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Antoine Sanner a,b, Wolfram G. Nöhring a, Luke A. Thimons c, Tevis D.B. Jacobs c, 
Lars Pastewka *,a,b 

a Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany 
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A B S T R A C T   

The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in 
other words, the measured value depends on how the parameter was measured. Here we take advantage of this 
scale-dependence to develop a new framework for characterizing rough surfaces: the Scale-Dependent Roughness 
Parameters (SDRP) analysis, which yields slope, curvature, and higher-order derivatives of surface topography at 
many scales, even for a single topography measurement. We demonstrate the relationship between SDRP and 
other common statistical methods for analyzing surfaces: the height-difference autocorrelation function (ACF), 
variable bandwidth methods (VBMs) and the power spectral density (PSD). We use computer-generated and 
measured topographies to demonstrate the benefits of SDRP analysis, including: novel metrics for characterizing 
surfaces across scales, and the detection of measurement artifacts. The SDRP is a generalized framework for 
scale-dependent analysis of surface topography that yields metrics that are intuitively understandable.   

1. Introduction 

Surface roughness is primarily characterized in terms of scalar pa
rameters; especially common are the root-mean-square (rms) height and 
slope, which are the rms deviations from the mean height and mean 
slope. Some variant of these quantities is computed by all surface 
topography instruments, and they are often reported to describe surface 
topography in publications. These quantities are useful for describing 
the amplitude of spatial fluctuations in height and slope across the 
measured topography. However, a core issue with these roughness pa
rameters is that all of them explicitly depend on the scale of the mea
surement [1]: The rms height depends on the lateral size (largest scale) 
of the measurement; the rms slope depends on the resolution (smallest 
scale) of the measurement. A direct demonstration of this effect on 
real-world measurements can be found in Refs. [2,3]. We note that some 
standardized expressions for obtaining these values, such as Rq from ISO 
4287 [4] include high- and low-frequency filtering. These values are still 
strongly scale-dependent, but now the relevant scale is the size of the 
filter rather than the size of the measurement. 

The scale dependence of these values is typically a signature of the 
multi-scale nature of surface topography. A simple illustration is given in 

a classic article by Benoit Mandelbrot on the length of coastlines [5]. 
Mandelbrot illustrated, that the length Lcoast of a coastline depends on 
the length of the yardstick ℓ used to measure it. A smaller yardstick picks 
up finer details and hence leads to longer coastlines. For (self-affine) 
fractals [6], the functional relationship Lcoast(ℓ) is a power-law whose 
exponent characterizes the fractal dimension of the coastline. In the case 
of a surface topography measurement, ℓ corresponds to the resolution of 
the scientific instrument used to measure the topography and the 
property corresponding to the length of a coastline is the true surface 
area S(ℓ) of the topography. We have in prior work directly demon
strated that S(ℓ) (and also the rms slope and curvature) scales with 
measurement resolution ℓ [2,3,7]. This scaling of the surface area has, 
for example, direct relevance to adhesion between soft surfaces [7]. 
Many surfaces do not behave as ideal fractals, but nearly all surfaces 
exhibit some form of size dependence of the roughness parameters dis
cussed above. This is because processes that shape surfaces, such as 
fracture [8–10], plasticity [11–14] or erosion [15], all lead to 
multi-scale, fractal-like topography over a range of length scales. 

Here, we suggest a route to generalize these (and other) geometric 
properties of measured topography to explicitly contain a notion of 
measurement scale. We define the individual roughness parameter as a 
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function of scale ℓ over which it is measured, leading to curves identi
fying the value of the parameter as a function of ℓ. Unlike above, where 
ℓ was restricted to the resolution of the instrument or some fixed filter 
cutoff, we now broaden the concept of this scale ℓ to refer to any size 
over which a parameter is computed. For a given topography scan, it can 
range from the pixel size up to the scan size. We term the resulting 
curves the scale-dependent roughness parameters (SDRPs) and outline the 
relationship to three common characterization techniques: the height- 
difference autocorrelation function (ACF), the variable bandwidth 
method (VBM) and the power spectral density (PSD). SDRPs are useful 
because they are easily interpreted: While it is difficult to attach a 
geometric meaning to a certain value of the PSD (where even units can 
be unclear [1]), the slope and curvature both have simple geometric 
interpretations. Since slope and curvature are also the primary in
gredients for modern theories of contact between rough surfaces 
[16–24], SDRPs are directly connected to functional properties of rough 
surfaces. Finally, we illustrate below how SDRPs can be used to estimate 
tip-radius artifacts in contact-based measurements, such as scanning 
probe microscopy and stylus profilometry. 

2. Analysis methodology 

2.1. Computing typical roughness parameters in real space 

Surface topography is commonly described by a function h(x, y), 
where x and y are the coordinates in the plane of the surface. This is 
sometimes called the Monge representation of a surface, which is an 
approximation as it excludes overhangs (reentrant surfaces). A real 
measurement does not yield a continuous function but height values 

hkl = h(xk, yl) (1)  

on a set of discrete points xk and yl. Measurements are often taken on 
equidistant samples where xk = kΔx and yl = lΔy, where Δx and Δy are 
the distance between the sample-points in their respective directions. 
Furthermore k ∈ [0, Nx − 1] and l ∈ [0, Ny − 1] where Nx ×Ny is the total 
number of sample points. 

Topographies are often random such that hkl is a random process and 
its properties must be described in a statistical manner. Starting with 
Longuet-Higgins [25,26] and Nayak [27], many authors have discussed 
this random process model of surface roughness, yet the most commonly 
used roughness parameters have remained simple. 

We will illustrate the following concepts using the one-dimensional 
case, i.e. for line scans or profiles. In many real scenarios, even areal 
topographic measurements are interpreted as a series of line scans. This 
is for example the case in atomic force microscopy (AFM), where a 
topographic map is stitched together from a series of adjacent line scans. 
Because of temporal (instrumental) drift, these line scans may not be 
perfectly aligned and the “scan”-direction is then the preferred direction 
for statistical evaluation. In the following mathematical development, 
we will implicitly assume that all values are obtained by averaging over 
these consecutive scans, but we will not write this average explicitly in 
the equations that follow. Extension to true two-dimensional topog
raphy maps of the ideas presented here is straightforward and briefly 
discussed in Appendix A. 

