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Abstract 

Tomography is a widely used tool for analyzing microstructures in three dimensions (3D). The 
analysis, however, faces difficulty because the constituent materials produce similar grey-scale 
values. Sometimes, this prompts the image segmentation process to assign a pixel/voxel to the 
wrong phase (active material or pore). Consequently, errors are introduced in the microstructure 

characteristics calculation. In this work, we develop a filtering algorithm called PerSplat based 

on topological persistence (a technique used in topological data analysis ) to improve segmentation 
quality. One problem faced when evaluating filtering algorithms is that real image data in 
general are not equipped with the ‘ground truth’ for the microstructure characteristics. For 
this study, we construct synthetic images for which the ground-truth values are known. On 
the synthetic images, we compare the pore tortuosity and Minkowski functionals (volume and 

surface area) computed with our PerSplat filter and other methods such as total variation 
(TV) and non-local means (NL-means). Moreover, on a real 3D image, we visually compare the 
segmentation results provided by our filter against TV and NL-means. The experimental results 

indicate that PerSplat provides a significant improvement in segmentation quality. 
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1 Introduction 

Microstructures are the building blocks of a material: the shape, size, interconnection, and orientation 

of these microstructures play a key role in defining the ultimate properties and performance. For 

example, in energy storage systems like lithium ion batteries (LIB), these microstructures influence 

the ability to store energy, the conversion rates, and the diffusion phenomena [1, 2, 3, 4, 5, 6, 7]. 

Hence, analyzing and visualizing these microstructures help us understand the properties of the 

materials and design new materials [8]. 

Nowadays, microstructures are frequently examined in 3D using X-ray computed tomography 

(XCT or CT) [9]. In XCT, X-ray images are collected from many different directions and are 

interpreted to yield 3D maps of local X-ray absorption strength quantified by a grey-scale [10]. 

Besides an extensive usage of XCT in materials science to characterize fuel cell electrodes [11, 12], 

super-capacitor electrodes [13], porous ceramics [14], and fiber orientation in composites [15], XCT is 

also used in biological applications such as tumor detection [16, 17], fracture examination [18, 19], and 

blood clots [20]. In battery research, the XCT experiments are performed to measure three important 

microstructure characteristics, i.e., the porosity, the specific surface area, and the tortuosity of pore 

network [1, 21, 22]. 

For the present work, we emphasize microstructural tortuosity as it directly influences current 
flow rates within the interpenetrating electrolyte phase contained in the pores. Typically, before 
calculating porosity or tortuosity, the data gathered from XCT are processed to assign each 

voxel/pixel to the solid phase or the pore phase; this process is called image segmentation (which 

means binarization for datasets of this paper). However, depending on the mixture of phases being 
studied and their ability to absorb X-rays, a ‘faithful’ binarization of data can be very difficult. 

Hence, an appropriate filtering before the binarization is often necessary to improve the quality of 
binarization and thereby the accuracy of computed microstructure characteristics [23, 24]. 

To illustrate the difficulty faced by a binarization algorithm without a proper filtering, we 

take the popular global thresholding algorithm Otsu [25] as an example. In Otsu, a threshold 

value is picked first, and then any pixel/voxel above (resp. below) the threshold value is assigned 

active material (resp. porous region). It is known that Otsu works well for images with bimodal 

histograms, where peaks of the two classes in the histograms are distinct. However, due to its strong 

reliance on histograms, Otsu algorithm may have difficulty when the peaks overlap and are not 

distinguishable. For example, Figure 1a shows a 3D grey-scale image with a bimodal histogram, and 

the binarization by Otsu preserves almost all important regions. In contrast, Figure 1b shows a 3D 

image whose histogram is not bimodal, and therefore the binarization by Otsu does not reflect the 

true porosity or electrolyte channel. In addition to the problem described above, data collected from 
XCT also have artifacts, which can potentially clutter the grey-scale values of pixels/voxels [26, 27] 
and hence further hinder the binarization process. 

