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1. Introduction

We would like to congratulate the authors for their contribution
to this longstanding open problem in mathematical statistics.
Their clever implementation of MCMC to obtain simplex-based
Dempster–Shafer (DS) samples for parameters of multinomial
distribution and its connection to graph theory is extremely
thought provoking. We expect that the contributions seen in this
article will have impacts for years to come.

In our comment, we would like to contribute our thoughts
particularly on the applications of the various DS approaches
to nonparametric tests of independence. Nonparametric depen-
dence detection is a classical statistical problem but recently
gains great interest from both statisticians and computer
scientists due to its applications in machine learning. See
Hoe!ding (1948), Székely, Rizzo, and Bakirov (2007), Gretton
et al. (2007), Reshef et al. (2011), Heller, Heller, and Gor"ne
(2013), Chatterjee (2020), Shi et al. (2020), and references
therein.

One general approach in nonparametric tests of indepen-
dence is the multiresolution approach. See some recent works
by Ma and Mao (2019), Zhang (2019), Lee, Zhang, and Kosorok
(2019), Gorsky and Ma (2018), and Zhang, Zhao, and Zhou
(2021). Some advantages of this approach include uniform
consistency, minimax optimal power, clear interpretability and
e#cient computation.

The multiresolution approach reduces the test of
independence to the test of discrete uniformity over
multinomial distributions. In this article, we study the
performance of such tests, particularly when the sample
size is small compared to the resolution. We show potential
gains in power and computational scalability from using an
alternative Dirichlet DS method based on unpublished article
of Lawrence et al. (2009).

2. Simplex and Dirichlet DS for Multinomial Data

A crucial part to multiresolution tests of independence is being
able to conduct inference for parameters p = (p1, ...pk) ∈
P = {p : 0 ≤ pi,

∑k
i=1 pi = 1} using observation z =

(z1, ...zk) following multinomial(n, p) distribution. In particu-
lar, we will compare two di!erent DS approaches to inference
parameters p.
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The "rst, which we shall refer to as simplex DS, refers
to the method used in the discussed article. This version of
the DS is based on inverting a very natural data generating
algorithm proposed by Dempster et al. (1966) and described
in detail in Section 2 of the discussed article. In particular,
a sample from the multinomial distribution is generated by
sampling ancillary variables uniformly at random on a sim-
plex and selecting the multinomial category depending on
which section of the simplex the ancillary variable falls into,
see Figure 1a in the discussed article. To generate DS sam-
ples one needs to invert this data-generating algorithm, that
is, sample new ancillary variables uniformly and "nd par-
titions of the simplex, determining the parameters p, that
would reproduces the observed data. The main challenge is
that such partitions of the simplex exist only if the ancillary
random variables fall into a rather complicated small polytope.
The discussed article proposes an ingenious Gibbs sampler
that does just that. Once such ancillary variable u(t) is sam-
pled, a linear programming problems need to be solved to
obtain the particle F(u(t)) of parameters p that are needed for
inference.

While this Gibbs sampler o!ers a theoretically interesting
representation using shortest path algorithm on graphs, we
"nd that this algorithm has some drawbacks in terms of scal-
ability. For example, generating 1000 MCMC samples a 7-
dimensional multinomial takes approximately 1 min. However,
converting the Gibbs sampler’s results u(t) into a convex poly-
tope F(u(t)) takes nearly 20 times as long as running the Gibbs
sampler. This is due to the large number of vertexes in the
polytopes that result from the Simplex method. The simulation
resulted in polygons with an average of 62 and a max over 250
edges. This places a large computational burden on the simple
method.

The other DS method was proposed in an unpublished
article of Lawrence et al. (2009) and we will be referring
to as the Dirichlet DS. While Lawrence et al. (2009) obtain
Dirchlet DS using a clever use of Dempster’s rule of com-
bination starting from k binomial DSs. In particular, let W!

follow Dirichlet(1, z1, . . . , zk) distribution and the Dirchlet DS
polytope

F(W!) = {p : W!
i ≤ pi, i = 1, . . . , k} (1)
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0) (Hannig et al. 2016).

