝛽 = 0.1 c) 𝛽 = 10.

Fig. 7 Piezoelectric energy harvested in the flag for AR = 0.25 (blue), 0.75 (green), 1.5 (red) for a) 𝛽 = 1, b) 𝛽 =
0.1 c) c) 𝛽 = 10.

When the electromechanical coupling coefficient is low (here 𝛼 = 0.1), the piezoelectric patch is loosely coupled

to the inverted flag and there is a limited feedback from the electrical charges on the flapping modes of the flag. A

resistive coefficient of 0.1 - 10 is simulated for AR= 0.25 – 1.5. For 𝛽 = 0.1, the flapping amplitude is similar for all
AR’s as shown in Figure 6a but the piezoelectric energy increases with an increase of AR (Figure 7a). As the resistive

coefficient increases to 𝛽 = 1, similar trend can be found. Also, an overall increase in 𝑃𝑝 is noticed at this resistive

coefficient when compared with 𝛽 = 0.1. When the resistive coefficient of the piezoelectric material increases further to

𝛽 = 10, the low aspect ratio flag with AR = 0.25 does not flap but undergoes bifurcation and takes a deflected stationary

shape. This is not seen for higher ARs. Here, instead flags are able to accommodate such high 𝛽 and continue their
two-sided flapping motions. The 𝑃𝑝 at AR = 0.25 is zero while for higher width to length ratios, 𝑃𝑝 increases with AR.

At 𝛽 = 10, the overall 𝑃𝑝 reduces slightly because the mismatch between the timescales of mechanical and electrical

subdomains. Still the harvested energy is higher than 𝛽 = 0.1.
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2. Medium electromechanical coupling (𝛼 = 0.3)

Fig. 8 Flapping amplitude of the flag during energy harvesting when 𝛼 = 0.3 for AR = 0.25 (blue), 0.75 (green),
1.5 (red) a) 𝛽 = 1, b) 𝛽 = 0.1 c) 𝛽 = 10.

Fig. 9 Piezoelectric energy harvested in the flag when 𝛼 = 0.3 for AR = 0.25 (blue), 0.75 (green), 1.5 (red) a) 𝛽
= 1, b) 𝛽 = 0.1 c) 𝛽 = 10.

When the piezoelectric material has a higher coupling coefficient, here 𝛼 = 0.3 (𝛼 is a characteristic of the material’s

electric and mechanical properties and could be of the order 0.3 for typical piezoelectric materials such as PZT),

almost the same trend occurs as when 𝛼 = 0.1 and the response of the flag only marginally modifies. When 𝛽 = 0.1,
the flapping amplitude is equal for all AR’s as seen in Figure 8a but the delay in the flapping motion at maximum

deflection seen previously for 𝛼 = 0.1 is damped out very fast here. Also, the 𝑃𝑝 increases with an increase in AR as

illustrated in Figure 9a. As the resistive coefficient increases to 𝛽 = 1, the same trend is noticed. The flapping amplitude
remains insensitive to aspect ratio and 𝛽 while the piezoelectric energy harvested (𝑃𝑝 ) increases with AR. The flag also

experiences a deflected mode when AR = 0.25 and 𝛽 = 10.

9



3. High electromechanical coupling (𝛼 = 0.5)

Fig. 10 Flapping amplitude of the flag during energy harvesting when 𝛼 = 0.5 for AR = 0.25 (blue), 0.75 (green),
1.5 (red) a) 𝛽 = 1, b) 𝛽 = 0.1c) 𝛽 = 10.

Fig. 11 Piezoelectric energy harvested in the flag when 𝛼 = 0.5 for AR = 0.25 (blue), 0.75 (green), 1.5 (red) a) 𝛽
= 1, b) 𝛽 = 0.1 c) 𝛽 = 10.

For 𝛼 = 0.5, the piezoelectric patch is even more coupled with the inverted flag. For all 𝛽 values, the flapping

amplitude continues to be similar among all ARs, but the delay at the maximum deflection, is observed again as seen

in Figure 10a-c. The major changes for high electromechanical coupling coefficient is related to tightly coupled time

responses of electrical and mechanical systems and potential asymmetric changes in the deflection shape of the flag

during its upward and downward motions. For all 𝛽 values tested here, when AR = 0.25, 𝑃𝑝 is the lowest while the

highest 𝑃𝑝 is observed at AR = 0.75 (Figure 11a-c). The noticeable increase of the harvested power by AR = 0.75

is linked to constructive interaction between flow, structure and electrical system in this case, which suggests that by

finding an optimal interaction between these three phases, it would be possible to substantially increase the energy

harvesting efficiency of piezoelectric flags. As the resistive coefficient increases to 𝛽 = 1, the same trend is noticed but
the overall 𝑃𝑝 increases. When 𝛽 = 10, 𝑃𝑝 reduces slightly compared to what has been observed in the previous cases.

10



Fig. 12 Piezoelectric energy harvested in the flag when 𝛼 = 0.1 - 0.5 for AR = 0.25 (blue), 0.75 (green), 1.5 (red)
a) 𝛽 = 1, b) 𝛽 = 0.1 c) 𝛽 = 10.

When we compare the energy harvested for all 𝛼, 𝛽 and ARs, we observed that the overall energy harvested increases
as the electromechanical coupling of piezoelectric patches increase, and there is limited feedback from electrical system

to the oscillating flag or equivalently the stiffening of the flag is primarily set by its material properties and not the

electrical actions. Also, when 𝛼 = 0.1 - 0.3, 𝑃𝑝 increases as AR increases but when 𝛼 = 0.5, the highest 𝑃𝑝 is observed

at AR = 0.75. We also observed that the highest 𝑃𝑝 is captured when the resistive coefficient is 1 related to perfect

achievable tuning of the fluid-solid and electric time scales for all 𝛼 and AR. Slender flags are consistently found to have

the lowest overall 𝑃𝑝 due to their small flapping frequencies as shown in Figure 4b.

V. Conclusion
Three modes of deformation were observed for different aspect ratios of an inverted flag in a uniform flow both

experimentally and numerically: the stationary mode, the flapping mode and the deflected mode. These modes are

strongly dependent on the non-dimensional velocity of the flag. It was observed that the flapping frequency of the flag

increases as the flag aspect ratio increases and the critical flapping velocity also increase with an increase of AR due to

an increase in the leading-edge vortex strength. For the piezoelectric flag, the overall harvested energy increases for

higher coupling coefficient between the inverted flag and the piezoelectric patches. AR = 0.75 was identified to be the

most efficient aspect ratio compared to AR = 0.25 and 1.5 at high 𝛼 while AR = 1.5 is more efficient for lower 𝛼 cases.

As the resistive coefficient of the piezoelectric material approach 1, more electrical energy is harvested and the level of

electrical energy decreases with an increase or decrease of 𝛽 coefficient. It is consistently observed that 𝛽 = 1 is the
most efficient resistive coefficient over which there is the best tuning between electrical and mechanical timescales.

We are currently exploring the underlying physics of the peculiar response mode of AR = 0.75 and 𝛼 = 0.5 to better

understand what mechanisms result in an asymmetric electrical output and how the higher electromechanical coupling

coefficient could cause constructive changes in the flow field around the flag.
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