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1 Introduction

The modular curve X;(N) parametrizes pairs (E, +P) where E is an elliptic curve and P
is a point of exact order N. As such it has been an object of interest for number theorists
and arithmetic geometers. If K is a field, then K-gonality of X1 (N) is the minimum degree
of a non-constant function X; (N) — P! defined over K.

Table 1 in [6] gives the currently-best upper bounds on the Q-gonality of X;(N) for
N < 250 and matching lower bounds for N < 40. Any non-constant function provides
an upper bound for the gonality. The upper bounds in [6, Table 1] come from modular
units. These are functions on X1 (N) whose divisors are supported only on cusps (places
on X (N) where E degenerates). In this note we prove a formula for the degree of a certain
modular unit F7/Fg. Its degree is a particularly good gonality bound when N is prime. For
all primes N < 250 except 31, 67, 101 it equals the currently the best upper bound from
[6, Table 1].

Modular units are usually given in terms of Siegel functions [5, Theorem 3.4]. Conjec-
ture 1 in [6], which was proved in [18], gave a basis F;, F3, . . . of modular units in algebraic
form, which is useful for computer computations. In order to quickly find the degree of
any modular unit, a formula for the divisor of Fj : X1(N) — P! was given at [25].

A proof for this formula was not given; the resulting degrees listed in [6, Table 1]
were verified by other means. The main result in this paper is a proof for this formula
(Theorem 1 in Sect. 4), the “MinFormula.” As an application, Sect. 5 gives the bound

F 11N?
Gonalityg (X1(N)) < deg (l?: : Xi(N) — ]Pl) < [ 810

j| if N > 8.
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Here [-] indicates rounding to the nearest integer. The second < is an equality when N
is prime. The asymptotic growth 11N?2/840 was already observed in [6, Section 2.1] and
[19, p. 11] (combine the factors 11/35 and 1/24) though a proof was not given.

The explicit divisors given in Theorem 1 have other applications as well, such as com-
puting Galois representations for modular curves [7], computing the action of diamond
operators [6], computing cuspidal class numbers of modular curves [3,4], [12, Chapters
5 and 6], [23,27-30], computing optimized equations for X;(N) [1,20,21], and sporadic
points on modular curves [2,8,13,14,17,19,24].

Section 2 reviews Puiseux expansions, elliptic curves, and division polynomials, and
the relation to modular units is given in Sect. 3. To help the reader keep track of the
notations we give a summary in Tables 1 and 2. Section 4 gives the main theorem. In
Sect. 5 we obtain the gonality bound as an application of the main theorem. Streng [18]
used Siegel functions to prove [6, Conjecture 1]. This work implies another proof for
Theorem 1, see Appendix A for details. Orders of Siegel functions are typically expressed
in terms of Bernoulli polynomials. We observe that such expressions sum to piecewise
linear functions (Appendix A.3) when the corresponding product of Siegel functions is a
modular unit.

The ideas for Theorem 1 are as follows: The defining polynomial g; of X; (k) is a factor
of the k™ division polynomial Q. A basis Fy, Fs, . .. of modular units of X; (N) is written
in terms of these gi. Theorem 1 is a formula for their divisors, obtained by computing
valuations of gj at cusps of X;(N) with N # k. In general, valuations can be determined
from Puiseux expansions. In our case these expansions have distinct leading terms. Then
only leading terms are needed, see Eq. (2). Leading terms correspond to asymptotic behav-
ior, and cusps correspond to degenerate elliptic curves. When ¢ — 0, the elliptic curve
y% = x(x — €)(x — 1) degenerates, and we compute the asymptotic behavior of its integrals
in Sect. 2.2. Converting the resulting leading terms to the universal elliptic curve in Eq.
(22) allows us to generalize Example 3 to Theorem 1.

2 Preliminaries
2.1 Places and Puiseux expansions
If f € Q(s)[«] is irreducible over Q, then f defines an algebraic curve C whose function

field Q(C) is Q(s)[x]/(f).

We give a brief summary of Puiseux expansions, see [15, Chapter II] for more. A Puiseux
expansion of f at s = 0 is a root of f in the algebraic closure of Q((s)). This is contained
in the algebraic closure of C((s)), which is [ Jo2; C ((sl/ e)) The natural valuation

€ () ~ 22 Jteol

sends a non-zero series to its lowest exponent in s and sends 0 to co.
For a Puiseux expansion p, let e, be the smallest positive integer e for which p €
C ((s/¢)). From the embedding

$p: QC) > QNP C C (/). p:x>p

we get a discrete valuation

vp: Q(C) — ZU{oo} given by vp(a) = ep - vs (pp(a)). (1)
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The factor ep, in (1) ensures that v, () lands in Z U {oo}. Omitting this factor gives what we
will call the unweighted order v (¢p (a)) of a, whichis 1ata = sand 1/ep at a local param-
eter. The residue field ky is defined as {a e Ky | vpla) > 0} modulo {oz e Ky | vpla) > 0},
where K, = Q((s))[p].

A place on C/Q is a discrete valuation vp : Q(C) — Z|[J{oco}. A place above s = 0
is a place with vp(s) > 0. Puiseux expansions p and p; are conjugate over Q((s)) if and
only if v, = v, s0 a place corresponds to a conjugacy class of Puiseux expansions. A
conjugacy class {p,...} has n, := e, f;, elements, where f, = [k, : Q]. A valuation
vp : Q(C) — Z[J{oo} extends to f, distinct valuations C(C) — Z | J{oo}, so one place on
C/Q corresponds to £, places on C/C.

Example I Let p = cs'/? 4 .- where ¢ # 0 and dots are terms of higher order. Then
vs(p) = 1/2 so p?/s = ¢2° + - - - has valuation 0 and hence ¢* € kp. However, ¢ need
not be in kp. In that case, to avoid constants not in kp, we rewrite cs'/2 as (as)!/? where
a=ce kp.

Definition 1 Let /s(p) denote the dominant term (the term with lowest exponent) of a
nonzero Puiseux expansion. We write p; ~ p, if and only if /s (p;) = s (p). In general,

vs (P71 — Py) = min (vg (p1), Vs (P9)) with equality if and only if p; ~ p,.