The most straightforward statistical property is the root-mean-square 
(rms) height, 

hrms =
〈
h2

k

〉1/2
≡

〈
h2(x)

〉1/2
, (2)  

where the average 〈⋅〉 is taken over all indices k. (We will omit the 
explicit index k in the following equations.) The rms height measures the 
amplitude of height fluctuations on the topography, where the midline is 
defined as h = 0. In addition to the height fluctuation, we can also 
quantify the amplitude of slopes, 

h
′

rms =

〈(
D
Dx

h(x)

)2〉1/2

, (3)  

where D/Dx is a discrete derivative in the x-direction. 
A common way to compute discrete derivatives on experimental data 

is to use a finite-differences approximation. Finite-differences approxi
mate the height h(x) locally as a polynomial (a Taylor series expansion). 
The first derivative can then be computed as 

∂
∂x

h(x) ≈
D
Dx

h(x) =
h(x + Δx) − h(x)

Δx
. (4)  

This expression is called the first-order right-differences scheme. We will 
use the symbol D for the discrete derivatives, and the term “order” here 
refers to the truncation order, or how fast the error decays with grid 
spacing Δx: it drops linearly with decreasing Δx in this scheme. Another 
interpretation is that the truncation order gives the highest exponent of 
the polynomial used to interpolate between the points x and x + Δx. The 
derivative of a linear interpolation is constant between these points and 
given by Eq.  (4). 

We can also quantify the amplitude of higher derivatives, 

h(α)
rms =

〈(
Dα

Dxα h(x)

)2〉1/2

, (5)  

where α = 2 yields the rms curvature. A discrete formulation of the 
second derivative is 

D2

Dx2 h(x) =
h(x + Δx) − 2h(x) + h(x − Δx)

Δx2 . (6)  

This expression is called the second-order central-differences approxi
mation. Again, this can be interpreted as fitting a second-order poly
nomial to the three points x − Δx, x, and x + Δx, and interpreting the 
(constant) second derivative of this polynomial as the approximate 
second derivative of the discrete set of data points. The third derivative 
is given by 

D3

Dx3 h(x) =
h(x + 2Δx) − 3h(x + Δx) + 3h(x) − h(x − Δx)

Δx3 , (7)  

which again can be interpreted in terms of fitting a cubic polynomial to 
(four) collocation points. 

We can generally write the discrete derivative as a weighted sum 
over the collocation points xk, 

Dα

Dxα h(xk) =
1

Δxα

∑∞

l=−∞
c(α)

l h(xk+l). (8)  

The values c(α)

l are called the stencil of the derivative operator and α 
indicates the order of the derivative. For the above derivatives, 

c(1)

0 = −1, c(1)

1 = 1, (9)  

c(2)

0 = −2, c(2)

±1 = 1 and (10)  

c(3)

0 = 3, c(3)

1 = −3, c(3)

−1 = −1, c(3)

2 = 1, (11)  

and all other c(α)

l s are zero. Higher-order derivatives lead to wider 
stencils. 

2.2. Computing scale-dependent roughness parameters in real space 

The discrete derivatives of the preceding section are all defined on 
the smallest possible scale that is given by the sample spacing Δx and 
have an overall width of αΔx. It is straightforward to attach an explicit 
scale to these derivatives, by evaluating Eq.  (8) over a sample spacing 
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ηΔx (with integer η) rather than Δx, 

Dα
(η)

D(η)xα h(x) ≡
1

(ηΔx)
α

∑∞

l=−∞
c(α)

l h(xk+ηl). (12)  

We will call the factor η the scale factor. The corresponding derivative is 
measured at the distance scale ℓ = αηΔx. 

Fig. 1 a illustrates this concept. For a simple right-differences scheme 
as given by Eq.  (4), the scale-dependent first derivative is simply the 
slope of the two points at distance ℓ. For the second derivative given by 
Eq.  (6), we fit a quadratic function through three points with overall 
spacing ℓ and the curvature of this function is the scale-dependent 
second derivative. 

We now define the scale-dependent roughness parameter (SDRP) as 

h(α)

SDRP(αηΔx) =

〈( Dα
(η)

D(η)xα h(x)

)2〉1/2

domain
. (13)  

This new function defines a series of descriptors for the surface that are 
analogous to the traditional rms slope (h(1)

SDRP ≡ h′

SDRP) and to the rms 
curvature (h(2)

SDRP ≡ h′′
SDRP); but instead of being a single scalar value, 

each represents a curve as a function of the distance scale ℓ = αηΔx. 
The distance scale ℓ is only clearly defined for the stencils of lowest 

truncation order. For the n-th derivative, those can be interpreted as 
fitting a polynomial of order n to n + 1 data points (see Fig. 1a). The n-th 
derivative of this polynomial is then a constant over the width of the 
stencil; this width must then equal the distance scale ℓ. Higher trunca
tion orders can be interpreted as fitting a polynomial of order m > n to m 
+1 data points. The n-th derivative is not constant over the stencil and it 
is not clear what the corresponding length scale is. We will here only use 
stencils of lowest truncation order where the distance scale is clear. 

For non-periodic topographies we need to take care to only include 

derivatives that we can actually compute, i.e. where the stencil remains 
in the domain of the topography. This is indicated by the subscript 
“domain” in Eq.  (13). 

2.3. Beyond root-mean-square parameters: Computing the full 
distribution 

The rms value, such as the one defined in Eq.  (13), characterizes the 
amplitude of fluctuations, or the width of the underlying distribution 
function. Rather than looking at this single parameter, we can also 
determine the full scale-dependent distribution. Formally we can write 
this distribution as 

Pα(χ; η) =

〈

δ
(

χ −
Dα

(η)

D(η)xα h(x)

)〉

(14)  

where δ(x) is the Dirac-δ function and χ the value of the derivative (of 
order α) that we are interested in. In any practical (numerical) deter
mination of the distribution, we broaden the δ-function into individual 
bins and count the number of occurrences of a certain derivative value. 

