
M. V. Hoeij, H. Smith Res. Number Theory (2021) 7:22
https://doi.org/10.1007/s40993-021-00243-3

RESEARCH

A Divisor Formula and a Bound on the
Q-Gonality of the Modular Curve X1(N )
Mark van Hoeij1 and Hanson Smith2*

*Correspondence:
hanson.smith@uconn.edu
2Department of Mathematics,
University of Connecticut, 341
Mansfield Road U1009, Storrs, CT
06269-1009, USA
Full list of author information is
available at the end of the article

Abstract

We give a formula for divisors of modular units on X1(N) and use it to prove that the
Q-gonality of the modular curve X1(N) is bounded above by [11N2/840], where [·]
denotes the nearest integer.

Keywords: Modular curves, Gonality, modular units, Siegel functions, Torsion points
on elliptic curves

Mathematics Subject Classification: Primary 11G16, Secondary 14H52, 11G05,
14G35, 11F03

1 Introduction
The modular curve X1(N ) parametrizes pairs (E,±P) where E is an elliptic curve and P
is a point of exact order N . As such it has been an object of interest for number theorists
and arithmetic geometers. If K is a field, then K-gonality of X1(N ) is the minimum degree
of a non-constant function X1(N ) → P1 defined over K .
Table 1 in [6] gives the currently-best upper bounds on the Q-gonality of X1(N ) for

N ≤ 250 and matching lower bounds for N ≤ 40. Any non-constant function provides
an upper bound for the gonality. The upper bounds in [6, Table 1] come from modular
units. These are functions on X1(N ) whose divisors are supported only on cusps (places
onX1(N ) where E degenerates). In this note we prove a formula for the degree of a certain
modular unit F7/F8. Its degree is a particularly good gonality bound whenN is prime. For
all primes N ≤ 250 except 31, 67, 101 it equals the currently the best upper bound from
[6, Table 1].
Modular units are usually given in terms of Siegel functions [5, Theorem 3.4]. Conjec-

ture 1 in [6], which was proved in [18], gave a basis F2, F3, . . . of modular units in algebraic
form, which is useful for computer computations. In order to quickly find the degree of
any modular unit, a formula for the divisor of Fk : X1(N ) → P1 was given at [25].
A proof for this formula was not given; the resulting degrees listed in [6, Table 1]

were verified by other means. The main result in this paper is a proof for this formula
(Theorem 1 in Sect. 4), the “MinFormula.” As an application, Sect. 5 gives the bound

GonalityQ (X1(N )) ≤ deg
(
F7
F8

: X1(N ) → P1
)

≤
[
11N 2

840

]
if N > 8.
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Here [·] indicates rounding to the nearest integer. The second ≤ is an equality when N
is prime. The asymptotic growth 11N 2/840 was already observed in [6, Section 2.1] and
[19, p. 11] (combine the factors 11/35 and 1/24) though a proof was not given.
The explicit divisors given in Theorem 1 have other applications as well, such as com-

puting Galois representations for modular curves [7], computing the action of diamond
operators [6], computing cuspidal class numbers of modular curves [3,4], [12, Chapters
5 and 6], [23,27–30], computing optimized equations for X1(N ) [1,20,21], and sporadic
points on modular curves [2,8,13,14,17,19,24].
Section 2 reviews Puiseux expansions, elliptic curves, and division polynomials, and

the relation to modular units is given in Sect. 3. To help the reader keep track of the
notations we give a summary in Tables 1 and 2. Section 4 gives the main theorem. In
Sect. 5 we obtain the gonality bound as an application of the main theorem. Streng [18]
used Siegel functions to prove [6, Conjecture 1]. This work implies another proof for
Theorem 1, see Appendix A for details. Orders of Siegel functions are typically expressed
in terms of Bernoulli polynomials. We observe that such expressions sum to piecewise
linear functions (Appendix A.3) when the corresponding product of Siegel functions is a
modular unit.
The ideas for Theorem 1 are as follows: The defining polynomial qk of X1(k) is a factor

of the kth division polynomial Qk . A basis F2, F3, . . . of modular units of X1(N ) is written
in terms of these qk . Theorem 1 is a formula for their divisors, obtained by computing
valuations of qk at cusps of X1(N ) with N �= k . In general, valuations can be determined
from Puiseux expansions. In our case these expansions have distinct leading terms. Then
only leading terms are needed, see Eq. (2). Leading terms correspond to asymptotic behav-
ior, and cusps correspond to degenerate elliptic curves. When ε → 0, the elliptic curve
y2 = x(x− ε)(x−1) degenerates, and we compute the asymptotic behavior of its integrals
in Sect. 2.2. Converting the resulting leading terms to the universal elliptic curve in Eq.
(22) allows us to generalize Example 3 to Theorem 1.

2 Preliminaries
2.1 Places and Puiseux expansions

If f ∈ Q(s)[x] is irreducible over Q, then f defines an algebraic curve C whose function
field Q(C) is Q(s)[x]/(f ).
We give a brief summary of Puiseux expansions, see [15, Chapter II] formore. A Puiseux

expansion of f at s = 0 is a root of f in the algebraic closure of Q((s)). This is contained
in the algebraic closure of C((s)), which is

⋃∞
e=1 C

((
s1/e

))
. The natural valuation

vs : C
((
s1/e

)) → 1
e
Z
⋃

{∞}
sends a non-zero series to its lowest exponent in s and sends 0 to ∞.
For a Puiseux expansion p, let ep be the smallest positive integer e for which p ∈

C
((
s1/e

))
. From the embedding

φp : Q(C) → Q((s))[p] ⊂ C
((
s1/ep

))
, φp : x �→ p

we get a discrete valuation

vp : Q(C) → Z
⋃

{∞} given by vp(a) = ep · vs
(
φp(a)

)
. (1)
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The factor ep in (1) ensures that vp(a) lands inZ∪{∞}. Omitting this factor gives what we
will call the unweighted order vs

(
φp(a)

)
of a, which is 1 at a = s and 1/ep at a local param-

eter. The residue field kp is defined as
{
a ∈ Kp | vp(a) ≥ 0

}
modulo

{
a ∈ Kp | vp(a) > 0

}
,

where Kp = Q((s))[p].
A place on C/Q is a discrete valuation vP : Q(C) → Z

⋃{∞}. A place above s = 0
is a place with vP(s) > 0. Puiseux expansions p and p1 are conjugate over Q((s)) if and
only if vp = vp1 , so a place corresponds to a conjugacy class of Puiseux expansions. A
conjugacy class {p, . . .} has np := ep fp elements, where fp = [kp : Q]. A valuation
vp : Q(C) → Z

⋃{∞} extends to fp distinct valuations C(C) → Z
⋃{∞}, so one place on

C/Q corresponds to fp places on C/C.

Example 1 Let p = cs1/2 + · · · where c �= 0 and dots are terms of higher order. Then
vs(p) = 1/2 so p2/s = c2s0 + · · · has valuation 0 and hence c2 ∈ kp. However, c need
not be in kp. In that case, to avoid constants not in kp, we rewrite cs1/2 as (αs)1/2 where
α = c2 ∈ kp.

Definition 1 Let ls(p) denote the dominant term (the term with lowest exponent) of a
nonzero Puiseux expansion. We write p1 ∼ p2 if and only if ls (p1) = ls (p2). In general,
vs (p1 − p2) ≥ min (vs (p1) , vs (p2)) with equality if and only if p1 � p2.

