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The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in
other words, the measured value depends on how the parameter was measured. Here we take advantage of this
scale-dependence to develop a new framework for characterizing rough surfaces: the Scale-Dependent Roughness
Parameters (SDRP) analysis, which yields slope, curvature, and higher-order derivatives of surface topography at
many scales, even for a single topography measurement. We demonstrate the relationship between SDRP and

other common statistical methods for analyzing surfaces: the height-difference autocorrelation function (ACF),
variable bandwidth methods (VBMs) and the power spectral density (PSD). We use computer-generated and
measured topographies to demonstrate the benefits of SDRP analysis, including: novel metrics for characterizing
surfaces across scales, and the detection of measurement artifacts. The SDRP is a generalized framework for
scale-dependent analysis of surface topography that yields metrics that are intuitively understandable.

1. Introduction

Surface roughness is primarily characterized in terms of scalar pa-
rameters; especially common are the root-mean-square (rms) height and
slope, which are the rms deviations from the mean height and mean
slope. Some variant of these quantities is computed by all surface
topography instruments, and they are often reported to describe surface
topography in publications. These quantities are useful for describing
the amplitude of spatial fluctuations in height and slope across the
measured topography. However, a core issue with these roughness pa-
rameters is that all of them explicitly depend on the scale of the mea-
surement [1]: The rms height depends on the lateral size (largest scale)
of the measurement; the rms slope depends on the resolution (smallest
scale) of the measurement. A direct demonstration of this effect on
real-world measurements can be found in Refs. [2,3]. We note that some
standardized expressions for obtaining these values, such as Rq from ISO
4287 [4] include high- and low-frequency filtering. These values are still
strongly scale-dependent, but now the relevant scale is the size of the
filter rather than the size of the measurement.

The scale dependence of these values is typically a signature of the
multi-scale nature of surface topography. A simple illustration is given in
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a classic article by Benoit Mandelbrot on the length of coastlines [5].
Mandelbrot illustrated, that the length Lo, of a coastline depends on
the length of the yardstick £ used to measure it. A smaller yardstick picks
up finer details and hence leads to longer coastlines. For (self-affine)
fractals [6], the functional relationship Leoast(¢) is a power-law whose
exponent characterizes the fractal dimension of the coastline. In the case
of a surface topography measurement, # corresponds to the resolution of
the scientific instrument used to measure the topography and the
property corresponding to the length of a coastline is the true surface
area S(¢) of the topography. We have in prior work directly demon-
strated that S(¢) (and also the rms slope and curvature) scales with
measurement resolution ¢ [2,3,7]. This scaling of the surface area has,
for example, direct relevance to adhesion between soft surfaces [7].
Many surfaces do not behave as ideal fractals, but nearly all surfaces
exhibit some form of size dependence of the roughness parameters dis-
cussed above. This is because processes that shape surfaces, such as
fracture [8-10], plasticity [11-14] or erosion [15], all lead to
multi-scale, fractal-like topography over a range of length scales.

Here, we suggest a route to generalize these (and other) geometric
properties of measured topography to explicitly contain a notion of
measurement scale. We define the individual roughness parameter as a
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function of scale £ over which it is measured, leading to curves identi-
fying the value of the parameter as a function of 7. Unlike above, where
¢ was restricted to the resolution of the instrument or some fixed filter
cutoff, we now broaden the concept of this scale ¢ to refer to any size
over which a parameter is computed. For a given topography scan, it can
range from the pixel size up to the scan size. We term the resulting
curves the scale-dependent roughness parameters (SDRPs) and outline the
relationship to three common characterization techniques: the height-
difference autocorrelation function (ACF), the variable bandwidth
method (VBM) and the power spectral density (PSD). SDRPs are useful
because they are easily interpreted: While it is difficult to attach a
geometric meaning to a certain value of the PSD (where even units can
be unclear [1]), the slope and curvature both have simple geometric
interpretations. Since slope and curvature are also the primary in-
gredients for modern theories of contact between rough surfaces
[16-24], SDRPs are directly connected to functional properties of rough
surfaces. Finally, we illustrate below how SDRPs can be used to estimate
tip-radius artifacts in contact-based measurements, such as scanning
probe microscopy and stylus profilometry.

2. Analysis methodology
2.1. Computing typical roughness parameters in real space

Surface topography is commonly described by a function h(x, y),
where x and y are the coordinates in the plane of the surface. This is
sometimes called the Monge representation of a surface, which is an
approximation as it excludes overhangs (reentrant surfaces). A real
measurement does not yield a continuous function but height values

hy = h(xk7)'t) (@]

on a set of discrete points x; and y;. Measurements are often taken on
equidistant samples where x; = kAx and y; = [Ay, where Ax and Ay are
the distance between the sample-points in their respective directions.
Furthermore k € [0,N, — 1] and [ € [0,N, — 1] where Ny xN, is the total
number of sample points.

Topographies are often random such that hy; is a random process and
its properties must be described in a statistical manner. Starting with
Longuet-Higgins [25,26] and Nayak [27], many authors have discussed
this random process model of surface roughness, yet the most commonly
used roughness parameters have remained simple.

We will illustrate the following concepts using the one-dimensional
case, i.e. for line scans or profiles. In many real scenarios, even areal
topographic measurements are interpreted as a series of line scans. This
is for example the case in atomic force microscopy (AFM), where a
topographic map is stitched together from a series of adjacent line scans.
Because of temporal (instrumental) drift, these line scans may not be
perfectly aligned and the “scan”-direction is then the preferred direction
for statistical evaluation. In the following mathematical development,
we will implicitly assume that all values are obtained by averaging over
these consecutive scans, but we will not write this average explicitly in
the equations that follow. Extension to true two-dimensional topog-
raphy maps of the ideas presented here is straightforward and briefly
discussed in Appendix A.

