Hindawi

Scientific Programming

Volume 2020, Article ID 8867380, 15 pages
https://doi.org/10.1155/2020/8867380

Research Article

Hindawi

A Machine Learning Gateway for Scientific Workflow Design

Brian Broll ®,! Umesh Timalsina,! Péter Viilgyesi,1 Tamas Budavari,” and Akos Lédeczi!

!Institute for Software Integrated Systems and Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville, TN, USA

2Department of Applied Mathematics and Statistics, Department of Physics and Astronomy,
and Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Correspondence should be addressed to Brian Broll; brian.broll@vanderbilt.edu

Received 2 June 2020; Accepted 9 September 2020; Published 29 September 2020

Academic Editor: Manuel E. Acacio Sanchez

Copyright © 2020 Brian Broll et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper introduces DeepForge, a gateway to deep learning for scientific computing. DeepForge provides an easy to use, yet
powerful visual/textual interface to facilitate the rapid development of deep learning models by novices as well as experts. Utilizing
a cloud-based infrastructure, built-in version control, and multiuser collaboration support, DeepForge promotes reproducibility
and ease of access and enables remote execution of machine learning pipelines. The tool currently supports TensorFlow/Keras, but
its extensible architecture enables easy integration of additional platforms.

1. Introduction

We are witnessing groundbreaking advances at an un-
precedented pace in Artificial Neural Network-based (ANN)
solutions to application areas ranging from image and
speech recognition to natural language processing to hard-
to-master games such as Go [1-3]. This Machine Learning
(ML) renaissance is driven by a number of factors, including
(1) an increase of several orders of magnitude in the
computational performance of general purpose Graphics
Processing Units (GPUs), (2) the availability of extremely
large pre-labeled datasets (image, audio, or text corpus), and
(3) the discovery of new activation functions and regula-
rization techniques to overcome the vanishing gradient
problem of backpropagation. With the rapid development of
freely available open-source neural network training
frameworks that support novel network topologies and
training techniques (e.g., TensorFlow [4] and PyTorch [5]),
researchers can explore new application areas in the natural
sciences, social sciences, and even the humanities.

While applications of advanced machine learning tech-
niques are emerging in several scientific domains, including
chemistry, materials science, biology, and astronomy, the
barrier of entry for a domain scientist is still very high.
Conceiving an ML solution to a new problem—that is,

choosing a neural network topology, identifying a suitable
training technique, and specifying the hyperparameters for
the training process—is still more of an art than a science.
Although best practices and rules of thumb do exist, one must
rely on past experience, intuition, and trial-and-error ex-
perimentation to achieve success. The significant amount of
contextual mathematical background, the complexity of
setting up and using the various ML software packages, the
lack of tool-based support for systematic exploration of a
design space of parameters and networks, and the difficulty of
moving, labeling, and preprocessing data all add to the list of
obstacles that hinder wide adoption of ML tools in scientific
research.

To address these challenges, we present DeepForge, a
Software as a Service (SaaS) platform with a web browser-
based visual design interface, which elevates the abstraction
of creating ANN workflows and managing training artifacts,
thus enabling domain scientists to more easily leverage
recent advances in machine learning. DeepForge is built on
top of two computing technologies: TensorFlow via Keras
[4, 6] and Model Integrated Computing via WebGME [7, 8].

TensorFlow is a high-performance computing frame-
work for machine learning, including the development of
deep learning models [4]. It supports a large number of
deployment platforms including CPU, GPU, and TPU and

mailto:brian.broll@vanderbilt.edu
https://orcid.org/0000-0003-4549-0333
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8867380

can run on a wide variety of hardware configurations from
clusters to mobile devices. This broad support makes
TensorFlow an ideal backend for the training of deep
learning models and promotes the reuse of existing
computational resources across scientific domains and
organizations.

Model Integrated Computing (MIC) uses models, or
domain-specific abstractions, for the rapid design and de-
velopment of complex systems [7]. The Web-based Generic
Modeling Environment (WebGME) is an open-source MIC
tool suite developed for creating domain-specific graphical
modeling environments [8]. WebGME leverages a number
of modern features such as a browser-based user interface, a
cloud-based infrastructure, integrated version control, and
real-time collaborative editing. MIC in general and
WebGME in particular have been successfully used across a
wide variety of domains.

DeepForge [9] is built on top of WebGME, extending its
standard user interface with custom visualizations and in-
troducing a number of new features. The most important
design goals of DeepForge are to provide an extensible,
integrative architecture and to build a community around
the tool in which users can contribute custom DeepForge
extensions, as well as seamlessly share their work and col-
laborate with one another.

The rest of the paper is organized as follows: Section 2
provides an overview of related works, followed by a brief
discussion on MIC in Section 3, which informs the archi-
tecture of DeepForge as described in Section 4. Infra-
structure integration using DeepForge storage and compute
adapters is discussed in Section 5, followed by a description
of its visual abstractions in Section 6. Domain integration via
libraries/extensions is discussed in Section 8, and Section 9
presents an illustrative example of designing and training a
deep learning model in DeepForge.

2. Related Work

While there are a handful of visual environments available to
data science developers (e.g., RapidMiner [10] and Knime
[11]), as well as tools tailored specifically to deep learning
(e.g., Nvidia’s DIGITS [12], Google’s TensorBoard [4], and
Lobe [13]), DeepForge primarily addresses the challenges of
developing deep learning models while maintaining a high
degree of user flexibility, such as the ability to implement
custom operations in Python and to develop neural network
architectures using any of the layers available in Keras. This
flexibility allows DeepForge to be a valuable tool for solving
increasingly complex problems in both academic research
and industrial applications, promoting the integration of
novel results into production environments.

Both DIGITS and TensorBoard provide support for the
execution of machine learning tasks and include visualiza-
tion utilities to aid in their creation. They also provide web-
based user interfaces for monitoring these executions and
performing model introspection, such as visualizing the
weights of trained layers. Despite these useful graphical
functionalities, neither tools provide extensive support for
the actual process of creating and defining models, requiring

Scientific Programming

instead that machine learning tasks be written in a textual
language (or optionally in Caffe Prototext [14] for DIGITS).

Lobe is perhaps the most similar to DeepForge as it aims
to make deep learning more accessible and understandable
to non-experts by allowing them to design, train, and
evaluate neural networks from the browser. Like DeepForge,
Lobe provides a visual interface to design neural network
architectures with intermediate feedback during training. In
Lobe, users are able to utilize their models interactively from
a browser using data from their webcam and can view the
results in real time. Additionally, Lobe supports exporting
deployable models in the CoreML or TensorFlow formats,
while providing a REST API for interacting directly with
models from within Lobe itself.