Let P be a place above s = 0 given by a Puiseux expansion p ∈ C
((
s1/ep

))
of f .

Suppose we wish to compute vP(g) for some g ∈ Q(s)[x], where g is the image of g in
Q(s)[x]/(f ). Write g = l (x − p1) · · · (x − pn), where l ∈ Q(s) and the pi ∈ C((s1/epi )) are
the Puiseux expansions of g at s = 0. Then g(p) = l (p − p1) · · · (p − pn) and vP(g) =
ep · (vs(l) + vs (p − p1) + · · · + v (p − pn)). If p � pi for each i, then:

vP(g) = ep · ( vs(l) + min
{
vs(p), vs (p1)

}+ · · · + min
{
vs(p), vs (pn)

} )
. (2)

Lemma 1 With g and pi as above, let li := ls(pi). Suppose that l1, . . . , ln are distinct. Then
eli = epi and kli = kpi .

Proof Note eli ≤ epi and kli ⊆ kpi because the ramification index and residue field of pi
must be at least as large as those of its dominant term li. If at least one of those is not
an equality, then npi > nli . In this case, pi has more conjugates over Q((s)) than li, so
there must be at least two conjugates with the same dominant term. Those conjugates are
among p1, . . . ,pn since g ∈ Q(s)[x], which implies that l1, . . . , ln are not distinct.

2.2 Elliptic curves, analytic viewpoint

Let 0 < ε 
 1 and consider the elliptic curve

Eε : y2 = x(x − ε)(x − 1) (3)

so y = √
x(x − ε)(x − 1). Let Eε(C) denote the points on E defined over C. This is an

additive group, the identityO is the point at infinity. The period lattice is� = Zω1 +Zω2



22 Page 4 of 21 M. V. Hoeij, H. Smith Res. Number Theory (2021) 7:22

where [16, Chapter VI]

ω1 = 2
∞∫
1

dx
y

= 2
ε∫

0

dx
y

= 4K
(√

ε
) = 2π

(
1 + 1

4
ε + 9

64
ε2 + 25

256
ε3 + · · ·

)
(4)

and

ω2 = 2
1∫

ε

dx
y

= 2
0∫

−∞

dx
y

= 4
i
K
(√

1 − ε
)

= ω1
π i

ln
(
16
ε

− 8 − 5
4
ε + · · ·

)
. (5)

Here K is the complete elliptic integral of the first kind [10, §19.2(ii)]

K (t) =
π
2∫

0

dθ√
1 − t2 sin2 θ

.

In this section ∼ means that the ε-dominant terms are the same, similar to Definition 1.
For example

ω1 ∼ 2π and ω2 ∼ 2
i
ln
(
16
ε

)
. (6)

The notation ≈ will be used for approximations in intermediate steps, to indicate that
they are sufficiently accurate to compute the main formulas (6), (10), (12), (13) up to ∼.
TheAbel-Jacobimap is an isomorphism (as additive groups) fromEε(C) toC/�. Identify

Eε(C)/± with P1(C) using ±P �→ x(P). LetW := (C/�)/±. The Abel-Jacobi map (up to
±) is a bijection:

	 : P1(C) → W, where 	(x0) = ±
⎛
⎝

∞∫
x0

dx
y

+ �

⎞
⎠ . (7)

Its inverse is the Weierstrass ℘ function [11, 1,II,5,§1].
Each element ofW can be written uniquely as

±(r1ω1+r2ω2+�), with r1 ∈ [0, 1), r2 ∈
[
0,

1
2

]
, and if r2 ∈

{
0,

1
2

}
then r1 ∈

[
0,

1
2

]
.

(8)

AlthoughW is not a group, it inherits the multiplication by N map from C/�. The order
of the element (8) is N if and only if r1, r2 ∈ Q and the least common multiple of their
denominators is N . The image of P1(R) under 	 is a rectangle in W whose corners are
the points of order 1 and 2.
Like in the modular description in Section A.1, define the Cartan as C(N ) :=

{0, . . . , �N/2�}. LetW (N ) ⊂ W be the set of elements of order N , and for each c ∈ C(N )
let Wc(N ) ⊆ W (N ) be the subset where r2 = c/N ∈ [0, 1/2]. Let nc(N ) := |Wc(N )|
denote the cardinality ofWc(N ).

• Case c = 0. Then n0(2) = 1 and n0(N ) = ϕ(N )/2 for N > 2.
• Case 0 < c < N/2. Then nc(N ) = ϕ(d)N/d, where d = gcd(c, N ).
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• Case c = N/2. Then n1(2) = 2 and nN/2(N ) = ϕ
(
N
2

)
for even N > 2.

For later use we define ec(N ), fc(N ) with these formulas: nc(N ) = ec(N ) · fc(N ) where
e2(4) := 1 and ec(N ) := N/d otherwise. Define Cc(N ) := 	−1(Wc(N )) ⊂ P1(C) so that

⋃
c∈C

Cc(N ) = 	−1(W (N )) = {
x(P) | P ∈ Eε(C) has exact order N

}
.

To prove the main theorem in Sect. 4 it suffices to compute these x(P)’s up to ∼. We find
C0(2) = {1} and C1(2) = {0, ε} from the definition. Next we compute C0(N ) up to ∼ for
N ≥ 2. For C0(N ) we have r2 = 0 and x(P) ∈ [1,∞). Let y1 = x

√
x − 1. If ε 
 |x| then

y ≈ y1. For any x0 ∈ [1,∞) we have

	(x0) =
∞∫

x0

dx
y

≈
∞∫

x0

dx
y1

= π − 2 arctan
(√

x0 − 1
)
. (9)

Equating (9) to r1ω1 + 0ω2 gives π − 2 arctan
(√

x0 − 1
) ≈ 2πr1. Solving that for x0 and

applying some trigonometry gives x0 ∼ sin(πr1)−2 = 2/(1 − cos(2πr1)). Substituting
r1 = a/N gives

C0(N ) ∼
{
sin

(aπ
N

)−2
∣∣∣∣ 0 < a ≤ N

2
, gcd(a,N ) = 1

}
. (10)

For CN/2(N ) we have r2 = 1/2 and x(P) ∈ [0, ε]. Let y0 = √
x(x − ε)(−1). If |x| 
 1 then

y ≈ y0. Let x0 ∈ [0, ε]. Working mod � = Zω1 + Zω2, see (7) and (4),(5), we have

	(x0) =
x0∫

−∞

dx
y

= ω2
2

+
x0∫
0

dx
y

≈ ω2
2

+
x0∫
0

dx
y0

= π + ω2
2

−arcsin
(
1 − 2x0

ε

)
. (11)

Equating (11) to r1ω1 + 1
2ω2 gives x0 ∼ ε · sin(πr1)2. Substituting r1 = a/N gives

CN
2
(N ) ∼

{
ε · sin

(aπ
N

)2 ∣∣∣∣ 0 ≤ a ≤ N
2
, gcd

(
a,

N
2

)
= 1

}
. (12)

Now let r2 ∈ (0, 1/2) which corresponds to ε 
 |x0| 
 1 under ε → 0+. By equating
the right-hand side of (9), or that of (11), to r1ω1 + r2ω2 and computing a series expansion
we find

x0 ∼ −4e−2π ir1
( ε

16

)2r2
.