The most straightforward statistical property is the root-mean-square
(rms) height,

hems = () = (2 (x))'"?, @

where the average (-) is taken over all indices k. (We will omit the
explicit index k in the following equations.) The rms height measures the
amplitude of height fluctuations on the topography, where the midline is
defined as h = 0. In addition to the height fluctuation, we can also
quantify the amplitude of slopes,
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where D/Dx is a discrete derivative in the x-direction.

A common way to compute discrete derivatives on experimental data
is to use a finite-differences approximation. Finite-differences approxi-
mate the height h(x) locally as a polynomial (a Taylor series expansion).
The first derivative can then be computed as

0 zﬂh(x) :h(x+Ax) 7h(x).

Dx Ax )

This expression is called the first-order right-differences scheme. We will
use the symbol D for the discrete derivatives, and the term “order” here
refers to the truncation order, or how fast the error decays with grid
spacing Ax: it drops linearly with decreasing Ax in this scheme. Another
interpretation is that the truncation order gives the highest exponent of
the polynomial used to interpolate between the points x and x + Ax. The
derivative of a linear interpolation is constant between these points and
given by Eq. (4).
We can also quantify the amplitude of higher derivatives,

D= 2y 1/2
(a) — -
hrms - <<Dx" h(x)> > ’ (5)

where a = 2 yields the rms curvature. A discrete formulation of the
second derivative is

D? h(x + Ax) — 2h(x) + h(x — Ax)

Dx2 h(x) = Ax? ' 6

This expression is called the second-order central-differences approxi-
mation. Again, this can be interpreted as fitting a second-order poly-
nomial to the three points x — Ax, x, and x+ Ax, and interpreting the
(constant) second derivative of this polynomial as the approximate
second derivative of the discrete set of data points. The third derivative
is given by

D? h(x + 2Ax) — 3h(x + Ax) + 3h(x) — h(x — Ax)

Dx? h(x) = Ax? ’ @

which again can be interpreted in terms of fitting a cubic polynomial to
(four) collocation points.

We can generally write the discrete derivative as a weighted sum
over the collocation points x,

Da 1 - (()
Wh(xk) = A l;o e h(xies)- (8)

The values cf“) are called the stencil of the derivative operator and a

indicates the order of the derivative. For the above derivatives,

(1)

V=—1,cV =1, ©)
c(()z) = 72,c(fl) =1 and 10)
o) =3, =-3,% =1, =1, (1n

and all other cl(“>

stencils.

s are zero. Higher-order derivatives lead to wider

2.2. Computing scale-dependent roughness parameters in real space

The discrete derivatives of the preceding section are all defined on
the smallest possible scale that is given by the sample spacing Ax and
have an overall width of aAx. It is straightforward to attach an explicit
scale to these derivatives, by evaluating Eq. (8) over a sample spacing
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nAx (with integer 5) rather than Ax,

D¢ 1 ©
(n) _ ()

h(x) = g h(Xpet)- 12
Dxe (x) (nAx)” lzmcl (Xe) a2

We will call the factor 7 the scale factor. The corresponding derivative is
measured at the distance scale £ = anAx.

Fig. 1 a illustrates this concept. For a simple right-differences scheme
as given by Eq. (4), the scale-dependent first derivative is simply the
slope of the two points at distance #. For the second derivative given by
Eq. (6), we fit a quadratic function through three points with overall
spacing ¢ and the curvature of this function is the scale-dependent
second derivative.

We now define the scale-dependent roughness parameter (SDRP) as

12

D% 2
Wtans) = ( () ) a3)
n

domain

This new function defines a series of descriptors for the surface that are
analogous to the traditional rms slope (h(sgRP = hgpep) and to the rms

curvature (hg))RP = hgpgp); but instead of being a single scalar value,
each represents a curve as a function of the distance scale £ = anAx.
The distance scale ¢ is only clearly defined for the stencils of lowest
truncation order. For the n-th derivative, those can be interpreted as
fitting a polynomial of order n to n + 1 data points (see Fig. 1a). The n-th
derivative of this polynomial is then a constant over the width of the
stencil; this width must then equal the distance scale #. Higher trunca-
tion orders can be interpreted as fitting a polynomial of order m > ntom
+1 data points. The n-th derivative is not constant over the stencil and it
is not clear what the corresponding length scale is. We will here only use
stencils of lowest truncation order where the distance scale is clear.
For non-periodic topographies we need to take care to only include

(a) Height
<
=
2
(0]
T
Position x
(b) Slopeat ¢ = 40Ax (c)
[ ]
—_ [ )
et °
\C H ® [ ] °
(] =
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(7)7 e
Position x P1(h’, 40Ax)

Fig. 1. Illustration of the basic idea behind the scale-dependent roughness
parameters. (a) Example line scan showing the computation of slopes h' (#) and
curvatures h”(£) from finite differences. A scale can be attached to this
computation by computing these finite differences at different distances 7,
shown for # = 40Ax and # = 80Ax where Ax is the sample spacing. Similarly,
the curvature at a finite scale ¢ is given by fitting a quadratic function through
three points spaced at a distance #/2. (b) Local slope, obtained at a distance
scale of £ = 40Ax for the line scan shown in panel (a). The slope is defined for
each sample point since we can compute it for overlapping intervals. (c¢) Dis-
tribution of the local slope obtained from the slope profile shown in panel (b).
The rms slope for this length scale is the width of this distribution.
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derivatives that we can actually compute, i.e. where the stencil remains
in the domain of the topography. This is indicated by the subscript
“domain” in Eq. (13).