Although DeepForge and Lobe share a number of
similarities, there are still significant differences in both their
target audiences and levels of customization. DeepForge
supports collaborative editing and version control while
allowing a higher degree of customization. Users are able to
define custom operations in Python, as opposed to only
allowing modification of a fixed number of exposed settings.
This allows users to customize the intermediate feedback
from operations to include custom plots and images. Ad-
ditionally, execution is more loosely coupled in DeepForge,
as training a model will result in the creation of a new
execution instance (of which multiples can be created and
executed simultaneously) rather than executing the single
definition of a given model.

Unlike existing deep learning platforms, DeepForge
facilitates reproducibility and collaboration throughout the
entire development process. Reproducibility is promoted by
ensuring that both the code and data for a workflow can be
recovered (described in more detail in Section 7), while real-
time collaborative editing capabilities, coupled with ad-
vanced versioning features, support enhanced collaboration
among users.

3. Model Integrated Computing

Model Driven Engineering (MDE) and a related technique
called Model Integrated Computing (MIC) are being applied
to an increasing number of domains. MIC advocates the use
of visual Domain-Specific Modeling Languages (DSMLs),
relying on a tool infrastructure configured automatically by
metamodels [15]. In turn, the user builds system models
using the DSML, the models are analyzed by various built-in
analysis tools, and finally, various artifacts such as config-
uration files, database schemas, and/or executable code are
generated from the models automatically.

The metamodeling language consists of a set of ele-
mentary modeling concepts which constitute the building
blocks of all derived modeling systems and corresponding
tools. A meta-metamodel defines these fundamental con-
cepts, which include composition, inheritance, associations,
attributes, and others. The choice of which concepts to
include in the modeling language, how to combine them,
and how to operate on them are the most important design
decisions that affect all aspects of the infrastructure and the
domains that will use it.

Scientific Programming

The Generic Modeling Environment (GME) [15], an
open-source desktop application created to support MIC 20
years ago, has been applied successfully to a broad range of
domains from medicine to manufacturing [16, 17]. A recent
trend in computing is to move away from desktop tools
toward cloud- and web-based architectures for better scal-
ability, maintainability, and seamless platform support. The
latest-generation GME toolsuite follows this trend and is
called WebGME [8]. It is a web-based cyberinfrastructure
that supports collaborative modeling, analysis, and synthesis
of complex, large-scale information systems. The primary
design goal of WebGME is to better support the modeling of
highly complex systems, with features targeted specifically
for this purpose including collaborative editing, similar to
Google Docs, and a Git-like database backend to support
model version control. WebGME also introduced a number
of novel abstractions to support the scalability of complex
system models.

As an example, consider Figure 1 that depicts the
metamodel of a simple hierarchical signal flow (SF) graph on
the left and an example SF domain model on the right. The
metamodel shows that Compute nodes, SignalPorts, and
Flows are all derived from a single built-in base class called a
First Class Object (FCO). Compute nodes can contain other
Compute nodes, enabling hierarchical decomposition.
Compute nodes can also contain SignalPorts representing the
data interfaces of their parents. The src and dst pointer
specifications from Flow to SignalPort specify a relationship
between two SignalPorts, which will then be shown as a
connection in the DSML, i.e., a signal flow graph. DeepForge
uses similar concepts under the hood, but the default
WebGME visual editor has been replaced with one that
better fits the domain of scientific workflows.

4. Architecture

DeepForge was designed from the ground-up as a modern
web application built on top of WebGME. Its high-level
system architecture is shown in Figure 2. This includes a
Node]S server, MongoDB database, and browser-based
client implemented as a single page application providing
core functionality.

Export capabilities and a REST API facilitate extensi-
bility and integration with external applications. Further-
more, the architecture includes adapters for both external
compute and storage resources, specifically designed for
integration with existing cyberinfrastructures. This is dis-
cussed in detail in Section 5.

The DeepForge server hosts the platform, performs neural
network model analyses to allow the environment to provide
visual feedback about model dimensionality and validation, and
manages interactions with all other aspects of the system. The
project code and visual models are stored in MongoDB whereas
any associated artifacts, such as training data or trained models,
are stored using a “storage adapter.” Associated artifacts can
either be created from an operation or uploaded manually.

When performing a computation such as training a
model in DeepForge, the server first generates the corre-
sponding code for the given pipeline. This code contains all

of the relevant logic necessary to perform the given oper-
ation, including any metadata about associated artifacts that
will be either fetched using a storage adapter or retrieved
from a local cache. After generating the relevant code, it is
then delegated to a connected computational resource for
execution (discussed in Section 5). During execution,
standard output and any other generated feedback, such as
plots, are captured, and updates, are sent back to DeepForge
where the user’s project will be updated accordingly.

Along with facilitating the development process when
designing and training neural networks, it is also important
to support users in exporting their work for use outside of
DeepForge. In addition to exporting complete final models,
it is also helpful to allow users to export modular compo-
nents of their models, such as specific neural network ar-
chitectures or a single operation. This gives users the
freedom to selectively experiment with different aspects of
the platform and promotes interoperability with other tools
and environments.

DeepForge has also been designed to support integration
with other external tools via a REST API. Although in-
complete, this will enable domain experts to script common
tasks such as creating new architectures, executing machine
learning pipelines, and retrieving artifacts such as trained
models and datasets. Providing a flexible interface for
scripting also enables collaboration between users with
vastly different toolset preferences, as the effects of scripts
will be reflected in the visual interface and vice versa. This
allows collaborators using external scripts and users inter-
acting with the web-based interface to both benefit from the
integrated version control and collaborative capabilities of
the underlying platform.

5. Infrastructure Integration

DeepForge is a “Software as a Service” (SaaS) solution
whereby all users share the same WebGME backend for
model storage. It does, however, externalize its computa-
tional infrastructure, where time- and resource-consuming
training tasks are executed, as well as the storage of all
training data. As such, users must provide their own
computational resources, which will be utilized by Deep-
Forge to deploy training jobs, and specify the storage lo-
cations of any external training data. To make use of these
resources, DeepForge must know what kind of computa-
tional specifications are available to the user and their
corresponding access mechanisms and any required user
access credentials, as well as information about the resources
available to store the outputs of a given task, including
trained model weights. Access to both computational and
storage resources is achieved through use of compute
adapters and storage adapters.

