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Exact Force Vector Regulation of the Three-Pole
Magnetic Bearing

Nicholas R. Hemenway and Eric L. Severson, ECE Department, University of Wisconsin-Madison

Abstract—The three-pole magnetic bearing is an attractive
alternative to conventional four and eight pole magnetic bearings
because of its simple structure and ability to be operated with
three-phase power electronics. However, accurately controlling
the three-pole bearing is significantly more complicated. Conven-
tional control implementations are prone to large force vector
errors that can lead to instability in the magnetic suspension
system. This paper proposes a new control implementation for
externally-biased three-pole bearings that eliminates force vector
error. This control implementation is based on solving a fourth
order polynomial in the form of a depressed quartic to determine
coil current commands. An analytic framework and graphic
techniques are developed to study the solution space for the
bearing’s coil currents and explain discontinuities that can arise
in certain bearing designs. It is shown that bearings with either
no bias or a normalized bias field in excess of % are preferred
for suspension stability. The exact force vector regulator is
experimentally demonstrated in a bearing prototype and shown
to be advantageous over the conventional regulation approach.

Index Terms—Magnetic bearing, magnetic suspension, electric
motor, feedback control

NOMENCLATURE
a Bearing force vector angle.
B Control field in front of pole i.
B, Normalized control field, = B,/ Bmax.
B; Total airgap field in front of pole i.
Biax Maximum allowable bearing airgap field.
By Bearing bias field present in each airgap.
b, b, x, y control field space vector components

normalized by Bpax.
A Discriminant of a fourth order polynomial.

Frnax Maximum achievable force that any of the
three poles can produce.

F,, F, x, y components of a bearing force vector.

F,, F, Normalized force components, = Fy, / Finax.

F Complex force vector normalized by Fjx.

Gy Control current flown into coil 3.

Tay 1 8 «, ﬂ-axis currents of a current space vector.

k1 Proportionality factor relating fields to forces.

ko Proportionality factor relating coil currents to
airgap fields.

D, q, T Quadratic, linear, constant coefficient of a
fourth order polynomial.

¢ Non-dimensional bias field, = By/Bumax-

I. INTRODUCTION
Active magnetic bearings (AMBs) have the potential to
overcome several limitations of conventional mechanical-type
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bearings. Whereas contact-type bearings limit the motor sys-
tem lifetime and result in substantial friction losses for high-
speed operation, active magnetic bearings have no moving
parts or mechanical contacts, yielding highly efficient oper-
ation, improved system longevity, and controllable rotor dy-
namics. These qualities are particularly desired in compressor
applications, where AMBs are used in natural gas transporta-
tion, HVAC chillers, and wastewater aeration systems [1]-[3].

Radial magnetic bearings have been developed into mature
commercial products as four- and eight-pole bearings [4].
Recently, three-pole bearings have been developed at research
universities, for example: [5]-[20], primarily motivated by
their ability to be operated by a three phase inverter and ease of
manufacturing (all of which reduce cost). The wide variation
of three-pole design topologies was reviewed in [5] which
concludes that designs can be categorized by whether a bias
field is used and whether zero-sequence currents are used in
the control coils. Options for the bias field include heteropolar
airgap fields, i.e. [6]-[10] and homopolar airgap fields, i.e.
[17]-[20] (several of which are also able to create axial forces)
as well as no bias field, i.e. [14]-[16]. The operating principles
of all three-pole bearing topologies can be derived from Fig. 1,
which has three electromagnetic actuators separated spatially
by 120 degrees that can each impart a force on the rotor.

Three-pole bearings that use an external bias field suffer
from large force vector error (often referred to as “interference
forces”) [9], [10], [21], [22] which reduces the bearing’s
stability [23]. In previous work [5], the authors have shown
that 1) the force density of a three-pole bearing can be
increased by 15% by using an optimal external bias field; 2) it
is possible to eliminate the force vector error from externally-
biased bearings by determining the necessary coil currents
from a more detailed force-current model. To date, there has
been no investigation into operating a three-pole bearing with
the new approach for eliminating force vector error.

The main contribution of this paper is to develop, imple-
ment, and experimentally validate a so-called “exact force
vector regulator” for an externally biased three-pole magnetic
bearing. This paper first investigates discontinuities in the
commanded coil currents that can arise from a direct imple-
mentation of the new current calculation technique. It is shown
that if these issues are not properly addressed, the exact force
vector regulator can introduce new bearing stability challenges
into the magnetic suspension system. The paper then develops
a complete implementation of the exact force vector regulator.
Finally, the proposed regulator is investigated and validated
through a simulation study and an experimental prototype of
a combined radial axial magnetic bearing (CRAMB).
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Fig. 1. Three-pole AMB and Wye coil connection used in this paper.
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Fig. 2. Combined radial-axial magnetic bearing that uses permanent magnets
to generate an external bias field for the three-pole bearing.

II. THREE-POLE AMB STRUCTURE AND FORCE MODEL

This paper assumes the three pole bearing structure depicted
in Fig. 1 is operated by the conventional three phase inverter
typical of electric motor drives. The coils are connected in a
Wye configuration, requiring that their currents sum to zero. In
addition to airgap “control” fields created by the coil currents,
this paper assumes that an external flux source provides a
bias field to the airgap. An example configuration is shown in
Fig. 2, which depicts a combined radial-axial magnetic bearing
(CRAMB) utilizing axially-magnetized permanent magnets to
generate the bias flux. The “radial stage” is implemented as
the three-pole bearing of Fig. 1. This particular topology is
discussed at length in [24]. Other common geometry configu-
rations to realize this are reviewed in a previous work by the
authors [5], which also developed a generalized force model
for the three-pole bearing and proposed an “exact solution”
to calculate the currents necessary to create a desired force
vector. These results form the basis of the present paper and
are now summarized in this section.