To illustrate this concept on the example of the slope (α = 1), Fig. 1b 
shows the scale-dependent derivative at ℓ = 40Δx of the line scan 
shown in Fig. 1a. The distribution function of the slopes at this scale, 
P1(h′

, 40Δx), is then obtained by counting the occurence of a certain 
slope value. The resulting distribution is shown in Fig. 1c. 

The rms parameters defined in the previous section are the square 
roots of the second moments of this distribution, 

h(α)

SDRP(αηΔx) =

[ ∫

dχ χ2Pα(χ; η)

]1/2

. (15)  

The second moment characterizes the underlying distribution fully only 
if this distribution is Gaussian. We will see below that, for example, 
scanning probe artifacts introduce deviations from Gaussianity that we 
can easily detect once we have the full distribution function. 

In summary, these probability distributions of arbitrary derivatives 
(such as slope, curvature, or higher-order functions) serve as an addi
tional set of descriptors for a surface. The distributions are themselves 
scale dependent, but can be used to compute a wide variety of scale- 
dependent statistical parameters, including higher cumulants, such as 
skewness or kurtosis. 

3. Analysis: Relationship of scale-dependent roughness 
parameters to other methods 

3.1. Relationship to the autocorrelation function 

A common way of analyzing the statistical properties of surface 
topography is the height-difference autocorrelation function, which will 
be designated here as ACF or A(ℓ). (See Ref. [28] for an authoritative 
discussion of properties and use.) The ACF is defined as 

A(ℓ)=
1
2

〈
[h(x + ℓ) − h(x)]

2〉

=

〈
1
2

h2(x) +
1
2
h2(x + ℓ) − h(x)h(x + ℓ)

〉

.

(16)  

Note that some authors call 2A(ℓ) the structure function and use the term 
ACF for the bare height autocorrelation function 〈h(x)h(x + ℓ)〉 [29,30]. 
The height ACF and the height-difference ACF are related by 

A(ℓ) = h2
rms − 〈h(x)h(x + ℓ)〉. (17)  

The ACF has the limiting properties A(0) = 0 and A(ℓ→∞) = h2
rms. 

Equation  (16) resembles the finite-differences expression for the first 
derivative, Eq.  (4). Indeed, we can rewrite the ACF as 

Fig. 1. Illustration of the basic idea behind the scale-dependent roughness 
parameters. (a) Example line scan showing the computation of slopes h′

(ℓ) and 
curvatures h′′(ℓ) from finite differences. A scale can be attached to this 
computation by computing these finite differences at different distances ℓ, 
shown for ℓ = 40Δx and ℓ = 80Δx where Δx is the sample spacing. Similarly, 
the curvature at a finite scale ℓ is given by fitting a quadratic function through 
three points spaced at a distance ℓ/2. (b) Local slope, obtained at a distance 
scale of ℓ = 40Δx for the line scan shown in panel (a). The slope is defined for 
each sample point since we can compute it for overlapping intervals. (c) Dis
tribution of the local slope obtained from the slope profile shown in panel (b). 
The rms slope for this length scale is the width of this distribution. 
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A(ηΔx) =
1
2

〈[
D(η)

D(η)x
h(x)

]2〉

(ηΔx)
2 (18)  

using the scale-dependent derivative. The scale-dependent rms slope 
then becomes 

h′

SDRP(ℓ) = [2A(ℓ)]
1/2/

ℓ. (19)  

The height-difference ACF can hence be used to compute the scale- 
dependent slope introduced above. 

We now show that we can also express higher-order derivatives in 
terms of the ACF. Using the stencil of the second derivative given in Eq. 
(6), the scale-dependent second derivative can be written as 

h′′
SDRP(ℓ) =

4
ℓ2

〈
[h(x + ℓ/2) − 2h(x) + h(x − ℓ/2)]

2
〉1/2

. (20)  

We can rewrite this expression as 

h′′
SDRP(ℓ) =

4
ℓ2 〈6h2(x) − 8h(x)h(x + ℓ/2)

+2h(x)h(x + ℓ)〉
1/2

.

(21)  

and use Eq.  (17) to introduce the ACF into this expression, yielding 

h′′
SDRP(ℓ) = 4[8A(ℓ/2) − 2A(ℓ)]

1/2
/

ℓ2
. (22)  

Similarly, the scale-dependent third derivative from the stencil given in 
Eq.  (7) becomes 

h′′′

SDRP(ℓ) =
27
ℓ3[30A(ℓ/3) − 12A(2ℓ/3) + 2A(ℓ)]

1/2
. (23)  

We can therefore relate the scale-dependent root-mean-square slope, 
curvature, or any other higher-order derivative to the ACF. 

In summary, we have shown that the commonly used ACF function 
can be thought of a specific case of the SDRP analysis: being equivalent 
to the finite-differences calculation of scale-dependent slope. We further 
showed that the ACF function can be used as one method to compute 
higher-order SDRPs. 

3.2. Relationship to the variable-bandwidth method 

We now introduce an alternative way to arrive at SDRPs based on a 
different notion of scale. Notice that the discussion leading up to Eq. 
(13) does not involve the length L of the line scan. This length is only 
relevant when it comes to determining an upper limit for the stencil 
length ℓ = αηΔx, which is the notion of scale in a measurement based on 
Eq.  (13). Alternatively, we could interpret L as the relevant scale, and 
study scale-dependent roughness by varying L. This interpretation leads 
to a class of methods which have been referred to as scaled windowed 
variance methods [31] or variable bandwidth methods (VBMs). Mem
bers of this class of methods differ only in the way that the data is 
detrended and have been given a variety of names including: bridge 
method (attributed to Mandelbrot); roughness around the mean height 
(MHR) [32] (sometimes termed VBM [33]); detrended fluctuation 
analysis (DFA) [34,35]; and roughness around the rms straight line 
(SLR) [32]. 