5.1. Compute Adapters. Compute adapters enable Deep-
Forge to be used as a design environment for applying
machine learning to a given problem while ensuring that
users are able utilize an existing compute platform. They
expose a common interface which enables execution of

@ akos/tmp x

€ - C [@ https//editorwebgme.org/?project=akos%2Btmp&branch=masters

Scientific Programming

cior? 7| O H =

Fy%2F28&visualizer=METAAspec

Q (4]

': GME » akos/tmp » master
o- ¢ N a ® >
+ = META @ Helpers @ -
FILTER
Q 1« Qi
< aspecTs

I L

DataWrite

~
3 @

Dataread

@ -

!
(S
=

+ ASPECTS

SignalPort %] o

+ ASPECTS

+ ASPECTS

I Vandesbilt University 151 webgme@latest

INSYNC NOTIFICATIONS[0] CONNECTED

o W=D

FiGure 1: Hierarchical Signal Flow Graph metamodel (left) and domain model (right).

O ﬁ
O External
tools
Collaboration ¢ ¢

Rest API

Browser

DeepForge

Deploy

Web service,
container,

export .
script

T
_»D
I
[]

OO0

Data adapter Job manager

PBS, SLURM
Data i
HDFS, HDF5, Amazon EC2,
CEPH,SWIFT | ¥ | OpenStack,
private cluster

FIGURE 2: DeepForge architecture.

machine learning pipelines on a variety of external compute
resources. An adapter must provide a set of core func-
tionality, including job management and feedback, but may
also include definitions for custom configuration informa-
tion and a GUI for monitoring the compute resources.
Support for custom configurations is vital to supporting
more sophisticated compute infrastructures. For example,
some infrastructures may allow the user to target specific
machines or clusters upon which to launch a given job.
Adapters are designed to be simple to ensure support for
many different computational resources. They are currently
only responsible for execution of the individual jobs in a
pipeline; creation of job files and orchestration of the

individual jobs are managed by DeepForge. Optional del-
egation of pipeline orchestration to the compute adapter (if
supported by the underlying compute infrastructure) is
planned for the future. Currently, compute adapters are
available for SciServer [18], on-server execution, and per-
sonal local machines.

5.2. Storage Adapters. It is quite common for scientific
disciplines to have a variety of existing datasets and storage
infrastructures. As such, DeepForge provides capabilities for
integrating these resources via storage adapters. As expected,
storage adapters provide a common interface to interact with
artifacts associated with a DeepForge project, such as
datasets or pretrained network weights. As with compute
adapters, storage adapters may also specify the configuration
parameters necessary to interact with a given data set, such
as authentication information for the target storage
infrastructure.

To facilitate the integration of data from a variety of
sources, storage adapters are specified for each artifact in a
given project. As a result, a single project may incorporate
data from many different storage locations. Existing storage
adapters enable integration with SciServer Files or with any
object store having an S3-compatible API

6. Visual Abstractions

The primary goal of DeepForge is to make machine learning,
specifically deep learning, more accessible to those in the
natural sciences with limited experience with neural net-
works. To this end, DeepForge utilizes multiple modalities
during project creation: a visual interface for designing
workflows using pipelines, and a textual interface for
implementing individual operations in the given workflow.
(Note that a comprehensive library of common operations is
provided by DeepForge, so only application-specific custom
computations need to be implemented in a traditional
programming language, such as Python). Using these
multiple modalities, users are able to define their scientific
workflows in an extensible visual modeling language which

Scientific Programming

can then be deployed on their own cyberinfrastructure.
Furthermore, extension of the modeling language provides
for rich integration into many scientific domains through
creation and incorporation of additional modeling tools
tailored specifically for that domain.

6.1. Core Modeling Language. DeepForge provides a core
modeling language for designing scientific workflows. This
visual modeling language consists of four main concepts for
testing and training machine learning models: Pipelines,
Operations, Executions, and Jobs. The formal specification of
these concepts is given in Figure 3(a). Concrete machine
learning concepts are provided via custom domain inte-
grations called libraries, discussed in detail in Section 8.

Operations are atomic functions that accept one or more
named inputs and return one or more named outputs.
Attributes can be defined for an operation at design time,
providing adjustable parameters. At runtime, an operation’s
attributes are provided as constants to the operation. Op-
erations can also define references which, like attributes, are
specified at design time. A reference is a pointer to another
artifact, such as a neural network architecture.

A Pipeline represents a machine learning task composed
of operations, such as model training, testing, or data
preprocessing. Operations are built by directing the output
of a single operation, represented as a port, into the input of
one or more other operations. That is, these operations can
form acyclic data flow graphs. Pipelines can also contain
Input and Output operations that represent the input and
output data for that pipeline. That is, the Input operation is
an initial node in a pipeline, and the Output operation is a
terminal node.

Figure 3(b) shows an example of a pipeline with four
operations. The first operation downloads and prepares
training and testing sets from the MNIST dataset [19]. The
training data is then provided to the “Train” operation
which is parameterized by a batch size, number of epochs,
and a reference to the neural network architecture.
Clicking the blue icon at the top right of the operation
enables the user to view and edit the implementation of
the operation and can be used to expose more parameters
or extend the operation to perform a hyperparameter
search (Pipelines cannot contain cycles so tasks such as
hyperparameter optimization must be implemented
within a single operation (like recurrent layers in neural
network frameworks)). The “Train” operation produces a
trained model and passes it to the “Output” and
“ScoreModel” operations. The “Output” operation saves
the model back to DeepForge and the “ScoreModel”
operation evaluates the trained model on the testing data
from the first operation.

Running a pipeline results in the creation of an Exe-
cution. A pipeline’s execution is an acyclic data flow graph
that is isomorphic with the graph of the originating pipeline.
This graph is created by converting each of the pipeline’s
operations into a Job that corresponds to the original op-
eration combined with its execution status and metadata
(such as plots generated during the execution).

7. Interactive Editing and Data Provenance

DeepForge was designed to ensure reproducibility while also
promoting accessibility to deep learning. To that end, data
provenance is captured in a way that supports the type of
iterative exploration found in ubiquitous environments like
Jupyter Notebook. This ensures that reproducibility, which
guarantees that the code and data for workflows can be
recovered, is not achieved at the expense of ease of use of the
environment. This section presents the design of Deep-
Forge’s interactive editing capabilities, followed by a de-
scription of its support for data provenance in Section 7.2.

7.1. Interactive Editing. Constructing machine learning
pipelines can be an effective abstraction for promoting re-
usable components and executing long-running tasks.
However, this approach can be inconvenient for simple,
exploratory tasks where quick, immediate feedback is pre-
ferred. Interactivity and immediate feedback have already
proven to be powerful mechanisms for promoting accessi-
bility, as evinced by their success in both novice pro-
gramming environments and common data science
environments. The ability to reconstruct an entire history in
the form of a pipeline from an artifact makes a compelling
case for the interactive, implicit construction of pipelines.
Interactive editing in DeepForge is supported through the
introduction of “interactive compute sessions,” along with
visual editors.