Radial forces produced on the bearing’s shaft can be mod-
eled by (1). Here, F/ is a complex force vector normalized
by the maximum force Fi,x = ki ngx that each bearing pole
can produce, B, ; is the control component of the airgap field
in front of each pole (proportional to the pole coil’s control
current 4. ;), Bmax 18 the maximum allowable airgap field, and
SV(?) is a space-vector operator that operates on a cartesian
vector ¥ as SV(¥) = [1,a,a?|v, where a = ¢’¥ . The total
airgap field in front of any pole is modeled as (2), which
consists of B, ; and the bias field B.
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Fig. 3. Maximum force profiles for various bias field values.
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Fig. 4. Normalized rated force and current requirement profiles as a function
of the bias field ¢. Shaded regions depict the margin of improvement that
results from using an optimal bias field over conventional values.

When the force model for the bearing is presented in this form,
it is evident that the bearing’s force characteristic depends only
on Fax and ¢ (which depend on the bearing’s geometry and
materials, as described [5]). This allows for a general analysis
of the bearing, decoupled from the specifics of an individual
design. Note that this model assumes linear material properties
and thus Fj,,x is expected to be within the linear region of the
materials. Non-dimensional results in this paper are obtained
by setting k1 = k3 = Bpnax = 1. This means that control fields
and currents can be used interchangeably—see (2).

It is shown in [5] that when ( is allowed to vary, each
of the bearing’s three poles can produce force independently,
allowing the bearing to produce forces anywhere within the
dashed hexagonal profile of Fig. 3. However, when ( is held
to a fixed value (i.e., using magnets as the external flux source
for the bias field, as is assumed in this paper), the maximum
force in any particular direction is limited to one of the inner
contours of Fig. 3. These contours each have a different force
rating F)., which is defined as the minimum force magnitude
on the maximum force profile. An example rated force vector
is labeled in Fig. 3 for ( = % The design choice of ( clearly
has significant implications for the force rating of bearings
with otherwise equivalent geometry (equivalent Fi,,x and
therefore By,,x values). Using an optimal bias field ({ = 0.569)
can improve the three-pole bearing’s force rating by 15.5%
and decrease its Ampere-turn requirements by 23.4% (see [5])
compared to the bearing bias values of ( = 0 or ( = % that
are typically used. Fig. 4 highlights this result by showing
the normalized force rating (blue curve) and Ampere-turn
requirements (orange curve) of the three-pole bearing as a
function of the bias field (. Section III-D will show that the
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optimal bias field has additional desired features.

For control purposes, the inverse of (1) is needed; that is,
a calculation of currents required to produce a desired force
vector. The traditional approach linearizes (1) about a zero-
current operating point [9], [12], [22] and results in significant
force vector error. This paper uses a method proposed in [5]
that inverts (1) exactly using the following procedure:

1) Solve the roots of (4). This polynomial is a depressed
quartic—solution procedures are discussed in Section IV-A.

b, + jb, = SV(BL)
Wi+ pblZ + bl +7 =0 4)

p=—3F, —27¢>

q = 18F/¢ + 54¢3

9F/2
r=—2TF¢* — —L
4
2) Solve for b; as (5).
3F!
b, = —F 5
v a1 ®
3) Solve for the three-phase control currents using (6).
. .. Bmax .
o+ jis = =7 (b, + 4b})
ic,l % 0 i
ic2| = |—% %\‘; [zﬂ (6)
; 1 3
te3 -3 —§

Inspection of (5) shows there is a singularity at b/, = 3(.
However, substitution of b/, = 3¢ into (4) yields that this
situation can only occur when Fy = 0. This corner case can
be evaluated by taking a limit, resulting in (7).

b, = \/27¢? — 3F )

The equations presented in this section form the basis of the
exact force vector regulator proposed in Section III. It should
be noted that the equations all assume a centered rotor, which
is premised on the assumption that the position regulator can
effectively control the rotor. The extension of these equations
to a displaced rotor is beyond the scope of this paper.

III. EXACT FORCE VECTOR REGULATOR

This paper proposes an exact force vector regulator for the
three-pole bearing by utilizing the coil current calculations of
(4)—(6). The purpose of this regulator is to eliminate the error
found in the conventional three-pole bearing force regulator
(referred to as the “linear force regulator” as it uses a linearized
force model to calculate coil currents) between the force vector
that the bearing’s position regulator commands and the force
vector that is actually created on the shaft. By doing this,
the exact force vector regulator has the potential to improve
bearing stability (considered later, in Section V-A).

This section develops the exact force vector regulator ap-
proach used to select a set of bearing coil currents, inves-
tigates the solution space of (4)—(6) to showcase challenges
with realizing the regulator, and develops a framework for
analyzing these challenges based on the system’s discriminant.

Conclusions drawn from this framework inform the design of
the three-pole bearing (specifically, the suitable bearing bias
level (). It is shown that careful consideration must be given
to the implementation of (4)—(6) in order to prevent excessive
losses due to unnecessarily large coil currents and introducing
new stability issues into the bearing’s position regulator due
to discontinuities in the commanded bearing currents.