 
Contribution.   The motivation of this work is to improve the binarization results of images 

with a new topological filter. Specifically, we propose a filtering algorithm called PerSplat based 

on techniques developed from topological data analysis [28, 29] (TDA). This algorithm exploits 

topological structures hidden in the data to filter out noise/speckle so that overlaps in the histogram 
can be reduced. The filtered data fed to a binarization algorithm afterwards can then have a better 
binarization result. Compared to traditional filtering algorithms (such as those described in [30, 31]), 

PerSplat algorithm has the following advantages: 

1. Based on the theory of topological persistence [32], PerSplat detects global structures rather 

than local ones in a multi-scale manner. The removed noise can be of any shape which do 
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(a) 

 

(b) 

 

Figure 1: XCT data. (a) Grey-scale data, binarized data, and histogram of templated porous 

polymer. (b) Grey-scale data, binarized data, and histogram of commercial electrode. 

 

not need to fit in a rectangular window. This is in contrast to traditional despeckling filtering 

algorithms [31] utilizing a moving window, which restricts the shapes of detected speckle. 

2. In contrast to traditional despeckling or denoising algorithms [30, 31], which aim at recovering 

the ground-truth image, our algorithm aims at a filtering of the image so that the ensuing 

binarization can recover the true segmentation of the phases. Achieving such a goal is especially 

valuable when the ground truth image itself is hard to binarize. As indicated by experiments, 

the binarization by a standard scheme (such as Otsu) is more reliable with PerSplat. 

3. Some small but significant features can be preserved by inhibiting the removal of those small 

regions that persist for a long range of values. This is achieved with the help of the well-established 

tool called barcodes [29, 32] (or persistence diagrams), in which long bars are considered as 
significant features and short bars are treated as noise. 

We briefly describe our PerSplat algorithm in Section 2. In our experiments, PerSplat 

outperforms other general-purpose filtering methods (TV [33, 34] and NL-means [30]) on both 

synthetically generated datasets and natural datasets; see Section 3 for details. 

 

1.1 Related works 

Considering the volume of existing literature on the topic, we only briefly describe a few image 

filtering/denoising algorithms of various types. For a more comprehensive overview, we recommend 
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the work by Buades el al. [30] on denoising for general images, the work by Loizou and Pattichis [31] 
on despeckling for ultrasound images, and the work by Kaestner et al. [24] on image filtering in 

porous media research. In our overview, we only describe the algorithms in 2D; their generalization 

to 3D is straightforward. Throughout, let Ω denote the domain of the image which is a rectangular 

region in R2, and an image is therefore treated as a function v : Ω → R. 

Total variation. Total variation (TV) denoising [33, 34] draws upon a measurement of regulariza- 

tion TVΩ(u) for an image u, which is the integral of the gradient magnitude. Given an input image 

v, TV denoising minimizes TVΩ(u) for the denoised image u subject to the following constraints: 
r  

(u(x) − v(x))dx = 0 and 

r  

|u(x) − v(x)| dx = σ . 

Alternatively, TV denoising solves a corresponding unconstrained minimization problem: 
 

arg min TVΩ(u) + λ 
u 

|u(x) − v(x)| dx, 

where λ is a weight parameter balancing the degree of the denoising and the fidelity to the input. 

In terms of denoising quality, TV denoising outperforms those simple methods (such as the median 

filtering) by preserving edges while reducing noise in flat areas. 

 
Wavelet thresholding. Wavelet thresholding filters work on the frequency domain. Let images 
now be defined on the discrete 2D grid I instead of the continuous Ω, and let B = {gα}α∈A be 
an orthonormal basis for R|I|. The input image v : I → R can be decomposed into the form 
v = α∈A vB(α)gα, where each coefficient vB(α) is the scalar product (v, gα). Then, each coefficient 
vB(α) is modified to a(α)vB(α), where a(α) is a value depending on vB(α). Wavelet thresholding 
recovers a denoised image as u =  α∈A a(α)vB(α)gα, and different wavelet thresholding filters differ 
on how a(α) is chosen for each vB(α). Specifically, soft wavelet thresholding [35] sets a(α) as: 

f 
vB(α)−sgn(vB(α))µ , |vB(α)| > µ, 

 

where µ is a threshold parameter. Translation invariant wavelet thresholding [36] further improves 
soft wavelet thresholding by averaging the denoising results on all translations of the input image, 

which could reduce the so-called Gibbs effect. 