An interactive compute session is a connection to a
compute resource which can be used for immediate exe-
cution of arbitrary commands and is a simple extension of
the existing compute infrastructure. Using compute
adapters, a custom job is created which establishes a web-
socket connection to the browser (proxied through the
DeepForge server). A bidirectional communication channel
supports a relatively simple API which includes importing
artifacts or files into the session and spawning processes.
Similarly to Jupyter Notebook, the underlying job only
executes a single command at a time.

Using the interactive compute capabilities, visual editors
can inspect and create artifacts. However, arbitrary inter-
active editing and code execution can make reproducing
workflows difficult. Furthermore, we would like to enable
the creation of the provenance of an artifact as an executable
pipeline (discussed in Section 7.2). To this end, we introduce
the concept of an ImplicitOperation as shown in Figure 4.

ImplicitOperations are created and edited by visual ed-
itors. An ImplicitOperation is a type of task that can be
represented as an Operation (from Figure 3) which could
then be used in a pipeline. For example, the PlotTensors node
(shown in Figure 4) represents a task which, as the name
suggests, creates plots of tensors which can certainly be
implemented as an operation. Introducing the concept of an
ImplicitOperation enables the PlotTensors node to use the
most appropriate modeling concepts for its representation.
Requiring the visual editors to interact directly with Oper-
ation nodes would restrict them to a format that is con-
venient to execute but cumbersome to create.

6 Scientific Programming

Operation £ Job &}

+ ATTRIEUTES + ATTRIBUTES

code: string debug: boolean

condaEnv: string 11 execFiles: asset

displayColor: string executionld: string

lineOffset: string jobinfo: string

+ CONSTRAINTS | status: string

[4 + CONSTRAINTS
+ ASPECTS

11 11 0.
Inputs ¥ Outputs ¥
+ ATTRIBUTES + ATTRIBUTES
s caniranies 1 Ao
+ ASPECTS & ASPECTS Execution & GetMNISTData
Pipeline &3] f 4 + ATTRIBUTES
+ ATTRIBUTES P d"i‘\ arifin string
m 5 = executiohs .
,',h,u,'!‘,bf‘f','[,,,sfr,":':",-—l Data ? endTime: integer
Clom Lt " | executionld: string
e + ATTRIBUTES 3
createdAt: integer boolean .
data: userAsset starfTime: integer Train
type: string status: string batch size:
+ CONSTRAINTS tagname: _string epochs:
+ ASPECTS A ConaTRAINTE model:
+ ASPECTS .
0.+ dst(src
Transporter £}
o
+ ATTRIBUTES
el ScoreModel

(b)

FIGURE 3: Modeling language used for specifying scientific workflows. (a) Formal specification of the language (the metamodel). (b) An
example workflow training an image classifier on the MNIST dataset.

Operation £}
+ ATTRIBUTES
code: string ImplicitOperation £ WithProvenance 3|
condaEnv: string e - + AT + ATTRIBUTES
OPETAHON _ |-~ e
s DIOVENAance |+ CONSTRAINTS
+ " ASPECTS " 4 34 myModel
i i 4 [l ExecutedJob
i : 4 1 Train
PlotTensors £} Job £ Data & E+3 a4 f‘ Inputs
+ AT + AT + AT + AT f
4+ CONSTRAINTS | [+ CONSTRAINTS createdAt: integer @y id: integer 2 I data
+ AsPECTS + mseects data userAsset| |+CONSTRAINTS 4 [l Executeddob
e: strin + ASPECTS
i - 14 GetMNISTData
+ ASPECTS u Outputs
(a) (b)

FIGURE 4: Aspects of the modeling language capturing provenance. (a) Formal specification of data provenance in the metamodel. (b)

Recorded provenance of the image classifier trained in Figure 3(b

The ImplicitOperation abstraction is very powerful in this
context as it enables the creation of custom editors which define
the appropriate higher-level abstractions to solve a given task.
These visual editors can then present the most suitable modality
and visualization techniques to interact with the given con-
cepts. Upon saving the data, an instance of the corresponding
ImplicitOperation type is created and stored as the data’s
provenance. The given node can then be mapped onto an
executable operation which ensures that the workflow can be
reproduced. This enables the user to first interactively proto-
type a single solution and then automatically generate a
pipeline to be generalized for broader application.

Figure 5 shows an example of interactive editing in Deep-
Forge with a simple editor for exploring a dataset. In this example,
spectral input data is being explored for a regression problem in
which the original inputs have been reduced to 3-dimensional
representations using t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [20] and then color-coded by their ground truth

)

labels (see Section 9). In this case, the data appears to have 4
outliers, and there is not an obvious pattern in the original input
space (aside from a slight dark “tail” at the bottom of the cluster).

This example enables users to import arbitrary artifacts
into the current session and then explore various aspects of
the data. It was designed to help users gain insight into their
data and detect potential issues such as class imbalance
quickly. Generated plots include provenance information;
this ensures that the same plotting operation can be repli-
cated and generalized to other datasets. This enables users to
implicitly construct a workflow through interactively editing
a concrete example. Once the user is satisfied with the re-
sults, the implicit workflow can be reified and generalized.

7.2. Data Provenance. Automatic version control is
inherited by DeepForge from WebGME, ensuring that any
historical version of a project can easily be reloaded or

Scientific Programming

deepfirge » redshift > master > embedded

HOME ' embedded
¥ EMBEDDED
o Title

Original Feature Space (

i |

X Axis Label

&

Y Axis Label

it

Plotted Data

Galaxies SR

Avalilable Artifacts
combined_dataset Available
new_dataset ®
embedded_features
embedded Available

embedded_features 1500 ®

+ -m

Original Feature Space (reduced to 3D using tSNE)

©

INSYNC' NOTIFICATIONS [0] [CONNECTED

FiGure 5: Example of interactively exploring the dataset used in Section 9. Generated data or plots are saved with their data provenance to

ensure the workflow can be reproduced.

