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Exact Force Vector Regulation of the Three-Pole

Magnetic Bearing
Nicholas R. Hemenway and Eric L. Severson, ECE Department, University of Wisconsin-Madison

Abstract—The three-pole magnetic bearing is an attractive
alternative to conventional four and eight pole magnetic bearings
because of its simple structure and ability to be operated with
three-phase power electronics. However, accurately controlling
the three-pole bearing is significantly more complicated. Conven-
tional control implementations are prone to large force vector
errors that can lead to instability in the magnetic suspension
system. This paper proposes a new control implementation for
externally-biased three-pole bearings that eliminates force vector
error. This control implementation is based on solving a fourth
order polynomial in the form of a depressed quartic to determine
coil current commands. An analytic framework and graphic
techniques are developed to study the solution space for the
bearing’s coil currents and explain discontinuities that can arise
in certain bearing designs. It is shown that bearings with either
no bias or a normalized bias field in excess of 1

3
are preferred

for suspension stability. The exact force vector regulator is
experimentally demonstrated in a bearing prototype and shown
to be advantageous over the conventional regulation approach.

Index Terms—Magnetic bearing, magnetic suspension, electric
motor, feedback control

NOMENCLATURE

α Bearing force vector angle.

Bc,i Control field in front of pole i.
B′

c,i Normalized control field, = Bci/Bmax.

Bi Total airgap field in front of pole i.
Bmax Maximum allowable bearing airgap field.

B0 Bearing bias field present in each airgap.

b′x, b′y x, y control field space vector components

normalized by Bmax.

∆ Discriminant of a fourth order polynomial.

Fmax Maximum achievable force that any of the

three poles can produce.

Fx, Fy x, y components of a bearing force vector.

F ′
x, F ′

y Normalized force components, = Fx/Fmax.

F
′ Complex force vector normalized by Fmax.

ic,i Control current flown into coil i.
iα, iβ α, β-axis currents of a current space vector.

k1 Proportionality factor relating fields to forces.

k2 Proportionality factor relating coil currents to

airgap fields.

p, q, r Quadratic, linear, constant coefficient of a

fourth order polynomial.

ζ Non-dimensional bias field, = B0/Bmax.

I. INTRODUCTION

Active magnetic bearings (AMBs) have the potential to

overcome several limitations of conventional mechanical-type

This work was supported in part by USA National Science Foundation
under Grant #1942099

bearings. Whereas contact-type bearings limit the motor sys-

tem lifetime and result in substantial friction losses for high-

speed operation, active magnetic bearings have no moving

parts or mechanical contacts, yielding highly efficient oper-

ation, improved system longevity, and controllable rotor dy-

namics. These qualities are particularly desired in compressor

applications, where AMBs are used in natural gas transporta-

tion, HVAC chillers, and wastewater aeration systems [1]–[3].

Radial magnetic bearings have been developed into mature

commercial products as four- and eight-pole bearings [4].

Recently, three-pole bearings have been developed at research

universities, for example: [5]–[20], primarily motivated by

their ability to be operated by a three phase inverter and ease of

manufacturing (all of which reduce cost). The wide variation

of three-pole design topologies was reviewed in [5] which

concludes that designs can be categorized by whether a bias

field is used and whether zero-sequence currents are used in

the control coils. Options for the bias field include heteropolar

airgap fields, i.e. [6]–[10] and homopolar airgap fields, i.e.

[17]–[20] (several of which are also able to create axial forces)

as well as no bias field, i.e. [14]–[16]. The operating principles

of all three-pole bearing topologies can be derived from Fig. 1,

which has three electromagnetic actuators separated spatially

by 120 degrees that can each impart a force on the rotor.

Three-pole bearings that use an external bias field suffer

from large force vector error (often referred to as “interference

forces”) [9], [10], [21], [22] which reduces the bearing’s

stability [23]. In previous work [5], the authors have shown

that 1) the force density of a three-pole bearing can be

increased by 15% by using an optimal external bias field; 2) it

is possible to eliminate the force vector error from externally-

biased bearings by determining the necessary coil currents

from a more detailed force-current model. To date, there has

been no investigation into operating a three-pole bearing with

the new approach for eliminating force vector error.

The main contribution of this paper is to develop, imple-

ment, and experimentally validate a so-called “exact force

vector regulator” for an externally biased three-pole magnetic

bearing. This paper first investigates discontinuities in the

commanded coil currents that can arise from a direct imple-

mentation of the new current calculation technique. It is shown

that if these issues are not properly addressed, the exact force

vector regulator can introduce new bearing stability challenges

into the magnetic suspension system. The paper then develops

a complete implementation of the exact force vector regulator.

Finally, the proposed regulator is investigated and validated

through a simulation study and an experimental prototype of

a combined radial axial magnetic bearing (CRAMB).
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Fig. 1. Three-pole AMB and Wye coil connection used in this paper.
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Fig. 2. Combined radial-axial magnetic bearing that uses permanent magnets
to generate an external bias field for the three-pole bearing.