A. Bearing Coil Current Calculations

The bearing current calculation method of (4)—(6) involves
solving the roots of the fourth order polynomial (4). This
means that there will be four sets of three-phase currents that
are capable of producing any desired force vector. The coil
currents (and therefore the ohmic losses) can vary significantly
between solutions. Further complicating the solution selection
is that depending on the commanded force vector, some of
the solutions can be invalid-requiring either an airgap field in
excess of B, or complex (non-physical) values of current. It
is proposed that for any desired force, the exact force vector
regulator select a valid (physically realizable) solution with
the lowest coil losses. This can be determined by selecting
the current set with the lowest Euclidean L? norm.

The variation between solutions can be depicted by studying
the example of commanding a zero force vector (F, = F; =
0). Equation (4) and (5) are solved to find the four solutions
of b/, and b), as (8)'.

(b/z> b;) = (0,0)
= (_6C7 0)
= (3¢, £3v/3() ®)

For non-zero values of (, three of the four solutions will
require flowing current while producing no actual force. De-
pending on the value of (, this current can be quite significant.
This is undesirable as it leads to additional losses and power
draw from the bearing’s drive. Fig. 5a depicts these zero-force
locations as the blue x’s and orange o’s for two different values
of (. The solid and dashed bounding regions indicate the upper
limits for ¢, and ig; any coordinates outside of the bounding
regions will cause an airgap to exceed Bp.x. It can be seen
that for the case of { = 0.4, three of the four solutions require
pushing the airgap fields past saturation to produce the zero-
force vector, and are therefore not valid solutions.

As the commanded force vector is swept across a bearing’s
realizable force profile (see Fig. 3), this broad variation in
solution values and feasibility can result in the proposed
exact force vector regulator commanding abrupt changes
(discontinuities) in the coil currents, even for smooth force
profiles. An illustrative example of discontinuities can be
found by studying the geometrically simple case of producing
a variable magnitude forcg along the zx-axis. In this case,

Z _ Bmu[R/ Bl Beayr i 2 ;
ic = J2[Bgq, ——5+, ——5*|" is the minimum L* solution.

ISince Bmax = ko = 1, this is equivalent to in and ig of the control
current space vector: SV (ic) = iq + jig = ic,1 + Gic,2 + a?ic 3, see (6).
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L? solution (9) and (c) the current command dlscontmmty when crossing F, = —3¢?; grey curves depict the non-minimum L2 solution.

Substituting this into (1) yields (9), which is a scalar quadratlc
equation in i. ;. Recall that By, = k2 = 1 so that ¢, = B’

3. .
F, = le’l + 3Cica ©)

Fig. 5b depicts (9) for a bearing biased at ( = 1 and shows

that a minimum force of F, = —3(? occurs at4ic71 = —2(.
As the regulator requests an increasingly negative force, this
solution will work until F, = —3¢ 2 is reached. At this point,
the solution’s required coil currents will become complex (and
therefore invalid) and the exact force vector regulator will
jump to a different solution, causing a discontinuity in the
commanded currents. This behavior is depicted in Fig. Sc
where the bearing current discontinuity corresponds to the
minimum of Fig. 5b (forces to the right of the discontinuity
are created by the low power solution discussed above).
Discontinuous current commands like those shown in
Fig. 5c are problematic as they are not physically realizable.
At the point of discontinuity, the current slew rate will be
limited by the voltage rating of the bearing drive and the
coil inductance. During the transition period between the two
solutions, large force vector errors will result, possibly causing
the system to go unstable. The stability implications of this are
investigated in Section V-A for an example bearing.

B. Analysis of Bearing Coil Current Solution Space

An analysis framework is now constructed to explain dis-
continuities that arise in the exact force regulator’s commanded
bearing currents (i.e., Fig. 5¢). The framework applies to any
three-pole bearing design (combination of ¢ and Fp,) for
any arbitrary desired force vector within a bearing’s realizable
force profile (Fig. 3). The analysis framework draws from
the mature body of literature on quartic polynomials and is
based on evaluating the discriminant of (4). Relevant math-
ematical background on how the solutions to quartics relate
to properties of their discriminant can be found in numerous
publications and textbooks, such as [25], [26].

The discriminant A of (4) can be calculated as (10) in terms
of the desired force components F; and F}.

A =2016F 2 ( — F,* + 24F,>¢? — 2F,2F,* — 162F,*C*
— T2F,F,?¢* — F,' —162F,*¢* +2187¢%)  (10)

The sign of the discriminant determines the types of roots
(coil current solutions) that will result. A negative discriminant

Region 2

9IC’F

max

3CF

Region 1

Fig. 6. The blue region denotes where the discriminant is positive and
indicates that all four quartic solutions will be real valued.

indicates that there will be two distinct real roots and two
complex roots. Complex roots correspond to invalid coil
current solutions, meaning that F, and Fé combinations which
yield a negative discriminate will have only two valid sets of
bearing coil currents. A positive discriminant indicates that
all four solutions will either be real (all coil current solutions
are valid) or complex (no coil current solutions are valid).
The case of a positive discriminant can be further refined
by evaluating the polynomials (11), if both polynomials are
less than zero, all four solutions will be real. Finally, a zero
discriminant indicates that the polynomial has a multiple root.

P = —24F) — 216¢?