forked. DeepForge builds upon these existing capabilities to
enable detailed provenance information for individual ar-
tifacts within a project. Although integrated version control
ensures that the data is available somewhere in a historical
version of the project, the extension of provenance ensures
that the history of an individual artifact can be recovered
without searching the project history. As both of these
features automatically track data as well as code, the re-
producibility of experiments is established by ensuring that
the workflow producing any given artifact can be recovered.
Furthermore, when combined with interactive editing, this
enables a powerful approach to experimentation via inter-
actively prototyping and then generalizing the workflow
used for the initial prototype. That is, an initial prototype can
be created interactively and then the provenance of the
prototype can be reified as a pipeline and generalized.
Provenance is added to the modeling language through a
simple extension of the core concepts presented in Figure 3.
This extension defines the central abstractions used for
recording provenance, and these abstractions then form the
building blocks from which the entire history of a given
artifact can be reconstructed. Copies of the data itself are not
stored; in the case where the initial data has been deleted, the
reconstructed history will simply specify this as an unset
input to the pipeline. When data is generated in DeepForge,
such as during pipeline execution and interactive editing, the
provenance for the newly created data is automatically
stored in DeepForge’s representation of the generated data.
At a high level, data provenance is captured in the
modeling language through the introduction of a general
concept used to represent pipeline operations or edits made
via interactive editing. This concept is referred to as an
ImplicitOperation, shown in Figure 4. It is used to record
how data in DeepForge was created and is self-contained;
any required data inputs or references are contained entirely

within the given node. In turn, the data inputs also will
contain a record of their own provenance ensuring that the
entire provenance is captured for a given artifact.

Implicit operations can also be converted into executable
operations. As a result, data provenance is not only a record
of the history of a given artifact but can be transformed into
an executable pipeline, thus enabling prototypical general-
ization while facilitating reproducibility and tinkerability.
An example artifact with recorded data provenance is
presented in Figure 4(b). This figure shows the containment
hierarchy of myModel, a trained neural network model
produced from the pipeline presented in Figure 3(b). The
trained model was created by executing the Train job. This is
shown in the figure by the contained implicit operation
ExecutedJob which in turn contains a snapshot of the
originating operation. The Train operation contains a single
input, data, which was generated from the GetMNISTData
operation as evident by its contained provenance nodes.

8. Domain Integration via DeepForge Libraries

One important design decision that enables better inte-
gration of other domains into DeepForge lies in the in-
troduction of DeepForge libraries. A library is an extension
which enables users to introduce custom tooling and domain
concepts, or resources, into their workflows. For example,
new neural network frameworks can be integrated into
DeepForge using libraries.

The introduction of a new resource into DeepForge
requires three main components: a formal specification of
the resource, mechanisms for user creation and manipu-
lation of the resource, and mechanisms for computational
usage. To this end, a DeepForge library consists of a met-
amodel, an editor, a code generator, and optional initiali-
zation logic, if required. The metamodel is a specification of

the domain concepts and their relationships, and it defines
the domain-specific modeling language provided by the
library. The editor defines a method of interaction with the
resource which can be used to provide validation and
feedback during design time. Additionally, the editor can be
used to enforce other domain constraints such as ensuring
that the constructed domain model is a directed acyclic
graph. Editors may include any combination of visual and
textual components, allowing the domain extension to le-
verage the most appropriate modality for a given task.

Along with a metamodel and editor, libraries must define
a code generator. For example, in a library adding support
for defining neural network architectures, the code gener-
ator maps the architecture to the source code that imple-
ments a necessary computation. This enables the resources
provided by the library to be converted into Python code and
then used by any referencing operation.

Finally, a library can also define custom initialization
logic for the provided resources to be executed before any
of the subsequent operation tasks. One common use-case is
the need for defining custom serialization logic. This
may be the case when the provided resource requires
multiple steps before it can be serialized or deserialized
appropriately.

This decoupling of the resources and pipeline concepts is
very powerful both for supporting rich integration with
scientific domains and also for enabling integration with any
number of deep learning frameworks. This makes Deep-
Forge agnostic to the deep learning framework of choice and
allows it to easily be extended to support many different
frameworks.

8.1. DeepForge-Keras Library. Currently, deep learning in
DeepForge is supported through the DeepForge-Keras li-
brary. This library provides a rich modeling language for
defining neural network architectures using Keras and is
designed to lower the learning curve for new users while still
providing valuable support for more experienced users.

The metamodel specifies the modeling concepts for
defining neural network architectures using DeepForge-
Keras. This includes both abstract core concepts as well as
specific layer definitions. The core concepts consist of Ar-
chitecture, Layer (including concepts representing layer
inputs and outputs), and concepts for different types of
functions such as activation and regularization. The formal
specification of these core concepts is presented in Figure 6.

As shown in the metamodel, neural network architec-
tures contain a set of input and output layers. Each layer
contains a set of inputs consisting of LayerInput nodes which
correspond to arguments accepted by the layer during in-
ference or training time. Similarly, LayerOutput nodes are
used to represent the outputs produced by the layer. Layers
are connected by adding a reference from an output of the
preceding layer to an input of the subsequent layer in the
neural network. As DeepForge-Keras provides its own vi-
sualizations, this relationship can then be depicted as a
connection between layers.

Scientific Programming

The majority of the metamodel consists of concrete layer
definitions for the many supported layer types in Keras. As
manually updating the metamodel to contain these defini-
tions would be tedious, the metamodel is generated pro-
grammatically by parsing the Keras source code. Figure 7
shows the generated formal specification for the Dense layer
alongside an instance.

As shown in the figure, configurable parameters that
reference a function, such as initializer or activation func-
tion, are defined as pointers in the metamodel. When editing
an instance from the visual editor, these references can be
modified in a similar fashion as primitive values. Further-
more, layers also contain additional metadata in the form of
(1) documentation and (2) the argument order to the
constructor, stored in the docstring and ctor_arg order at-
tributes, respectively.

Code generation capabilities are included in which
Python code is synthesized from the user-defined
specification of the neural network architecture. As the
library supports customization of activation functions,
two-step serialization is required for the resultant
models.

During deserialization, any custom activation functions
are first deserialized followed by deserialization of the Keras
architecture itself. The library initialization code defined by
DeepForge-Keras then registers these serialization methods
for Keras models within DeepForge.

Additionally, DeepForge-Keras contains a visual editor
for designing neural network architectures which provides
rich feedback to support both novice and experienced users.
Documentation about individual neural network layers and
layer arguments is generated automatically from the Python
source code, which is also used to generate the Keras official
documentation.

Interactive feedback is also given to the user with respect
to dimensionality information and errors encountered
during construction of the neural network architecture. An
example of error feedback is shown in Figure 8.

9. Illustrative Example

Machine learning and, in particular, deep learning, have
recently succeeded in achieving state-of-the-art performance
on varjous tasks in astronomy. There is a great deal of in-
terest amongst the astronomical community in various
powerful learning models, especially given the exponential
rise in quantity and quality of available data. Redshift es-
timation, a task which is traditionally very time- and re-
source-intensive, is one problem that has seen noteworthy
improvement through the use of deep learning methods
[21].