2.3. Beyond root-mean-square parameters: Computing the full
distribution

The rms value, such as the one defined in Eq. (13), characterizes the
amplitude of fluctuations, or the width of the underlying distribution
function. Rather than looking at this single parameter, we can also
determine the full scale-dependent distribution. Formally we can write
this distribution as

Pz = ({15 20 ) ) a4
o Dyx

where §(x) is the Dirac-6 function and y the value of the derivative (of
order a) that we are interested in. In any practical (numerical) deter-
mination of the distribution, we broaden the §-function into individual
bins and count the number of occurrences of a certain derivative value.

To illustrate this concept on the example of the slope (¢ = 1), Fig. 1b
shows the scale-dependent derivative at £ = 40Ax of the line scan
shown in Fig. la. The distribution function of the slopes at this scale,
P; (K, 40AX), is then obtained by counting the occurence of a certain
slope value. The resulting distribution is shown in Fig. 1c.

The rms parameters defined in the previous section are the square
roots of the second moments of this distribution,

1/2
e (anAx) = { / drr*Palr; n)} : (15)

The second moment characterizes the underlying distribution fully only
if this distribution is Gaussian. We will see below that, for example,
scanning probe artifacts introduce deviations from Gaussianity that we
can easily detect once we have the full distribution function.

In summary, these probability distributions of arbitrary derivatives
(such as slope, curvature, or higher-order functions) serve as an addi-
tional set of descriptors for a surface. The distributions are themselves
scale dependent, but can be used to compute a wide variety of scale-
dependent statistical parameters, including higher cumulants, such as
skewness or kurtosis.

3. Analysis: Relationship of scale-dependent roughness
parameters to other methods

3.1. Relationship to the autocorrelation function

A common way of analyzing the statistical properties of surface
topography is the height-difference autocorrelation function, which will
be designated here as ACF or A(?). (See Ref. [28] for an authoritative
discussion of properties and use.) The ACF is defined as

AW 3 (I +6) ~ HP)
= 1h2 lh2 £) — h(x)h 4 e
—<§ (x)+§ (x+7) — h(x)h(x + )>

Note that some authors call 2A(?) the structure function and use the term
ACF for the bare height autocorrelation function (h(x)h(x + ¢)) [29,30].
The height ACF and the height-difference ACF are related by

Alt) = i

Tms

— (h()h(x+7)). an

The ACF has the limiting properties A(0) = 0 and A(/—o0) = h2, .
Equation (16) resembles the finite-differences expression for the first
derivative, Eq. (4). Indeed, we can rewrite the ACF as
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1 D
A =3 ([
n

h(x)D(nAx)z a8

using the scale-dependent derivative. The scale-dependent rms slope
then becomes

’

hpre(€) = [ZA(’?HI/Z/ﬁ (19)

The height-difference ACF can hence be used to compute the scale-
dependent slope introduced above.

We now show that we can also express higher-order derivatives in
terms of the ACF. Using the stencil of the second derivative given in Eq.
(6), the scale-dependent second derivative can be written as

Wi (€) = 2 [h(x+ £/2) = 24(2) + s — ¢/2)F) 20)

We can rewrite this expression as

h//

wore(&) = %(6#@) — 8h(x)h(x +£/2)

@1
+2h(x)h(x + ).

and use Eq. (17) to introduce the ACF into this expression, yielding

Hooe£) = 418A(/2) =24(0)) * [ £°. 22
Similarly, the scale-dependent third derivative from the stencil given in
Eq. (7) becomes

WY eol€) = g[SOA(Z’B) ~1242¢/3) + 24(6)] 2. 23)

We can therefore relate the scale-dependent root-mean-square slope,
curvature, or any other higher-order derivative to the ACF.

In summary, we have shown that the commonly used ACF function
can be thought of a specific case of the SDRP analysis: being equivalent
to the finite-differences calculation of scale-dependent slope. We further
showed that the ACF function can be used as one method to compute
higher-order SDRPs.

3.2. Relationship to the variable-bandwidth method

We now introduce an alternative way to arrive at SDRPs based on a
different notion of scale. Notice that the discussion leading up to Eq.
(13) does not involve the length L of the line scan. This length is only
relevant when it comes to determining an upper limit for the stencil
length £ = anAx, which is the notion of scale in a measurement based on
Eq. (13). Alternatively, we could interpret L as the relevant scale, and
study scale-dependent roughness by varying L. This interpretation leads
to a class of methods which have been referred to as scaled windowed
variance methods [31] or variable bandwidth methods (VBMs). Mem-
bers of this class of methods differ only in the way that the data is
detrended and have been given a variety of names including: bridge
method (attributed to Mandelbrot); roughness around the mean height
(MHR) [32] (sometimes termed VBM [33]); detrended fluctuation
analysis (DFA) [34,35]; and roughness around the rms straight line
(SLR) [32].

In all cases, one performs multiple roughness measurements on the
same specimen (or the same material) but with different scan sizes L.
Plotting the rms height h; from these measurements versus scan size L,
or the rms slope h,, versus scan resolution (the smallest measurable
scale) yields insights into the multi-scale nature of surface topography.
An example of an experimental realization of this idea is the classic
paper by Sayles & Thomas [36]. The present authors have used and
discussed this approach in the past to characterize the topography of
diamond thin films [2,3].
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These methods can be generalized for the analysis of single mea-
surements. Consider a line scan h(x) of length L. The scan is partitioned
into ¢ > 1 segments of length #({) = L/¢ (with ¢ <L now being the
relevant scale). The dimensionless number ¢, which we call the magni-
fication, defines the scale. Some authors use sliding windows rather than
exclusive segments [13,32].