Substituting r1 = −a/N (the minus sign does not affect (13)) and r2 = c/N gives

Cc(N ) ∼
{
−4 ζ a

N

( ε

16

) 2c
N
∣∣∣∣ 0 ≤ a < N, gcd(a, c, N ) = 1

}
. (13)



22 Page 6 of 21 M. V. Hoeij, H. Smith Res. Number Theory (2021) 7:22

Table 1 Summary of notation from Sects. 2.1 and 2.2

Notation Brief definition References

p A Puiseux expansion above s = 0 p. 2

vp Discrete valuation associated to p p. 2

ep Smallest e with p ∈ C
((
s1/e

))
(= vp(s)) p. 2

kp Residue field associated to p p. 2

fp
[
kp : Q

]
p. 2

np ep · fp = [
Q((s))[p] : Q((s))

]
p. 2

ls(p) Dominant term of p p. 2

Eε y2 = x(x − ε)(x − 1), with 0 < ε 
 1 p. 3

ω1 ,ω2 Periods of Eε p. 3

W (C/�)/± where � = Zω1 + Zω2 p. 3

W (N) Elements of order N inW p. 3

C(N) The Cartan, {0, 1, . . . , �N/2�} p. 3

Wc (N) cth subset† ofW (N) (c ∈ C(N)) p. 3

nc |Wc (N)| = |Cc (N)| = ec · fc p. 3

Cc (N) cth subset of ⊂ {x(P) | P order N} p. 4

The a and c in (13) are the a and c appearing in the vectors in Appendix A.1. After
rewriting ε in terms of s from Sect. 4, Eqs. (10), (12), (13) determine the Galois action.

2.3 Division polynomials

Let K be a field of characteristic 0 and take a, b ∈ K for which

E : y2 = x3 + ax + b (14)

defines an elliptic curve over K . Following [16, Exercise 3.7], the division polynomials
Qk ∈ Z[x, y, a, b], k = 1, 2, . . . are defined by

Q1 := 1, Q2 := 2y = 2
√
x3 + ax + b, Q3 := 3x4 + 6ax2 + 12bx − a2,

Q4 := 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b2 − a3),

and the recursion relations 1

Q2k+1 = Qk+2Q3
k − Qk−1Q3

k+1 for k ≥ 2 (15)

Q2k = (Qk+2Q2
k−1 − Qk−2Q2

k+1)Qk

Q2
for k ≥ 3. (16)

Recursively define qk to be Qk divided all qd with d|k and d < k , so that Qk = ∏
d|k qd .

One has q1 = 1, q2 = Q2, q3 = Q3, q4 = Q4/Q2, and so forth.
Division polynomials have the following properties:

(1) Qk is in Z[x, a, b] when k is odd, and in q2 · Z[x, a, b] when k is even.
(2) LetO be the identity in (E(K ),+), let E[k] be the points P in E(K ) with kP = O. Then

Qk has one pole, of order k2 − 1 atO, and a root of order 1 at every P ∈ E[k]− {O}.
The roots of qk are the points of exact order k , denoted E[=k] ⊆ E[k].

(3) The ± below means: choose only one element of each pair {P,−P} ⊂ E[k] (this is
not relevant for k = 2 because P = −P when P ∈ E[2]).

1† These subsets are Galois orbits, see Sect. 4, or alternatively, Appendix A.1
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If k is odd : Qk = k
∏

P∈(E[k]−{O})/±
(x − x(P)) ∈ Q[x, a, b]. (17)

If k is even : Qk/y = k
∏

P∈(E[k]−E[2])/±
(x − x(P)) ∈ Q[x, a, b].

If k > 2 : qk = ak
∏

P∈E[=k]/±
(x − x(P)) ∈ Q[x, a, b], (18)

where ak = p if k is a power of the prime p and 1 otherwise.

For k = 2 : q22 = 4
∏

P∈E[=2]
(x − x(P)) ∈ Q[x, a, b].

The formulas imply that Qk is square-free, and if d|k , then Qd |Qk . Let mk denote the
number of elements of E[=k]. We have m2 = 3, m3 = 8, and 12|mk when k > 3. Note
that degx(qk ) = mk/2.

3 Equations for X1(N) andmodular units
The definitions of Qk and qk are not completely canonical; recurrence relations (15) and
(16) are preserved under scaling. Scaling means multiplying Qk by αk2−1 and qk by αmk

for some fixed α �= 0. To obtain expressions that are independent of scaling, we take
quotients

Q̃k = Qk

q(k
2−1)/3

2

and q̃k = qk
qmk/3
2

. (19)

As before we have Q̃k = ∏
d|k q̃d . Since Q̃k = q̃k = 1 for k ∈ {1, 2}, we have Q̃k = q̃k for

k < 6. To avoid the fractional exponent in (19), we also introduce

F3 = q̃33 = q33
q82

and Fk = q̃k for k > 3. (20)

Let Q̃k\3 be Q̃k/q̃3 if 3|k and Q̃k otherwise. Because Q̃k comes from Qk by scaling, it
satisfies the recurrence relations. These relations inductively show that

Q̃k\3 =
∏

3�=d|k
q̃d ∈ Z[F3, F4]. (21)

Assuming that F3, F4 ∈ Q(x, a, b) are algebraically independent over Q, Appendix B
shows (21), and that Q̃k\3 is primitive in Z[F3, F4], i.e. the gcd of the coefficients in Z

is 1. The product in (21) is square-free since (17) and (18) are square-free. Then by induc-
tion F4 , F5, F6, . . . from (20) are primitive, co-prime, and square-free in Z[F3, F4].

Example 2 To illustrate the various expressions defined above, take E from Eq. (14). We
substitute a = 0 and b = 1 to reduce expression sizes, so that E : y2 = x3 + 1. The
Q-rational torsion subgroup of this curve is isomorphic to Z/6Z. Specifically, it has the
2-torsion point (−1, 0), the 3-torsion points (0,±1), and the 6-torsion points (2,±3). For
k > 2, a point P on E has order equal to k if and only if x(P) is a root of qk , or equivalently,
a root of Fk . A similar statement holds forQk if one replaces “equal to k” with “divides k”.
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Table 2 Notation related to division polynomials

E y2 = x3 + ax + b, a = −3j0, b = −2j0 pp. 5, 7

j0, j j0 = j/(j − 1728), j = j-invariant of E p. 6

s s = 1/j, roots(s) = {cusps of X1(N)} p. 8

E[=k] {points on E of exact order k} p. 5

mk mk = # points of exact order k p. 6

Qk division polynomial of E pp. 5, 6

qk roots(qk ) = {x(P) | P has order k},Qk = ∏
d|k qk pp. 5, 6

Q̃k rescaling of Qk to make it unique, Q̃k = Qk/Q
(k2−1)/3
2 p. 6

q̃k rescaling of qk , Q̃k = ∏
d|k q̃d p. 6

{Fk} basis of modular units, Fk ∈ Q(x, j0) = Q(x, j) = Q(x, s) [6,18]

F2 , F3 F2 = q42/
(
1728j20 (j0 − 1)

)
, F3 = q̃33 = q33/q

8
2 pp. 6, 7

Fk , k > 3 Fk = q̃k = qk/q
mk/3
2 page 6

A point P has order 2 if and only x(P) is a root of q22, or equivalently, a root of F2 given in
the next section. We compute

Q2 = 2y, Q2
2 = q22 = 4(x3 + 1), Q3 = q3 = 3x

(
x3 + 4

)
, Q4 = q2q4 = 4y

(
x6 + 20x3 − 8

)
,

Q̃1 = q̃1 = Q̃2 = q̃2 = Q̃3\3 = 1, Q̃3 = q̃3 = 3x
(
x3 + 4

)
(
4(x3 + 1)

) 4
3
.