D = —144(F? + F}?) — 4320F,¢* — 11664¢* (1)

Regions in the F, -F, ' plane with different discriminant signs
are depicted in Fig. 6 Wlth the maximum profile of the three-
pole bearing (Fig. 3) imposed on top. Equations (10) and (11)
can be used to show that when a force vector is commanded
within each of these regions, the exact force regulator will
have a differing number of solutions as follows:

1) Blue shaded region: four valid current solutions, A > 0

and the polynomials of (11) are negative.
2) Outside the blue shaded region: two valid current solu-
tions, A < 0.
The solid blue lines indicate edge cases, where A = 0.
Interestingly, the region with four valid solutions (blue region)
is completely defined in terms of the two generalized bearing
design parameters ¢ and Fi,x.

It can be shown numerically that for any three-pole bearing
design, a single solution of (4) will have the minimum L2
norm (lowest power) over the entirety of region 1 and that this
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Fig. 8. Variable force magnitude command trajectory on top of two bearings’
maximum force profile and discriminant regions. These plots explain current
discontinuities in Fig. 7.

solution will be infeasible (complex) in region 2. This result
indicates that for smooth force trajectories within region 1,
the exact force regulator will command smooth coil currents
(no discontinuities). However, when a force vector crosses
from region 1 to region 2, the exact force vector regulator
will command problematic discontinuous currents because the
minimum L? solution will become infeasible at the boundary
between regions 1 and 2. Finally, in region 2, the solution with
the lowest L? norm will change when crossing a solid blue
line at 60°, 180°, and 300° for bearings with ¢ > 0. This will
create discontinuous current commands at these angles.

C. Case Studies of Bearing Coil Current Discontinuities

Examples are now presented using the analysis framework
developed in Section III-B to examine the coil current com-
mands for different bearing designs and force trajectories.

1) Force along x-axis: The example considered in Sec-
tion III-A and depicted in Fig. 5b and Sc is analyzed. A
current discontinuity was observed for an x-axis force crossing
F! = —3¢% where the minimum L? solution becomes
infeasible for lower force values. This matches the interface
of regions 1 and 2 in Fig. 6, where the analysis framework
expects a current discontinuity to exist (the lowest L? solution
is infeasible in region 2, but viable in region 1).

2) Variable magnitude force at 40°: In Fig. 7, the exact
force vector regulator’s control currents are computed for a
variable magnitude force at an angle of 40 degrees for two
different bias values (¢ = + and { = ). The two curves
extend to different force magnitudes because the two bearings
have different force capability curves per [5] and Fig. 3.
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Fig. 9. Current waveform that results when commanding a force of 0.2 Finax
in all force directions.

Fig. 10. Variable force angle (constant magnitude of 0.2Fax) trajectory for
two bearings. These plots explain current discontinuities in Fig. 9.

Once the force magnitude reaches 0.2F,y, the currents in the
bearing with ¢ = % discontinuously jump to a new solution.
This issue does not occur for the bearing biased at ( = %
The discontinuity can be understood from the analysis
framework of Section III-B based on when the force vector
transitions between discriminant regions. This is depicted in
Fig. 8, where the blue region 1 from Fig. 6 has been drawn on
top of each bearing’s maximum force profile (orange). In the
case of ( = i, as the commanded force vector (shown in red)
increases in magnitude, it passes out of region 1 at the force
magnitude of 0.2F},,x. The discontinuity in Fig. 7 occurs at this
location because the loss minimizing solution that was initially
being commanded inside region 1 is no longer available and
the controller must switch to the next lowest loss solution.
This does not occur for the bearing with ( = % because the
larger ¢ value expands the blue region 1 so that the bearing’s
force profile resides entirely within region 1. In other words,
the commanded force never transitions between regions 1 and
2, and therefore the minimum L? solution is always feasible.

3) Variable angle force at 0.2F,,,,: The two bearings from
Section III-C2 (¢ = 1 and ¢ = 1) are now investigated for
a force trajectory where the magnitude is fixed at 0.2Fax
but the angle is varied. The resulting current commands are
shown in Fig. 9. The currents for the bearing biased at ( = %
are smooth and continuous, while the ( = i bearing currents
periodically jump between three of the four solution sets.

This behavior can again be understood from the framework
of Section III-B. The trajectory of the commanded force
vector is depicted in Fig. 10 as a dashed circle for each
bearing. Several of the angles of the discontinuities in Fig. 9
correspond to where the force vector crosses the region 1
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Fig. 11. The discriminant regions of several bearing designs (¢ values). Bearings with ¢ > 0.3 do not experience discontinuous current commands.

boundary in Fig. 10. As the force vector rotates in and out of
the blue region, the minimum L2 solution alternates between
being feasible and infeasible, causing the cyclical current
discontinuities. This behavior does not occur for the ( = %
bearing as the commanded force vector never leaves region
1. The remaining discontinuities occur at angles of 60°, 180°,
and 300° that were identified in Section III-B as corresponding
to a change in which region 2 solution yields the minimum
L? norm.

D. Bearing Design Guidelines

As previously remarked, large discontinuities in the bear-
ing coil currents over a smooth force trajectory can create
problematic position regulator stability issues. It is therefore
desired to eliminate these discontinuities from the exact force
vector regulator. This can be accomplished by modifying the
solution selection algorithm to avoid solutions that become
infeasible for certain force vectors. However, based on the
results of Section III-B, this would eliminate the use of the
minimum L? solution, potentially resulting in an unreasonable
increase in bearing power consumption. Alternatively, this can
be addressed through careful bearing design. The possibility of
this approach was revealed in the case studies of Section III-C,
where bearings with ¢ = % did not experience discontinuities.
Design guidelines, in terms of values of (, are now developed
to identify and evaluate bearings where the exact force vector
regulator will not command discontinuous currents.