The VBM considers the rms height fluctuations in each of the seg-
ments, i.e. one computes the standard deviation of the height hygm i({)
within segment i at magnification ¢, and then takes the average over all i
to compute a scale-dependent hygy (¢). Some authors (including our own
prior work [14]) have tilt corrected the individual segments, i.e. each
segment is detrended by subtracting the corresponding mean height and
slope (obtained by linear regression of the data in the segment) before
computing hygpym;(¢); this approach is called the DFA [34,35] while
without tilt correction it is called MHR. In the bridge method, the con-
necting line between the first and last point in each segment is used for
detrending (see e.g. Ref. [33]).

These VBMs are extremely similar to the SDRP. When computing the
slope in the SDRP, we compute it by simply connecting the two
boundary points at x = i/({) and x = (i + 1)#({) with a straight line, as is
done in the bridge method. This is distinct from DFA, which uses all data
points between the two boundary points and fits a straight line using
linear regression. Detrending can be generalized to higher-order poly-
nomials, but this has not been reported in the literature. The relationship
between SDRP and VBMs with detrending of order 1 and 2 is concep-
tually illustrated in Fig. 2.

In DFA, the trend line is simply used as a reference for the compu-
tation of fluctuations around it. The coefficients of the detrending
polynomial can also be used to analyse how the slope and curvature of
the surface depend on scale [37,38]. This yields an alternative measure
of the scale-dependent rms slope, hypy, (¢), obtained at magnification ¢ or

distance scale £ = L/{. by (¢) is simply the standard deviation of slopes
obtained within all segments i at a certain magnification {. We show in
the examples below that this scale-dependent slope is virtually identical
to the slope obtained from the SDRP.

We can use this idea to extend the DFA to higher-order derivatives.
Rather that fitting a linear polynomial in each segment, we detrend
using a higher-order polynomial. For extracting a scale-dependent rms
curvature, we fit a second-order polynomial to the segment and interpret
twice the coefficient of the quadratic term as the curvature. The stan-
dard deviation of this curvature over the segments then gives the scale-
dependent second derivative, h{p\(¢). Fig. 2 illustrates this concept,
again in comparison to the SDRP that for the second-order derivative fits
a quadratic function through just three collocation points.

An alternative route of thinking about VBMs is that they use a stencil
whose number of coefficients equals the segment length. The stencil can
be explicitly constructed from least squares regression (at each scale) of

Height h

Position x

Fig. 2. Illustration of the computation of scale-dependent roughness parame-
ters from the variable bandwidth method (VBM). While in finite differences, the
slope is computed between two points at distance ¢, in the VBM we fit a trend
line to a segment of width #. Similarly for the second derivative, the finite-
differences estimation fits a quadratic function through three points while in
the VBM we fit a quadratic trend line through all data points in an interval of
length 7.
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the polynomial coefficients. The closest equivalent to the SDRP would
then be the respective VBM that uses sliding (rather than exclusive)
segments. However, even in this case, a remaining difference is that
SDRP uses stencils of identical number of coefficients at each scale. In
the examples provided in Section 4, we use a VBM that uses nonover-
lapping segments.

In summary, we have shown that the various methods for computing
scale-dependent height (such as VBM, DFA, and others) can be thought
of as a special case of SDRP analysis: where the scale-dependent
detrending only occurs for at most linear trend lines. We have then
shown how those analyses can be extended to define yet another method
for computing SDRPs.

3.3. Relationship to the power spectral density

Finally we outline a fourth way to arrive at SDRPs using the power
spectral density (PSD), another common tool for the statistical analysis
of topographies [1]. Underlying the PSD is a Fourier spectral analysis,
which approximates the topography map as the series expansion

hx) = anb, (), 24

where ¢, (x) are called basis functions. The Fourier basis is given by
b, (x) = exp(igux), (25)

with g, = 2zn/L where L is the lateral length of the sample. The inverse
of Eq. (24) gives the expansion coefficients a, which are typically
computed using a fast Fourier-transform algorithm. The PSD is then
obtained as [1]

CID((IN) = L|an‘2- (26)

Fourier spectral analysis is useful because a notion of scale is embedded
in the definition Eq. (25): The wavevectors g, describe plane waves with
wavelength 1, = 27/qn.

This basis leads to spectral analysis of surface topography and de-
rivatives are straightforwardly computed from the derivatives of the
basis functions,

5,0 = iguh(x) and @)

2

i)
) = —qp, (%) (28)

We can write the Fourier-derivative generally as

L0 = Zula)b, ) (29)
with Z1(qn) = ign for the first derivative and Z5(q,) = —¢? for the
second derivative. The &,(g,) are complex numbers that we will call the
derivative coefficients.

The rms amplitude of fluctuations can be obtained in the Fourier
picture from Parseval’s theorem, that turns the real-space average in Eq.
(5) into a sum over wavevectors,

h@ —

ms

1/2
Z%(q,,)anz} : (30)

n

The notion of a scale-dependence can be introduced in the Fourier pic-
ture by removing the contribution of all wavevectors |q,| >q. larger than
some characteristic wavevector ¢q., i.e. setting the corresponding
expansion coefficients a, to zero. This means there are no longer short
wavelength contributions to the topography. We will refer to this pro-
cess as Fourier filtering. Fourier filtering can be used to introduce a scale-
dependent roughness parameter, e.g.
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1/2
a — 2
hin(9e) = || Zaani40)] €™ (q) 3D

with 7% (qn; qc)= ©(qc—|qn|) Z«(qn) that we call the Fourier-filtered
derivative and ©(x) is the Heaviside step function. Note that we have
expressed Eq. (31) in terms of the PSD, which is typically obtained using
a windowed topography if the underlying data is nonperiodic. In the
examples that we show in Section 4, we applied a Hann window before
computing the scale-dependent derivatives from the PSD.