F3 = q̃33 =
(
3x
(
x3 + 4

))3
(
4(x3 + 1)

)4 , Q̃4 = q̃4 = F4 = 2
(
x6 + 20x3 − 8

)
(
4(x3 + 1)

)2 .

For a more interesting example of Q̃k\3, we find

q6 = (
x3 − 8

)(
x9 + 228x6 + 48x3 + 64

)
, so Q̃6\3

= q̃1q̃2q̃6 = q̃6 = q6/q82 = F6 = −(F2
4 + F3 − F4).

Ourmain curve below has coefficients inQ(j) instead ofQ, so itsQk , qk , etc., will be larger.

Henceforth, E will be the curve

E : y2 = x3 − 3j0x − 2j0, where j0 := j
j − 1728

. (22)

NowE is defined overK = Q(j), where j is transcendental overQ. So a and b fromSect. 2.3
will be −3j0 and −2j0 from here on. Now q3, q4 , . . . are in Q[x, j0] (also in Z[x, j0] but we
do not use that). The j-invariant of E is j, and the j-invariant of Eε is

28(ε2 − ε + 1)3

ε2(ε − 1)2
. (23)

In Sect. 4 we will equate (23) to j in order to translate formulas computed in terms of ε in
Sect. 2.2 to similar formulas for E.
Up to a simple transformation, E is the universal elliptic curve Ej from Diamond and

Shurman’s book [9]. Sections 7.5 and 7.7 in [9] show that the modular curve X1(N ) can be
represented with the equation qN when N > 2. In particular, qN is irreducible in Q[x, j0].
Likewise FN is irreducible inZ[F3, F4]. Although q2 /∈ Q[x, j0], its square 4(x3−3j0x−2j0)
is an equation for X1(2) that lies in Q[x, j0].
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Table 3 ls(p + 1) for one p from each conjugacy class Cc
over Q((s))

ls(p + 1) ls(p + 1) ls(p + 1) ls(p + 1) ls(p + 1)

with p ∈ C0 p ∈ C1 p ∈ C2 p ∈ C3 p ∈ C4

q22 3 −24s1/2

q3 4 −12s1/3

q4 6 −12s1/4 0 s1/2 − 672s

q5 3 sin(π/5)−2 −12s1/5 −12s2/5

q6 12 −12s1/6 −12(−s)1/3 −12s1/2

q7 3 sin(π/7)−2 −12s1/7 −12s2/7 −12s3/7

q8 3 sin(π/8)−2 −12s1/8 −12(−s)1/4 −12s3/8 −12(2s)1/2

q9 3 sin(π/9)−2 −12s1/9 −12s2/9 −12(ζ3 · s)1/3 −12s4/9

4 The valuation of a division polynomial at a cusp
Recall from Sect. 2.1 that a place on X1(N )/Q is a discrete valuation vP : Q(X1(N )) →
Z
⋃{∞}. Such a place is a cusp over Q when vP(j) < 0. A function g ∈ Q(X1(N )) is called

a modular unit if every place with vP(g) �= 0 is a cusp. If 1 < k �= N > 2 then Fk is a
modular unit on X1(N ), see [6, Section 2]. For k > 3 this Fk equals q̃k which is a rescaled
version of qk (a defining equation for X1(k) and the main factor of the division polynomial
Qk ). For k = 3 we need to take the cube of q̃3 to obtain a modular unit F3. To construct a
modular unit from q2, we need to take its 4th power and scale it to

F2 = q42
1728j20(j0 − 1)

. (24)

Let s = 1/j. Translating the definition given above, a cusp over Q is a place above s = 0,
which corresponds to a conjugacy class of Puiseux expansions at s = 0, see Sect. 2.1.
Conjugation is always over Q((s)) in this paper.
From (15) and (16) one can compute Q2, Q3, . . . and then q22 , q3, q4 , . . . ∈ Q[x, j0] ⊂

Q(s)[x]. We computed Puiseux expansions of qN (or q22 if N = 2) at s = 0 for N ≤ 9.
Newton’s algorithm gives arbitrarilymany terms, but only dominant termswill be needed.
Table 3 lists the dominant term of p+1 for one Puiseux expansion p from each conjugacy
class {p, . . .} (which has np := ep fp elements as we will see in the observations below).
Notice that in row q4, column C2 the term 0s1/2 predicted by the formula in Observation
(4) below vanishes.
We use p + 1 and x + 1 rather than p and x because when j → ∞ the curve E in (22)

becomes singular at x = −1. This is in contrast to Eε which becomes singular at x = 0
when ε → 0.
The equation forX1(2) is q22 = 4(x3−3j0x−2j0), where j0 = j/(j−1728) = 1/(1−1728s).

To illustrate Table 3 forN = 2, factor q22 = 4(x−p0)(x−p1a)(x−p1b) ∈ Q((s))[x]. Row q22
inTable 3 gives ls(p0+1) = 3, ls(p1a+1) = −24s1/2, and its conjugate ls(p1b+1) = 24s1/2.
This means

q22 = 4((x + 1) − 3 + · · ·) ((x + 1) + 24s1/2 + · · ·) ((x + 1) − 24s1/2 + · · ·) , (25)

where the dots indicate terms with higher powers of s. Likewise, for N > 2,

qN = aN
�N/2�∏
c=0

(
(x + 1) − (

pc,∗ + 1
)) = aN

�N/2�∏
c=0

(
x − pc,∗

)
,

where ls
(
pc,∗ + 1

)
are the conjugates of the term listed in row qN , column Cc.
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Example 3 Counting conjugates, row q8 in Table 3 gives two p’s with vs(p + 1) = 0,
eight p’s with vs(p + 1) = 1/8, four with 1/4, eight with 3/8, and two with 1/2. Indeed,
degx(q8) = m8/2 equals 2 + 8 + 4 + 8 + 2.
Now take as an example the conjugacy class C1 (a cusp over Q) on X1(3). This cusp is

a place on X1(3)/Q and can be represented with a Puiseux expansion p as in Sect. 2.1.
Row q3, column C1 gives p+ 1 = −12s1/3 + · · ·. Viewing q8 as an element of Q (X1(3)) =
Q(s)[x]/(q3), we can insert this data into Eq. (2) to find

vp(q8)= 3 ·
(
2min

(
1
3
, 0
)

+ 8min
(
1
3
,
1
8

)
+ 4min

(
1
3
,
1
4

)
+ 8min

(
1
3
,
3
8

)
+ 2min

(
1
3
,
1
2

))

(26)

(the+1’s cancelled out).Omitting the factor of 3 gives theunweighted order fromSect. 2.1.

Table 3 was obtained by computing Puiseux expansions of qN for N ≤ 9. Let k, N > 1
and k �= N . Example 3 shows how one can use Table 3 to compute the valuation of qk
(or q22 if k = 2) at any cusp of X1(N ) when k, N ≤ 9. To obtain a general formula, we will
show that Observations (1)–(6) below, which hold in Table 3, hold for all N > 1.