II. THREE-POLE AMB STRUCTURE AND FORCE MODEL

This paper assumes the three pole bearing structure depicted

in Fig. 1 is operated by the conventional three phase inverter

typical of electric motor drives. The coils are connected in a

Wye configuration, requiring that their currents sum to zero. In

addition to airgap “control” fields created by the coil currents,

this paper assumes that an external flux source provides a

bias field to the airgap. An example configuration is shown in

Fig. 2, which depicts a combined radial-axial magnetic bearing

(CRAMB) utilizing axially-magnetized permanent magnets to

generate the bias flux. The “radial stage” is implemented as

the three-pole bearing of Fig. 1. This particular topology is

discussed at length in [24]. Other common geometry configu-

rations to realize this are reviewed in a previous work by the

authors [5], which also developed a generalized force model

for the three-pole bearing and proposed an “exact solution”

to calculate the currents necessary to create a desired force

vector. These results form the basis of the present paper and

are now summarized in this section.

Radial forces produced on the bearing’s shaft can be mod-

eled by (1). Here, F′ is a complex force vector normalized

by the maximum force Fmax = k1B
2

max that each bearing pole

can produce, Bc,i is the control component of the airgap field

in front of each pole (proportional to the pole coil’s control

current ic,i), Bmax is the maximum allowable airgap field, and

SV(~v) is a space-vector operator that operates on a cartesian

vector ~v as SV(~v) = [1, a, a2]~v, where a = e
j2π

3 . The total

airgap field in front of any pole is modeled as (2), which

consists of Bc,i and the bias field B0.

F
′ =

Fx + jFy

Fmax

= SV( ~B′2
c ) + 2ζSV( ~B′

c) (1)

~B′
c =

1

Bmax

[Bc,1, Bc,2, Bc,3]
T

Bi = B0 +Bc,i (2)

= B0 + k2ic,i

ζ =
B0

Bmax

(3)

Fmax

Fr

Fig. 3. Maximum force profiles for various bias field values.
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Fig. 4. Normalized rated force and current requirement profiles as a function
of the bias field ζ. Shaded regions depict the margin of improvement that
results from using an optimal bias field over conventional values.

When the force model for the bearing is presented in this form,

it is evident that the bearing’s force characteristic depends only

on Fmax and ζ (which depend on the bearing’s geometry and

materials, as described [5]). This allows for a general analysis

of the bearing, decoupled from the specifics of an individual

design. Note that this model assumes linear material properties

and thus Fmax is expected to be within the linear region of the

materials. Non-dimensional results in this paper are obtained

by setting k1 = k2 = Bmax = 1. This means that control fields

and currents can be used interchangeably–see (2).

It is shown in [5] that when ζ is allowed to vary, each

of the bearing’s three poles can produce force independently,

allowing the bearing to produce forces anywhere within the

dashed hexagonal profile of Fig. 3. However, when ζ is held

to a fixed value (i.e., using magnets as the external flux source

for the bias field, as is assumed in this paper), the maximum

force in any particular direction is limited to one of the inner

contours of Fig. 3. These contours each have a different force

rating Fr, which is defined as the minimum force magnitude

on the maximum force profile. An example rated force vector

is labeled in Fig. 3 for ζ = 1

3
. The design choice of ζ clearly

has significant implications for the force rating of bearings

with otherwise equivalent geometry (equivalent Fmax and

therefore Bmax values). Using an optimal bias field (ζ = 0.569)

can improve the three-pole bearing’s force rating by 15.5%

and decrease its Ampere-turn requirements by 23.4% (see [5])

compared to the bearing bias values of ζ = 0 or ζ = 1

2
that

are typically used. Fig. 4 highlights this result by showing

the normalized force rating (blue curve) and Ampere-turn

requirements (orange curve) of the three-pole bearing as a

function of the bias field ζ. Section III-D will show that the
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optimal bias field has additional desired features.

For control purposes, the inverse of (1) is needed; that is,

a calculation of currents required to produce a desired force

vector. The traditional approach linearizes (1) about a zero-

current operating point [9], [12], [22] and results in significant

force vector error. This paper uses a method proposed in [5]

that inverts (1) exactly using the following procedure:

1) Solve the roots of (4). This polynomial is a depressed

quartic–solution procedures are discussed in Section IV-A.

b′x + jb′y = SV( ~B′
c)

b′4x + pb′2x + qb′x + r = 0 (4)

p = −3F ′
x − 27ζ2

q = 18F ′
xζ + 54ζ3

r = −27F ′
xζ

2 −
9F ′2

y

4

2) Solve for b′y as (5).

b′y =
3F ′

y

2 (3ζ − b′x)
(5)

3) Solve for the three-phase control currents using (6).

iα + jiβ =
Bmax

k2

(

b′x + jb′y
)





ic,1
ic,2
ic,3



 =







2

3
0

− 1

3

√
3

3

− 1

3
−

√
3

3







[

iα
iβ

]

(6)

Inspection of (5) shows there is a singularity at b′x = 3ζ.