 
NL-means. The name NL-means [30] is short for ‘non-local’ means which comes from its difference 

to those ‘local mean’ filters. Given an input image v, NL-means produces the following denoised 
pixel u(x) for a given position x ∈ Ω: 

u(x) = 
   1 

 
C(x)  Ω 

La(x,y) 

h2 v(y)dy, 

in which h is a filtering parameter, C(x) is a normalizing factor, and La is a measure of dissimilarity 

of the Gaussian neighborhood of two pixels. Specifically, let Ga be a Gaussian kernel with standard 

deviation a, we have 
La(x, y) = 

r

R  

Ga(t)|v(x + t) − v(y + t)| dt. 
2 

 

Hence, u(x) is the mean of the other pixels whose Gaussian neighborhood is similar to x. NL-means 

produces denoised images with greater clarity and less detail loss compared to those local mean 

algorithms. 

e− 

a(α) = 

Ω 
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UINTA. UINTA [37] stands for ‘unsupervised, information-theoretic, adaptive filter’. For each 

pixel x and its neighborhood Nx, UINTA uses stochastic gradient descent to reduce the entropy 
(expectation of negative log-probability) of the conditional probability density P (X = x | NX = Nx), 
where P (X = x | NX = Nx) is estimated by the Parzen-window non-parametric density estimation 
technique [38] with an n-dimensional Gaussian kernel. The design of UINTA is based on the 
observation that adding noise to the original signal greatly increases the entropy. Hence, decreasing 
the entropy mitigates randomness in the observed PDF’s and so noise can be reduced. Note that 

UINTA resembles NL-means in a sense that it also involves comparing the neighborhood of pixels 

for computing a denoised value. 

 

2 PerSplat algorithm 

We only describe the PerSplat algorithm in 2D; its 3D version follows similar steps. There are two 
stages in the algorithm, and since the second stage is a reversal of the first stage, we only briefly 
overview the first stage before presenting the details. In the first stage, we traverse the grey-scale 

values of the input image in increasing order starting from zero. For each value s traversed, we 

consider pixels in the image with grey-scale values no greater than s (i.e., the sublevel set) and 

take the connected components of these pixels. As s increases, we track the following changes of 
connected components in the sublevel sets: 

1. A new connected component which does not correspond to any previous ones is created; this 

happens at a local minimum in the image. 

2. Connected components grow larger. 

3. Several connected components merge into the same component. 
 

Consider a merging that happens, say at a grey-scale value s. We ‘splat’ any connected component 
C that is getting merged with size and persistence length (defined later) no greater than some input 
parameters. By splatting a component, we mean to assign the grey-scale value s to all its pixels. 

Intuitively, the splatting suppresses those small ‘downward’ (dark) bumps, which serves as a noise 

reduction for the image. Symmetrically, splatting in the second stage suppresses those small ‘upward’ 

(bright) bumps; see the discussion and figure presented later in the section for more details. 

 
Full details. We formalize a 2D input image as a function f : G → [0, M ], where [0, M ] is an 
interval of integers with M usually equal to 255. Moreover, G is the graph corresponding to the 
2-dimensional grid of an image, i.e., vertices of G correspond to pixels in the image and connect to 
either 4 or 8 of its neighbors∗ . We also have that function values of f on the vertices are grey-scale 
values of the corresponding pixels. 

For any s ∈ [0, M ], define fs as the full subgraph of G containing vertices whose function values 
are no greater than s. We have that fs is a subgraph of ft whenever s ≤ t. Therefore, starting 
from s = 0, fs keeps growing larger as s increases and eventually equals the entire G. For an s, we 
consider the connected components of fs, i.e., those maximal sets of vertices of G in which each pair 
admits a connecting path. As we increase the value of s, the following three types of events can 

happen, in which we pay attention to the first and the third one (i.e., the critical events): 

1. A new connected component in fs which has no correspondence in fs−1  is created. 
 

∗In the experiments of this paper, our implementation of the algorithm always connects a vertex to 4 neighbors 
for 2D and 6 neighbors for 3D. 
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→ 

2. Connected components of fs−1  grow larger in fs. 

3. Several connected components of fs−1  merge into the same connected component in fs. 

The algorithm requires two parameters µ and λ as inputs, where µ denotes the maximum speckle 

size and λ denotes the maximum persistence length of a connected component that the algorithm 

can modify. Note that we always set λ = ∞ in experiments so that the algorithm can modify any 
connected component. 

The algorithm contains two stages, where the first stage increasingly enumerates s from 0 to M . 
During the first stage, whenever a merging happens at s, for each connected component C of fs−1 
that merges with others, we define the following: 

• Let |C| denote the size of C, which is the number of vertices of C. 