(1) qN (q22 if N = 2) has �N/2� + 1 conjugacy classes (a.k.a. Galois orbits)
C0, C1, . . . , C�N/2� of Puiseux expansions at s = 0.We number them so that if p ∈ Cc
then vs(p + 1) = c/N except when (N, c) = (4, 2). This unique exceptional case is
the irregular cusp of X1(4), where the sc/N term in Table 3 is 0s1/2 and vs(p+ 1) = 1
instead.

(2) C0 has ls(p + 1) = 12/
(
2 − ζN − ζ−1

N

)
= 3 sin(π/N )−2. The residue field is

Q

(
ζN + ζ−1

N

)
.

(3) If 0 < c < N/2, thenp ∈ Cc has ls(p+1) = −12 (ζd · s)c/N (always up to conjugation)
with d = gcd(c, N ) and residue field Q(ζd).

(4) If N �= 4 is even, then p ∈ CN/2 has

ls(p + 1) = −24s1/2 + 3 sin2(π/N ) · 16s1/2 = −12(β · s)1/2,

where β :=
(
ζN + ζ−1

N

)2
(β �= 0 if N �= 4). The residue field is Q(β) (recall Exam-

ple 1).
(5) Cc ⊂ C

((
s1/ec(N )

))
has precisely nc(N ) elements, and the residue field has degree

fc(N ) with nc, ec, fc as in Sect. 2.2.
(6) Every p ∈ ⋃

N,c Cc(N ) has a unique ls(p + 1), so Eq. (2) holds for all combinations.
This implies that Example 3 generalizes to Theorem 1 below.

To see why Observations (1)–(6) hold, note that the curve Eε in Sect. 2.2 differs from E
by the transformation

T : x �→ p1a + (p0 − p1a)x = (−1 − 24s1/2 + · · ·) + (3 + 24s1/2 + · · ·)x
that sends 0, ε, and 1 to p1a,p1b, and p0, respectively. From T (ε) = p1b we find ε =
16s1/2 + · · · which can also be computed by equating j = 1/s to (23). Section 2.2 gives the
ε-dominant terms. Substituting ε ∼ 16s1/2 and applyingT yields ls(p+1) for everyPuiseux
expansion of qN . Observation (6) immediately follows from this, but then Lemma 1 shows
that ep and kp can be read from ls(p + 1), and the remaining observations follow.
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Before stating theMinFormula, we need a definition and a recollection. For t ∈ [0, 1/2],
we define the following unweighted order functions. For k = 2, define v2(t) = 4t − 1, and
for k > 2, define

vk (t) = sk ·
⎛
⎝−mk

3
t +

�k/2�∑
j=1

nj(k)min
(
t,
j
k

)⎞⎠ , (27)

where s3 = 3 and sk = 1 for k > 3. Recall that Cc(N ) is a conjugacy class of Puiseux
expansions, giving one cusp of X1(N )/Q, or a Galois orbit with fc(N ) cusps of X1(N )/Q.

Theorem 1 (MinFormula) Let 2 < N �= k > 1 and 0 ≤ c ≤ N/2, then the order of Fk ,
viewed as element of Q(s)[x]/(qN ) = Q(X1(N )), at Cc(N ) is

ordCc(N )(Fk ) = ec(N ) · vk
( c
N

)
.

If N = 2 we cannot directly apply this formula to Fk due to its denominator q2, but the
formula still holds for products where q2 cancels out, such as F2

2F3 and F
mk/12
2 Fk for k > 3.

Proof Observations (1)–(6) imply that the computation in Example 3 works in general,
so

ec(N )
�k/2�∑
j=0

nj(k)min
(

c
N
,
j
k

)
(28)

is the order of qk (or q22 if k = 2) at Cc(N ) for any N, k > 1 with N �= k . Theorem 1
follows by applying Eq. (28) to Fk in Eqs. (20) and (24), simplifying min(t, 0) = 0 and
min(t, 1/2) = t, and noting that the denominator 1728j20(j0 − 1) in Equation (24) has a
root of order 1 at s = 0.

Remark 1 A cusp over Q corresponds to fc(N ) cusps over Q. Since the degree of the
divisor of a function is zero,

�N/2�∑
c=0

fc(N ) ec(N ) vk
( c
N

)
= 0.

If N is prime, then ec(N ) fc(N ) = nc(N ) is N for c > 0, and vk (0) = 0, so
�N/2�∑
c=0

N vk
( c
N

)
= 0.

Letting N → ∞, we see
∫ 1/2
0 vk (t)dt = 0. Since

∫ 1/2
0 (min(t, (j/k)) − 4(j/k)(1 − (j/k))t)dt

equals 0 for any (j/k) ∈ [0, 1/2], we do not need a formula formk , and can instead rewrite
Eq. (27) as

vk (t) = sk
∑

0<j<k/2
nj(k)

(
min

(
t,
j
k

)
− 4

j
k

(
1 − j

k

)
t
)
, for k ≥ 3. (29)

This is the formula implemented in [25]. The sum (29) does not change if one replaces
0 < j < k/2 by 0 ≤ j ≤ k/2 because the summand vanishes at j ∈ {0, k/2}. Equation (29)
with the factor sk removed gives the unweighted order function for q̃k (recall that F3 = q̃33
and Fk = q̃k if k > 3).
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5 The degree of F7/F8 in X1(N)
In this section we use Theorem 1 to prove an upper bound for the Q-gonality of X1(N ).
Let v(t) := v7(t) − v8(t), and letm(t) := max(0, v(t)) as in Figure 1. Define

B0(N ) :=
∑

0<c<N/2
nc(N )m

( c
N

)
and B1(N ) :=

∑
0<c<N/2

N m
( c
N

)
.

Theorem 1 gives

div
(
F7
F8

)
=

∑
0<c<N/2

ec(N ) v
( c
N

)
Cc, sodeg

(
F7
F8

)
= B0(N ) ≤ B1(N ). (30)

We omit the terms c = 0 and c = N/2 in these sums because v vanishes there. By Eq. (27)

v(t) = 7min
(
t,
1
7

)
+ 7min

(
t,
2
7

)
+ 7min

(
t,
3
7

)
− 8min

(
t,
1
8

)

− 4min
(
t,
1
4

)
− 8min

(
t,
3
8

)
− 2t.

Lemma 2 If N is relatively prime to 420 = 3·4·5·7, then B1(N ) = [11N 2/840]. In general,
B1(N ) ≤ [11N 2/840] + 2 (where equality implies 7 | N), and B0(N ) ≤ [11N 2/840].

Proof Consider the intervals I1 := (1/4, 2/7], I2 := (2/7, 1/3), I3 := (2/5, 3/7], and
I4 := (3/7, 1/2). These intervals partition the support ofm(t); see Figure 1. We define the
functions m1(t) := 4t − 1, m2(t) := 1 − 3t, m3(t) := 5t − 2, and m4(t) := 1 − 2t. The
graphs of themj(t) over Ij are exactly the line segments in Figure 1. We seem(t) = mj(t)
if t ∈ Ij and 0 otherwise.
Our goal is to bound

B1(N ) =
4∑

j=1

∑
c/N∈Ij
c∈Z

N mj
( c
N

)
. (31)

Since N mj(c/N ) ∈ Z, we have B1(N ) ∈ Z. Note that B1(N ) is a Riemann sum of

N 2
1/2∫
0

m(t)dt = N 2
4∑

j=1

∫
Ij

mj(t)dt = 11
840

N 2.