However, substitution of b′x = 3ζ into (4) yields that this

situation can only occur when Fy = 0. This corner case can

be evaluated by taking a limit, resulting in (7).

b′y =
√

27ζ2 − 3F ′
x (7)

The equations presented in this section form the basis of the

exact force vector regulator proposed in Section III. It should

be noted that the equations all assume a centered rotor, which

is premised on the assumption that the position regulator can

effectively control the rotor. The extension of these equations

to a displaced rotor is beyond the scope of this paper.

III. EXACT FORCE VECTOR REGULATOR

This paper proposes an exact force vector regulator for the

three-pole bearing by utilizing the coil current calculations of

(4)–(6). The purpose of this regulator is to eliminate the error

found in the conventional three-pole bearing force regulator

(referred to as the “linear force regulator” as it uses a linearized

force model to calculate coil currents) between the force vector

that the bearing’s position regulator commands and the force

vector that is actually created on the shaft. By doing this,

the exact force vector regulator has the potential to improve

bearing stability (considered later, in Section V-A).

This section develops the exact force vector regulator ap-

proach used to select a set of bearing coil currents, inves-

tigates the solution space of (4)–(6) to showcase challenges

with realizing the regulator, and develops a framework for

analyzing these challenges based on the system’s discriminant.

Conclusions drawn from this framework inform the design of

the three-pole bearing (specifically, the suitable bearing bias

level ζ). It is shown that careful consideration must be given

to the implementation of (4)–(6) in order to prevent excessive

losses due to unnecessarily large coil currents and introducing

new stability issues into the bearing’s position regulator due

to discontinuities in the commanded bearing currents.

A. Bearing Coil Current Calculations

The bearing current calculation method of (4)–(6) involves

solving the roots of the fourth order polynomial (4). This

means that there will be four sets of three-phase currents that

are capable of producing any desired force vector. The coil

currents (and therefore the ohmic losses) can vary significantly

between solutions. Further complicating the solution selection

is that depending on the commanded force vector, some of

the solutions can be invalid–requiring either an airgap field in

excess of Bmax or complex (non-physical) values of current. It

is proposed that for any desired force, the exact force vector

regulator select a valid (physically realizable) solution with

the lowest coil losses. This can be determined by selecting

the current set with the lowest Euclidean L2 norm.

The variation between solutions can be depicted by studying

the example of commanding a zero force vector (F ′
x = F ′

y =
0). Equation (4) and (5) are solved to find the four solutions

of b′x and b′y as (8)1.

(b′x, b
′
y) = (0, 0)

= (−6ζ, 0)

= (3ζ,±3
√
3ζ) (8)

For non-zero values of ζ, three of the four solutions will

require flowing current while producing no actual force. De-

pending on the value of ζ, this current can be quite significant.

This is undesirable as it leads to additional losses and power

draw from the bearing’s drive. Fig. 5a depicts these zero-force

locations as the blue x’s and orange o’s for two different values

of ζ. The solid and dashed bounding regions indicate the upper

limits for iα and iβ ; any coordinates outside of the bounding

regions will cause an airgap to exceed Bmax. It can be seen

that for the case of ζ = 0.4, three of the four solutions require

pushing the airgap fields past saturation to produce the zero-

force vector, and are therefore not valid solutions.

As the commanded force vector is swept across a bearing’s

realizable force profile (see Fig. 3), this broad variation in

solution values and feasibility can result in the proposed

exact force vector regulator commanding abrupt changes

(discontinuities) in the coil currents, even for smooth force

profiles. An illustrative example of discontinuities can be

found by studying the geometrically simple case of producing

a variable magnitude force along the x-axis. In this case,

~ic = Bmax

k2

[B′
c,1,−

B′

c,1

2
,−B′

c,1

2
]T is the minimum L2 solution.

1Since Bmax = k2 = 1, this is equivalent to iα and iβ of the control

current space vector: SV(~ic) = iα + jiβ = ic,1 + aic,2 + a2ic,3, see (6).
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Fig. 5. (a) Four current solutions to create F ′

x = F ′

y = 0 for two bearing bias levels. Creating an x-axis force: (b) limited force capability of the minimum

L2 solution (9) and (c) the current command discontinuity when crossing F ′

x = −3ζ2; grey curves depict the non-minimum L2 solution.

Substituting this into (1) yields (9), which is a scalar quadratic

equation in ic,1. Recall that Bmax = k2 = 1 so that ~ic = ~B′
c.