In all cases, one performs multiple roughness measurements on the 
same specimen (or the same material) but with different scan sizes L. 
Plotting the rms height hrms from these measurements versus scan size L, 
or the rms slope h′

rms versus scan resolution (the smallest measurable 
scale) yields insights into the multi-scale nature of surface topography. 
An example of an experimental realization of this idea is the classic 
paper by Sayles & Thomas [36]. The present authors have used and 
discussed this approach in the past to characterize the topography of 
diamond thin films [2,3]. 

These methods can be generalized for the analysis of single mea
surements. Consider a line scan h(xk) of length L. The scan is partitioned 
into ζ ≥ 1 segments of length ℓ(ζ) = L/ζ (with ℓ ≤ L now being the 
relevant scale). The dimensionless number ζ, which we call the magni
fication, defines the scale. Some authors use sliding windows rather than 
exclusive segments [13,32]. 

The VBM considers the rms height fluctuations in each of the seg
ments, i.e. one computes the standard deviation of the height hVBM,i(ζ)

within segment i at magnification ζ, and then takes the average over all i 
to compute a scale-dependent hVBM(ζ). Some authors (including our own 
prior work [14]) have tilt corrected the individual segments, i.e. each 
segment is detrended by subtracting the corresponding mean height and 
slope (obtained by linear regression of the data in the segment) before 
computing hVBM,i(ζ); this approach is called the DFA [34,35] while 
without tilt correction it is called MHR. In the bridge method, the con
necting line between the first and last point in each segment is used for 
detrending (see e.g. Ref. [33]). 

These VBMs are extremely similar to the SDRP. When computing the 
slope in the SDRP, we compute it by simply connecting the two 
boundary points at x = iℓ(ζ) and x = (i + 1)ℓ(ζ) with a straight line, as is 
done in the bridge method. This is distinct from DFA, which uses all data 
points between the two boundary points and fits a straight line using 
linear regression. Detrending can be generalized to higher-order poly
nomials, but this has not been reported in the literature. The relationship 
between SDRP and VBMs with detrending of order 1 and 2 is concep
tually illustrated in Fig. 2. 

In DFA, the trend line is simply used as a reference for the compu
tation of fluctuations around it. The coefficients of the detrending 
polynomial can also be used to analyse how the slope and curvature of 
the surface depend on scale [37,38]. This yields an alternative measure 
of the scale-dependent rms slope, h′

VBM(ζ), obtained at magnification ζ or 
distance scale ℓ = L/ζ. h′

VBM(ζ) is simply the standard deviation of slopes 
obtained within all segments i at a certain magnification ζ. We show in 
the examples below that this scale-dependent slope is virtually identical 
to the slope obtained from the SDRP. 

We can use this idea to extend the DFA to higher-order derivatives. 
Rather that fitting a linear polynomial in each segment, we detrend 
using a higher-order polynomial. For extracting a scale-dependent rms 
curvature, we fit a second-order polynomial to the segment and interpret 
twice the coefficient of the quadratic term as the curvature. The stan
dard deviation of this curvature over the segments then gives the scale- 
dependent second derivative, h′′

VBM(ζ). Fig. 2 illustrates this concept, 
again in comparison to the SDRP that for the second-order derivative fits 
a quadratic function through just three collocation points. 

An alternative route of thinking about VBMs is that they use a stencil 
whose number of coefficients equals the segment length. The stencil can 
be explicitly constructed from least squares regression (at each scale) of 

Fig. 2. Illustration of the computation of scale-dependent roughness parame
ters from the variable bandwidth method (VBM). While in finite differences, the 
slope is computed between two points at distance ℓ, in the VBM we fit a trend 
line to a segment of width ℓ. Similarly for the second derivative, the finite- 
differences estimation fits a quadratic function through three points while in 
the VBM we fit a quadratic trend line through all data points in an interval of 
length ℓ. 
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the polynomial coefficients. The closest equivalent to the SDRP would 
then be the respective VBM that uses sliding (rather than exclusive) 
segments. However, even in this case, a remaining difference is that 
SDRP uses stencils of identical number of coefficients at each scale. In 
the examples provided in Section 4, we use a VBM that uses nonover
lapping segments. 

In summary, we have shown that the various methods for computing 
scale-dependent height (such as VBM, DFA, and others) can be thought 
of as a special case of SDRP analysis: where the scale-dependent 
detrending only occurs for at most linear trend lines. We have then 
shown how those analyses can be extended to define yet another method 
for computing SDRPs. 

3.3. Relationship to the power spectral density 

Finally we outline a fourth way to arrive at SDRPs using the power 
spectral density (PSD), another common tool for the statistical analysis 
of topographies [1]. Underlying the PSD is a Fourier spectral analysis, 
which approximates the topography map as the series expansion 

h(x) =
∑

n
anϕn(x), (24)  

where ϕn(x) are called basis functions. The Fourier basis is given by 

ϕn(x) = exp(iqnx), (25)  

with qn = 2πn/L where L is the lateral length of the sample. The inverse 
of Eq.  (24) gives the expansion coefficients an which are typically 
computed using a fast Fourier-transform algorithm. The PSD is then 
obtained as [1] 

C1D(qn) = L|an|
2
. (26)  

Fourier spectral analysis is useful because a notion of scale is embedded 
in the definition Eq.  (25): The wavevectors qn describe plane waves with 
wavelength λn = 2π/qn. 

This basis leads to spectral analysis of surface topography and de
rivatives are straightforwardly computed from the derivatives of the 
basis functions, 

∂
∂x

ϕn(x) = iqnϕn(x) and (27)  

∂2

∂2x
ϕn(x) = −q2

nϕn(x). (28)  

We can write the Fourier-derivative generally as 

∂α

∂xαϕn(x) = D α(qn)ϕn(x) (29)  

with D 1(qn) = iqn for the first derivative and D 2(qn) = −q2
n for the 

second derivative. The D α(qn) are complex numbers that we will call the 
derivative coefficients. 