Section III-B showed that current discontinuities will not
result when a commanded force vector remains in region 1
of Fig. 6. Inspection of Fig. 6 shows that the blue region 1
grows with (2, while both region 1 and the red hexagon (and
therefore a bearing’s maximum force profile—see Fig. 3) are
proportional to Fp.x. Consequently, as ( increases, the blue
region will grow relative to the force hexagon (and maximum
force profile). This is depicted in Fig. 11 for various values of
(. Key ranges for ¢ can be identified as follows:

1) ¢ = 0: no current discontinuities, as the bearing’s force
profile will always reside in region 2 (the same number of
solutions are always feasible), provided that the solution
selection algorithm presented in [14] is utilized;

2) 0 < ¢ < 0.287: current discontinuities will occur within
the bearing’s force profile as it spans regions 1 and 2;

Current Control

Force
Saturation Inverse 1}

Fig. 12. Bearing control architecture; prime notation denotes saturated forces.

3) 0.287 < ( < % no current discontinuities within the
bearing’s rated force profile?, but discontinuities will
occur when pushing past rated force to maximum force;

4) ¢ > %: no current discontinuities, as the bearing’s force
profile will always reside in region 1.

Based on these results, this paper proposes that three-pole
bearings be designed with either ( = 0 or {( > % It was shown
in [5] that these ranges of ( are also preferred from a force
density and ampere turns perspective, as can be seen in Fig. 4,
with an optimal value of ¢ = 0.569. This indicates that any
practical three-pole bearing design can in fact be operated by
the exact force regulator without concern for discontinuities
(and corresponding stability issues) in the bearing currents.

IV. REGULATOR ARCHITECTURE AND IMPLEMENTATION

This section details the exact force vector regulator archi-
tecture and implementation for a real-time control platform.
Fig. 12 shows a block diagram for controlling a three-pole
bearing and consists of an inner current controller and an
outer motion regulator. The current controller operates in
the stationary a-f frame using a PI controller and can be
realized following design principles that are well-understood
in motor drives literature [27]. The motion regulator can
be implemented as a PID controller following recommended
practices for magnetic bearings, such as those provided in [4],
[23]. The output of the outer loop PID controller is a force
vector command that passes through a saturation block before
being inverted into the 4, and ¢g current commands of (6).
The exact force vector regulator of Section III makes up the
force inversion and saturation blocks of Fig. 12.

ZRecall that the rated force profile is a circle with a radius equal to the
inner radius of the maximum force profile—see Fig. 3.
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Fig. 13. ig current maps for normalized bearings with (a) ¢ = optimal; (b) ¢ = optimal (zoomed in view); (c) ¢ = i.

A. Force Inversion

As previously discussed, calculating the control currents
for a desired force vector requires computing the roots of a
fourth order polynomial in the form of a depressed quartic
(4). While various analytic methods exist for solving this
type of equation (i.e., Ferrari’s or Descartes solution), they
are computationally expensive to perform in real-time. Several
numeric methods also exist (i.e. computing the eigenvalues of
a polynomial companion matrix [28]) but are often iterative,
vary in terms of computational time requirements, and rely
on the solution to converge. To avoid these complexities in a
real-time control loop, it is proposed that the solutions be pre-
computed and interpolated using a lookup table. Various search
algorithms exist that could be used to implement a lookup
table efficiently; the well known binary search algorithm, for
example, runs in logarithmic time [29].

Fig. 13a and 13b show non-dimensional [-axis current
lookup tables for an optimally biased bearing (Fig. 13b is
a zoomed-in view of Fig. 13a). The axes are the x and y
components of the desired normalized force vector and the
contour color indicates the 73 current magnitude (computed
as the minimum L2 norm solution). A dashed black force
hexagon and red maximum force profile are overlaid on the
current map for reference. Note that an equivalent map must
be constructed for the i, current. It can be seen that the region
1 boundary discussed in Section III shows up naturally in the
contours of Fig. 13a. Furthermore, distinct lines where the
other expected current discontinuities will occur (60°, 180°,
and 300°) show up on the contour plot but lie outside of the the
maximum force profile, as expected for an optimally biased
bearing. Fig. 13c shows the non-dimensional -axis current
lookup table for a bearing biased at ( = i. The region 1
boundary shows up naturally again in the contour plot, but
because this bias level does not fall in the range of suggested
bias fields (( = 0 or ( > %), current discontinuities can be
seen occurring within the bearing’s realizable force profile.

The current maps depicted in Fig. 13 are normalized. To
convert them to actual units, the force components and current
values are multiplied by Fj,,x and B%;x.

F¥ I |C IF[™ FY
—] > > —
F* i FF
3 Zal | > y

Fig. 14. Internal structure of the force saturation block shown in Fig. 12.

B. Force Saturation

It is necessary to saturate the force commands before they
are inverted into current commands. This is done for two
reasons, the first of which is to avoid discontinuous current
commands that could occur from requesting a force that lies
outside of the maximum force profile and therefore outside
the accurate range of the lookup table interpolation of ¢, and
13. The second reason is to prevent the force inversion block
from requesting currents that would produce airgap fields in
excess of Buax. These currents would presumably saturate the
bearing steel and result in force vector error.