F ′
x =

3

4
i2c,1 + 3ζic,1 (9)

Fig. 5b depicts (9) for a bearing biased at ζ = 1

4
and shows

that a minimum force of F ′
x = −3ζ2 occurs at ic,1 = −2ζ.

As the regulator requests an increasingly negative force, this

solution will work until F ′
x = −3ζ2 is reached. At this point,

the solution’s required coil currents will become complex (and

therefore invalid) and the exact force vector regulator will

jump to a different solution, causing a discontinuity in the

commanded currents. This behavior is depicted in Fig. 5c

where the bearing current discontinuity corresponds to the

minimum of Fig. 5b (forces to the right of the discontinuity

are created by the low power solution discussed above).

Discontinuous current commands like those shown in

Fig. 5c are problematic as they are not physically realizable.

At the point of discontinuity, the current slew rate will be

limited by the voltage rating of the bearing drive and the

coil inductance. During the transition period between the two

solutions, large force vector errors will result, possibly causing

the system to go unstable. The stability implications of this are

investigated in Section V-A for an example bearing.

B. Analysis of Bearing Coil Current Solution Space

An analysis framework is now constructed to explain dis-

continuities that arise in the exact force regulator’s commanded

bearing currents (i.e., Fig. 5c). The framework applies to any

three-pole bearing design (combination of ζ and Fmax) for

any arbitrary desired force vector within a bearing’s realizable

force profile (Fig. 3). The analysis framework draws from

the mature body of literature on quartic polynomials and is

based on evaluating the discriminant of (4). Relevant math-

ematical background on how the solutions to quartics relate

to properties of their discriminant can be found in numerous

publications and textbooks, such as [25], [26].

The discriminant ∆ of (4) can be calculated as (10) in terms

of the desired force components F ′
x and F ′

y .

∆ = 2916F
′
2

y

(

− F
′
4

x + 24F
′
3

x ζ2 − 2F
′
2

x F
′
2

y − 162F
′
2

x ζ4

− 72F ′
xF

′2
y ζ2 − F ′4

y − 162F ′2
y ζ4 + 2187ζ8

)

(10)

The sign of the discriminant determines the types of roots

(coil current solutions) that will result. A negative discriminant

Fy

Fx

9ζ2
Fmax

3ζ2
Fmax

Fmax

Region 1

Region 2

Fig. 6. The blue region denotes where the discriminant is positive and
indicates that all four quartic solutions will be real valued.

indicates that there will be two distinct real roots and two

complex roots. Complex roots correspond to invalid coil

current solutions, meaning that F ′
x and F ′

y combinations which

yield a negative discriminate will have only two valid sets of

bearing coil currents. A positive discriminant indicates that

all four solutions will either be real (all coil current solutions

are valid) or complex (no coil current solutions are valid).

The case of a positive discriminant can be further refined

by evaluating the polynomials (11), if both polynomials are

less than zero, all four solutions will be real. Finally, a zero

discriminant indicates that the polynomial has a multiple root.

P = −24F ′
x − 216ζ2

D = −144(F ′2
x + F ′2

y )− 4320F ′
xζ

2 − 11664ζ4 (11)

Regions in the F ′
x-F ′

y plane with different discriminant signs

are depicted in Fig. 6 with the maximum profile of the three-

pole bearing (Fig. 3) imposed on top. Equations (10) and (11)

can be used to show that when a force vector is commanded

within each of these regions, the exact force regulator will

have a differing number of solutions as follows:

1) Blue shaded region: four valid current solutions, ∆ > 0
and the polynomials of (11) are negative.

2) Outside the blue shaded region: two valid current solu-

tions, ∆ < 0.

The solid blue lines indicate edge cases, where ∆ = 0.

Interestingly, the region with four valid solutions (blue region)

is completely defined in terms of the two generalized bearing

design parameters ζ and Fmax.

It can be shown numerically that for any three-pole bearing

design, a single solution of (4) will have the minimum L2

norm (lowest power) over the entirety of region 1 and that this



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS NOV/DEC 2021 5

����
����
���
���
���


�
���

��
�
�

��
��

ζ= 1
4

ic, 1

ic, 2

ic, 3

��� ��� ��� ��� ��	 ���
�����������������|F′|�
�����

����
����
���
���
���


�
���

��
�
�

��
��

ζ= 1
2

ic, 1

ic, 2

ic, 3

Fig. 7. Current waveform that results when commanding a variable magnitude
force at an angle of α = 40◦ for bearings biased at ζ = 1

4
and ζ = 1

2
.