Let P be a place above s = 0 given by a Puiseux expansion p € C ((sl/el’)) of f.
Suppose we wish to compute vp(g) for some g € Q(s)[x], where g is the image of g in
Q©)[x]1/(f). Write g = [ (x — p;) - - - (x — p,,), where [ € Q(s) and the p; € C((sY®®)) are
the Puiseux expansions of g at s = 0. Then g(p) = I (p —p;)--- (p — p,,) and vp(g) =
ep- (Vs() +vs(p—p1) +---+v(p—p,). If p < p; for each i, then:

vp(g) = €p - (Vs(l) + min {VS(P): Vs (Pl)} + -+ min {VS(P): Vs (Pn)} ) . (2)

Lemma 1 Withg and p; as above, letl; .= [(p;). Suppose thatls, . . ., 1, are distinct. Then
e, = ep, and ki, = kp,.

Proof Note e), < ep, and kj;, C kp, because the ramification index and residue field of p;
must be at least as large as those of its dominant term 1;. If at least one of those is not
an equality, then ny, > ny,. In this case, p; has more conjugates over Q((s)) than 1;, so
there must be at least two conjugates with the same dominant term. Those conjugates are
among py, - . ., p,, since g € Q(s)[x], which implies thatl;, . . ., 1, are not distinct.

2.2 Elliptic curves, analytic viewpoint
Let 0 < € <« 1 and consider the elliptic curve

Ec: y? =x(x —e)(x — 1) (3)

so y = /x(x — €)(x — 1). Let E<(C) denote the points on E defined over C. This is an
additive group, the identity O is the point at infinity. The period lattice is A = Zw; + Zwy
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where [16, Chapter VI]

o0
1 2
wl:Q/dxzzfdx:41((\/2):2n<1+—e+ie2+—563+-~~> (4)
1 0

4 64 256
and
ld 0d
4 16 5
=2 £ =2 —x=—,1((«/1—e):ﬂln(——8——e+-~-). 5)
y y i i € 4
p’ _

Here K is the complete elliptic integral of the first kind [10, §19.2(ii)]

3
do
K(t) = / _
V1—12sin%0
0
In this section ~ means that the e-dominant terms are the same, similar to Definition 1.
For example

2 16
w1 ~ 27 and wy ~ ;ln <?) (6)

The notation &~ will be used for approximations in intermediate steps, to indicate that
they are sufficiently accurate to compute the main formulas (6), (10), (12), (13) up to ~.

The Abel-Jacobi map is an isomorphism (as additive groups) from E. (C) to C/ A. Identify
E(C)/4 with P1(C) using £P > x(P). Let W := (C/A)/=. The Abel-Jacobi map (up to
+) is a bijection:

o0
v PYC) > W, where W(xp) ==+ dy—x+A . (7)

0

Its inverse is the Weierstrass g function [11, 1,I1,5,§1].
Each element of W can be written uniquely as

1 1 1
*(riwi+rowa+A), withrp € [0,1), rp € [0, 5], and if rp € {O, E} thenr; € |:0, 5:|

(8)

Although W is not a group, it inherits the multiplication by N map from C/A. The order
of the element (8) is N if and only if r1, 7, € Q and the least common multiple of their
denominators is N. The image of P!(R) under W is a rectangle in W whose corners are
the points of order 1 and 2.

Like in the modular description in Section A.l, define the Cartan as C(N) :=
{0,..., [\N/2]}. Let W(N) C W be the set of elements of order N, and for each ¢ € C(N)
let W, (N) € W(N) be the subset where ry = ¢/N € [0,1/2]. Let n,(N) := |W, (N)]
denote the cardinality of W, (N).

+ Casec = 0. Then ng(2) = 1 and ng(N) = ¢(N)/2 for N > 2.
o Case0 < ¢ < N/2. Thenn.(N) = ¢(d)N /d, where d = gcd(c, N).
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+ Casec = N/2. Thenni(2) =2and ny2(N) = ¢ (%) foreven N > 2.

For later use we define e (N), f.(N) with these formulas: n.(N) = e.(N) - f.(N) where
e3(4) := 1 and e.(N) := N /d otherwise. Define C.(N) := W~ 1(W_(N)) C P!(C) so that

U C.(N) =¥~ {(WW)) = {x(P) | P € E<(C) has exact order N }

ceC
To prove the main theorem in Sect. 4 it suffices to compute these x(P)’s up to ~. We find
Co(2) = {1} and C1(2) = {0, €} from the definition. Next we compute Cy(N) up to ~ for
N > 2. For Co(N) we have r, = 0 and x(P) € [1, 00). Let y; = xv/x — 1. If ¢ < x| then
y ~ y1. For any xp € [1, oo) we have

o0 o0
W(xg) = c;/_x ~ d_x = m — 2arctan (\/xo — 1). )

J1
X0 X0

Equating (9) to riw; + Owy gives m — 2 arctan («/xo — 1) ~ 2mr;. Solving that for xp and

applying some trigonometry gives xg ~ sin(mr1)™2 = 2/(1 — cos(27r1)). Substituting
r1 = a/N gives

o)~ {sin (%)

O<a§%\[, gcd(a,N):l}. (10)

For Cn/2(N) we have rp = 1/2 and x(P) € [0, €]. Let yo = /x(x — €)(—1). If |x| <« 1 then
¥y =~ y9. Let xg € [0, €]. Working mod A = Zw; + Zwy, see (7) and (4),(5), we have

xod xod xod
2
W(xg) = —x:ﬂ+ AP %4- & _ n+w2—arcsin(1—£>. (11)
y 2 J y 2 , Y0 2 €

—00

Equating (11) to riw; + %wz gives xg ~ € - sin(rrr1)%. Substituting r; = a/N gives

cy )~ {e-sin (57

N N
) ) =1t 12
0<a<2 gcd(a 2) } (12)

Now let ry € (0, 1/2) which corresponds to € <« |xg| < 1 under € — 0%. By equating
the right-hand side of (9), or that of (11), to r1@1 + rewz and computing a series expansion

we find

xo ~ —de 27N <i)2r2.
16

Substituting r; = —a/N (the minus sign does not affect (13)) and , = ¢/N gives

2
N

C.(N) ~ {—4 ¢8 (16—6) 0<a<N, ged(a o N) = 1}. 13)
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Table 1 Summary of notation from Sects. 2.1 and 2.2

Notation Brief definition References
p A Puiseux expansion above s = 0 p.2
Vp Discrete valuation associated to p p.2
e Smalleste with p € C ((s'/¢)) (= vp(s) p.2
kp Residue field associated to p p.2
fp [kp : @] p.2
np ep - £, = [QUsIP] : Q((s)] p.2
Is(p) Dominant term of p p.2
Ee y2:X(X—e)(x—W),vvithO<€<<1 p.3
w1, ) Periods of E. p.3
4 (C/A)/£ where A = Zw + Zw; p.3
W(N) Elements of order N in W/ p.3
C(N) The Cartan, {0, 1,..., IN/2]} p.3
We(N) cth subsett of WN) (c € C(V) p.3
Ne IWcN)| = |Cc(N)| = ec - fe p.3
C(N) ¢t subset of c {x(P)| P order N} p.4

The a and c in (13) are the a and ¢ appearing in the vectors in Appendix A.1. After
rewriting € in terms of s from Sect. 4, Egs. (10), (12), (13) determine the Galois action.