• Let b(C) denote the birth value of C, which is the least function value of C’s vertices. 

• Let (C) denote the persistence length of C, which is defined as (C) = |s − b(C)|.† 

If |C| is no greater than µ and (C) is no greater than λ, we assign the value s to all pixels 
corresponding to the vertices of C, i.e., the connected component C is splatted to value s 
(see 
Figure 2).  Note that the creation and merging of connected components actually construct the 

merge tree of f , which is a well-known tool in topological data analysis (TDA). 

The second stage is a reverse process of the first: the value s is enumerated decreasingly from 
M to 0. Since the input image has been modified in the first stage, we let g : G  [0, M ] denote the 
function corresponding to this modified image. Furthermore, we define gs as the full subgraph of 
G containing vertices whose function values (on g) are no less than s. Therefore, as s decreases, 
connected components in gs can also get created, grow, or merge with others. Note that birth value 

in this case is the greatest function value of the connected component. We then modify the pixel 

values for a connected component whenever a merging happens, which is similar to the previous 

stage. 

As mentioned earlier, the first stage suppresses those small ‘downward’ bumps for the image 

and the second stage suppresses those small ‘upward’ bumps. The parameters µ and λ control 
how aggressive the suppressing is, in which trade-offs need to be made between noise filtering and 

possible loss of details. Figure 2 illustrates an exemplar run (µ = 5, λ = 30) of the first stage, where 
the input image is considered to have six dark spots. Three smaller, less dark spots are splatted (i.e., 
turn to grey; see the red squares in the final result), leaving the remaining three spots which are 

more prominent preserved. In the exemplar run, f10 creates two connected components, while f20 

and f40 create three and one component(s) respectively; the newly created components are marked 
by red squares. Note that these connected components are constantly growing after being created. 

In f50, two pairs of connected components merge together in which the ones marked by red squares 

are splatted because of their sizes and persistence lengths. In f70, all four connected components are 
merged where the one inside the red square is splatted; note that though the connected component 

inside the orange square has a size no greater than µ, it is not splatted due to a longer persistence 

length than λ. 

Finally, we observe the following property of PerSplat, which confirms the consistency of 

choices made to modify a connected component: 
 

†Note that here we have an interval [b(C), s). However, this interval is not exactly the same as an interval in a 

persistence diagram [29, 32], which does not produce an interval for the merged connected component with the least 

birth value. 
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input f10 f20 f40 f50 

 

     
f50 (splatted) f60 f70 f70 (splatted) final result 

 

Figure 2: An exemplar run of the first stage of PerSplat. As s increases, connected compo- 

nents can be created (e.g., red ones in f10) or grow larger. The connected components can also 

merge among which some get splatted (e.g., red ones in f50) while some are preserved (e.g., purple 

and orange ones in f70). 

 
For any node on the merge tree which is splatted by the algorithm, all its descendants are splatted. 

Equivalently, for any node which is not splatted, all its ancestors are not. 

 

3 Results and discussion 

In this section, we demonstrate the efficacy of our PerSplat algorithm by comparing it with two 
general-purpose filtering algorithms: TV [33, 34] and NL-means [30]. After applying the filters, 

we use the global thresholding algorithm Otsu [25] as a benchmark for binarization. Note that 

although some other types of binarization algorithms (such as locally adaptive thresholding [23]) may 

produce better results in some cases, we choose Otsu because of its simplicity and effectiveness [23]. 
Since the focus of the paper is on image filtering for XCT data, using Otsu is sufficient for our 
purposes‡. 

We briefly summarize our experiments as follows: 

1. Using Otsu for binarization, we compare the tortuosity computed from PerSplat, TV, and 

NL-means filtering to the ground-truth tortuosity for some synthetically generated images; see 
Section 3.1 for details. 

2. We apply PerSplat, TV, and NL-means for filtering a natural 3D image and visually compare 

the binarization results by Otsu; see Section 3.2 for details. 

Note that we apply our PerSplat algorithm on 3D grey-scale images in two ways in this paper: 

PerSplat-P (i.e., PerSplat-Pixelized): In this case, we process the 3D image slice by slice using 

the version of PerSplat for 2D input. The outputs for all slices are then stacked to create a 
3D filtered image. 