We now show that Fourier-filtering and finite-differences are related
concepts. We first interpret the finite-differences scheme in terms of a
Fourier analysis. We apply the finite differences operation to the Fourier
basis Eq. (25). This yields

Dpy
n s .
Dyt 50) = Zelani () 32)
with
S 1 = a, .
724 = ,;; ci”exp(igunIAx). (33)

Note that the right hand side of Eq. (32) is fully algebraic, i.e. it no
longer contains derivative operators, and the &% (qgn;#) are (complex)
numbers. Inserting these derivative coefficients into Eq. (31) yields Eq.
(13). We have therefore unified the description of (scale-dependent)
derivatives in the Fourier basis and finite-differences in terms of the
derivative coefficients &,,.

The remaining question is how the scale Z used to compute the finite-
differences relates to the wavevector q. used in Fourier-filtering. Fig. 3
shows 7% (1) and D (¢) for different values of # and A.. The location of
the maximum of these derivative coefficients agrees if nAx = ¢/a = 1./
2 = 7/q.. For first derivatives (a¢ = 1), £ = Ax. This is the Nyquist
sampling theorem, which states that the shortest wavelength we can
resolve is 4, = 2Ax. This means to compare SDRP, VBM and PSD, we
need to choose a filter cutoff of g. = ax/7 in the latter. Note that in the
SDRP, the (soft) cutoff emerges implicitly from the finite-difference
formulation.

In summary, we have shown that the SDRPs, which were defined in
real-space in Section 2.2, can be equivalently computed in frequency-
space using the PSD. The results should be the same, however,
frequency-space calculations have the shortcomings that nonperiodic
topographies need to be windowed, and a filter cutoff needs to be
applied.

S 1.0

: : y\
) v

P AU

: Lm0
& 0.5+ -

© —-

Q Z=

(5] >

o = Ao =

Z -F—-—— | pmemm——"

g 6 I’A‘l SAw TSo 7 RN
§ 0.0 FEmmenpa e tae S
O 0.0 0.25 0.50 0.75 1.00

Wavevector g (qo)

Fig. 3. Derivative coefficients for finite differences &7 and the Fourier-filtered
derivative &} for different distance scales #. The coefficients agree at small
wavevectors ¢. The maximum of the coefficient agrees if the filter wavelength
Ac = 2¢, corresponding to the Nyquist sampling theorem (see text).
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3.4. Summary notes about comparison to other methods

In this section, we have shown that three of the most common
methods for roughness characterization, namely ACF, VBM, and PSD,
are highly related to the SDRP. In fact, some form of SDRP can be
computed using any of these three methods, instead of using the original
definition, Eq. (13), with approximately equivalent results (see nu-
merical experiments in the next section). Intuitively, the SDRP can be
thought of as a general framework for analysis, which contains ACF,
VBMs and PSD as special cases.

4. Discussion: Application of scale-dependent roughness
parameters, and advantages over other methods

4.1. Application to a synthetic self-affine surface

We first apply the concepts presented above to a synthetic self-affine
topography. The topography has been first presented in Ref. [1] and
consists of three virtual “measurements” of a large (65536 x65536
pixels) self-affine topography generated with a Fourier-filtering algo-
rithm [1,39]. This algorithm works as follows: We superpose sine waves
with uncorrelated random phases and amplitudes scaled according to a
power-law. On the pixel at position Xy = (x;,y;), the height can be
written as

hj= Y Agsin (%-7,7 + ¢k,> ) 34
—yl>0
| g ul<as

where ¢y = 2r/L(k,l) is the wavevector and L is the period of the
topography. The phases ¢,; are uncorrelated and uniformly distributed
between 0 and 27. The amplitudes Ay; are uncorrelated Gaussian random

variables with variance proportional to |q’| > *. The sum runs only
over wavevectors smaller than the short-wavelength cutoff g, = 27 /4;.
The (two-dimensional) PSD of the surface is the square of the amplitudes
Ay and is O for wavelengths below A;. We generated the surface with
Hurst exponent H = 0.8, cutoff wavelength A, = 10 nm, pixel size Ax =
Ay = 2 nm and physical size L = 131 um. This surface was subsampled
in three blocks of 500 x 500 pixels at overall lateral sizes of 100 ym x
100 ym, 10 ym x 10 ym and 1 ym x 1 pum to emulate measurement at
different resolution. Each of these virtual measurements is nonperiodic
and independently tilt-corrected. The data for the three subsampled
topographies is available online [40].

Fig. 4a shows the topography map of these three emulated mea-
surements. The measurements zoom subsequently into the center of the
topography. The one-dimensional PSDs (C'P, Fig. 4b) of the three to-
pographies align well, showing zero power below the cutoff wavelength
of 4. Note that unlike most authors (with few exceptions in geophysics
[41-45]) or even our own prior work, we display the PSD as a function
of wavelength 1 =27/q where q is the wavevector; this facilitates
comparison with the real-space techniques introduced above, and also
wavelengths are more intuitively understandable than wavevectors.
Since the topography is self-affine, the PSD scales as C'PxA!™? as
indicated by the solid line.