2.3 Division polynomials
Let K be a field of characteristic 0 and take a, b € K for which

E:y¥=x+ax+b (14)

defines an elliptic curve over K. Following [16, Exercise 3.7], the division polynomials
Qk € Z[x,y,a,b], k = 1,2,... are defined by

Q=1 Qi=2%=2/B+ar+b Qs:=3x"+6ar>+12bx — a?,
Q4 := 4y(x® + 5ax* + 20bx> — 5a%x% — 4abx — 8b> — a®),

and the recursion relations !

Q1 = Qui2Qp — Q1Q},, fork > 2 (15)
2 2
Oy = (Qr+2Q5_; QQk—ZQk+1)Qk fork =3, (16)
2

Recursively define g to be Qi divided all g; with d|k and d < k, so that Q; =[] Ak dd-

Onehasq; =1, g2 = Q2, g3 = Q3, g4 = Q4/Q2, and so forth.
Division polynomials have the following properties:

(1) Qg isin Z[x, a, b] when k is odd, and in g, - Z[x, a, b] when k is even.

(2) Let O be the identity in (E(K), 4), let E[k] be the points P in E(K) with kP = O. Then
Qx has one pole, of order k2 — 1 at O, and a root of order 1 at every P € E[k] — {O}.
The roots of g; are the points of exact order k, denoted E[=k] C E[k].

(3) The + below means: choose only one element of each pair {P, —P} C E[k] (this is
not relevant for k = 2 because P = —P when P € E[2]).

!+ These subsets are Galois orbits, see Sect. 4, or alternatively, Appendix A.1
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Ifkisodd: Qc=k [] @—=(P) €Qlxabl (17)
Pe(E[k]-{O})/+

If kiseven: Q/y=k I1 (x — x(P)) € Qlx a b.
Pe(E[k]-E[2))/+

Ifk>2: gr=a l_[ (x — x(P)) € Qlx, a, b), (18)
PeE[=k]/£

where a; = p if k is a power of the prime p and 1 otherwise.

Fork=2: g3=4 [] (—x(P) €Qlxabl
PeE[=2]

The formulas imply that Qy is square-free, and if d|k, then Q;|Qx. Let my denote the
number of elements of E[=k]. We have my = 3, m3 = 8, and 12|m; when k > 3. Note
that deg, (qx) = m /2.

3 Equations for X1(N) and modular units

The definitions of Qi and g are not completely canonical; recurrence relations (15) and
(16) are preserved under scaling. Scaling means multiplying Qx by o1 and qx by o
for some fixed @ # 0. To obtain expressions that are independent of scaling, we take

quotients
~ O . 4k
Q= 05 and g = — . (19)
q, q;

As before we have Q; = ]_[d‘k Gq-. Since Qp = g = 1 for k € {1, 2}, we have Q; = g for
k < 6. To avoid the fractional exponent in (19), we also introduce

@
a5

F3=§3 = = and F = g for k > 3. (20)

Let Qk\g be Qi/gs3 if 3k and Q; otherwise. Because Q; comes from Qi by scaling, it
satisfies the recurrence relations. These relations inductively show that

Qua= [] @ €ZIFs Fal (21)
3£d|k

Assuming that Fs, F4s € Q(x, a, b) are algebraically independent over QQ, Appendix B
shows (21), and that Qk\g is primitive in Z[Fs, F4], i.e. the gcd of the coefficients in Z
is 1. The product in (21) is square-free since (17) and (18) are square-free. Then by induc-
tion Fy, F5, Fg, . . . from (20) are primitive, co-prime, and square-free in Z[Fs, F4].

Example 2 To illustrate the various expressions defined above, take E from Eq. (14). We
substitute = 0 and b = 1 to reduce expression sizes, so that E : y> = x% + 1. The
Q-rational torsion subgroup of this curve is isomorphic to Z/6Z. Specifically, it has the
2-torsion point (—1, 0), the 3-torsion points (0, 1), and the 6-torsion points (2, +3). For
k > 2,apoint P on E has order equal to k if and only if x(P) is a root of g, or equivalently,
aroot of F. A similar statement holds for Qy if one replaces “equal to k” with “divides k”.
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Table 2 Notation related to division polynomials

E y2=x>4+ax+ba=-3jb=—-2p pp.5,7
Jo.J Jjo =Jj/(i —1728), j = j-invariant of £ p.6

s s = 1/j, roots(s) = {cusps of X; (N)} p.8
E[=k] {points on F of exact order k} p.5

mg my = # points of exact order k p.6

Qx division polynomial of £ pp.5,6
Tk roots(gx) = {x(P) | P has order k},Qx = [y a pp.5,6
Ox rescaling of Qy to make it unique, O = Qk/Q;kA”/3 p.6

ax rescaling of g, Ok = [Ty Ga p.6
{Fe} basis of modular units, f, € Q(x, jo) = Qx,j) = Q(x, s) [6,18]
FaFs Fo=q3/ (1728300 — 1)), F3 = &3 = a3/d5 Pp.6,7
Fi k>3 Fi = =a/ay"” page 6

A point P has order 2 if and only x(P) is a root of q%, or equivalently, a root of F; given in
the next section. We compute

Q=2 BG=qg=4x>+1), Q=g3=3x(*’+4), Q=qq1=4 (x6 +20x% — 8),
3x (%3 + 4)
(403 + 1))% ‘
2 (2% + 2043 — 8)
(463 + 1)

o
I

H1=Q=p=Q3=1 B=§=

F3

Il
[AsY)

(B (x* + 4)23

, Qu=gqa=Fs=
(4(x3+1)) Q= i

3 _
3=

For a more interesting example of Qk\g, we find
qe = (x3 — 8)(x9 + 228x° + 48x> + 64) , SO Q6\3

18286 = 46 = q6/q5 = Fe = —(Fj + F3 — Fy).

Il
[ANYY

Our main curve below has coefficients in Q(j) instead of Q, so its Qy, gx. etc., will be larger.