When saturating force commands, the force vector mag-
nitude should be limited (as opposed to the individual com-
ponents) because the maximum magnitude is dependent on
the force vector angle «. Fig. 14 depicts how this can be
done. First, the = and y force components are converted into a
corresponding force magnitude and angle. The magnitude and
angle are then used in a lookup table that contains the bearing’s
maximum force profile as a function of the force angle. The
saturation block returns the minimum of the commanded input
magnitude and the pre-computed maximum force profile for
the specified force angle. The output magnitude and force
angle are converted back into z and y components for use
in the current lookup tables of the “Force Inverse” block.

V. VALIDATION

The proposed exact force vector regulator is now validated
and compared to the conventional linear approach by studying
the control implementation of an example bearing through
both simulation and experimental results. The experimental
results are obtained from a prototype CRAMB (see Fig. 2)
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Fig. 15. Various views of the CRAMB prototype.

TABLE I
CRAMB PROTOTYPE FIT PARAMETERS
Machine Parameter Value
Unstable stiffness, kg -129.9 N/mm
Coil R, L 1.88 €, 54.1 mH
Finax, Bmax 131.5N,08 T
k1, ko 205.45 N/T2, 0.395 T/A

that implements the externally biased three-pole bearing as its
radial stage (shown in Fig. 15). A mechanical swivel bearing
allows the shaft end opposite the magnetic bearing to spin
and pivot but constrains it from displacing radially. While the
prototype is designed with an optimal bias field ({ = 0.569), a
compensation coil has been installed that can be re-purposed
to modify the bearing’s bias field when conducting static
force tests. Full details of the prototype can be found in [5],
[24]. Key machine parameters are provided in Table I, which
includes the equivalent force model values needed to solve (4)
and utilize the non-dimensional current map of Fig. 13b.

A. Simulation results

Bearing suspension instabilities that can result from using
either the linear control approach or a poorly biased bearing
are now investigated. Two bearing models are used for the
simulations: 1) the bearing prototype of Fig. 15; 2) a reduced
bias version of the prototype bearing with { = i (so that the
exact force vector regulator will command discontinuous coil
currents, as explained in Section III-D). These bearing models
use the current maps of Fig. 13b and 13c with the machine
parameter values listed in Table I. In all simulations, identical
PID and PI controller gains (see Fig. 12) were used with a 700
Hz current controller bandwidth and 100V dc inverter bus.

1) Full motion control (startup and step disturbance):
Fig. 16 shows the bearings’ startup behavior and response
to a 50 N step disturbance (at ¢ = 1.5 s) for the exact and
linear force regulators for two bias levels. For the optimally
biased bearing, both controllers stably levitate the shaft from a
touched down state. However, when the step force disturbance
is applied, the force vector error of the linear force regulator
causes the rotor to crash. For the ¢ = i bearing, the linear
force regulator is unable to even get the bearing to startup.
The exact force regulator provides a stable startup but becomes

g 0.4 1 = Linear
&b Exact
<

S 021 .

% t ¢= Optimal
S0 e oo
g 0.4 1 v = Linear
&b Exact
<

= 0.2 1 C*l

4 1

&~ 0.0 1

T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time, ¢ [s]

Fig. 16. Startup and response to a 50 N step disturbance directed at « = 30°
for the exact and linear force regulators two bias values.

Z 50
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Fig. 17. Current discontinuities and force vector error that can result in a
(= i bearing commanded to track a force ramp.

unstable after the force disturbance due to force vector errors
resulting from discontinuous current commands.

2) 20 N/ms force ramp at 40°: The case study presented
in Section III-C2 is now considered as a transient simulation
to investigate the effects of discontinuous current commands.
In this simulation, the motion controller is removed and an
increasing force magnitude is directly commanded. The force
results are depicted in the top of Fig. 17. The corresponding
currents for the ( = i bearing are shown in the bottom
and reveal current commands similar to those depicted in
Fig. 7. Notice that the optimally biased bearing is able to
effectively track the force command. Initially, the ( = %
bearing also tracks the command effectively. However, when
the commanded force vector crosses out of region 1 of Fig. §,
discontinuous currents are commanded and the slew rate of
the three-phase currents is limited by the coil inductance and
DC bus voltage. At this point, large force vector errors occur
with angle errors over 40°. These large force vector errors can
cause instabilities (i.e., Fig. 16).

3) 3600 RPM rotating force of 0.2F,,,: The case study
presented in Section III-C3 is now considered as a transient
simulation (again, with forces directly commanded and no
motion controller). A force command of 26 N (0.2F},.x) was
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Fig. 18. Simulated results of 3600 RPM rotating force command to demon-
strate vector error caused by discontinuous current commands when { = %.

modeled as rotating at 3600 RPM (this is representative of
force commands issued due to an unbalanced rotor). The
results are shown in Fig. 18, where current commands cor-
respond to Fig. 9. The controller is able to track the rotating
force command in the optimally biased bearing, but not in the
¢ = % bearing. This is due to the repeated discontinuities of
the current commands and results in unacceptable force vector
errors (over 150° angle error at times). Such large force vector
errors appear as a positive feedback to the system and can
result in instability. While it is common practice to suppress
rotor imbalance compensation by rotating the shaft about its
center of mass [4, sec. 8.3], this phenomenon will pose stabil-
ity challenges by making the system sensitive to inacuracies in
the imbalance control suppression and because such strategies
are typically applied above a minimum threshold shaft speed.