The ACF (or rather its square root) is shown in Fig. 4c. The ACF and
all other scale-dependent quantities reported below are obtained from
averages over adjacent line scans, i.e. from one-dimensional profiles
rather than two-dimensional area scans. This is compatible with how
C'™ is computed (see Ref. [1]). The ACFs from the three measurements
line up and follow VAxt™ (see solid black line in Fig. 4c). Note that the
ACF does not drop to zero for ¢ < ¢s = As/2 as the PSD did. This
behavior becomes clearer by inspecting the scale-dependent slope
hsprp () = \/2A(£) /¢ that saturates at a constant value for £ < ;. This
is the true rms slope that is computed when all scales are considered. For

large ¢, the rms slope scales as hgyppoc?™ * (solid black line in Fig. 4d).
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Fig. 4. Example of scale dependent-roughness parameters for an ideal self-
affine surface with Hurst exponent H = 0.8. (a) A large surface was sub-
sampled in three topographies of 500 x 500 pixels at different resolution. (b)
Individual PSDs displayed as a function of wavelength 2 = 27/q, where q is the
wavevector. (c¢) Square root of the ACF displayed as a function of distance scale
¢. (d) Scale-dependent rms slope. (e) Scale-dependent rms curvature. (f) Third
derivative as an example of how this method can be used to go beyond tradi-
tional analysis. Color is used to distinguish the three different topographies. The
figure shows results from the four SDRPs (finite-differences based SDRP, ACF,
VBM and PSD), showing that the results agree. The solid black lines in panels
(b-f) shows the power-law scaling of an ideal self-affine topography with Hurst
exponent H. Note that the deviations from power-law scaling at large scales are
especially visible in panels (c) and (d) because of the smaller range of values on
the y-axis.
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Finally, we display the scale-dependent curvature h{p,(¢) in Fig. 4e.
Like the rms slope, the curvature saturates for £ < ¢ to the “true” small-
scale value of the curvature. The curvatures of the three individual
measurements again line up and follow hfpp(£)xt™ > because of the
self-affine character of the overall surface. The rms curvature computed
from the ACF (Eq. (22)) is strictly only applicable to periodic topogra-
phies, but in our numerical experiments the ACF agrees with the original
definition of the SDRPs (Eq. (13)) within the thickness of the line. The
errors occur at large distance scales and can, in principle, lead to
negative values of hg2;p, but we have not seen this occurring in the
numerical data presented in this paper.

In our derivation above we have presented alternative routes for
obtaining scale-dependent roughness parameters from the VBM and
PSD. The plusses (+) in Figs. 4d and e show the rms slope and curvature
obtained using the VBM, while the crosses (x) show the results obtained
using the PSD. They align well with the respective parameters obtained
from the SDRP and only deviate at large scales. In summary, all three
routes (ACF, VBM, PSD) for obtaining SDRPs are equally valid and lead
to results that are consistent with those computed using the original
definition (Eq. (13)). The advantage of the SDRP, ACF and the VBM over
the PSD is that they are directly (without windowing) applicable to
nonperiodic data.

We have now demonstrated four independent ways of obtaining
scale-dependent slopes, curvatures and higher-order derivatives. We
would like to point out that all four routes constitute novel uses of the
underlying analysis methodology. Our primary tool in what follows will
be the SDRP; however, we have demonstrated that the ACF, VBM and
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PSD yield equivalent results. The broader importance of using scale-
dependent slopes and curvatures over the “bare” ACF, VBM or PSD is
that it is straightforward to interpret the meaning of these parameters.
We all have intuitive understanding of the meaning of slopes and cur-
vatures, whereas it is difficult to ascribe a geometric meaning to a value
of the PSD (that can even differ in unit, see discussion in Ref. [1]).

4.2. Detecting tip artifacts in simulated topography measurements

We now turn to another example, the analysis of tip artifacts. This
will exploit a power of the SDRP, namely the fact that we can compute
the full underlying distribution of arbitrary derivatives outlined in
Section 2.3.

Fig. 5a shows two computer generated nonperiodic topographies of
size 0.1 ym x 0.1 ym. The first topography is pristine and was generated
using the Fourier-filtering algorithm mentioned above. As in the previ-
ous example, we ensured the scan is not periodic by taking a section of a
larger (0.5 ym) periodic scan. The second topography contains tip ar-
tifacts and was obtained from the pristine surface using the following
nonlinear procedure: For every location (x;,y;) on the topography we
lower a sphere with radius Ry, (here 40 nm) towards a position (x;, y;, %)
until the sphere touches the pristine topography anywhere. The result-
ing z-position z; of the sphere is then taken as the “measured” height of
the topography. This topography was discussed in Ref. [1] and the data
files are available at Ref. [46]. The two curves underneath the maps in
Fig. 5a are cross-sections through the middle of the respective
topography.