In this section, we present an example demonstrating
how DeepForge can be leveraged to create, train, and vi-
sualize redshift predictions for a Photometric Redshift Es-
timation Model [21] using a deep-convolutional neural
network and images from the Sloan Digital Sky Survey
(SDSS). The example performs the following steps to curate
the dataset and train the neural network:

Scientific Programming 9
LayerData £}
+ ATTRIBUTES
0.* | + CONSTRAINTS
|+ aspects |
Architecture £¥ Layer & A
+ AT Supus 0.7+ ATTRIBUTES [
|+ constramTs Lo ipuic [71+ consrams |7 Layerinput £} LayerOutput £
+ AspECTS - [+ “aspecTs inputs 0.7+ ATTRIBUTES AT
|+ consrants | T consmanTs |
+ ASPECTS + ASPECTS
outputs
Fo C i Fol Activati InitializerFunction T
= ATTRIBUTES = ATTRIBUTES B AT B ATTRIBUTES
[+ CONSTRANTS | |- + consmranTs | |- + constramTs | |- 4+ cONSTRANTS |
[+ aspects | |- P aspecTs | |- + mseects PO ASPECTS |

FiGgure 6: Core concepts in DeepForge-Keras modeling language.

1
. Dense
1 A
ConstraintFanciion T [l units: : <none>
Dense {¥| + ATTRIBUTES 1 bias_constraint: <none>
[+ ArBUTES H—vm——o— N oo -
;ﬂ . ::»mm %) 4+ CONSTRAINTS : kernel_constraint: <none>
! - - + ASPECTS
docstring: string : <none>
wits: string . <none>
use_bias: string lkernel_regularizer 1 <none>
+ CONSTRAINTS 1 izer: Zeros x
+ ASPECTS 1 AT o v
lbias_rbgularizer 1 ke:lnelglmtlallzer. glorot_uniform x
- - [l activation: <none>
Ikernel_initiaizer RegularizerFunction & '
- + ATTRIBUTES 1
jBetivity TEQUAIIZET] L™ CoNSTRAINTS 1
+ ASPECTS
(a)

FIGURE 7: An example of the formal specification for a neural network layer in Keras alongside an instance of the given layer. (a) Formal
specification for a neural network dense layer and (b) an instance of the dense layer.

MaxPooling2D

Negative dimension size caused by subtracting

2 from1 for ‘layer5/MaxPool’ (op: ‘MaxPool’)
with input shapes: [?, 1, 1, 64].

FiGure 8: Design-time error feedback in the DeepForge-Keras
editor.

(1) Query the CasJobs server [22] for galaxies that have
redshift values between 0 and 0.4.

(2) From the query results, obtain the download URL for
FITS files of images in each of the five spectroscopic
bands captured by SDSS for each galaxy and then
download the images.

(3) For every galaxy with images in the five bands,
resample each image around the galactic centers to

(64 x 64) pixels and combine images of each band
into a (64 x 64 x 5) datacube.

(4) Provide these datacube images as inputs to a stacked
inception network, and train this network to predict their
redshift values using cross-entropy loss. At inference time,
the mathematical expectation of the output probability
distributions is used for the redshift value, as in [21].

In this example, we first define the architecture of the
neural network using functionality provided by DeepForge-
Keras. We then discuss the individual operations defined in
Python, corresponding generally to the enumerated steps in
the training procedure. Finally, we present the composition
of these individual operations in a machine learning pipeline
and discuss their evaluation.

9.1. Model Architecture. This example uses a deep-con-
volutional neural network similar to the architecture used in
[21]. The network starts with a convolution layer that takes
an input image of size 64 x 64 with 5 channels, followed by
an average pooling layer using a 2 x 2 kernel. The output of
the pooling layer is then passed to an inception module [23]
as shown in Figure 9. The output from one inception block is

10

Scientific Programming

AveragePooling2D
|
|
- ---------+ - - - - - - - - —- ?
I
]
I
| Conv2D \
I
I
I filters: 48 :
: kernel size: (1,1) :
: strides: <none> I
I padding: same :
: data format: None :
} dilation rate: <none> |
. I
Conv2D Conv2D ' EE
| bias_constraint: <none> :
: kernel_constraint: <none> |
1 activityiregularizer: <none> :
: bias_regularizer: <none> I
: kernel_regularizer: <none> :
I bias_initializer: Zeros x :
: kernel_initializer: glorot_uniform x 1
: activation: linear x :
I
} I
b el v
PReLU Conv2D PReLU PReLU
Conv2D AveragePooling2D Conv2D
PReLU PReLU 4 PReLU
L | |
2 1 3
Concatenate

HOME | Trainvalidate

i N A

i

FIGURE 9: An inception module.

Operation Interface Environment

TrainValidate

‘model
®---®
bachsze: 32
1
New Attribute

'S

INSYNG) NOTIFICATIONS (0] (CONNECTED!

F1GURE 10: Code/Interface editor for the operation TrainValidate. The left side shows the Python code to train a model, plot losses for each
epoch (implemented via Keras Callback), and returns the model weights upon completion. The right side shows the operation inputs (the
dataset and the model), outputs (model weights), and attributes (epochs, batch size).

Scientific Programming

successively passed to similar inception blocks (with varying
filter size, kernel size, and strides for each block), and the
final classification is performed using a fully connected layer
with softmax activation.

Figure 9 shows the first inception block presented in [21].
The block consists of six 2D convolution layers. The input to the
block comes from the AveragePooling layer shown at the top
of the figure. Integer labels correspond to the ordering of the
inputs to the subsequent layer and can be seen with the inputs to
the Concatenate layer. The attributes of a specific layer such as
the activation function, regularization, and constraints, among
others, can be modified by clicking on the layer (as shown in the
top right Conv2D layer in Figure 9). The full model consists of
five different inception blocks stacked together.

9.2. Operations. 'The major operations used in this machine
learning workflow are described below. The first three op-
erations are used for fetching and preprocessing the dataset.
The next operation is used for training the neural network,
and the final three operations are used for visualization,
dimensionality reduction, and manual verification. Detailed
descriptions of the individual operations are given below:

(a) CasJobsQuery: CasJobs [22] is a MySQL-like in-
terface to the metadata in SDSS images which
provides a Python API to perform queries and
download query results in the desired format. The
CasJobsQuery operation is a simple operation that
takes a query string and performs the query in
CasJobs. Upon successful completion of the opera-
tion, the results of the query are passed as the output
of the operation.