B. Experimental validation

Three sets of tests were run on the prototype to validate the
exact force vector regulator and compare its performance to
the standard linear force regulator.

1) Static Force Test: The case study of Section III-Cl
and Fig. 5b was investigated experlmentally by applying the
minimum L? coil currents of i, = [ic1, —*5*, —*%*] and
measuring forces produced. To complete this test, the CRAMB
is placed in a commercial milling machine (right side of
Fig. 15), with the rotor installed in the mill’s spindle and the
stator fixed to the mill’s z-y table via a load cell. The test
results are shown in Fig. 19, where it can be seen that the
¢= i profile matches Fig. 5b and has the expected minimum
force value and corresponding coil current anticipated by the
analysis framework of Section III-B and Fig. 6. Also as
expected, the optimally biased bearing does not encounter a
minimum force limit on this solution within its force profile.

2) Startup and Rotational Tests: The prototype machine
was operated using the proposed exact force vector regulator
at speeds up to 1300 RPM. The bearing startup event and the
rotor orbit are shown in Fig. 20. Both tests demonstrate stable
operating of the three-pole bearing.

. 200 1 X (= optimal,rexperimental

‘Zf ¢~ 1, experimental

& 100 _3(

8" L Fmax
15

o 0

el

<

8 —100

Control Current, i, [A]

Fig. 19. Prototype quadratic force behavior for two bias levels.
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Fig. 20. Prototype startup (left) and orbit plot at 1300 RPM (right).

3) Force Vector Error Comparison Tests: Two tests were
performed to compare vector error between the exact and
linear regulators. First, a static test is preformed using the
test stand configuration described in Section V-B1 where a
constant magnitude force vector of 98 N was commanded
through a range of force angles, while both regulator architec-
tures were used to apply coil currents. Reaction forces were
measured with the load cell (Fig. 21a) and the resulting vector
error is depicted in Fig. 21b. The results show how effective
each regulator is at obtaining the commanded force vector. The
exact force regulator clearly achieves the highest performance,
reducing the force magnitude and angle errors by over 20%
and 9 degrees compared to the linear regulator.

Second, force vector error is observed during a levitation
test. Prior to the test, a fixed force was applied to the levitating
rotor by installing a tensioned elastic band connected to a
rigid object. During the test, the bearing control architecture
switches between using the exact and linear force vector regu-
lators (the “Force Saturation” and “Force Inversion” blocks of
Fig. 12 are replaced). The recorded data is shown in Fig. 21c,
where the architecture change occurs at ¢ = 4 s. After a brief
transient event, the currents return to their previous steady
state values (as expected, because the force applied by the
band has not changed), but the force commands converge to
different final values. The difference between the steady state
force command values demonstrates the force vector error of
the linear regulator (the controller has to command an incorrect
force vector to compensate for the disturbance).

VI. CONCLUSION

This paper develops a solution to one of the key challenges
of externally biased three-pole bearings: force vector error that
can cause instability in the magnetic suspension system. An
exact force vector regulator is proposed that is able to eliminate
this error between the force vector that a position regulator
commands and the force vector that is actually produced on
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Fig. 21. Load cell measurements of (a) force vectors and (b) corresponding force vector error using an exact and linear regulator. (c) Levitation test data
showing a transition from the exact to the linear force vector regulator with an 80 N constant force applied to the rotor.

the

bearing’s shaft. Graphical techniques are developed based

around the discriminant of the bearing’s force model in order
to guide the bearing design process and explain discontinuous
coil currents that the new regulator commands in poorly biased
bearings. It is shown that bias field values that maximize the
bearing’s force density will also result in the best performance
with the new force vector regulator. Practical implementation
details for the new force regulator are provided and test results
from a prototype bearing demonstrate its viability.

[1]

[7]

[8]

[9]

[10]

(11]

[12]

REFERENCES

M. Kasarda, “An overview of active magnetic bearing technology and
applications,” The shock and vibration digest, vol. 32, no. 2, pp. 91-99,
2000.

C. H. Park, S. K. Choi, and S. Y. Ham, “Design of magnetic bearings
for turbo refrigerant compressors,” Mechanics & Industry, vol. 15, no. 4,
pp. 245-252, 2014.

J. Chen, J. Zhu, and E. L. Severson, “Review of bearingless motor
technology for significant power applications,” IEEE Transactions on
Industry Applications, vol. 56, no. 2, pp. 1377-1388, 2020.

G. Schweitzer and E. H. Maslen, Magnetic bearings: theory, design,
and application to rotating machinery. Springer, 2009.

N. R. Hemenway and E. L. Severson, “Three-pole magnetic bearing
design and actuation,” IEEE Transactions on Industry App., 2020.

S. Eckhardt and J. Rudolph, “High precision synchronous tool path
tracking with an amb machine tool spindle,” in 9th International
Symposium on Magnetic Bearings (ISMB), 2004.

S.-H. Park and C.-W. Lee, “Decoupled control of a disk-type rotor
equipped with a three-pole hybrid magnetic bearing,” IEEE/ASME
Transactions on Mechatronics, vol. 15, no. 5, pp. 793-804, 2010.

W. Amrhein, W. Gruber, W. Bauer, and M. Reisinger, ‘“Magnetic
levitation systems for cost-sensitive applications—some design aspects,”
IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3739—
3752, 2016.

M. Resinger, W. Amrhein, S. Silber, C. Redemann, and P. Jenckel,
“Development of a low cost permanent magnet biased bearing,” in 9th
Int. Symposium on Magnetic Bearings (ISMB), Aug 2004, pp. 1-6.