The rms amplitude of fluctuations can be obtained in the Fourier 
picture from Parseval’s theorem, that turns the real-space average in Eq. 
(5) into a sum over wavevectors, 

h(α)
rms =

[
∑

n
|D α(qn)an|

2

]1/2

. (30)  

The notion of a scale-dependence can be introduced in the Fourier pic
ture by removing the contribution of all wavevectors |qn| >qc larger than 
some characteristic wavevector qc, i.e. setting the corresponding 
expansion coefficients an to zero. This means there are no longer short 
wavelength contributions to the topography. We will refer to this pro
cess as Fourier filtering. Fourier filtering can be used to introduce a scale- 
dependent roughness parameter, e.g. 

h(α)

PSD(qc) =

[
∑

n

⃒
⃒D F

α(qn; qc)
⃒
⃒2C1D(qn)

]1/2

(31)  

with D F
α(qn; qc)= Θ(qc−|qn|)D α(qn) that we call the Fourier-filtered 

derivative and Θ(x) is the Heaviside step function. Note that we have 
expressed Eq.  (31) in terms of the PSD, which is typically obtained using 
a windowed topography if the underlying data is nonperiodic. In the 
examples that we show in Section 4, we applied a Hann window before 
computing the scale-dependent derivatives from the PSD. 

We now show that Fourier-filtering and finite-differences are related 
concepts. We first interpret the finite-differences scheme in terms of a 
Fourier analysis. We apply the finite differences operation to the Fourier 
basis Eq.  (25). This yields 

Dα
(η)

D(η)xαϕn(xk) = D
s
α(qn; η)ϕn(xk) (32)  

with 

D
s
α(qn; η) =

1
(ηΔx)

α

∑∞

l=−∞
c(α)

l exp(iqnηlΔx). (33)  

Note that the right hand side of Eq.  (32) is fully algebraic, i.e. it no 
longer contains derivative operators, and the D s

α(qn; η) are (complex) 
numbers. Inserting these derivative coefficients into Eq.  (31) yields Eq. 
(13). We have therefore unified the description of (scale-dependent) 
derivatives in the Fourier basis and finite-differences in terms of the 
derivative coefficients D α. 

The remaining question is how the scale ℓ used to compute the finite- 
differences relates to the wavevector qc used in Fourier-filtering. Fig. 3 
shows D F

1(λc) and Ds
1(ℓ) for different values of ℓ and λc. The location of 

the maximum of these derivative coefficients agrees if ηΔx ≡ ℓ/α = λc/

2 = π/qc. For first derivatives (α = 1), ℓ = Δx. This is the Nyquist 
sampling theorem, which states that the shortest wavelength we can 
resolve is λc = 2Δx. This means to compare SDRP, VBM and PSD, we 
need to choose a filter cutoff of qc = απ/ℓ in the latter. Note that in the 
SDRP, the (soft) cutoff emerges implicitly from the finite-difference 
formulation. 

In summary, we have shown that the SDRPs, which were defined in 
real-space in Section 2.2, can be equivalently computed in frequency- 
space using the PSD. The results should be the same, however, 
frequency-space calculations have the shortcomings that nonperiodic 
topographies need to be windowed, and a filter cutoff needs to be 
applied. 

Fig. 3. Derivative coefficients for finite differences D s
1 and the Fourier-filtered 

derivative D F
1 for different distance scales ℓ. The coefficients agree at small 

wavevectors q. The maximum of the coefficient agrees if the filter wavelength 
λc = 2ℓ, corresponding to the Nyquist sampling theorem (see text). 
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3.4. Summary notes about comparison to other methods 

In this section, we have shown that three of the most common 
methods for roughness characterization, namely ACF, VBM, and PSD, 
are highly related to the SDRP. In fact, some form of SDRP can be 
computed using any of these three methods, instead of using the original 
definition, Eq.  (13), with approximately equivalent results (see nu
merical experiments in the next section). Intuitively, the SDRP can be 
thought of as a general framework for analysis, which contains ACF, 
VBMs and PSD as special cases. 

4. Discussion: Application of scale-dependent roughness 
parameters, and advantages over other methods 

4.1. Application to a synthetic self-affine surface 

We first apply the concepts presented above to a synthetic self-affine 
topography. The topography has been first presented in Ref. [1] and 
consists of three virtual “measurements” of a large (65 536 ×65 536 
pixels) self-affine topography generated with a Fourier-filtering algo
rithm [1,39]. This algorithm works as follows: We superpose sine waves 
with uncorrelated random phases and amplitudes scaled according to a 
power-law. On the pixel at position x→ij = (xi, yj), the height can be 
written as 

hij =
∑

k,l≥0
| q→kl |<qs

Aklsin
(

q→kl⋅ x→ij + ϕkl

)

, (34)  

where q→kl = 2π/L(k, l) is the wavevector and L is the period of the 
topography. The phases ϕkl are uncorrelated and uniformly distributed 
between 0 and 2π. The amplitudes Akl are uncorrelated Gaussian random 
variables with variance proportional to | q→kl|

−2−2H. The sum runs only 
over wavevectors smaller than the short-wavelength cutoff qs = 2π /λs. 
The (two-dimensional) PSD of the surface is the square of the amplitudes 
Akl and is 0 for wavelengths below λs. We generated the surface with 
Hurst exponent H = 0.8, cutoff wavelength λs = 10 nm, pixel size Δx =

Δy = 2 nm and physical size L = 131 µm. This surface was subsampled 
in three blocks of 500 × 500 pixels at overall lateral sizes of 100 μm ×

100 μm, 10 μm × 10 μm and 1 μm × 1 μm to emulate measurement at 
different resolution. Each of these virtual measurements is nonperiodic 
and independently tilt-corrected. The data for the three subsampled 
topographies is available online [40]. 