(b) DownloadFits and Preprocess: In order to download
the images in the FITS format, we utilize the artifact
generated by the CasJobsQuery operation, which
provides the location for the FITS files for the galaxy.
After downloading the FITS images, the preprocess
operation is applied according to the metadata
generated by the query for the galaxy by the Cas-
JobsQuery operation. Together, these operations
ready the dataset to train the neural network using
the architecture presented in Section 9.1.

(c) TrainValidate: Given a neural network architecture
and a dataset, this operation trains a neural network
and plots the training loss. In this example, the
dataset is the preprocessed image files from Sci-
Server, and the neural network architecture is the
aforementioned deep-convolutional neural network.
After training is complete, the trained neural net-
work weights can be saved as an artifact or passed
along to a subsequent operation.

(d) VisualizePredictions: After the training is complete,
this operation is used to visualize the predictions for
a few of the inputs for manual verification. Specif-
ically, this operation will select five inputs and plot
the softmax outputs for the given inputs to be
compared with the ground truth values.

11

(e) ReduceDimensions: This operation runs t-Distrib-
uted Stochastic Neighbor Embedding to perform a
dimension reduction on the inputs and is used to get
a 3D embedded representation of the dataset’s
learned features for visualization.

(f) VisualizeEmbeddings: This operation generates a 3D
scatter plot of embeddings produced by the
ReduceDimensions operation, color-coded based on
the original dataset labels/error values.

DeepForge provides a Python interface to write custom
operations that can leverage the architectures, artifacts, and
other assets in a project. For example, the DeepForge-Keras
neural network training process may take a number of
approaches, including using different learning rates and
optimizers, implementing an early stop, or reporting epoch
metrics via Keras Callbacks, among others. Since the op-
erations are defined in Python, it is straightforward to
customize them to fit specific pipeline and project needs.
Figure 10 shows the TrainValidate operation (described
above) in a built-in text editor side-by-side with its graphical
representation in DeepForge.

9.3. Pipeline Design and Evaluation. As shown in
Figure 11(a), we connect the operations described in Section
9.2 to form an end-to-end training pipeline. These opera-
tions can be reused by providing different inputs each time
we want to run a different execution for the pipeline. The
operations TrainValidate and VisualizePredictions use the
neural network architecture described above.

This example trains the model with 10,000 images for 10
epochs. Considering the number of images, the redshift
values between 0 and 0.4 are divided into 32 distinct bins.
Cross-entropy loss is used to train the network to predict the
correct bin for each image. This results in the execution
shown in Figure 11(b) where each job is color-coded based
on its state of execution. In the figure, CasJobsQuery,
DownloadFits, and Preprocess have completed, and Train-
Validate is currently training the neural network. Although
the execution can be monitored in DeepForge (as shown in
Figure 11(b)), the actual computation is performed on a
compute infrastructure using compute adapters as discussed
in Section 5.

In this example, TrainValidate generates two distinct
metadata during execution: console logs and a plot of the
training loss. Figure 12 shows both forms of feedback during
execution of the given job. The graph remains visible and
updates as the job executes. In this case, it is updated after
each training epoch.

Both forms of feedback shown in Figure 12 follow
standard Python conventions and promote portability of the
operation implementations to execution outside of Deep-
Forge. The plot is implemented using matplotlib from within
the TrainValidate operation. Execution of the operation
within DeepForge results in the creation of the interactive
plot shown in Figure 12 (through use of a custom matplotlib
backend). If executed outside of DeepForge, such as from the
command line or in a Jupyter notebook, the plot would be

12

CasjobsQuery

DownloadFits

Preprocess

TrainValidate

VisualizePredictions

(a)

Scientific Programming

CasjobsQuery

DownloadFits

TrainValidate

/

(b)

FiGure 11: Training pipeline and its execution. The complete training pipeline is shown in (a). Execution of the pipeline is shown in (b). Jobs
are color-coded by their execution status. Green jobs have completed, yellow jobs are currently running, and grey jobs have yet to run.

> Console [EeZEEIZN Training loss

Loss

1 15 2 2.5 3
Epochs

FIGURE 12: Real-time feedback for the TrainValidate job. A plot of the

shown on the right.

generated appropriately for the given environment without
any changes to the operation’s implementation. This ensures
that the logic for the operation is also portable, as exported
pipelines can simply use the appropriate matplotlib backend
and behave as expected automatically in the new execution
environment.

After 10 epochs of training, we use the trained model to
predict the redshift values for the given galaxy images. As the
model was trained on a classification task, inference is
performed by first predicting the probability distribution for
the 32 bins used in training and then computing the ex-
pected value of this distribution. Figures of the probability
distributions are generated in the VisualizePredictions job
for manual evaluation. One of these images is shown in
Figure 13.

The learned features from the neural network for each
galaxy are visualized using the VisualizeEmbeddings job by
designing a pipeline that takes the learned weights (saved as

loss during training is shown on the left, and the console output is

an artifact) from the Train pipeline to run the neural network
in inference mode and calculate the error in redshift pre-
diction for each galaxy, which forms the basis for color-
coding the embeddings of the dataset. This is shown in
Figure 14. The 3D embeddings of the dataset are obtained by
ReduceDimensions.

This example demonstrates how DeepForge can be
used to design a convolutional neural network using the
visual editor, as well as how to develop custom operations
in Python for fetching and preprocessing the dataset. The
example also demonstrates the construction of an entire
end-to-end pipeline and execution on a connected
cyberinfrastructure through the use of compute and
storage adapters. Monitoring of real-time feedback is also
shown, including the use of matplotlib to provide a fa-
miliar, portable API for creating custom figures during
execution.

Scientific Programming

11----- 09

0.5

Likelihood

Predicted redshift values

0.1 0.2

0.3

Redshift value (actual: 0.104; predicted: 0.0912)

—e— Predicted redshift
—— Softmax output
—e— Redshift value

(a)

0.5

Likelihood

\

®

Predicted redshift values

0.1 0.2

—e— Predicted redshift
—— Softmax output
—e— Redshift value

(c)

0.3
Redshift value (actual: 0.0783; predicted: 0.0686)

Likelihood

Likelihood

13

Predicted redshift values

0.5

0.1 0.2 0.3
Redshift value (actual: 0.153; predicted: 0.107)

—e— Predicted redshift
—— Softmax output
—e— Redshift value

(b)
Predicted redshift values

0.1 0.2 0.3

Redshift value (actual: 0.0813; predicted: 0.0603)

—e— Predicted redshift
—— Softmax output
—o— Redshift value

(d)

FIGURE 13: Visualization of the redshift probability distribution for four random galaxy images generated by the VisualizePredictions job.

The probability distribution is generated from the neural network architecture, and support is given by the 32 bins over the range of redshift
values. The predicted redshift value is the expected value of this probability distribution.