Henceforth, E will be the curve

J

E:y* =& — 3jox — 2jo, where jo := ]—W

(22)
Now E is defined over K = Q(j), wherej is transcendental over Q. So a and b from Sect. 2.3
will be —3jp and —2jy from here on. Now g3, g4, . . . are in Q[x, jo] (also in Z[x, jo] but we
do not use that). The j-invariant of E is j, and the j-invariant of E is

28(e* — e +1)°

€2(e — 1)2 23)

In Sect. 4 we will equate (23) to j in order to translate formulas computed in terms of € in
Sect. 2.2 to similar formulas for E.

Up to a simple transformation, E is the universal elliptic curve E; from Diamond and
Shurman’s book [9]. Sections 7.5 and 7.7 in [9] show that the modular curve X; (N) can be
represented with the equation gy when N > 2. In particular, gy is irreducible in Q[x; jo].
Likewise Fy is irreducible in Z[F3, F]. Although g2 ¢ Q[x, jo], its square 4(x® — 3jox — 2jo)
is an equation for Xj(2) that lies in Q[x, jo].
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Table 3 /s;(p + 1) for one p from each conjugacy class C,

over Q((s))
ls(p+1) lsip+1) lsip+1) Isip+1) Isip+1)
withp € Cy peC peC peC peCy
93 3 —24s1/2
a3 4 —1251/3
Ga 6 —12s1/4 0s'/2 — 6725
gs 3sin(m /5)~2 —1251/5 —1252/5
e 12 —12s1/6 —12(=s)1/3 —12s1/2
q7 3sin( /7)~2 —125177 —1252/7 —1253/7
s 3sin(r /8)~2 —12s1/8 —12(—s)1/4 —1253/8 —12(2s)1/2
99 3sin( /9)~2 —1251/9 —1252/9 —12(¢3 - 9)'/3 —125%/9

4 The valuation of a division polynomial at a cusp

Recall from Sect. 2.1 that a place on X;(N)/Q is a discrete valuation vp : Q(X;(N)) —
Z | J{oo}. Such a place is a cusp over Q when vp(j) < 0. A function g € Q(X;(N)) is called
a modular unit if every place with vp(g) # Oisacusp. If 1 < k # N > 2 then Fy is a
modular unit on X1(N), see [6, Section 2]. For k > 3 this F; equals g; which is a rescaled
version of g (a defining equation for X; (k) and the main factor of the division polynomial
Qy). For k = 3 we need to take the cube of g3 to obtain a modular unit F3. To construct a

4th

modular unit from ¢g;, we need to take its 4" power and scale it to

s

=— 1 24
27 172820 — 1) @)

Let s = 1/j. Translating the definition given above, a cusp over Q is a place above s = 0,
which corresponds to a conjugacy class of Puiseux expansions at s = 0, see Sect. 2.1.
Conjugation is always over QQ((s)) in this paper.

From (15) and (16) one can compute Q, Qs, ... and then ¢3,43,q4, ... € Q[x,jo] C
Q(s)[x]. We computed Puiseux expansions of gn (or q% if N =2)ats =0for N <09.
Newton’s algorithm gives arbitrarily many terms, but only dominant terms will be needed.
Table 3 lists the dominant term of p + 1 for one Puiseux expansion p from each conjugacy
class {p, ...} (which has n, := e, f}, elements as we will see in the observations below).

Notice that in row g4, column Cj the term 0s1/2

predicted by the formula in Observation
(4) below vanishes.

We use p 4+ 1 and x + 1 rather than p and x because when j — oo the curve E in (22)
becomes singular at x = —1. This is in contrast to E. which becomes singular at x = 0
when € — 0.

The equation for X;(2) is g5 = 4(x> —3jox—2jo), wherejo = j/(j—1728) = 1/(1—1728s).
To illustrate Table 3 for N = 2, factor q% =4(x—pg)x—p1)*x—P1p) € Q((s))[x]. Row q%
in Table 3 gives ls(pg+1) = 3, (p1,+1) = —24s1/2 andits conjugate s(p;,+1) = 2451/2,
This means

B=4x+1)—3+-)(w+1)+24s"*+ .. ) (w+1) —24s"2+..), (25

where the dots indicate terms with higher powers of s. Likewise, for N > 2,

IN/2] [N/2]
qN = an 1_[ ((x +1) - (pc,* + 1)) =an 1_[ (x - pc,*)’
c=0 c=0

where [, (p,, + 1) are the conjugates of the term listed in row gy, column C,.
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Example 3 Counting conjugates, row gg in Table 3 gives two p’s with v¢(p + 1) = 0,
eight p’s with vs(p + 1) = 1/8, four with 1/4, eight with 3/8, and two with 1/2. Indeed,
deg,(q3) = mg/2 equals 24+ 8+ 4 + 8 4 2.

Now take as an example the conjugacy class C; (a cusp over Q) on X1(3). This cusp is
a place on X1(3)/Q and can be represented with a Puiseux expansion p as in Sect. 2.1.
Row g3, column C; givesp+1 = —12s183 4. ... Viewing gg as an element of Q (X;(3)) =
Q(s)[x] /(g3), we can insert this data into Eq. (2) to find

@s)=3(2min (%0)+8min (2, )+ amin (2 2)+8min (2,2 )+ 2min (2, 2
v =3.(2min|( -, min | =, = min | =, — min | =, = min [ =, =
p\q8 3 38 34 3’8 3’2

(the 41’s cancelled out). Omitting the factor of 3 gives the unweighted order from Sect. 2.1.

Table 3 was obtained by computing Puiseux expansions of g for N < 9. Let , N > 1
and k # N. Example 3 shows how one can use Table 3 to compute the valuation of g,
(or q% if k = 2) at any cusp of X;(N) when k, N < 9. To obtain a general formula, we will
show that Observations (1)—(6) below, which hold in Table 3, hold for all N > 1.

(1) gn (q% if N = 2) has [N/2] + 1 conjugacy classes (a.k.a. Galois orbits)
Co, C1, ..., Cn/2) of Puiseux expansions at s = 0. We number them so thatif p € C,
then vs(p + 1) = ¢/N except when (N, ¢) = (4, 2). This unique exceptional case is
the irregular cusp of X;(4), where the s/N term in Table 3 is 0s/2 and vs(p + 1) = 1
instead.

(2) Cy has L(p+ 1) = 12/(2 — N — (A_[l) = 3sin(7/N)~2. The residue field is

Q (CN + CA_gl)

(3) If0 < ¢ < N/2,thenp € C.hasl(p+1) = —12 (5 - s)/N (always up to conjugation)
with d = ged(c, N) and residue field Q(g,).