Fig. 4a shows the topography map of these three emulated mea
surements. The measurements zoom subsequently into the center of the 
topography. The one-dimensional PSDs (C1D, Fig. 4b) of the three to
pographies align well, showing zero power below the cutoff wavelength 
of λs. Note that unlike most authors (with few exceptions in geophysics 
[41–45]) or even our own prior work, we display the PSD as a function 
of wavelength λ = 2π/q where q is the wavevector; this facilitates 
comparison with the real-space techniques introduced above, and also 
wavelengths are more intuitively understandable than wavevectors. 
Since the topography is self-affine, the PSD scales as C1D∝λ1+2H as 
indicated by the solid line. 

The ACF (or rather its square root) is shown in Fig. 4c. The ACF and 
all other scale-dependent quantities reported below are obtained from 
averages over adjacent line scans, i.e. from one-dimensional profiles 
rather than two-dimensional area scans. This is compatible with how 
C1D is computed (see Ref. [1]). The ACFs from the three measurements 
line up and follow 

̅̅̅̅
A

√
∝ℓH (see solid black line in Fig. 4c). Note that the 

ACF does not drop to zero for ℓ < ℓs ≡ λs/2 as the PSD did. This 
behavior becomes clearer by inspecting the scale-dependent slope 
h′

SDRP(ℓ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅
2A(ℓ)

√
/ℓ that saturates at a constant value for ℓ < ℓs. This 

is the true rms slope that is computed when all scales are considered. For 
large ℓ, the rms slope scales as h′

SDRP∝ℓH−1 (solid black line in Fig. 4d). 

Fig. 4. Example of scale dependent-roughness parameters for an ideal self- 
affine surface with Hurst exponent H = 0.8. (a) A large surface was sub
sampled in three topographies of 500 × 500 pixels at different resolution. (b) 
Individual PSDs displayed as a function of wavelength λ = 2π/q, where q is the 
wavevector. (c) Square root of the ACF displayed as a function of distance scale 
ℓ. (d) Scale-dependent rms slope. (e) Scale-dependent rms curvature. (f) Third 
derivative as an example of how this method can be used to go beyond tradi
tional analysis. Color is used to distinguish the three different topographies. The 
figure shows results from the four SDRPs (finite-differences based SDRP, ACF, 
VBM and PSD), showing that the results agree. The solid black lines in panels 
(b-f) shows the power-law scaling of an ideal self-affine topography with Hurst 
exponent H. Note that the deviations from power-law scaling at large scales are 
especially visible in panels (c) and (d) because of the smaller range of values on 
the y-axis. 
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Finally, we display the scale-dependent curvature h′′
SDRP(ℓ) in Fig. 4e. 

Like the rms slope, the curvature saturates for ℓ < ℓs to the “true” small- 
scale value of the curvature. The curvatures of the three individual 
measurements again line up and follow h′′

SDRP(ℓ)∝ℓH−2 because of the 
self-affine character of the overall surface. The rms curvature computed 
from the ACF (Eq.  (22)) is strictly only applicable to periodic topogra
phies, but in our numerical experiments the ACF agrees with the original 
definition of the SDRPs (Eq.  (13)) within the thickness of the line. The 
errors occur at large distance scales and can, in principle, lead to 
negative values of h’’2

SDRP, but we have not seen this occurring in the 
numerical data presented in this paper. 

In our derivation above we have presented alternative routes for 
obtaining scale-dependent roughness parameters from the VBM and 
PSD. The plusses (+) in Figs. 4d and e show the rms slope and curvature 
obtained using the VBM, while the crosses (x) show the results obtained 
using the PSD. They align well with the respective parameters obtained 
from the SDRP and only deviate at large scales. In summary, all three 
routes (ACF, VBM, PSD) for obtaining SDRPs are equally valid and lead 
to results that are consistent with those computed using the original 
definition (Eq.  (13)). The advantage of the SDRP, ACF and the VBM over 
the PSD is that they are directly (without windowing) applicable to 
nonperiodic data. 

We have now demonstrated four independent ways of obtaining 
scale-dependent slopes, curvatures and higher-order derivatives. We 
would like to point out that all four routes constitute novel uses of the 
underlying analysis methodology. Our primary tool in what follows will 
be the SDRP; however, we have demonstrated that the ACF, VBM and 

PSD yield equivalent results. The broader importance of using scale- 
dependent slopes and curvatures over the “bare” ACF, VBM or PSD is 
that it is straightforward to interpret the meaning of these parameters. 
We all have intuitive understanding of the meaning of slopes and cur
vatures, whereas it is difficult to ascribe a geometric meaning to a value 
of the PSD (that can even differ in unit, see discussion in Ref. [1]). 

4.2. Detecting tip artifacts in simulated topography measurements 

We now turn to another example, the analysis of tip artifacts. This 
will exploit a power of the SDRP, namely the fact that we can compute 
the full underlying distribution of arbitrary derivatives outlined in 
Section 2.3. 

Fig. 5a shows two computer generated nonperiodic topographies of 
size 0.1 μm × 0.1 μm. The first topography is pristine and was generated 
using the Fourier-filtering algorithm mentioned above. As in the previ
ous example, we ensured the scan is not periodic by taking a section of a 
larger (0.5 μm) periodic scan. The second topography contains tip ar
tifacts and was obtained from the pristine surface using the following 
nonlinear procedure: For every location (xi, yi) on the topography we 
lower a sphere with radius Rtip (here 40 nm) towards a position (xi, yi, zi)

until the sphere touches the pristine topography anywhere. The result
ing z-position zi of the sphere is then taken as the “measured” height of 
the topography. This topography was discussed in Ref. [1] and the data 
files are available at Ref. [46]. The two curves underneath the maps in 
Fig. 5a are cross-sections through the middle of the respective 
topography. 