 

‡Note that we independently apply Otsu to each slice of the 3D data in our experiments. 
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Figure 3: Processing pipeline on synthetic datasets. (a) A ground-truth slice of Synth1. 

(b) Slice with synthetic noise added. (c) Noisy slice filtered by PerSplat-P. (d) Noisy slice filtered 

by PerSplat-V. (e,f,g) Binarized slices by Otsu. 
 

PerSplat-V (i.e., PerSplat-Voxelized): In this case, all slices together are processed by the 

version of PerSplat for 3D input. 

 

3.1 Results on synthetic datasets 

The absence of ground truth for the XCT data [39] makes it hard to evaluate the segmentation 

quality. Hence, to address the issue of ‘missing’ ground truth, we create synthetic images whose 

ground-truth values are known, with the following process: 

1. Given a 3D XCT image, we first binarize the image with Otsu and take this binarized image as 

ground truth, i.e., we take voxels with values greater than the threshold as in the solid phase 
and the rest as in the porous phase. 

2. We then introduce noise to the established ground-truth image based on Gaussian distribution 

(see Section 4 for further details). The introduction of Gaussian noise is justified by the fact 

that nearly all images we obtain through XCT have histograms akin to a mixture of Gaussians 

as shown in Figure 1. 

3. We also apply noise to the image based on Poisson distribution. The rationale behind the 

Poisson noise is as follows. Typically, noise in XCT images is caused by various factors such as 

the number of scans performed, the object being measured, and the data processing methodology 
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employed. One such factor is called ‘shot noise’ or ‘quantum noise’, which is introduced because 
photons in the X-ray beam follow a spatial distribution according to the Poisson law [40]. 

4. Finally, for each voxel, we apply a nearest neighbor averaging in three dimensions to account for 

averaging of the XCT signal that happens at the interfaces. 

In Figure 3, we show the processing pipeline on the synthetic datasets with PerSplat-P and 

PerSplat-V for filtering. After the binarization, we calculate the tortuosity for the binarized 

images using a MATLAB open-source application TauFactor [41]. 

 
Overall results. Based on different ground truths, we generate synthetic datasets with different 

degrees of overlaps in the histograms. To control the histogram overlap, we adjust the mean and 

variance of the Gaussian noise for the two phases: when the mean for the two phases is close or the 

variance is large, overlap in the histogram is significant (see Section 4 for more details). 

Table 1 provides details of the generated synthetic datasets, where we list the data sources (i.e., 

the data samples from which we derived our ground truth), black phase fractions of the ground-truth 

images, and the Gaussian noise parameters for the two phases. The ground truths for Synth1 and 

Synth2 are extracted from (different regions of) the XCT data of porous templated polymer. The 

ground truths for Synth3 and Synth4 are extracted from the tomographic data of a commercial 

LIB anode [1, 27]. The two sets of samples, porous polymer and LIB anode, are selected because of 

their difference in the phase fractions. Note that the histogram of Synth2 has more overlap than 

that of Synth1 as exhibited by Table 1; similar difference holds for Synth3 and Synth4. 

Table 1: Statistical setting for generated synthetic data. The ground truths for Synth1 and 

Synth2 are extracted from porous polymer. The ground truths for Synth3 and Synth4 are extracted 

from LIB anode. Active material is assigned as white phase while porous region is assigned as black 

phase. 
 
 

Dataset Data source 
Black phase

 
White phase Black phase 

 
 
 
 
 
 
 
 
 

In Table 2, we show the following values computed with the different filters for each dataset in 

Table 1: 

• tortuosity in the three directions and the characteristic tortuosity (the harmonic mean of 
tortuosity in the three directions); 

• volume and surface area of the white phase, which are a subset of the Minkowski functionals [42]; 
• binarization accuracy, which is the percentage of voxels correctly classified. 

We also underline the best values achieved in Table 2. Note that ‘NL-means-2D’ means that 

NL-means is applied independently to each slice and ‘NL-means-3D’ means that NL-means is applied 

to the entire stack at once. We fix the parameters of the filtering algorithms for all the datasets in 

Table 2: 

 fraction 
Mean Var Mean Var 

Synth1 porous polymer 66% 100 25 85 25 

Synth2 porous polymer 75% 87 35 80 35 

Synth3 LIB anode 35% 100 25 85 25 

Synth4 LIB anode 35% 87 35 80 35 
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Table 2: Microstructure characteristics and binarization accuracy computed. For each 

type of microstructure characteristics, we list the difference to the ground-truth value calculated 

from each filter. The best values are underlined. 
 