40∘

ζ= 1
4

x

y

40∘

ζ= 1
2

x

y

0.2Fmax

Fig. 8. Variable force magnitude command trajectory on top of two bearings’
maximum force profile and discriminant regions. These plots explain current
discontinuities in Fig. 7.

solution will be infeasible (complex) in region 2. This result

indicates that for smooth force trajectories within region 1,

the exact force regulator will command smooth coil currents

(no discontinuities). However, when a force vector crosses

from region 1 to region 2, the exact force vector regulator

will command problematic discontinuous currents because the

minimum L2 solution will become infeasible at the boundary

between regions 1 and 2. Finally, in region 2, the solution with

the lowest L2 norm will change when crossing a solid blue

line at 60◦, 180◦, and 300◦ for bearings with ζ > 0. This will

create discontinuous current commands at these angles.

C. Case Studies of Bearing Coil Current Discontinuities

Examples are now presented using the analysis framework

developed in Section III-B to examine the coil current com-

mands for different bearing designs and force trajectories.

1) Force along x-axis: The example considered in Sec-

tion III-A and depicted in Fig. 5b and 5c is analyzed. A

current discontinuity was observed for an x-axis force crossing

F ′
x = −3ζ2, where the minimum L2 solution becomes

infeasible for lower force values. This matches the interface

of regions 1 and 2 in Fig. 6, where the analysis framework

expects a current discontinuity to exist (the lowest L2 solution

is infeasible in region 2, but viable in region 1).

2) Variable magnitude force at 40◦: In Fig. 7, the exact

force vector regulator’s control currents are computed for a

variable magnitude force at an angle of 40 degrees for two

different bias values (ζ = 1

4
and ζ = 1

2
). The two curves

extend to different force magnitudes because the two bearings

have different force capability curves per [5] and Fig. 3.
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Fig. 9. Current waveform that results when commanding a force of 0.2Fmax

in all force directions.

ζ= 1
4

x

y

ζ= 1
2

x

yα=40∘

Fig. 10. Variable force angle (constant magnitude of 0.2Fmax) trajectory for
two bearings. These plots explain current discontinuities in Fig. 9.

Once the force magnitude reaches 0.2Fmax, the currents in the

bearing with ζ = 1

4
discontinuously jump to a new solution.

This issue does not occur for the bearing biased at ζ = 1

2
.

The discontinuity can be understood from the analysis

framework of Section III-B based on when the force vector

transitions between discriminant regions. This is depicted in

Fig. 8, where the blue region 1 from Fig. 6 has been drawn on

top of each bearing’s maximum force profile (orange). In the

case of ζ = 1

4
, as the commanded force vector (shown in red)

increases in magnitude, it passes out of region 1 at the force

magnitude of 0.2Fmax. The discontinuity in Fig. 7 occurs at this

location because the loss minimizing solution that was initially

being commanded inside region 1 is no longer available and

the controller must switch to the next lowest loss solution.

This does not occur for the bearing with ζ = 1

2
because the

larger ζ value expands the blue region 1 so that the bearing’s

force profile resides entirely within region 1. In other words,

the commanded force never transitions between regions 1 and

2, and therefore the minimum L2 solution is always feasible.

3) Variable angle force at 0.2Fmax: The two bearings from

Section III-C2 (ζ = 1

4
and ζ = 1

2
) are now investigated for

a force trajectory where the magnitude is fixed at 0.2Fmax

but the angle is varied. The resulting current commands are

shown in Fig. 9. The currents for the bearing biased at ζ = 1

2

are smooth and continuous, while the ζ = 1

4
bearing currents

periodically jump between three of the four solution sets.

This behavior can again be understood from the framework

of Section III-B. The trajectory of the commanded force

vector is depicted in Fig. 10 as a dashed circle for each

bearing. Several of the angles of the discontinuities in Fig. 9

correspond to where the force vector crosses the region 1
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Fig. 11. The discriminant regions of several bearing designs (ζ values). Bearings with ζ ≥ 0.3 do not experience discontinuous current commands.

boundary in Fig. 10. As the force vector rotates in and out of

the blue region, the minimum L2 solution alternates between

being feasible and infeasible, causing the cyclical current

discontinuities. This behavior does not occur for the ζ = 1

2

bearing as the commanded force vector never leaves region

1. The remaining discontinuities occur at angles of 60◦, 180◦,

and 300◦ that were identified in Section III-B as corresponding

to a change in which region 2 solution yields the minimum

L2 norm.

D. Bearing Design Guidelines

As previously remarked, large discontinuities in the bear-

ing coil currents over a smooth force trajectory can create

problematic position regulator stability issues. It is therefore

desired to eliminate these discontinuities from the exact force

vector regulator. This can be accomplished by modifying the

solution selection algorithm to avoid solutions that become

infeasible for certain force vectors. However, based on the

results of Section III-B, this would eliminate the use of the

minimum L2 solution, potentially resulting in an unreasonable

increase in bearing power consumption. Alternatively, this can

be addressed through careful bearing design. The possibility of

this approach was revealed in the case studies of Section III-C,

where bearings with ζ = 1

2
did not experience discontinuities.

Design guidelines, in terms of values of ζ, are now developed

to identify and evaluate bearings where the exact force vector

regulator will not command discontinuous currents.