Since m(t) is piece-wise linear, any error in B1(N ), viewed as an approximation to this
integral, must come from the corners:

1
4
,
2
7
,
1
3
,
2
5
,
3
7
, and

1
2
.

This error depends only on N modulo 420 = 4 · 7 · 3 · 5. To demonstrate this, let c1a and
c1b, respectively, be the minimum andmaximum integer c with c/N ∈ I1. Then c1a equals

N + 4
4

,
N + 3

4
,
N + 2

4
, or

N + 1
4

depending on whether N is, respectively, 0, 1, 2, or 3 mod 4. Likewise, the expression for
c1b in terms of N depends only on N mod 7. Considering the intervals I2, I3, and I4, we
have a total of 4 · 7 · 3 · 5 = 420 cases. Hence, the difference between the integral and its
Riemann sum B1(N ) depends only on N mod 420.



M. V. Hoeij, H. Smith Res. Number Theory (2021) 7:22 Page 13 of 21 22

2
5

1
20

1
10

1
4

1
3

2
7 ,

1
7

3
7 ,

1
7

t

m(t)

(0, 0)

Fig. 1 The functionm(t) graphed from 0 to 1
2

As an example we cover one of the 420 cases, namely N ≡ 32 mod 420. Here c1a =
(N + 4)/4 and c1b = (2N − 1)/7, so∑

c/N∈I1
c∈Z

N m1
( c
N

)

has n := c1b − c1a + 1 = N/28 − 1/7 terms. The average of these n terms is
1
2

(
N m1

(c1a
N

)
+ N m1

(c1b
N

))
= 15N

14
+ 5

7
,

so the j = 1 part of B1(N ) in Eq. (31) is (N/28 − 1/7) · (15N/14 + 5/7). Repeating this
computation for j = 2, 3, 4 and summing, we find

B1(N ) = 11N 2

840
+ 43

105
.

Since |43/105| < 1/2 we have B0(N ) ≤ B1(N ) = [11N 2/840] for any N ≡ 32 mod 420.
In the same way we calculated the difference between B1(N ) and

[
11N 2/840

]
for all

420 cases, the programs are available at [26]. In all cases with gcd(N, 420) = 1, we found
B1(N ) = [

11N 2/840
]
.

IfN is prime and c > 0, then the factor nc(N ) in the definition of B0(N ) isN , and hence
B0(N ) = B1(N ). So for primes N > 7 we find

deg (F7/F8) = B0(N ) = B1(N ) = [
11N 2/840

]
. (32)

For cases with gcd(N, 7) = 1 �= gcd(N, 2 · 3 · 5) the computation found B1(N ) ≤[
11N 2/840

]+1. Moreover, in these cases there is a c/N in some Ij with nc(N ) < N . Then
B0(N ) < B1(N ), and so B0(N ) ≤ [

11N 2/840
]
.
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Table 4 Comparing deg
(
F7/F8

) = B0(N)with the
Q-gonality for 8 < N ≤ 40

N B0(N) Gonality N B0(N) Gonality N B0(N) Gonality N B0(N) Gonality

9 1 1 17 4 4 25 8 5 33 12 10

10 1 1 18 3 2 26 7 6 34 11 10

11 2 2 19 5 5 27 8 6 35 15 12

12 1 1 20 3 3 28 7 6 36 11 8

13 2 2 21 5 4 29 11 11 37 18 18

14 2 2 22 4 4 30 8 6 38 14 12

15 2 2 23 7 7 31 13 12 39 18 14

16 3 2 24 6 4 32 10 8 40 16 12

Table 5 Comparing B0(N)with the upper bound on the
Q-gonality from [6, Table 1]

N B0(N) gon≤ N B0(N) gon≤ N B0(N) gon≤ N B0(N) gon≤
41 22 22 51 30 24 61 49 49 71 66 66

42 15 12 52 26 21 62 37 36 72 45 32

43 24 24 53 37 37 63 45 36 73 70 70

44 19 15 54 26 18 64 40 32 74 54 51

45 23 18 55 37 30 65 53 42 75 63 40

46 21 19 56 31 24 66 39 30 76 56 45

47 29 29 57 37 30 67 59 58 77 75 60

48 19 16 58 33 31 68 45 36 78 52 42

49 31 21 59 46 46 69 55 44 79 82 82

50 23 15 60 31 24 70 45 36 80 60 48

For the remaining cases gcd(N, 7) �= 1 we found B1(N ) ≤ [
11N 2/840

]+2. The smallest
N for which that is sharp is N = 49. We check that a multiple of 7/N is in each of the
intervals (1/4, 1/3) and (2/5, 1/2). These twomultiples c/N of 7/N each have nc(N ) < N .
So B0(N ) ≤ B1(N ) − 2. Hence we still have B0(49) ≤ [

11 · 492/840]. The next N with
B1(N ) = [

11N 2/840
] + 2 is N = 91. For N ≥ 91 the intervals (1/4, 1/3) and (2/5, 1/2)

each have at least 7 consecutive c/N ’s, and so gcd(c, N ) > 1 (which implies nc(N ) < N )
happens at least once in each of those intervals. Then the same argument shows that
B0(N ) ≤ [

11N 2/840
]
.

Theorem 2 For N �= 7, 8 the modular unit
F7
F8

: X1(N ) → P1

has degree

deg
(
F7
F8

)
= B0(N ) ≤

[
11N 2

840

]
,

with equality when N is prime. If N > 8, then this is an upper bound for the gonality.

Proof The theorem follows from Eq. (30), Lemma 2 and Eq. (32) for prime N . We need
N �= 7, 8 to ensure F7, F8 �= 0. If F7/F8 is not constant (if its degree B0(N ) is not 0) then
B0(N ) is a gonality bound. IfN < 7 then B0(N ) = 0. It is easy to check that B0(N ) > 0 for
N > 8.
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Tables 4 and 5 show that if N is not prime, then the gonality is usually smaller than
B0(N ). If N is prime, then B0(N ) is an excellent gonality bound; the only primes N < 250
for which [6, Table 1] gives a sharper bound are 31, 67, 101 where it is only one less than
B0(N ).
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A. A second proof of theMinFormula
A.1 Cusps: a modular interpretation

Take the congruence subgroup

�1(N ) =
{[

a b
c d

]
∈ SL2(Z)

∣∣∣∣
[
a b
c d

]
≡
[
1 ∗
0 1

]
mod N

}

where ∗ indicates the entry is unspecified. The extended complex upper half plane is

H = H ∪ Q ∪ {∞},
where H is the usual complex upper half plane. The groups �1(N ) ⊆ SL2(Z) act on the
extended complex upper half planeH by fractional linear transformations. The quotient
is the modular curve X1(N ).
Following [9, Chapter 3.8] and similar to Sect. 2.2, we represent cusps of X1(N )/Q with

pairs of order N vectors

±
[
a
c

]
∈ (Z/NZ)2 .