 

Data Methods 
Tortuosity Charac. 

 Tor. 
Pixel 

Accur. 
White 

Vol. 
White 

Surf. Area 
1 2 3 

 

Ground Truth 1.668 1.668 1.890 1.736 - 6058513 1.03E+06 
 

 

 

 
Synth1 

 
 
 
 
 
 
 
 

 
Synth2 

 
 
 
 
 
 
 
 

 
Synth3 

 
 
 
 
 
 
 
 

 
Synth4 

No Filtering +0.272 +0.274 +0.274 +0.274 90.45% +586589 +2.32E+06 

PerSplat-P +0.037 +0.036 +0.138 +0.065 95.95% +99754 +2.98E+05 

PerSplat-V +0.146 +0.146 +0.192 +0.160 93.84% +379728 +1.12E+06 

NL-means-2D +0.272 +0.274 +0.274 +0.274 90.45% +586492 +2.32E+06 

NL-means-3D +0.271 +0.272 +0.273 +0.273 90.48% +579665 +2.31E+06 

TV −0.127 −0.130 −0.184 −0.144 93.70% +79869 −3.03E+05 

Ground Truth 1.392 1.391 1.345 1.376 - 4213761 7.58E+05 
 

No Filtering +1.239 +1.233 +1.203 −1.225 64.02% +3878836 +6.96E+06 

PerSplat-P +0.635 +0.646 +2.027 −0.966 72.74% +3600816 +4.87E+06 

PerSplat-V +1.427 +1.425 +1.665 −1.503 62.29% +4527724 +6.74E+06 

NL-means-2D +1.239 +1.233 +1.203 −1.225 64.02% +3878766 +6.96E+06 

NL-means-3D +1.202 +1.198 +1.172 −1.191 64.26% +3811400 +6.96E+06 

TV −0.064 −0.058 −0.033 +0.051 93.85% +303944 −4.93E+04 

Ground Truth 3.078 2.701 3.496 3.058 - 5530602 1.73E+06 
 

No Filtering +0.171 +0.244 −0.140 −0.116 82.75% −568356 +9.78E+05 

PerSplat-P +0.189 +0.063 +0.570 −0.225 86.22% +76852 +2.26E+04 

PerSplat-V +0.151 +0.202 −0.078 −0.111 84.01% −399765 +7.32E+05 

NL-means-2D +0.171 +0.245 −0.140 −0.116 82.76% −568284 +9.78E+05 

NL-means-3D +0.151 +0.232 −0.160 −0.099 82.65% −583979 +9.90E+05 

TV −0.803 −0.328 −1.443 +0.832 74.63% +90793 −1.12E+06 

Ground Truth 3.078 2.701 3.496 3.058 - 5530602 1.73E+06 
 

No Filtering −0.402 −0.080 −0.821 +0.400 62.90% −1216905 +2.33E+06 

PerSplat-P −0.365 −0.112 +2.609 −0.208 69.39% −651080 +1.48E+06 

PerSplat-V −0.296 +0.026 −0.335 +0.180 63.88% −962743 +2.23E+06 

NL-means-2D −0.403 −0.079 −0.820 +0.400 62.91% −1216840 +2.33E+06 

NL-means-3D −0.405 −0.077 −0.819 +0.400 62.90% −1213542 +2.34E+06 

TV −0.816 −0.555 −1.102 +0.795 71.82% −439236 −8.00E+05 
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• for PerSplat-P, we use a speckle size µ = 54; 

• for PerSplat-V, we use a speckle size µ = 500; 

• for TV, we use a regularization weight of 0.5; 

• for NL-means-2D and -3D, we use the default parameters of the implementation provided by 
scikit-image  [43]. 

From Table 2, we observe that PerSplat-P or PerSplat-V are consistently providing the 
most accurate tortuosity values. The only exception is Synth2, whose best values are provided by 

TV. However, on Synth2, the tortuosity values provided by PerSplat are still comparable to those 
provided by NL-means. As for the volume and surface area of the white phase shown in Table 2, we 

observe that TV provides the best results with PerSplat-P performing comparably well, whereas 

PerSplat-P and PerSplat-V consistently outperform NL-means. 