Section III-B showed that current discontinuities will not

result when a commanded force vector remains in region 1

of Fig. 6. Inspection of Fig. 6 shows that the blue region 1

grows with ζ2, while both region 1 and the red hexagon (and

therefore a bearing’s maximum force profile–see Fig. 3) are

proportional to Fmax. Consequently, as ζ increases, the blue

region will grow relative to the force hexagon (and maximum

force profile). This is depicted in Fig. 11 for various values of

ζ. Key ranges for ζ can be identified as follows:

1) ζ = 0: no current discontinuities, as the bearing’s force

profile will always reside in region 2 (the same number of

solutions are always feasible), provided that the solution

selection algorithm presented in [14] is utilized;

2) 0 < ζ < 0.287: current discontinuities will occur within

the bearing’s force profile as it spans regions 1 and 2;

Bearing
abc

αβ
InverterPIPID

Force 
Saturation

Force 
Inverse iabc

xy

xy*

-

+ +

-
iαβ

Current Control

Fxy* iαβ* Vαβ* Vabc

abc

αβ

Vabc*

iαβ*

Fxy*'Fxy*'

Fig. 12. Bearing control architecture; prime notation denotes saturated forces.

3) 0.287 ≤ ζ < 1

3
: no current discontinuities within the

bearing’s rated force profile2, but discontinuities will

occur when pushing past rated force to maximum force;

4) ζ ≥ 1

3
: no current discontinuities, as the bearing’s force

profile will always reside in region 1.

Based on these results, this paper proposes that three-pole

bearings be designed with either ζ = 0 or ζ ≥ 1

3
. It was shown

in [5] that these ranges of ζ are also preferred from a force

density and ampere turns perspective, as can be seen in Fig. 4,

with an optimal value of ζ = 0.569. This indicates that any

practical three-pole bearing design can in fact be operated by

the exact force regulator without concern for discontinuities

(and corresponding stability issues) in the bearing currents.

IV. REGULATOR ARCHITECTURE AND IMPLEMENTATION

This section details the exact force vector regulator archi-

tecture and implementation for a real-time control platform.

Fig. 12 shows a block diagram for controlling a three-pole

bearing and consists of an inner current controller and an

outer motion regulator. The current controller operates in

the stationary α-β frame using a PI controller and can be

realized following design principles that are well-understood

in motor drives literature [27]. The motion regulator can

be implemented as a PID controller following recommended

practices for magnetic bearings, such as those provided in [4],

[23]. The output of the outer loop PID controller is a force

vector command that passes through a saturation block before

being inverted into the iα and iβ current commands of (6).

The exact force vector regulator of Section III makes up the

force inversion and saturation blocks of Fig. 12.

2Recall that the rated force profile is a circle with a radius equal to the
inner radius of the maximum force profile–see Fig. 3.
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Fig. 13. iβ current maps for normalized bearings with (a) ζ = optimal; (b) ζ = optimal (zoomed in view); (c) ζ = 1

4
.

A. Force Inversion

As previously discussed, calculating the control currents

for a desired force vector requires computing the roots of a

fourth order polynomial in the form of a depressed quartic

(4). While various analytic methods exist for solving this

type of equation (i.e., Ferrari’s or Descartes solution), they

are computationally expensive to perform in real-time. Several

numeric methods also exist (i.e. computing the eigenvalues of

a polynomial companion matrix [28]) but are often iterative,

vary in terms of computational time requirements, and rely

on the solution to converge. To avoid these complexities in a

real-time control loop, it is proposed that the solutions be pre-

computed and interpolated using a lookup table. Various search

algorithms exist that could be used to implement a lookup

table efficiently; the well known binary search algorithm, for

example, runs in logarithmic time [29].

Fig. 13a and 13b show non-dimensional β-axis current

lookup tables for an optimally biased bearing (Fig. 13b is

a zoomed-in view of Fig. 13a). The axes are the x and y
components of the desired normalized force vector and the

contour color indicates the iβ current magnitude (computed

as the minimum L2 norm solution). A dashed black force

hexagon and red maximum force profile are overlaid on the

current map for reference. Note that an equivalent map must

be constructed for the iα current. It can be seen that the region

1 boundary discussed in Section III shows up naturally in the

contours of Fig. 13a. Furthermore, distinct lines where the

other expected current discontinuities will occur (60◦, 180◦,

and 300◦) show up on the contour plot but lie outside of the the

maximum force profile, as expected for an optimally biased

bearing. Fig. 13c shows the non-dimensional β-axis current

lookup table for a bearing biased at ζ = 1

4
. The region 1

boundary shows up naturally again in the contour plot, but

because this bias level does not fall in the range of suggested

bias fields (ζ = 0 or ζ ≥ 1

3
), current discontinuities can be

seen occurring within the bearing’s realizable force profile.