(4) If N # 4 is even, then p € Cy/3 has

I(p + 1) = —24sY? + 3sin’(7 /N) - 16s'/% = —12(8 - 5)'/?,

where 8 := ({N + g“]\_,l)z (B # 0if N # 4). The residue field is Q(8) (recall Exam-
ple 1).

(5) C. cC ( si/ecN )>) has precisely n () elements, and the residue field has degree
f.(N) with n., e, f, as in Sect. 2.2.

(6) Every p € Uy, Cc(N) has a unique /5(p + 1), so Eq. (2) holds for all combinations.
This implies that Example 3 generalizes to Theorem 1 below.

To see why Observations (1)—(6) hold, note that the curve E in Sect. 2.2 differs from E
by the transformation

T:x p,+ (P —Pr)x = (—1—24sV2 4 .. )+ (3+24s/2 4 .. )x

that sends 0, ¢, and 1 to p;,, py; and pg, respectively. From T'(¢) = p;;, we find € =
165'/2 4 - . . which can also be computed by equating j = 1/s to (23). Section 2.2 gives the

e-dominant terms. Substituting e ~ 16s'/2

and applying 7 yields /s(p+1) for every Puiseux
expansion of . Observation (6) immediately follows from this, but then Lemma 1 shows

that ep and kp, can be read from /;(p + 1), and the remaining observations follow.
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Before stating the MinFormula, we need a definition and a recollection. For ¢ € [0, 1/2],
we define the following unweighted order functions. For k = 2, define v,(¢) = 4t — 1, and
for k > 2, define

Lk/2] .
vi(t) = s - _%t + ; n;(k) min (t, %) , (27)
where s3 = 3 and sy = 1 for k > 3. Recall that C.(N) is a conjugacy class of Puiseux
expansions, giving one cusp of X;(N)/Q, or a Galois orbit with f.(N) cusps of X;(N) /Q.

Theorem 1 (MinFormula) Let 2 < N # k > 1 and 0 < ¢ < N /2, then the order of Fy,
viewed as element of Q(s)[x]/(gn) = QX1 (N)), at C.(N) is
c
ordc, () (Fr) = ec(N) - vk (ﬁ)
If N = 2 we cannot directly apply this formula to Fy due to its denominator g9, but the

formula still holds for products where g3 cancels out, such as F22F3 and F2m K/ 12Fk fork > 3.

Proof Observations (1)—(6) imply that the computation in Example 3 works in general,
o)

Lk/2] ¢
ec(N) ) nj(k) min (ﬁ’ %) (28)

j=0

is the order of g; (or q% if k = 2) at C,(N) for any N, k > 1 with N # k. Theorem 1
follows by applying Eq. (28) to Fj in Egs. (20) and (24), simplifying min(,0) = 0 and
min(z 1/2) = t, and noting that the denominator 1728/‘3(1’0 — 1) in Equation (24) has a
root of order 1 ats = 0.

Remark 1 A cusp over Q corresponds to f.(N) cusps over Q. Since the degree of the

divisor of a function is zero,

IN/2] c
Y e () =0
c=0
If N is prime, then e (N) f.(N) = n.(N) is N for ¢ > 0, and v(0) = 0, so
IN/2]

4
Z(; NVk (ﬁ) =0
1/2

Letting N — oo, we see fol/z vi(t)dt = 0. Since [,/ “(min(, (j/k)) — 4(i/k)(1 — (/k))t)de
equals O for any (j/k) € [0, 1/2], we do not need a formula for m1;, and can instead rewrite
Eq. (27) as

Vie(t) = si Z n;(k) (min (t, %) - 4/1; (1 - %) t) , fork > 3. (29)

0<j<k/2

This is the formula implemented in [25]. The sum (29) does not change if one replaces
0 <j <k/2by0 <j < k/2 because the summand vanishes at j € {0, k/2}. Equation (29)
with the factor s; removed gives the unweighted order function for g, (recall that F3 = 51_;:’
and F, = gy ifk > 3).
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5 The degree of F;/Fg in X;(N)
In this section we use Theorem 1 to prove an upper bound for the Q-gonality of X; (N).
Let v(t) := v7(¢) — vs(t), and let m(t) := max(0, v(¢)) as in Figure 1. Define

Bo(N) := Z nAN)m(%) and Bi(N Z Nm( )

0<c<N/2 0<c<N/2

Theorem 1 gives

le<P7> _ Z ec(N)v(N> C,, sodeg(%) = By(N) < Bi(N). (30)

Fg
0<c<N/2

We omit the terms ¢ = 0 and ¢ = N /2 in these sums because v vanishes there. By Eq. (27)

(¢) = 7mi tl + 7 mi t2 + 7 mi t3 8 mi tl
v(t) = 7 min b 5 min 5 min 5 min 3
. 1 . 3
—4min(t - ) —8min (¢t - ) — 2t
<4> ( 8)

Lemma 2 IfN is relatively prime to 420 = 3-4-5-7, then B;(N) = [11N?/840). In general,
B1(N) < [11N?/840] + 2 (where equality implies 7 | N), and Bo(N) < [11N?/840].

Proof Consider the intervals Iy := (1/4,2/7], I, = (2/7,1/3), Iz := (2/5,3/7], and
I := (3/7,1/2). These intervals partition the support of m(t); see Figure 1. We define the
functions m(t) := 4t — 1, my(t) := 1 — 3¢, ms(t) := 5t — 2, and my(t) := 1 — 2¢t. The
graphs of the m;(t) over I; are exactly the line segments in Figure 1. We see m(t) = m;(t)
if £ € I; and 0 otherwise.