For one slice of Synth1, we show in Figure 4 the corresponding grey-scale images filtered by 

methods in Table 2 and the binarized version by Otsu; the original unfiltered slice of Synth1 

and the ground-truth binarization are also shown. We also include in Figure 4 the results from 

PerSplat using two speckle sizes (10 and 14659) different from the ones (54 and 500) used to 
generate Table 2. From the binarized image with TV filtering in Figure 4, we observe that the 
white connected component marked by the red arrows is inaccurately disconnected. To the contrary, 

PerSplat and NL-means both preserve the connected component as indicated by the green arrows 
in Figure 4. Also note that the binarized images with NL-means filtering in Figure 4 have many 
speckles which the ground truth does not have. In contrast, the speckles are largely avoided by 

PerSplat (especially PerSplat-P with speckle size 54). 

 
Varying speckle size. Recall that, with PerSplat, the user needs to choose a speckle size 

parameter µ as input. To provide guidance on the parameter choosing, in Figure 5, we show 

how various µ parameters impact the binarization accuracy and the computed tortuosity. The 
input dataset for Figure 5 is Synth1 and the speckle sizes exponentially range from 10 to 682 for 

PerSplat-P, from 10 to 14659 for PerSplat-V. From Figure 5, we observe that the change of 

speckle size has a more significant effect on tortuosity when using PerSplat-P, while tortuosity 

appears to be more stable at various speckle sizes when using PerSplat-V. This is a result of the 
additional dimension of connectivity introduced in 3D. To understand the phenomenon, imagine 

running PerSplat on 2D and 3D images: as the value s increases/decreases (see the description of 
the algorithm), the sizes of the connected components grow much faster in 3D than in 2D because 
of the additional dimension of connectivity. In 3D, the connected components quickly grow very 

large; to splat them, we need a large µ parameter. This makes nearly the same components to be 

splatted for a wide range of µ when running PerSplat on 3D images (PerSplat-V). 

 

3.2 Results on natural datasets 

In Figure 6, we show the filtered images by the three methods (TV, NL-means, PerSplat) and 

their Otsu-binarized results for one slice of a natural XCT dataset. The natural XCT dataset is 

gathered from a tomography experiment from an open source [26]. By visually examining the results 

in Figure 6, we notice that TV produces overly smoothed images in which many important details 

(e.g., ones inside the white phase marked by the red circle) are lost. In contrast, NL-means (2D and 

3D) manage to preserve most of the important details inside the white phase marked by the red 

circle. However, with NL-means filtering, some other important regions are not correctly binarized. 
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Figure 4: Grey-scale images filtered by all methods and their binarized version for one 

slice of Synth1, with the unfiltered slice and the ground-truth binarization also shown. 
Slices processed by different filters are marked with different colors. PerSplat-P∗  has µ = 10; 

PerSplat-P∗ ∗  has µ = 54; PerSplat-V∗  has µ = 500; PerSplat-V∗ ∗  has µ = 14659. 

 
For example, the two regions marked by the blue circles almost completely fall in the black phase; 

but in the binarized slices filtered by NL-means, a significant proportion of the two regions is still 

white. We then conclude that PerSplat filtering (e.g., PerSplat-V with µ = 14659) provides the 

best binarized slices visually. On one hand, the important details inside the white phase marked by 

the red circle are preserved; on the other hand, a larger proportion is classified as black in the two 

regions marked by the blue circles. 
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(a) (b) 

 

(c) (d) 

 

Figure 5: Microstructure analysis with various speckle size (µ) parameters for PerSplat. 

The input dataset is Synth1 and horizontal axes for the µ parameter are re-scaled by logarithm 

function. (a) Binarization accuracy as a function of µ. (b-d) Tortuosity as a function of µ in the 
three directions. 

 

4 Methods 

Software used. MATLAB (R2019) was used to generate synthetic images, calculate binarization 
accuracy, and calculate tortuosity. ImageJ [44] was used for an implementation of Otsu. The 

Python library scikit-image [43] was used for implementations of TV and NL-means. 