The current maps depicted in Fig. 13 are normalized. To

convert them to actual units, the force components and current

values are multiplied by Fmax and Bmax

k2

.

F

∠α

F 'Fx

Fy

F α

Fx*

Fy*

*

*

*

'*

'*

Fig. 14. Internal structure of the force saturation block shown in Fig. 12.

B. Force Saturation

It is necessary to saturate the force commands before they

are inverted into current commands. This is done for two

reasons, the first of which is to avoid discontinuous current

commands that could occur from requesting a force that lies

outside of the maximum force profile and therefore outside

the accurate range of the lookup table interpolation of iα and

iβ . The second reason is to prevent the force inversion block

from requesting currents that would produce airgap fields in

excess of Bmax. These currents would presumably saturate the

bearing steel and result in force vector error.

When saturating force commands, the force vector mag-

nitude should be limited (as opposed to the individual com-

ponents) because the maximum magnitude is dependent on

the force vector angle α. Fig. 14 depicts how this can be

done. First, the x and y force components are converted into a

corresponding force magnitude and angle. The magnitude and

angle are then used in a lookup table that contains the bearing’s

maximum force profile as a function of the force angle. The

saturation block returns the minimum of the commanded input

magnitude and the pre-computed maximum force profile for

the specified force angle. The output magnitude and force

angle are converted back into x and y components for use

in the current lookup tables of the “Force Inverse” block.

V. VALIDATION

The proposed exact force vector regulator is now validated

and compared to the conventional linear approach by studying

the control implementation of an example bearing through

both simulation and experimental results. The experimental

results are obtained from a prototype CRAMB (see Fig. 2)
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Fig. 15. Various views of the CRAMB prototype.

TABLE I
CRAMB PROTOTYPE FIT PARAMETERS

Machine Parameter Value

Unstable stiffness, kδ -129.9 N/mm

Coil R, L 1.88 Ω, 54.1 mH

Fmax, Bmax 131.5 N, 0.8 T

k1, k2 205.45 N/T2, 0.395 T/A

that implements the externally biased three-pole bearing as its

radial stage (shown in Fig. 15). A mechanical swivel bearing

allows the shaft end opposite the magnetic bearing to spin

and pivot but constrains it from displacing radially. While the

prototype is designed with an optimal bias field (ζ = 0.569), a

compensation coil has been installed that can be re-purposed

to modify the bearing’s bias field when conducting static

force tests. Full details of the prototype can be found in [5],

[24]. Key machine parameters are provided in Table I, which

includes the equivalent force model values needed to solve (4)

and utilize the non-dimensional current map of Fig. 13b.

A. Simulation results

Bearing suspension instabilities that can result from using

either the linear control approach or a poorly biased bearing

are now investigated. Two bearing models are used for the

simulations: 1) the bearing prototype of Fig. 15; 2) a reduced

bias version of the prototype bearing with ζ = 1

4
(so that the

exact force vector regulator will command discontinuous coil

currents, as explained in Section III-D). These bearing models

use the current maps of Fig. 13b and 13c with the machine

parameter values listed in Table I. In all simulations, identical

PID and PI controller gains (see Fig. 12) were used with a 700

Hz current controller bandwidth and 100V dc inverter bus.

1) Full motion control (startup and step disturbance):

Fig. 16 shows the bearings’ startup behavior and response

to a 50 N step disturbance (at t = 1.5 s) for the exact and

linear force regulators for two bias levels. For the optimally

biased bearing, both controllers stably levitate the shaft from a

touched down state. However, when the step force disturbance

is applied, the force vector error of the linear force regulator

causes the rotor to crash. For the ζ = 1

4
bearing, the linear

force regulator is unable to even get the bearing to startup.

The exact force regulator provides a stable startup but becomes
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Fig. 16. Startup and response to a 50 N step disturbance directed at α = 30◦

for the exact and linear force regulators two bias values.
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Fig. 17. Current discontinuities and force vector error that can result in a
ζ = 1

4
bearing commanded to track a force ramp.

unstable after the force disturbance due to force vector errors

resulting from discontinuous current commands.

2) 20 N/ms force ramp at 40◦: The case study presented

in Section III-C2 is now considered as a transient simulation

to investigate the effects of discontinuous current commands.

In this simulation, the motion controller is removed and an

increasing force magnitude is directly commanded. The force

results are depicted in the top of Fig. 17. The corresponding

currents for the ζ = 1

4
bearing are shown in the bottom

and reveal current commands similar to those depicted in

Fig. 7. Notice that the optimally biased bearing is able to

effectively track the force command. Initially, the ζ = 1

4

bearing also tracks the command effectively. However, when

the commanded force vector crosses out of region 1 of Fig. 8,

discontinuous currents are commanded and the slew rate of

the three-phase currents is limited by the coil inductance and

DC bus voltage. At this point, large force vector errors occur

with angle errors over 40◦. These large force vector errors can

cause instabilities (i.e., Fig. 16).