Our goal is to bound

BI(N)=X4: 3 Nm;(%), (31)

j=1 ¢/N€l;
ceL

Since N m;j(c/N) € Z, we have B1(N) € Z. Note that B;(N) is a Riemann sum of

1/2

11
N? t)dt = N? / (£)dt = — N2
/m Z mOdt =215

111

Since m(t) is piece-wise linear, any error in B;(N), viewed as an approximation to this

integral, must come from the corners:

1 21 2 3 d 1
47357
This error depends only on N modulo 420 = 4 -7 - 3 - 5. To demonstrate this, let ¢;, and

¢1p, respectively, be the minimum and maximum integer ¢ with ¢/N € I. Then ¢, equals

N+4 N+3 N+2 N+1

or
4 4 4 4
depending on whether N is, respectively, 0, 1, 2, or 3 mod 4. Likewise, the expression for

¢1p in terms of N depends only on N mod 7. Considering the intervals I, I3, and Iy, we
have a total of 4 - 7 - 3 - 5 = 420 cases. Hence, the difference between the integral and its
Riemann sum B (N) depends only on N mod 420.
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(7:7) (:7)

(0,0) t

=
w =
(SN

Fig. 1 The function m(t) graphed from 0 to %

As an example we cover one of the 420 cases, namely N = 32 mod 420. Here ¢, =
(N +4)/4and ¢y, = 2N —1)/7, so

2 Nm()

has n:= ¢y, — c14 + 1 = N /28 — 1/7 terms. The average of these # terms is

1 Cla C1p 15N 5

Lrm() <2 = 5+

2<m1N+m1N a7
so the j = 1 part of B1(N) in Eq. (31) is (N /28 — 1/7) - (156N /14 + 5/7). Repeating this
computation for j = 2, 3, 4 and summing, we find

1IN?2 43
840 105
Since [43/105| < 1/2 we have By(N) < B1(N) = [11N?/840] for any N = 32 mod 420.
In the same way we calculated the difference between B;(N) and [1 1N?/ 840] for all
420 cases, the programs are available at [26]. In all cases with ged(N, 420) = 1, we found
B (N) = [11N?/840].
If N is prime and ¢ > 0, then the factor n.(N) in the definition of By(N) is N, and hence
Bo(N) = B1(N). So for primes N > 7 we find

Bi(N) =

deg (F7/Fg) = Bo(N) = B1(N) = [11N?/840]. (32)

For cases with gcd(N,7) = 1 # gcd(N,2 - 3 - 5) the computation found B;(N) <
[11N2/840] + 1. Moreover, in these cases there is a ¢/N in some I; with n.(N) < N. Then
By(N) < B1(N), and so By(N) < [11N?/840].
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Table 4 Comparing deg (F7/Fg) = Bo(N) with the
Q-gonality for8 < N < 40

N Bo(N) Gonality N Bo(N) Gonality N Bo(N) Gonality N Bo(N) Gonality
9 1 1 17 4 4 25 8 5 33 12 10

10 1 1 18 3 2 26 7 6 34 11 10

11 2 2 19 5 5 27 8 6 35 15 12

12 1 1 20 3 3 28 7 6 36 11 8

13 2 2 21 5 4 29 Il Il 37 18 18

14 2 2 22 4 4 30 8 6 38 14 12

15 2 2 23 7 7 31 13 12 39 18 14

16 3 2 246 4 32 10 8 40 16 12

Table 5 Comparing By (N) with the upper bound on the
Q-gonality from [6, Table 1]

N Bo(N) gon< N Bo(N) gon< N Bo(N) gon< N Bo(N) gon<

41 22 22 51 30 24 61 49 49 71 66 66
42 15 12 52 26 21 62 37 36 72 45 32
43 24 24 53 37 37 63 45 36 73 70 70
44 19 15 54 26 18 64 40 32 74 54 51
45 23 18 55 37 30 65 53 42 75 63 40
46 21 19 56 31 24 66 39 30 76 56 45
47 29 29 57 37 30 67 59 58 77 75 60
48 19 16 58 33 31 68 45 36 78 52 42
49 31 21 59 46 46 69 55 44 79 82 82
50 23 15 60 31 24 70 45 36 80 60 48

For the remaining cases gcd(N, 7) # 1 we found B;(N) < [11N?/840]+ 2. The smallest
N for which that is sharp is N = 49. We check that a multiple of 7/N is in each of the
intervals (1/4, 1/3) and (2/5, 1/2). These two multiples ¢/N of 7/N each have n.(N) < N.
So By(N) < B1(N) — 2. Hence we still have By(49) < [11-49%/840]. The next N with
B1(N) = [11N?/840] + 2 is N = 91. For N > 91 the intervals (1/4,1/3) and (2/5,1/2)
each have at least 7 consecutive ¢/N’s, and so gcd(c, N) > 1 (which implies n.(N) < N)
happens at least once in each of those intervals. Then the same argument shows that
By(N) < [11N?/840].

Theorem 2 For N # 7, 8 the modular unit

has degree

F; 11N2
) =8B s
deg(ﬂ;) o(N) < [ 210 }

with equality when N is prime. If N > 8, then this is an upper bound for the gonality.

Proof The theorem follows from Eq. (30), Lemma 2 and Eq. (32) for prime N. We need
N # 7,8 to ensure Fy, Fg # 0. If F;/Fg is not constant (if its degree Bo(N) is not 0) then
By(N) is a gonality bound. If N < 7 then By(N) = 0. It is easy to check that Bo(N) > 0 for
N > 8.
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Tables 4 and 5 show that if N is not prime, then the gonality is usually smaller than
Bo(N). If N is prime, then By(N) is an excellent gonality bound; the only primes N < 250
for which [6, Table 1] gives a sharper bound are 31, 67, 101 where it is only one less than
Bo(N).
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A. A second proof of the MinFormula
A.1 Cusps: a modular interpretation
Take the congruence subgroup

ab ab 1 %
I'(N) = H:C d:| € SLZ(Z)‘ |:C d:| = |:0 1:| modN}

where * indicates the entry is unspecified. The extended complex upper half plane is
H=HUQU {oo},

where H is the usual complex upper half plane. The groups I'1(N) € SLa(Z) act on the
extended complex upper half plane 7 by fractional linear transformations. The quotient
is the modular curve X (N).

Following [9, Chapter 3.8] and similar to Sect. 2.2, we represent cusps of X;(N)/ Q with
pairs of order N vectors

+ 1 € (Z/NT).
c

The Galois action on the cusps can be represented with matrices of the form

yz
+ GLy(Z/NZ
01:|€ 2(Z/NZ)

on the order N vectors in (Z/NZ)?, see [9, Sections 7.6 and 7.7]. Two vectors

a/ and |:a:|
c c

represent the same cusp when

- '
a/ =i|:u+]c:|
c c

for some j € Z. Two cusps represented this way are in the same Galois orbit if and only

if ¢ = £¢’. Hence Each Galois orbit is uniquely determined by =+c¢, in other words, by an
element of the Cartan C(N) := (Z/NZ) /%, which is identified with {0, ..., |[N/2]}. We
will denote such orbit by C.(N). Let n.(N), e.(N), f.(N) be as in Sect. 2.2. There are f.(N)
cusps in C.(N), each of which is represented by e, pairs of vectors in (Z/NZ)?, for a total
of n, = e, f, pairs.
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The width of a cusp [9, pp. 59 and 60] is defined as follows. Let A € SLy(Z) be such that
A-[%] =00 =[}] The width e (N) is the smallest positive integer for which

A |:1 €4 (N)] A"l e M(N).
0 1

A computation shows that this is N/gcd(c, N). Thus the width e (N) is N/gcd(c, N),
which equals the number e (N) from Sects. 2.2 and 4 with one exception, namely Cy(4).
The cusp corresponding to [%] on X;(4) is the lone cusp in the orbit Cy(4). It is the only
irregular cusp for any modular curve X;(N), Xo(N), or X(N) [9, p. 75]. It has width 2, but
it has ‘order’ 1. Throughout this paper e.(N) denotes the width, except for the case e (4)
where it denotes the ‘order’ which is 1.