It is clear from simply looking at the data in Fig. 5a that the scanning
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Fig. 5. Scale-dependent roughness parameters for the analysis of tip artifacts. (a) A computer-generated “pristine” topography was scanned with a virtual tip of Ry
= 40 nm radius. The bottom row shows cross-sectional profiles of the maps shown above. The artifacted map and profile show clear blunting of the peaks and cusps
in the valleys (see text for more discussion). (b) Distribution of slopes at distance scales # = 1 nm (circles o), 16 nm (squares m) and 256 nm (triangles v). (c)
Distribution of curvatures at these scales. Both slopes and curvatures are obtained in the x-direction. The left plots in (b) and (c) show the computed values for the
pristine surface, while the right plots in these panels show the values for the tip-artifacted measurement. Black solid lines show the normal distribution. (d) PSDs and
(e) ACFs of both topographies. (f) The plot of minimum curvature h; (see text) shows a clear deviation between the pristine and artifacted measurement that starts
at approximately the point where the scale-dependent minimum curvature equals the radius of the tip.
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probe smoothens the peaks of the topography. Indeed the curvature near
the peaks must be equal to — 1/Ry,. Conversely, the valleys look like
cusps that originate from the overlap of two spherical bodies. These
cusps are sharp and should lead to large (in theory unbounded, but in
practice bounded by resolution and noise) positive values of the cur-
vature. Church & Takacs [47,48] have pointed out that tip artifacts
should lead to PSD C'P(q)xq~*, which is precisely a result of the cusps in
the topography. (The Fourier transform of a triangle scales as g~2, such
that the PSD «g*.) We have demonstrated in Refs. [1,3] numerically
that this is indeed the case.

We are now in a position to more precisely look at the effect of tip
radius. Fig. 5b shows the scale-dependent slope distribution P; (h', Z),
normalized by the rms slope at the respective scale. The black solid line
shows a Gaussian distribution (of unit width) for reference. It is clear
that both our pristine topography (left columns) and the topography
with tip-radius artifacts (right column) follow a Gaussian distribution
for the scale dependent slopes across scales from 1 nm to 256 nm shown
in the figure.

The situation is different for the scale-dependent curvature, shown in
Fig. 5c. While the pristine surface (left column) follows a Gaussian dis-
tribution, the topography with tip-radius artifacts is only Gaussian for
larger scales (¢ = 16 nm and 256 nm). There is a clear deviation at the
smallest scales, showing an exponential distribution for positive curva-
ture values, corroborrating the empirical discussion above that cusps
leads to large positive values for the curvature. As argued above and in
Refs. [47,48], these cusps lead to a PSD «xq “xA*. Fig. 5d shows the PSDs
of both topographies. The artifacted surface indeed crosses over to C'Px
2% at a wavelength of 4 ~ 20 — 40 nm.

We note this cross-over to A* is subtle and difficult to detect in
measured data. Other measures, such as the ACF shown in Fig. Se, are
unsuitable to detect these artifacts. The region where the C'°xA* shows
up as a linear region in the square root of the ACF, v/AxZ. The exponent
of 1 from that region is too close to the exponent of H = 0.8 to be clearly
distinguishable. The present authors have previously suggested a tip-
radius reliability cutoff [1,2], where the scale-dependent rms curva-
ture was compared to the tip curvature. Based on similar ideas, we now
propose an additional metric that is intended to more accurately detect
the onset of the tip-radius artifact.

Rather than computing the width of the distribution as do the rms
measures, we now ask the question of what is the minimum curvature
value found at a specific scale . We therefore evaluate

(¢ | Do h 35
min( )7 —mkm |:D(f)x2 (xk>:|' (35)

The crosses in Fig. 5f show this quantity for the pristine and the arti-
facted surface. It is clear that at small scales the curvature of the pristine
surface is larger than the artifacted one. Additionally, the artifacted
surface settles to hl; (£) = 1/Ryp as £—0. This is a clear indicator that
the curvature of the peaks on the artifacted surface is given by the tip
radius and that in principle, the tip radius can be deduced from h[, .
However, in real AFM data, h;; has no well defined #—0 limit because
there are noise sources not considered in our simulated measurement.
The tip radius then needs to be determined from auxiliary measurements
(see next section).

For each tip radius and surface topography, there is a critical length
scale 7y, below which AFM data is unreliable. We estimate ¢, by

numerically solving
Trin (flip) = C/ Rip (36)

for ¢y, using a bisection algorithm. The empirical factor ¢ needs to be
close to or slightly smaller than unity. Fig. 5f shows this condition as a
dashed horizontal line. Note that #;, depends both on the tip radius and
the curvature of the measured surface: measurements on rough surfaces
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have more tip artifacts than measurements on smooth surfaces because a
tip that can conform to the valleys of a smooth surface may not be able to
sample the valleys on a rougher surface. We also indicate the scale #y;, in
the ACF (Fig. 5e) and in the PSD. The factor c=1 /2 was chosen such
that 4, marks the crossover from artifacted C'®«A* to the pristine

C'Poc'2H, We will use the same factor when analyzing experimental
data in the next section, where there is no “pristine” measurement
available for comparison.

Our proposed measure is useful because it can be robustly and
automatically carried out on large sets of measurements; by contrast, the
detection of C'Px4* is difficult because fitting exponents requires data
over at least a decade in length and carries large errors [49].

4.3. Application to an experimental measurement

As a final example, we turn to an experimental analysis of an ultra-
nanocrystalline diamond (UNCD) film that has been described in detail
in Ref. [2]. Fig. 6a shows a single representative AFM scan of that sur-
face available online at Ref. [50]. The peaks have rounded tips similar to
the synthetic scan shown in Fig. 5a. The curvature distribution (Fig. 6b)
also has a similar characteristic to our synthetic topography (Fig. 5¢). At
large scales, the distribution is approximately Gaussian (shown by the
solid black line). At smaller scales, we see deviations to higher curvature
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Fig. 6. AFM measurement of an ultrananocrystalline diamond film. (a) AFM
measurement showing the smoothing of peaks similar to the emulated scans
shown in Fig. 5a. (b) Normalized curvature distribution at distance scales £ =
12 nm (circles o), 47 nm (squares m) and 187 nm (triangles v). £ = 12 nm
corresponds to a scale factor 7 = 1. (c) We use the peak curvature hy; (see text)
to estimate the scale ¢y, below which the AFM data is unreliable (highlighted in
red). The empirical constant ¢ = 1/2. Inset: TEM image of the AFM tip. Fitting a
parabola to the tip yields a radius Ry, of 10 nm. (d) Power spectral density
(PSD) of the measurement. The black solid line shows scaling with A* that in-
dicates tip artifacts.
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values, indicative of the cusps that are characteristic of tip artifacts. We
also see a minor deviation to higher negative curvatures, which we
attribute to additional instrumental noise that contributes to small-scale
features of the data.