M. Reisinger, H. Grabner, S. Silber, W. Amrhein, C. Redemann, and
P. Jenckel, “A novel design of a five axes active magnetic bearing
system,” in Twelfth International Symposium on Magnetic Bearings
(ISMB), Aug 2010, pp. 561-566.

S.-L. Chen and C.-T. Hsu, “Optimal design of a three-pole active
magnetic bearing,” IEEE Transactions on Magnetics, vol. 38, no. 5,
pp. 3458-3466, 2002.

E. Fleischer and W. Hofmann, “Linear and nonlinear control of a three
pole combined radial and axial active magnetic bearing-a comparison,”
Mechanical Engineering Journal, vol. 3, no. 1, pp. 15-00 145, 2016.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]
[23]

[24]

[25]
[26]
(27]

[28]
[29]

D. C. Burgos, G. M. Sirbu, F. M. Porres, J. V. Landajuela, and L. F.
Agorreta, “Pd control and sliding mode control using feedback lineariza-
tion for 3-pole radial magnetic bearings of an energy storage flywheel,”
in 10th International Symposium on Magnetic Bearings (ISMB), 2006,
pp. 1-6.

D. C. Meeker and E. H. Maslen, “Analysis and control of a three pole
radial magnetic bearing,” in Tenth International Symposium on Magnetic
Bearings (ISMB). Citeseer, 2006, pp. 1-7.

W. Hofman, “Behaviour and control of an inverter-fed three-pole active
radial magnetic bearing,” in IEEE International Symposium on Industrial
Electronics (ISIE), vol. 2, 2003, pp. 974-979 vol. 2.

J. Vadillo, J. M. Echeverria, 1. Elosegui, and L. Fontan, “An approach
to a 3-pole active magnetic bearing system fed by a matrix converter,”
in 11th International Symposium on Magnetic Bearings (ISMB), 2008,
pp. 518-525.

X. Sun, H. Zhu, and T. Zhang, “Nonlinear decoupling control for 5
degrees-of-freedom bearingless permanent magnet synchronous motor,”
in 6th IEEE International Power Electronics and Motion Control Con-
ference, May 2009, pp. 1842-1847.

E. Fleischer, S. Troger, and W. Hofmann, “Control of a novel integrated
radial-axial magnetic bearing,” in Thirteenth International Symposium
on Magnetic Bearings (ISMB), 2012, pp. 6-8.

H. Zhu, H. Chen, Z. Xie, and Y. Zhou, “Configuration and control
for ac-dc three degrees of freedom hybrid magnetic bearings,” in Tenth
International Symposium on Magnetic Bearings (ISMB), 2006.

J. Ju, H. Zhu, and C. Zhao, “Radial force-current characteristic analysis
of three-pole radial-axial hmb,” in 2016 IEEE Vehicle Power and
Propulsion Conference (VPPC), Oct 2016, pp. 1-6.

R. Schoeb et al., “Radial active magnetic bearing for operation with a
3-phase power converter,” in 4th International Symposium on Magnetic
Suspension Technology, Gifu, Japan, 1997.

R. Schoeb, “Magnetic bearing apparatus and a method for operating the
same,” Oct. 10 2000, US Patent 6,130,494.

A. Chiba, T. Fukao, O. Ichikawa, M. Oshima, M. Takemoto, and
D. Dorrell, Magnetic Bearings and Bearingless Drives. Newnes, 2005.
N. R. Hemenway, H. Gjemdal, and E. L. Severson, “New three-pole
combined radial-axial magnetic bearing for industrial bearingless motor
systems,” IEEE Transactions on Industry Applications, under review.
E. Rees, “Graphical discussion of the roots of a quartic equation,” The
American Mathematical Monthly, vol. 29, no. 2, pp. 51-55, 1922.

S. Neumark, Solution of cubic and quartic equations. Pergamon Press,
1965.

D. W. Novotny and T. A. Lipo, Vector control and dynamics of AC
drives. Clarendon Press, 2005.

R. Horn and C. Johnson, Matrix Analysis. Cambridge Univ Press, 1999.
E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, 1978.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS NOV/DEC 2021 11

Nicholas R Hemenway received a B.Sc. degree
in mechanical engineering from the University of
Wisconsin-Platteville, Platteville, WI, USA, in 2017,
and a M.S. degree in mechanical engineering at
the University of Wisconsin-Madison, Madison, WI.
USA in 2020. His research interests include con-
trols, multibody dynamics, electric machines, and
magnetic levitation.

Eric L Severson (S’09-M’15) received the B.Sc.
and PhD degrees in electrical engineering from the
University of Minnesota, Minneapolis, USA in 2008
and 2015, respectively where he also worked as a
post doctoral associate through 2016. He is currently
an assistant professor at the University of Wisconsin-
Madison.

Dr. Severson is an associate director of the Wis-
consin Electric Machines and Power Electronics
Consortium (WEMPEC) and fellow of the Grainger
Institute for Engineering. His research interests in-
clude design and control of electric machines and power electronics, with
focus areas in magnetic bearings, bearingless motors, flywheel energy storage,
and off-highway vehicle electrification.

Dr. Severson is a recipient of the USA National Science Foundation
CAREER Award in 2020, the Department of Defense NDSEG fellowship
in 2009, and the National Science Foundation Graduate Research Fellowship
in 2009.