Learned features (color-coded by error)
15

10

(a)

-15

Learned features (color-coded by error)

[AS
Y

>

FIGURE 14: Visualization of dataset embeddings using VisualizeEmbeddings. Flipped (along the horizontal direction) views of the 3D plot of
the embeddings (color-coded by error values where darker points have smaller error values) are shown in (a) and (b).

14

10. Conclusions

This paper presented DeepForge, a browser-based devel-
opment environment for designing machine learning
workflows. DeepForge has a flexible computational archi-
tecture and rich support for integration of external domains
including existing compute and storage infrastructures.
Utilizing the strengths of Model Integrated Computing,
including model analysis and manipulation, this platform
provides an intuitive visual interface for enforcing domain
semantics and promoting accessibility to deep learning.
Furthermore, DeepForge has been designed to facilitate ease
of use, reproducibility, and productivity.

Future work includes developing adapters for additional
cyberinfrastructures such as NERSC and DOE supercom-
puters and Globus Connect [24]. Hierarchical support to
pipelines to facilitate tasks such as hyperparameter opti-
mization, adding support for additional deep learning li-
braries, such as PyTorch, as well as creating a registry for
hosting operation definitions, architectures, and trained
models are also planned. We intend to enhance the existing
extension architecture to support custom data visualization
capabilities along with model introspection and visualization
techniques [25, 26].

Data Availability

DeepForge is an open-source project under the Apache 2.0
license. The source code is available as a GitHub repository
(https://github.com/deepforge-dev/deepforge). The example
project presented in Section 9 can be accessed from GitHub
repository available at https://github.com/deepforge-dev/
examples/tree/master/redshift.

Disclosure

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

Conflicts of Interest

The authors declare that there is no conflicts of interest
regarding publication of this paper.

Acknowledgments

This work was supported by The National Science Foun-
dation under Grant no. 1740151.

References

[1] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative
image models using a laplacian pyramid of adversarial net-
works,” in Proceedings of the Advances in neural information
Processing Systems, pp. 1486-1494, Montreal, Canada, De-
cember 2015.

[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their

Scientific Programming

compositionality,” in Proceedings of the Advances in neural

information Processing Systems, pp. 3111-3119, Lake Tahoe,

NV, USA, December 2013.

D. Silver, A. Huang, C.]. Maddison et al., “Mastering the game

of go with deep neural networks and tree search,” Nature,

vol. 529, no. 7587, pp. 484-489, 2016.

[4] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: large-

scale machine learning on heterogeneous systems,” Novem-

ber 2015, https://www.tensorflow.org/.

A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative

style, high-performance deep learning library,” vol. 32,

pp. 8024-8035, in Proceedings of the Advances in Neural

Information Processing Systems, vol. 32, Curran Associates,

Inc., Vancouver, Canada, December 2019.

[6] F. Chollet, “Keras,” 2015, https://keras.io.

[7] J. Sztipanovits and G. Karsai, “Model-integrated computing,”
Computer, vol. 30, no. 4, pp. 110-111, 1997.

[8] M. Mardti, T. Kecskés, R. Kereskényi et al., “Next generation
(meta) modeling: web-and cloud-based collaborative tool
infrastructure,” in Proceedings of the 8th Multi-Paradigm
Modeling Workshop, pp. 41-60, Valencia, Spain, September
2014.

[9] “DeepForge Website,” 2020, https://deepforge.org.

[10] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler, “Yale: rapid prototyping for complex data mining
tasks,” in Proceedings of the 12th ACM SIGKDD international
Conference on Knowledge Discovery and Data Mining,
pp. 935-940, ACM, Philadelphia, PA, USA, August 2006.

[11] M. R. Berthold, N. Cebron, F. Dill et al., “KNIME: the
konstanz information miner,” in Studies in Classification,
Data Analysis, and Knowledge Organization (GfKL 2007)
Springer, Berlin, Germany, 2007.

[12] Nvidia, “Nvidia DIGITS: Interactive deep learning gpu
training system,” 2019, https://developer.nvidia.com/digits.

[13] Lobe, https://lobe.ai, 2020.

[14] Y. Jia, E. Shelhamer, J. Donahue et al., “Convolutional ar-
chitecture for fast feature embedding,” in Proceedings of the
22nd ACM international Conference on Multimedia,
pp- 675-678, Orlando, FL, USA, October 2014.

[15] A. Lédeczi, A. Bakay, M. Maréti et al., “Composing domain-
specific design environments,” Computer, vol. 34, no. 11, 2001.

[16] J. L. Mathe, J. B. Martin, P. Miller et al., “A model-integrated,
guideline-driven, clinical decision-support system,” IEEE
Software, vol. 26, no. 4, pp. 54-61, 2009.

[17] E. Long, A. Misra, and J. Sztipanovits, “Increasing produc-
tivity at saturn,” Computer, vol. 31, no. 8, pp. 35-43, 1998.

[18] “SciServer Website,” 2020, http://www.sciserver.org/.

[19] L. Deng, “The MNIST database of handwritten digit images
for machine learning research,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 141-142, 2012.

[20] L.v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579-2605,
2008.

[21] J. Pasquet, E. Bertin, M. Treyer, S. Arnouts, and D. Fouchez,
“Photometric redshifts from sdss images using a convolu-
tional neural network,” Astronomy & Astrophysics, vol. 621,
p. A26, 2019.

[22] M. Taghizadeh-Popp, J. W. Kim, G. Lemson et al., “Sciserver: a
science platform for astronomy and beyond,” 2020, http://
arxiv.org/abs/2001.08619.

[23] C. Szegedy, W. Liu, Y. Jia et al, “Going deeper with con-
volutions,” in Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1-9,
Boston, MA, USA, June 2015.

[3

[5

https://github.com/deepforge-dev/deepforge
https://github.com/deepforge-dev/examples/tree/master/redshift
https://github.com/deepforge-dev/examples/tree/master/redshift
https://www.tensorflow.org/
https://keras.io
https://deepforge.org
https://developer.nvidia.com/digits
https://lobe.ai
http://www.sciserver.org/
http://arxiv.org/abs/2001.08619
http://arxiv.org/abs/2001.08619

Scientific Programming

[24] 1. Foster and C. Kesselman, “Globus: a metacomputing in-
frastructure toolkit,” The International Journal of Supercom-
puter Applications and High Performance Computing, vol. 11,
no. 2, pp. 115-128, 1997.

[25] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,”
2015, http://arxiv.org/abs/1506.06579.

[26] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in European Conference on Com-
puter Vision, pp. 818-833, Springer, Berlin, Germany, 2014.

15

http://arxiv.org/abs/1506.06579