The Galois action on the cusps can be represented with matrices of the form

±
[
y z
0 1

]
∈ GL2(Z/NZ)

on the order N vectors in (Z/NZ)2, see [9, Sections 7.6 and 7.7]. Two vectors[
a′

c′

]
and

[
a
c

]

represent the same cusp when[
a′

c′

]
= ±

[
a + jc

c

]

for some j ∈ Z. Two cusps represented this way are in the same Galois orbit if and only
if c = ±c′. Hence Each Galois orbit is uniquely determined by ±c, in other words, by an
element of the Cartan C(N ) := (Z/NZ) /±, which is identified with {0, . . . , �N/2�}. We
will denote such orbit by Cc(N ). Let nc(N ), ec(N ), fc(N ) be as in Sect. 2.2. There are fc(N )
cusps in Cc(N ), each of which is represented by ec pairs of vectors in (Z/NZ)2, for a total
of nc = ec fc pairs.
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The width of a cusp [9, pp. 59 and 60] is defined as follows. Let A ∈ SL2(Z) be such that
A · [ ac ] = ∞ = [ 1

0
]
. The width e[ac](N ) is the smallest positive integer for which

A
[
1 e[ac](N )
0 1

]
A−1 ∈ �1(N ).

A computation shows that this is N/gcd(c, N ). Thus the width e[ac](N ) is N/gcd(c, N ),
which equals the number ec(N ) from Sects. 2.2 and 4 with one exception, namely C2(4).
The cusp corresponding to

[ 1
2
]
on X1(4) is the lone cusp in the orbit C2(4). It is the only

irregular cusp for any modular curve X1(N ), X0(N ), or X(N ) [9, p. 75]. It has width 2, but
it has ‘order’ 1. Throughout this paper ec(N ) denotes the width, except for the case e2(4)
where it denotes the ‘order’ which is 1.

5.1 Siegel functions

We would like to define a class of functions on the complex upper half planeH.

Definition 2 Let (a1, a2) ∈ Q2 − Z2. For τ ∈ H, define the Siegel function associated to
(a1, a2), denoted g(a1 ,a2), by the product

g(a1 ,a2)(τ ) := −q
1
2B2(a1)e2π i

1
2 (a2(a1−1))(1 − e2π ia2qa1 )

∞∏
n=1

(1 − e2π ia2qn+a1 )(1 − e−2π ia2qn−a1 ),

where q = e2π iτ , and B2(x) = x2 − x + 1
6 is the second Bernoulli polynomial.

One can check that adding an integral vector to (a1, a2) does not change the order of
g(a1 ,a2), so we can interpret (a1, a2) as a non-zero element of (Q/Z)2.
We are interested in the divisors of Siegel functions. From the q-expansion, we see that

ord∞ g(a1 ,a2) = e∞ · 1
2

B2(a1).

Recall, ∞ denotes the standard prime at infinity given by the equivalence class of
[ 1
0
]

under the action of �1(N ) and e∞ = 1 is its width. Consider another cusp of the modular
curve X1(N ) that corresponds to the orbit of [ ac ]. Let A ∈ SL2(Z) be a matrix such that

A ·
[
1
0

]
=
[
a
c

]
.

When g(a1 ,a2) is a function on X1(N ), the order of g(a1 ,a2) at the cusp corresponding to [ ac ]
is

ord[ac]
(
g(a1 ,a2)

) = ec · 1
2

B2
( {

[(a1, a2) · A]1
} )

, (33)

where {·} = ·−�·� denotes the fractional part and [·]1 denotes the first entry of the vector.
The paper [22] has a concise description of the above for an arbitrary modular curve,
but [12, Chapter 2] has a more thorough exposition for X(N ); specifically, see the boxed
equation on page 40. The reader should note that in [12], Kubert and Lang are considering
the q

1
N expansion. In the remainder of this paper, we will consider Siegel functions of the

form g(0,a), with a a nonzero element of Q/Z of order dividingN . Following [18], we write

Hk := g(0, kN
), with k ∈ Z − NZ.
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Caution In [18], Streng considers the modular curve X1(N ), while we have X1(N ). The

isomorphism �1(N ) \H → �1(N ) \H is given by
[
0 −1
1 0

]
. This isomorphism sends g(a,0)

to g(0,−a); however, g(0,−a) = −g(0,a).
The unweighted order of Hk at c ∈ C(N ) is

uordc (Hk ) = 1
2

B2

({
c · k

N

})
. (34)

Note that x �→ B2({x}) is a continuous function even though x �→ {x} is not.

5.2 Generators of the modular units

Describing themodular units on a givenmodular curve has long been a subject of interest.
A significant motivation of Kubert and Lang’s text [12] is to describe the units of X(N )
over Q(ζN ). They show that, with the exception of some 2-torsion elements when N is
even, the units are generated by the Siegel functions described above.
Motivated by [6, Conjecture 1], Streng [18] has used similar methods to describe all

modular units on X1(N ) over Q. Before stating the result we introduce some of the
relevant objects. We start with Tate normal form.

Lemma 3 ([18, Lemma 2.1]) If E is an elliptic curve over a field K of characteristic 0 (such
as the elliptic curves in Equations (14) and (22)) and P is a point on E of order greater than
3 with x(P) ∈ K, then the pair (E,±P) is isomorphic to a unique pair of the form

ET : Y 2 + (1 − C)XY − BY = X3 − BX2, P = (0, 0), (35)

where B, C ∈ K and the discriminant

D = B3(16B2 + (1 − 20C − 8C2)B + C(C − 1)3) �= 0.

Further, each pair B, C ∈ K with D �= 0 satisfying (35) yields an elliptic curve and with a
distinguished point P of order greater than 3.

This form ET is called Tate normal form. Let K = Q(j) and E be as in Equation (22) and
let K0 = K (x0) where x0 is transcendental over K . Let

P =
(
x0,
√
x30 − 3j0x0 − 2j0

)
.

Sending P to (0, 0) and E to Tate normal form with affine linear transformations results
in expressions B, C ∈ K0 (computation at [26]). Identify x0 with x so that K0 becomes
Q(x, j). Then B, C ∈ Q(x, j) are B = −F3 and C = −F4. Due to the uniqueness of the Tate
normal form, it should also be possible to write x, j in terms of B, C , and a computation
[26] confirms that. Thus Q(B, C) = Q(x, j).
A computation [26] shows F2 = B4/D. Conjecture 1 in [6], proved by Streng [18],

says that for N > 2, the modular units in Q(X1(N )) modulo Q∗ are freely generated by
F2, . . . , F�N/2�+1.
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Considering the Tate normal form over Z[B, C], we can look at the kth division polyno-
mial ψk,ET (x, y) ∈ Z[B, C][x, y]. As in [18, Example 2.2], evaluating ψk,ET at (0, 0) gives:

P1 := ψ1,ET (0, 0) = 1, P2 := ψ2,ET (0, 0) = −B, P3 := ψ3,ET (0, 0) = −B3,

P4 := ψ4,ET (0, 0) = CB5, P5 := ψ5,ET (0, 0) = −(C − B)B8,

P6 := ψ6,ET (0, 0) = −B12(C2 − B + C), P7 := ψ7,ET (0, 0) = B16(C3 − B2 + BC).