It is clear from simply looking at the data in Fig. 5a that the scanning 

Fig. 5. Scale-dependent roughness parameters for the analysis of tip artifacts. (a) A computer-generated “pristine” topography was scanned with a virtual tip of Rtip 

= 40 nm radius. The bottom row shows cross-sectional profiles of the maps shown above. The artifacted map and profile show clear blunting of the peaks and cusps 
in the valleys (see text for more discussion). (b) Distribution of slopes at distance scales ℓ = 1 nm (circles •), 16 nm (squares ▪) and 256 nm (triangles ▾). (c) 
Distribution of curvatures at these scales. Both slopes and curvatures are obtained in the x-direction. The left plots in (b) and (c) show the computed values for the 
pristine surface, while the right plots in these panels show the values for the tip-artifacted measurement. Black solid lines show the normal distribution. (d) PSDs and 
(e) ACFs of both topographies. (f) The plot of minimum curvature h′′

min (see text) shows a clear deviation between the pristine and artifacted measurement that starts 
at approximately the point where the scale-dependent minimum curvature equals the radius of the tip. 
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probe smoothens the peaks of the topography. Indeed the curvature near 
the peaks must be equal to − 1/Rtip. Conversely, the valleys look like 
cusps that originate from the overlap of two spherical bodies. These 
cusps are sharp and should lead to large (in theory unbounded, but in 
practice bounded by resolution and noise) positive values of the cur
vature. Church & Takacs [47,48] have pointed out that tip artifacts 
should lead to PSD C1D(q)∝q−4, which is precisely a result of the cusps in 
the topography. (The Fourier transform of a triangle scales as q−2, such 
that the PSD ∝q−4.) We have demonstrated in Refs. [1,3] numerically 
that this is indeed the case. 

We are now in a position to more precisely look at the effect of tip 
radius. Fig. 5b shows the scale-dependent slope distribution P1(h′

, ℓ), 
normalized by the rms slope at the respective scale. The black solid line 
shows a Gaussian distribution (of unit width) for reference. It is clear 
that both our pristine topography (left columns) and the topography 
with tip-radius artifacts (right column) follow a Gaussian distribution 
for the scale dependent slopes across scales from 1 nm to 256 nm shown 
in the figure. 

The situation is different for the scale-dependent curvature, shown in 
Fig. 5c. While the pristine surface (left column) follows a Gaussian dis
tribution, the topography with tip-radius artifacts is only Gaussian for 
larger scales (ℓ = 16 nm and 256 nm). There is a clear deviation at the 
smallest scales, showing an exponential distribution for positive curva
ture values, corroborrating the empirical discussion above that cusps 
leads to large positive values for the curvature. As argued above and in 
Refs. [47,48], these cusps lead to a PSD ∝q−4∝λ4. Fig. 5d shows the PSDs 
of both topographies. The artifacted surface indeed crosses over to C1D∝ 
λ4 at a wavelength of λ ∼ 20 − 40 nm. 

We note this cross-over to λ4 is subtle and difficult to detect in 
measured data. Other measures, such as the ACF shown in Fig. 5e, are 
unsuitable to detect these artifacts. The region where the C1D∝λ4 shows 
up as a linear region in the square root of the ACF, 

̅̅̅̅
A

√
∝ℓ. The exponent 

of 1 from that region is too close to the exponent of H = 0.8 to be clearly 
distinguishable. The present authors have previously suggested a tip- 
radius reliability cutoff [1,2], where the scale-dependent rms curva
ture was compared to the tip curvature. Based on similar ideas, we now 
propose an additional metric that is intended to more accurately detect 
the onset of the tip-radius artifact. 

Rather than computing the width of the distribution as do the rms 
measures, we now ask the question of what is the minimum curvature 
value found at a specific scale ℓ. We therefore evaluate 

h’’
min(ℓ) = −min

k

[ D2
(ℓ)

D(ℓ)x2 h(xk)

]

. (35)  

The crosses in Fig. 5f show this quantity for the pristine and the arti
facted surface. It is clear that at small scales the curvature of the pristine 
surface is larger than the artifacted one. Additionally, the artifacted 
surface settles to h′′

min(ℓ) ≈ 1/Rtip as ℓ→0. This is a clear indicator that 
the curvature of the peaks on the artifacted surface is given by the tip 
radius and that in principle, the tip radius can be deduced from h′′

min. 
However, in real AFM data, h′′

min has no well defined ℓ→0 limit because 
there are noise sources not considered in our simulated measurement. 
The tip radius then needs to be determined from auxiliary measurements 
(see next section). 

For each tip radius and surface topography, there is a critical length 
scale ℓtip below which AFM data is unreliable. We estimate ℓtip by 
numerically solving 

h′′
min

(
ℓtip

)
= c

/
Rtip (36)  

for ℓtip using a bisection algorithm. The empirical factor c needs to be 
close to or slightly smaller than unity. Fig. 5f shows this condition as a 
dashed horizontal line. Note that ℓtip depends both on the tip radius and 
the curvature of the measured surface: measurements on rough surfaces 

have more tip artifacts than measurements on smooth surfaces because a 
tip that can conform to the valleys of a smooth surface may not be able to 
sample the valleys on a rougher surface. We also indicate the scale ℓtip in 
the ACF (Fig. 5e) and in the PSD. The factor c= 1 /2 was chosen such 
that λtip marks the crossover from artifacted C1D∝λ4 to the pristine 
C1D∝λ1+2H. We will use the same factor when analyzing experimental 
data in the next section, where there is no “pristine” measurement 
available for comparison. 

Our proposed measure is useful because it can be robustly and 
automatically carried out on large sets of measurements; by contrast, the 
detection of C1D∝λ4 is difficult because fitting exponents requires data 
over at least a decade in length and carries large errors [49]. 