5.1 Siegel functions
We would like to define a class of functions on the complex upper half plane H.

Definition 2 Let (a1, a3) € Q% — Z2. For T € 'H, define the Siegel function associated to
(a1, a3), denoted g4, 4,), by the product

[eS)
g(al,az)(f) — _q%Bz(ﬂl)gﬂl’%(ﬂz(ﬂl*l))(l _ e2ﬂia2qa1) 1_[(1 _ e2ﬂia2qn+a1)(1 _ e*2ﬂia2qn7a1)]
n=1

where ¢ = €27, and By(x) = #2 — x + % is the second Bernoulli polynomial.

One can check that adding an integral vector to (a1, ap) does not change the order of
&(a1,a,)» SO We can interpret (41, 43) as a non-zero element of (Q/ 7)%.
We are interested in the divisors of Siegel functions. From the g-expansion, we see that

1
ordeso S(ar,ap) = €00 * E Ba(aq).

Recall, co denotes the standard prime at infinity given by the equivalence class of [é]
under the action of I'1 (N) and e, = 1 is its width. Consider another cusp of the modular
curve X1 (N) that corresponds to the orbit of [4]. Let A € SLy(Z) be a matrix such that

1]

When g4, 4,) is a function on X1 (N), the order of g4, 4,) at the cusp corresponding to [ ¢ ]

is
Ord[ccz] (g(al,ﬂz)) =€ %Bz ( { [(al, 6{2) . A]l } ), (33)

where {-} = - — | -| denotes the fractional part and [-]; denotes the first entry of the vector.
The paper [22] has a concise description of the above for an arbitrary modular curve,
but [12, Chapter 2] has a more thorough exposition for X (N); specifically, see the boxed
equation on page 40. The reader should note that in [12], Kubert and Lang are considering
the qﬁ expansion. In the remainder of this paper, we will consider Siegel functions of the
form g(o,4), with @ a nonzero element of Q/Z of order dividing N. Following [18], we write

Hj ::g(0,§)’ with k € Z — NZ.
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Caution In [18], Streng considers the modular curve X!(N), while we have X;(N). The

0-1
isomorphism I''(N) \ H — T'1(N) \ ‘H is given by |:1 0 :| . This isomorphism sends g(, o)
to g(0,—a); however, go,—s) = —g(0,4)-

The unweighted order of Hy atc € C(N) is

uord, (Hy) = %Bz ({c %}) (34)

Note that x > By ({x}) is a continuous function even though x — {x} is not.

5.2 Generators of the modular units
Describing the modular units on a given modular curve has long been a subject of interest.
A significant motivation of Kubert and Lang’s text [12] is to describe the units of X (N)
over Q(¢n). They show that, with the exception of some 2-torsion elements when N is
even, the units are generated by the Siegel functions described above.

Motivated by [6, Conjecture 1], Streng [18] has used similar methods to describe all
modular units on X'(N) over Q. Before stating the result we introduce some of the
relevant objects. We start with Tate normal form.

Lemma 3 ([18, Lemma 2.1]) IfE is an elliptic curve over a field K of characteristic 0 (such
as the elliptic curves in Equations (14) and (22)) and P is a point on E of order greater than
3 with x(P) € K, then the pair (E, £P) is isomorphic to a unique pair of the form

Er:Y>+(1-C)XY —BY =X —BX% P=(00), (35)

where B, C € K and the discriminant
D = B3(16B% + (1 — 20C — 8C?)B+ C(C —1)%) # 0.

Further, each pair B, C € K with D # 0 satisfying (35) yields an elliptic curve and with a
distinguished point P of order greater than 3.

This form E7 is called Tate normal form. Let K = Q(j) and E be as in Equation (22) and
let Ko = K (xg) where xg is transcendental over K. Let

P = (xo, ,/xg — 3joxo — 2j0> .

Sending P to (0, 0) and E to Tate normal form with affine linear transformations results
in expressions B, C € Ky (computation at [26]). Identify xo with x so that Ky becomes
Q(x, 7). Then B, C € Q(x, j) are B= —F3 and C = —Fj. Due to the uniqueness of the Tate
normal form, it should also be possible to write x, j in terms of B, C, and a computation
[26] confirms that. Thus Q(B, C) = Q(x, ).

A computation [26] shows F, = B*/D. Conjecture 1 in [6], proved by Streng [18],
says that for N > 2, the modular units in Q(X;(N)) modulo Q* are freely generated by
F, .. .,FLN/2J+1.
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Considering the Tate normal form over Z[B, C], we can look at the k™ division polyno-
mial Y g, (%, ¥) € Z[B, Cl[x, y]. As in [18, Example 2.2], evaluating yx .. at (0, 0) gives:

P1i=vY1£,(0,0)=1  Py:=1vr(0,00=—B  P3:=13.(0,0) =5,
Py = Y4£,(0,0) = CB®,  P5:=15£,;(0,0)=—(C — B)B®,
Ps := Y6r,(0,0) = —B*(C* —=B+C),  P;:=17£.(0,0) = B*(C® - B>+ BC).

A computation shows Py = (g3 /qg’)kz_le for k < 5. This must then be true for all k
since both sequences P and Qy satisfy the recurrence relations (15) and (16), which are
preserved under scaling (defined in Sect. 3). From Eq. (19),

K2-1 !
3 3 ~ - k- ~ K?/3
P = (%) Q= (Z—/g> Q=@ "[]aa= E [] B+ 36)

2 9 dlk 3<d|k

In particular, the multiplicative group (D, —B, Py, ..., Px) equals (Fy, ..., F). Streng
defined Fy for k > 3 to be P; but where all factors P; with j < k have been removed;
Eq. (36) makes this precise.