These negative curvatures prevent the conclusive determination of
the tip radius from the scale-dependent tip curvature (Fig. 6¢). Unlike
the synthetic surfaces, the scale-dependent tip curvature hj,; (¢) (Fig. 5f)
does not saturate to a specific value at small distances . Instead, we
determined the radius of AFM tip from auxiliary transmission electron
microscopy (TEM) measurements (Fig. 6¢ inset). For the measured Ry, =
10 nm, we can identify the region where hl; () > 1/(2Ryp) as unreli-
able, leading to a lateral length-scale of around ¢, ~ 60 nm below
which the data is no longer reliable. The PSD (Fig. 6d) shows 1* scaling
below the characteristic wavelength 7.

After having looked at tip-radius effects on single measurements, we
now turn to applying SDRPs to the full experimental dataset from
Ref. [2], where a total of 126 individual measurements from three
different instruments, a stylus profilometer, an AFM and a TEM, were
combined to extract the power spectrum of the surface over eight orders
of magnitude. (The dataset is available online at Ref. [51].) Fig. 7 shows
the PSD, ACF, rms slope and rms curvature for each individual mea-
surement as well as an average curve representative of the whole sur-
face. For each tip-based measurement (stylus and AFM), we computed
the critical scale /'y, using Eq. (36) as above and excluded data on scales
below ¢p. The good overlap of the AFM data with the TEM data con-
firms that this procedure removed tip artifacts. The full data set (see
Ref. [2]) shows clear regions where the PSD C'Pxq—*.

As shown in Fig. 7, all four methods can be used to stitch together the
data from a large set of measurements to obtain the resulting SDRP of the
underlying physical surface. The ACF (Fig. 7b) and rms slope h,,
(Fig. 7¢) of the TEM measurements curve down at large ¢, an effect also
seen (but less pronounced) in our synthetic data of Fig. 4c and d. Thisis a
consequence of tilt correction, that enforces zero slope at the size of the
overall measurement, hence forcing h. to drop towards zero. While
more sophisticated schemes for tilt correction could be devised to
eliminate this long-wavelength artifact, the rms curvature h;, is free of
this artifact as it is unaffected by local tilt of the measurement. We
therefore advocate that it is important to look at a combination of these
scale-dependent analysis techniques rather than relying on a single one.

5. Summary & conclusions

First, we demonstrated the calculation of scale-dependent parame-
ters using a finite-differences scheme, with a variable distance scale. We
have termed this characterization of first- and higher-order derivatives
the scale-dependent roughness parameter (SDRP) analysis. Then we
showed that the commonly used height-difference autocorrelation
function (ACF) can be interpreted as the scale-dependent root-mean-
square (rms) finite-difference slope. This leads to a straightforward
generalization of the ACF for higher derivatives, yielding for example a
scale-dependent rms curvature. We have further generalized this anal-
ysis to compute distributions of roughness parameters as a function of
scale; the curvature distribution analysis can be used to identify tip-
radius artifacts. To connect our analysis to conventional techniques,
we have shown how equivalent scale-dependent roughness parameters
can be computed not only from the ACF, but also from the the variable
bandwidth method and the power spectral density. We demonstrated
the successful use of these analyses to describe computer-generated and
experimentally measured surfaces. Additional work is ongoing to apply
this analysis on a wide range of surfaces, for example surfaces with
facets [3] or periodic structures.

In summary, we proposed a novel SDRP analysis, and demonstrated
how this is a generalization of commonly used roughness metrics. We
suggest that this SDRP approach serves to harmonize competing
roughness descriptors, but also offers advantages over those other
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Fig. 7. Topography measurements of an ultrananocrystalline diamond film are
combined across eight orders of magnitude of scales using the PSD (a), ACF (b),
rms slope (c) and rms curvature (d). For each of these measures, we obtain a
curve representative of the surface by averaging over all the individual mea-
surements (solid black line). For tip-based methods, AFM and stylus profilom-
etry, we used the criterion proposed in Section 4.2 to exclude unreliable scales.

methods, especially in terms of ease of calculation, intuitive interpret-
ability, and detection of artifacts.
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Appendix A. Generalization to two dimensions

We here briefly outline the generalization of the SDRP to two-dimensions. The main difference is that in two dimensions the derivative becomes the
(discrete) gradient (Dh/Dx, Dh/Dy), the curvature becomes the Hessian (D2h/Dx2, D*h/Dy?, D?h/DxDy) and higher-order derivatives contain addi-
tional cross terms. All averages are carried out over areas, not line scans. We can then for example define a scale-dependent gradient as

12D Di¢yay 2 Dz/ay) N
hgpkp(f)=<(—h<x,y>) +(D(—yh(x,y>)> , A1)

Dejanx /89y

where the average (-) now runs over the area. We note that in two-dimensions the situation may arise, where the scale factors n, = ¢ /Axand 7, = ¢
/Ay are no longer integer; this in particular happens if the aspect ratio of the individual pixel is not unity, Ax # Ay. In this case the additional
(numerical) complexity arises, that one needs to interpolate between data points to measure the derivatives at the same distance scale in x- and
y-direction.
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