4.3. Application to an experimental measurement 

As a final example, we turn to an experimental analysis of an ultra
nanocrystalline diamond (UNCD) film that has been described in detail 
in Ref. [2]. Fig. 6a shows a single representative AFM scan of that sur
face available online at Ref. [50]. The peaks have rounded tips similar to 
the synthetic scan shown in Fig. 5a. The curvature distribution (Fig. 6b) 
also has a similar characteristic to our synthetic topography (Fig. 5c). At 
large scales, the distribution is approximately Gaussian (shown by the 
solid black line). At smaller scales, we see deviations to higher curvature 

Fig. 6. AFM measurement of an ultrananocrystalline diamond film. (a) AFM 
measurement showing the smoothing of peaks similar to the emulated scans 
shown in Fig. 5a. (b) Normalized curvature distribution at distance scales ℓ =

12 nm (circles •), 47 nm (squares ▪) and 187 nm (triangles ▾). ℓ = 12 nm 
corresponds to a scale factor η = 1. (c) We use the peak curvature h′′

min (see text) 
to estimate the scale ℓtip below which the AFM data is unreliable (highlighted in 
red). The empirical constant c = 1/2. Inset: TEM image of the AFM tip. Fitting a 
parabola to the tip yields a radius Rtip of 10 nm. (d) Power spectral density 
(PSD) of the measurement. The black solid line shows scaling with λ4 that in
dicates tip artifacts. 
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values, indicative of the cusps that are characteristic of tip artifacts. We 
also see a minor deviation to higher negative curvatures, which we 
attribute to additional instrumental noise that contributes to small-scale 
features of the data. 

These negative curvatures prevent the conclusive determination of 
the tip radius from the scale-dependent tip curvature (Fig. 6c). Unlike 
the synthetic surfaces, the scale-dependent tip curvature h′′

min(ℓ) (Fig. 5f) 
does not saturate to a specific value at small distances ℓ. Instead, we 
determined the radius of AFM tip from auxiliary transmission electron 
microscopy (TEM) measurements (Fig. 6c inset). For the measured Rtip =

10 nm, we can identify the region where h′′
min(ℓ) > 1/(2Rtip) as unreli

able, leading to a lateral length-scale of around ℓtip ≈ 60 nm below 
which the data is no longer reliable. The PSD (Fig. 6d) shows λ4 scaling 
below the characteristic wavelength ℓtip. 

After having looked at tip-radius effects on single measurements, we 
now turn to applying SDRPs to the full experimental dataset from 
Ref. [2], where a total of 126 individual measurements from three 
different instruments, a stylus profilometer, an AFM and a TEM, were 
combined to extract the power spectrum of the surface over eight orders 
of magnitude. (The dataset is available online at Ref. [51].) Fig. 7 shows 
the PSD, ACF, rms slope and rms curvature for each individual mea
surement as well as an average curve representative of the whole sur
face. For each tip-based measurement (stylus and AFM), we computed 
the critical scale ℓtip using Eq.  (36) as above and excluded data on scales 
below ℓtip. The good overlap of the AFM data with the TEM data con
firms that this procedure removed tip artifacts. The full data set (see 
Ref. [2]) shows clear regions where the PSD C1D∝q−4. 

As shown in Fig. 7, all four methods can be used to stitch together the 
data from a large set of measurements to obtain the resulting SDRP of the 
underlying physical surface. The ACF (Fig. 7b) and rms slope h′

rms 
(Fig. 7c) of the TEM measurements curve down at large ℓ, an effect also 
seen (but less pronounced) in our synthetic data of Fig. 4c and d. This is a 
consequence of tilt correction, that enforces zero slope at the size of the 
overall measurement, hence forcing h′

rms to drop towards zero. While 
more sophisticated schemes for tilt correction could be devised to 
eliminate this long-wavelength artifact, the rms curvature h′′

rms is free of 
this artifact as it is unaffected by local tilt of the measurement. We 
therefore advocate that it is important to look at a combination of these 
scale-dependent analysis techniques rather than relying on a single one. 

5. Summary & conclusions 

First, we demonstrated the calculation of scale-dependent parame
ters using a finite-differences scheme, with a variable distance scale. We 
have termed this characterization of first- and higher-order derivatives 
the scale-dependent roughness parameter (SDRP) analysis. Then we 
showed that the commonly used height-difference autocorrelation 
function (ACF) can be interpreted as the scale-dependent root-mean- 
square (rms) finite-difference slope. This leads to a straightforward 
generalization of the ACF for higher derivatives, yielding for example a 
scale-dependent rms curvature. We have further generalized this anal
ysis to compute distributions of roughness parameters as a function of 
scale; the curvature distribution analysis can be used to identify tip- 
radius artifacts. To connect our analysis to conventional techniques, 
we have shown how equivalent scale-dependent roughness parameters 
can be computed not only from the ACF, but also from the the variable 
bandwidth method and the power spectral density. We demonstrated 
the successful use of these analyses to describe computer-generated and 
experimentally measured surfaces. Additional work is ongoing to apply 
this analysis on a wide range of surfaces, for example surfaces with 
facets [3] or periodic structures. 

In summary, we proposed a novel SDRP analysis, and demonstrated 
how this is a generalization of commonly used roughness metrics. We 
suggest that this SDRP approach serves to harmonize competing 
roughness descriptors, but also offers advantages over those other 

methods, especially in terms of ease of calculation, intuitive interpret
ability, and detection of artifacts. 
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Appendix A. Generalization to two dimensions 

We here briefly outline the generalization of the SDRP to two-dimensions. The main difference is that in two dimensions the derivative becomes the 
(discrete) gradient (Dh/Dx, Dh/Dy), the curvature becomes the Hessian (D2h/Dx2, D2h/Dy2, D2h/DxDy) and higher-order derivatives contain addi
tional cross terms. All averages are carried out over areas, not line scans. We can then for example define a scale-dependent gradient as 

h
′ ,2D
SDRP(ℓ) =

〈(
D(ℓ/Δx)

D(ℓ/Δx)x
h(x, y)

)2

+

(
D(ℓ/Δy)

D(ℓ/Δy)y
h(x, y)

)2〉1/2

, (A.1)  

where the average 〈⋅〉 now runs over the area. We note that in two-dimensions the situation may arise, where the scale factors ηx = ℓ /Δx and ηy = ℓ 
/Δy are no longer integer; this in particular happens if the aspect ratio of the individual pixel is not unity, Δx ∕= Δy. In this case the additional 
(numerical) complexity arises, that one needs to interpolate between data points to measure the derivatives at the same distance scale in x- and 
y-direction. 
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