Since Y g, (P) = 0 if and only if P has order dividing k, we see Fx(P) = 0 if and only if P
has exact order k. As mentioned in Sect. 3, the polynomial Fy is a model for the modular
curve X1(N) for N > 3. The Tate normal form (35) is only defined for N > 3, so [6] used
x,j coordinates to construct F» and F3. Rewritten in terms of B, C they are Fy = B*D—1
and F3 = —B. We can now state the main result of [18]

Theorem 3 [18, Theorem 1.1], [6, Conjecture 1] The modular units of X'(N) are
given by Q* times the free abelian group on B, D, F4, Fs, ..., F|n/2)+1, or equivalently,
Fy, ..., FINj2)+1-

Streng gives Py explicitly in terms of Siegel functions.
Lemma 4 [18, Lemma 3.3] Forallk € Z — N7

H2H. kz_lH 2\
Pk=< 1 3) =k andD=< ]1{ 3) H2.

3 3
H2 2

Defining Hy := Hy /HX’, we get

Lo\ k2-1 -
Hs : 3 Py
P=|—= Hy, F3=P)=—, d Fb=-—==H,. 37
3 (Hzg) w F3=P; s and F = = 5 (37)

Setting t = ¢/N, Eq. (34) gives

uord, (I:Ik) = uord, (Hy) — k*uord, (H;) = (]Bz({/(t}) — kZIBZ({t})), (38)

N =

We say that a function f : [0,1/2] — R is k-piecewise linear if it is continuous and
f'(@) =0forallt ¢ %Z. Two k-piecewise linear functions coincide if and only if they
have: the same initial value f (0), the same initial slope f'(0"), and the same change in slope
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ateacht € %Z. These three conditions hold for the right-hand sides of (38) and (39) and
thus:

uord, (Fl) = % ((k2 — k)t — é(k2 - 1)) +k oY <min <t, é) - t). (39)

0<i<k/2

Applying (39) to Fp and F; in (37) produces the unweighted order functions vy () and v3(¢)
in Theorem 1.

To verify v (¢) for the remaining k > 3, let ¥/ (¢) be the unweighted order function of g,
i.e. P (¢) is the right hand side of Eq. (29) without the factor si. So ¥2(t) = 0, 73(¢) = %Vg(t)
and 7 (¢) = v (¢) for k > 3. The unweighted order function for Q; = l_[d|k 44 according
to Theorem 1 and Remark 1 is

Dowa®)=Y " > midmya@)=k Y mpu@) (40)

dlk dlk 0<j<d/2 O<i<k/2

where m,(t) = min(t, a) — 4a(1l — a)t. We also used that & is the sum of n;(d), taken over
all0 <j < d/2withd|k andj/d = i/k.

Applying (39) to Qx = Hy /]:Iékz_l)/ 3 gives the same result. To see this, note that m; (¢),
which contains min(t, i/k), appears in (40) with the same coefficient k as the coefficient
of min(t, i/k) in (39). The terms %(k2 —1) from (39) cancel out for Ay /1':12“(2_1)/3 but then
the remaining terms (- - -)¢ in (39),(40) must also match by the integral argument from
Remark 1. This confirms #(¢t) and thus v (¢) for the remaining k. This gives a second
proof for most (except the case N|k, see Lemma 4) of the reformulation of Theorem 1
given in Remark 1.

6 B. Proof of primitivity

Proposition 1 The kth division polynomial of the Tate normal form, Py, is primitive in
Z[B, C].

Proof Order the monomials lexicographically with the following rule

BMC"™ < B™(C™ when ny < m or (n; = my and ny < my).

If R € Q[B, C], let M(R) denote the smallest monomial of R. For example, if R = 3B>C” +
B3C, then M(R) = 3B2C®. A key property is M(R1Ry) = M(R1)M(R3).
Let ¢, denote [k/3]. It is enough to prove that

M(Py) = (-4 (=B)F P certenr2 (41)

since it shows that Py has at least one coefficient equal to £1.
We will prove (41) by induction. First, a direct verification shows that (41) holds for
k =1,2,3, 4. Suppose now that k is even, and write [ = % Recall the recursion relation (16)

by
Pi= 5 (PreaPly = PiaPily).

the smallest monomial of the first summand Pl+2P12_1 is

(— 1)61+2+261—1 (—B) L(+2)%/3]+2(1-1)?/3] CC2(Crpa=1)/24¢1 (1 =1)
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For the second summand —Pl_zPlz_s_1 itis

(—1)e-2+2¢i11 (— B) LU= /BI+200+1D?/3] ceralera—1)/2+ealera—1),

When [ = 1 mod 3, the second summand has the smallest monomial, and when [ =
2 mod 3, the first summand has the smallest monomial. When 3 | /, we have to consider
the exponent of C. In this case, the first summand is the smallest.

In each case, verifying Eq. (41) is straightforward. For example, when / = 0 mod 3 we
have

472+ 3
T3 k2341,

L2/3] + LU +2)%/3) + 210 — 1)?/3] =

and

[ (2] -3 c
cilec; —1)/2+cipaleipr — 1)/2 4+ 1l — 1) = 3 (T) = Ek(ck - 1)

Now suppose k is odd and write k = 2/ + 1. Recall the recursion relation (15)
Py = PP} — Py P}y
For the first summand, the smallest monomial is

(—1)cea+3er (_ gyLUH2? /314311 /3] ceralera=1)/243e(c=1)/2,

and for the second summand it is

(—1)a-143ei1 (— g)LU=D?/BI+3L0+D?/3) cera(era=1)/243e41 (41 =1)/2,

When [ = 0 mod 3, the second summand has the smaller monomial; when / = 1 mod 3,
considering the exponent of C shows the second summand has the smaller monomial;
and when / = 2 mod 3, the first summand has the smaller monomial.

Verifying Eq. (41) is again straightforward for each case. For example, when/ = 1 mod 3

42 + 41+ 1

_ 112

L( — 1)%/3] 4+ 3L+ 1)%/3] =

and
42 — 21 -2
18

Repeating these computations for the remaining cases proves the proposition.

Ck
ci-1(ei—1 — 1)/2+ 3¢pa (e — 1)/2 = = E(Ck -1

Recall that —B = F3 = 5]§ and —C = F,. From (36) we find that Qk\g from Sect. 3 is
Py/(—B)X*/3) which is primitive in Z[B, C] = Z[Fs, F4] by Eq. (41).
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