 
XCT Data used. One of the microstructures used in this study is a porous polymer, Poly- 

dimethylsiloxane (PDMS). This sample was made by AVP in DPB’s lab using the process of 

templating where sugar cubes (Domino brand) were used as a template. The second sample is 

raw tomographic data obtained from [26] which is open-source. We performed X-ray Computed 

Tomography (XCT) on the porous PDMS. The sample in the open-source tomographic data is of 
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(a) 

 

 
(b) 

 

Figure 6: One slice of a natural XCT dataset processed by different filters. (a) The input 
unfiltered slice. (b) Filtered and binarized slices, with the slices processed by different filters marked 

with different colors. PerSplat-P∗  has µ = 10; PerSplat-P∗ ∗  has µ = 293; PerSplat-V∗  has µ 

= 10; PerSplat-V∗ ∗  has µ = 14659. 
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commercially available lithium-ion batteries graphite electrode [27]. 

 
Adding synthetic noise. To add noise to a given ground-truth image in the process of synthetic 

data generation, we took three steps. In step one, for each voxel from the black phase, we assign 

the voxel a grey-scale value based on a Gaussian distribution (for the black phase) of selected mean 

and variance. For voxels from the white phase, we perform similar operations. In step two, we used 

MATLAB’s in-build function ‘imnoise’ to create Poisson noise. This MATLAB function’s output 

depends on the type of input image (eg. 8 bit or 16 bit; our input was a 8 bit image). As the last 

step, we do a simple nearest neighbor averaging of the grey-scale values. This pays attention to 

near-neighbor voxel value averaging that often happens at boundaries between two phases in real 

XCT deconvolutions – as evidenced by the broad and flat region between the two Gaussians (see 

Figure 1a). 

 
X-ray tomography. XCT images for porous polymer (PDMS) were produced using X-ray nano- 

computed tomography. Computed tomography is a non-destructive technique that allows full 3D 

spatial density maps of an object. To gather these tomographic images, two major steps were taken. 

First, the sample was inserted inside a CT machine called ‘SkyScan1272’ manufactured by Bruker 

(Billerica, MA). A Hamamatsu L10101 micro-focus X-ray source was used with no filter. The X-ray 

source voltage and current was set to 40 kV and 200 µA, respectively, to get the best scan resolution. 

After setting up the X-ray source, a flat field correction was updated to minimize ring artifacts. A 

total scan of the sample contained 1472 projection images with a length and width of 2036 pixels by 
2036 pixels, respectively. Images were taken at different angles equally spaced at 0.2◦  on a scale of 
0◦  to 180◦ , with exposure time of 225 ms and frame averaging of 5 per rotation.  Secondly, to 
get 
3D volume data, reconstruction of the above acquired raw data was done using a program called 

NRecon (Version: 1.7.4.6). The final resolution of each image was 4.50 µm/pixel. 

 

5 Conclusion 

The investigation in this paper starts with an examination of the grey-scale histograms of commercial 
lithium-ion battery and a porous PDMS templated material. From the binarization results, we find 
that some important features of the microstructure are misinterpreted due to the histogram overlap, 

which led to miscalculation of microstructure characteristics. To solve the problem, we design a 

novel filtering algorithm called PerSplat based on topological persistence to rectify the small 

regions that are assigned to wrong group otherwise during binarization (specifically by Otsu). A 

tortuosity analysis and Minkowski functional calculations (volume and surface area) show that the 

ground-truth values are better approximated when the data is preprocessed with PerSplat and 

then binarized, as compared to a direct binarization. Also, PerSplat outperforms other filtering 

algorithms such as TV and NL-means in most cases. The PerSplat algorithm has two variations 

when being applied on 3D data: PerSplat-P and PerSplat-V. From our analysis, we observe 

that PerSplat-V has more stability over various speckle sizes. We hope that this algorithm, in 

general, can make the microstructure characteristics computations more reliable and hence help 
design better electrochemical devices. Additionally, the use of this algorithm is not only limited to 
battery research but potentially also to other applications engaging image analysis, ranging from 
tumor detection in biological sciences to detecting water content in geology. 
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6 Code Availability 

Requests for codes that support the findings within this paper should be addressed to T.K.D 

(tamaldey@purdue.edu) and T.H (hou145@purdue.edu) upon reasonable request. 

 

7 Data Availability 

The starting 3D grey-scale XCT microstructure data files are provided in Supplemental Materials. 
The X-ray computed tomography data used for the analysis of porous templated polymer is available 

online: https://github.com/monk2k20/XCT-Polymer-Data. The rest of the data that support 
the findings of this study are available from the corresponding author upon request. 
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