A computation shows Pk = (q3/q32)k
2−1Qk for k < 5. This must then be true for all k

since both sequences Pk and Qk satisfy the recurrence relations (15) and (16), which are
preserved under scaling (defined in Sect. 3). From Eq. (19),

Pk =
(
q3
q32

)k2−1

Qk =
(

q3
q8/32

)k2−1

Q̃k = (q̃3)k
2−1

∏
d|k

q̃d = F �k2/3�
3

∏
3<d|k

Fd. (36)

In particular, the multiplicative group 〈D,−B, P4 , . . . , Pk〉 equals 〈F2, . . . , Fk〉. Streng
defined Fk for k > 3 to be Pk but where all factors Pj with j < k have been removed;
Eq. (36) makes this precise.
Sinceψk,ET (P) = 0 if and only if P has order dividing k , we see Fk (P) = 0 if and only if P

has exact order k . As mentioned in Sect. 3, the polynomial FN is a model for the modular
curve X1(N ) for N > 3. The Tate normal form (35) is only defined for N > 3, so [6] used
x, j coordinates to construct F2 and F3. Rewritten in terms of B, C they are F2 = B4D−1

and F3 = −B. We can now state the main result of [18]

Theorem 3 [18, Theorem 1.1], [6, Conjecture 1] The modular units of X1(N ) are
given by Q∗ times the free abelian group on B,D, F4 , F5, . . . , F�N/2�+1, or equivalently,
F2, . . . , F�N/2�+1.

Streng gives Pk explicitly in terms of Siegel functions.

Lemma 4 [18, Lemma 3.3] For all k ∈ Z − NZ

Pk =
(
H2
1H3

H3
2

)k2−1
Hk
H1

and D =
(
H2
1H3

H3
2

)12

H12
1 .

Defining H̃k := Hk/Hk2
1 , we get

Pk =
(
H̃3

H̃3
2

)k2−1

H̃k , F3 = P2 = H̃3
3

H̃8
2
, and F2 = P4

2
D

= H̃4
2 . (37)

Setting t = c/N , Eq. (34) gives

uordc
(
H̃k
) = uordc (Hk ) − k2uordc (H1) = 1

2
(
B2
({
kt
})− k2B2({t})

)
. (38)

We say that a function f : [0, 1/2] → R is k-piecewise linear if it is continuous and
f ′′(t) = 0 for all t /∈ 1

k Z. Two k-piecewise linear functions coincide if and only if they
have: the same initial value f (0), the same initial slope f ′(0+), and the same change in slope
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at each t ∈ 1
k Z. These three conditions hold for the right-hand sides of (38) and (39) and

thus:

uordc(H̃k ) = 1
2

(
(k2 − k)t − 1

6
(k2 − 1)

)
+ k

∑
0<i<k/2

(
min

(
t,
i
k

)
− t

)
. (39)

Applying (39) to F2 and F3 in (37) produces the unweighted order functions v2(t) and v3(t)
in Theorem 1.
To verify vk (t) for the remaining k > 3, let ṽk (t) be the unweighted order function of q̃k ,

i.e. ṽk (t) is the right hand side of Eq. (29) without the factor sk . So ṽ2(t) = 0, ṽ3(t) = 1
3v3(t)

and ṽk (t) = vk (t) for k > 3. The unweighted order function for Q̃k = ∏
d|k q̃d according

to Theorem 1 and Remark 1 is

∑
d|k

ṽd(t) =
∑
d|k

∑
0<j<d/2

nj(d)mj/d(t) = k
∑

0<i<k/2
mi/k (t), (40)

wherema(t) = min(t, a)− 4a(1− a)t. We also used that k is the sum of nj(d), taken over
all 0 < j < d/2 with d|k and j/d = i/k .
Applying (39) to Q̃k = H̃k/H̃

(k2−1)/3
2 gives the same result. To see this, note thatmi/k (t),

which contains min(t, i/k), appears in (40) with the same coefficient k as the coefficient
of min(t, i/k) in (39). The terms 1

6 (k
2 − 1) from (39) cancel out for H̃k/H̃

(k2−1)/3
2 but then

the remaining terms (· · ·)t in (39),(40) must also match by the integral argument from
Remark 1. This confirms ṽk (t) and thus vk (t) for the remaining k . This gives a second
proof for most (except the case N |k , see Lemma 4) of the reformulation of Theorem 1
given in Remark 1.

6 B. Proof of primitivity
Proposition 1 The kth division polynomial of the Tate normal form, Pk , is primitive in
Z[B, C].

Proof Order the monomials lexicographically with the following rule

Bn1Cn2 < Bm1Cm2 when n1 < m1 or (n1 = m1 and n2 < m2).

If R ∈ Q[B, C], letM(R) denote the smallest monomial of R. For example, if R = 3B2C5 +
B3C , thenM(R) = 3B2C5. A key property isM(R1R2) = M(R1)M(R2).
Let ck denote �k/3�. It is enough to prove that

M(Pk ) = (−1)ck (−B)�k2/3�Cck (ck−1)/2 (41)

since it shows that Pk has at least one coefficient equal to ±1.
We will prove (41) by induction. First, a direct verification shows that (41) holds for

k = 1, 2, 3, 4. Suppose now that k is even, andwrite l = k
2 . Recall the recursion relation (16)

Pk = Pl
P2
(
Pl+2P2

l−1 − Pl−2P2
l+1
)
.

the smallest monomial of the first summand Pl+2P2
l−1 is

(−1)cl+2+2cl−1 (−B)�(l+2)2/3�+2�(l−1)2/3�Ccl+2(cl+2−1)/2+cl−1(cl−1−1).
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For the second summand −Pl−2P2
l+1 it is

(−1)cl−2+2cl+1 (−B)�(l−2)2/3�+2�(l+1)2/3�Ccl−2(cl−2−1)/2+cl+1(cl+1−1).

When l ≡ 1 mod 3, the second summand has the smallest monomial, and when l ≡
2 mod 3, the first summand has the smallest monomial. When 3 | l, we have to consider
the exponent of C . In this case, the first summand is the smallest.
In each case, verifying Eq. (41) is straightforward. For example, when l ≡ 0 mod 3 we

have

�l2/3� + �(l + 2)2/3� + 2�(l − 1)2/3� = 4l2 + 3
3

= �k2/3� + 1,

and

cl(cl − 1)/2 + cl+2(cl+2 − 1)/2 + cl−1(cl−1 − 1) = l
3

(
2l − 3

3

)
= ck

2
(ck − 1).

Now suppose k is odd and write k = 2l + 1. Recall the recursion relation (15)

Pk = Pl+2P3
l − Pl−1P3

l+1.

For the first summand, the smallest monomial is

(−1)cl+2+3cl (−B)�(l+2)2/3�+3�l2/3�Ccl+2(cl+2−1)/2+3cl (cl−1)/2,

and for the second summand it is

(−1)cl−1+3cl+1 (−B)�(l−1)2/3�+3�(l+1)2/3�Ccl−1(cl−1−1)/2+3cl+1(cl+1−1)/2.

When l ≡ 0 mod 3, the second summand has the smaller monomial; when l ≡ 1 mod 3,
considering the exponent of C shows the second summand has the smaller monomial;
and when l ≡ 2 mod 3, the first summand has the smaller monomial.
Verifying Eq. (41) is again straightforward for each case. For example, when l ≡ 1 mod 3

�(l − 1)2/3� + 3�(l + 1)2/3� = 4l2 + 4l + 1
3

= �k2/3�,
and

cl−1(cl−1 − 1)/2 + 3cl+1(cl+1 − 1)/2 = 4l2 − 2l − 2
18

= ck
2
(ck − 1).

Repeating these computations for the remaining cases proves the proposition.

Recall that −B = F3 = q̃33 and −C = F4. From (36) we find that Q̃k\3 from Sect. 3 is
Pk/(−B)�k2/3� which is primitive in Z[B, C] = Z[F3, F4] by Eq. (41).
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