3) 3600 RPM rotating force of 0.2Fmax: The case study

presented in Section III-C3 is now considered as a transient

simulation (again, with forces directly commanded and no

motion controller). A force command of 26 N (0.2Fmax) was
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Fig. 18. Simulated results of 3600 RPM rotating force command to demon-
strate vector error caused by discontinuous current commands when ζ = 1

4
.

modeled as rotating at 3600 RPM (this is representative of

force commands issued due to an unbalanced rotor). The

results are shown in Fig. 18, where current commands cor-

respond to Fig. 9. The controller is able to track the rotating

force command in the optimally biased bearing, but not in the

ζ = 1

4
bearing. This is due to the repeated discontinuities of

the current commands and results in unacceptable force vector

errors (over 150◦ angle error at times). Such large force vector

errors appear as a positive feedback to the system and can

result in instability. While it is common practice to suppress

rotor imbalance compensation by rotating the shaft about its

center of mass [4, sec. 8.3], this phenomenon will pose stabil-

ity challenges by making the system sensitive to inacuracies in

the imbalance control suppression and because such strategies

are typically applied above a minimum threshold shaft speed.

B. Experimental validation

Three sets of tests were run on the prototype to validate the

exact force vector regulator and compare its performance to

the standard linear force regulator.

1) Static Force Test: The case study of Section III-C1

and Fig. 5b was investigated experimentally by applying the

minimum L2 coil currents of ~ic = [ic,1,− ic,1
2
,− ic,1

2
] and

measuring forces produced. To complete this test, the CRAMB

is placed in a commercial milling machine (right side of

Fig. 15), with the rotor installed in the mill’s spindle and the

stator fixed to the mill’s x-y table via a load cell. The test

results are shown in Fig. 19, where it can be seen that the

ζ = 1

4
profile matches Fig. 5b and has the expected minimum

force value and corresponding coil current anticipated by the

analysis framework of Section III-B and Fig. 6. Also as

expected, the optimally biased bearing does not encounter a

minimum force limit on this solution within its force profile.

2) Startup and Rotational Tests: The prototype machine

was operated using the proposed exact force vector regulator

at speeds up to 1300 RPM. The bearing startup event and the

rotor orbit are shown in Fig. 20. Both tests demonstrate stable

operating of the three-pole bearing.
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Fig. 19. Prototype quadratic force behavior for two bias levels.
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Fig. 20. Prototype startup (left) and orbit plot at 1300 RPM (right).

3) Force Vector Error Comparison Tests: Two tests were

performed to compare vector error between the exact and

linear regulators. First, a static test is preformed using the

test stand configuration described in Section V-B1 where a

constant magnitude force vector of 98 N was commanded

through a range of force angles, while both regulator architec-

tures were used to apply coil currents. Reaction forces were

measured with the load cell (Fig. 21a) and the resulting vector

error is depicted in Fig. 21b. The results show how effective

each regulator is at obtaining the commanded force vector. The

exact force regulator clearly achieves the highest performance,

reducing the force magnitude and angle errors by over 20%

and 9 degrees compared to the linear regulator.

Second, force vector error is observed during a levitation

test. Prior to the test, a fixed force was applied to the levitating

rotor by installing a tensioned elastic band connected to a

rigid object. During the test, the bearing control architecture

switches between using the exact and linear force vector regu-

lators (the “Force Saturation” and “Force Inversion” blocks of

Fig. 12 are replaced). The recorded data is shown in Fig. 21c,

where the architecture change occurs at t = 4 s. After a brief

transient event, the currents return to their previous steady

state values (as expected, because the force applied by the

band has not changed), but the force commands converge to

different final values. The difference between the steady state

force command values demonstrates the force vector error of

the linear regulator (the controller has to command an incorrect

force vector to compensate for the disturbance).

VI. CONCLUSION

This paper develops a solution to one of the key challenges

of externally biased three-pole bearings: force vector error that

can cause instability in the magnetic suspension system. An

exact force vector regulator is proposed that is able to eliminate

this error between the force vector that a position regulator

commands and the force vector that is actually produced on
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Fig. 21. Load cell measurements of (a) force vectors and (b) corresponding force vector error using an exact and linear regulator. (c) Levitation test data
showing a transition from the exact to the linear force vector regulator with an 80 N constant force applied to the rotor.

the bearing’s shaft. Graphical techniques are developed based

around the discriminant of the bearing’s force model in order

to guide the bearing design process and explain discontinuous

coil currents that the new regulator commands in poorly biased

bearings. It is shown that bias field values that maximize the

bearing’s force density will also result in the best performance

with the new force vector regulator. Practical implementation

details for the new force regulator are provided and test results

from a prototype bearing demonstrate its viability.
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