Dirichlet DS has a number of clear computational
advantages. First, an independent sampling from
Dirichlet(1, z1, . . . , zk) can be done directly using methods built
into the most so$ware packages. Additionally, the Dirichlet DS
polytope is always a simplex, so for k = 7, it yields a convex
polytope with 8 vertexes, instead of a maximum of 250. This
makes the Dirichlet DS to scale to much larger problems,
for example, multinomial distributions with thousands of
categories, which is important for testing independence at high
dimensions and/or high resolutions.

Next, many estimators of the multinomial proportions have
the following invariance property: If we merge two categories,
then the estimate of the merged proportion is the sum of the
proportions that are being merged. Investigation of Equation
(1) reveals that Dirichlet DS has this invariance property. Con-
sequently, inference on proportions for categories in which we
have observations is not in%uenced by addition or deletion
of empty categories. As seen in Section 4.1 of the discussed
article, simplex DS does not have this invariance property, but
whether this invariance property is desirable could be a matter
of opinion.

Finally, let us assume that there were originally n + r of the
multinoulli experiments but we were only given results of n and
the other r are missing. Notice that we are not assuming that
these r multinoullis are missing at random, in fact they could be
deleted deliberately. The Dirichlet DS naturally accommodates
this additional information by changing the distribution of W!

to Dirichlet(1 + r, z1, . . . , zk) consequently enlarging the poly-
tope in Equation (1). Such an enlargement of the DS polytopes
is sometimes called weakening. It is not clear to us if simplex DS
could be weakened to accommodate missing observations.

Figure 1. (Top): Runtime comparison of Gibbs sampler vs convex polytope compu-
tation. (Bottom): The number of edges in 1000 Convex polytopes from the Simplex
method.

3. DS Test of Independence

For a pair of continuous random variables (X, Y) dis-
tributed on [0, 1]2, we would like to test using n iid samples
(X1, Y1)...(Xn, Yn) if X is independent of Y . An important step
toward this goal is to be able to test if (X, Y) is uniform, or
alternatively at what resolutions we have su#cient power to
make a rejection. We adopt the notation of Gorsky and Ma
(2018). For a joint sample space " = "x × "y, it is possible
to create a coarse-to-"ne discretization of ". At resolution k, we
partition " into sets as follows:

" =
k⋃

i=1

k⋃

j=1
Ik
i × Ik

j ,

where i ∈ {1, k} Ik
i = [ i−1

k , i
k ). At the coarsest level, resolution 2,

" is discretized into four di!erent pieces: "11 = [0, 1
2 ] × [0, 1

2 ],
"12 = [0, 1

2 ]×( 1
2 , 1], "21 = ( 1

2 , 1]×[0, 1
2 ], "22 = ( 1

2 , 1]×( 1
2 , 1]

with
" = "11 ∪ "21 ∪ "12 ∪ "22.

These sets {Ik
i × Ik

j } each de"ne statistics
Zi,j = |(Xi, Yj) ∈ "i,j|,

which naturally describe a k × k contingency table. Under the
classical multinomial sampling scheme for k × k contingency
table, the statistics Zi,j are distributed

(Z11...Zkk|
∑

i,j
Zi,j) ∼ multinomial(n, (p11, ...pkk)).

To test if (X, Y) are uniform at resolution k, it su#ces to dis-
cretize (X1, Y1)...(Xn, Yn) into a k×k contingency table and used
the counts zij in each bin to obtain the distribution of random
polytope # ⊂ P = {p : 0 ≤ pij,

∑k
i=1

∑k
j=1 pij = 1} following

either simplex or Dirichlet DS distribution. The null hypothesis
of uniformity should be rejected at this resolution if the null-
hypothesis point (k−2, . . . , k−2) lies well outside of the bulk of
the distribution of #. To quantify this we will "nd the upper
and lower probability of the complement of the smallest ball
centered on the point estimator p̂ =

(
z11+k−2

n+1 , . . . , zkk+k−2

n+1

)
and

containing the null-hypothesis point (k−2, . . . , k−2).
To this end, we generate m samples {#1, ...#m} from either

the simplex or Dirichlet DS. Then, we compute the upper and
lower distances U = {u1, ...um}, L = {l1, ...lm}, where
li = inf{‖y − p̂‖2 : y ∈ #i}, ui = sup{‖y − p̂‖2 : y ∈ #i}.

Leveraging the convexity of #i, ui can be computed as ui =
max{‖e−p̂‖2 : e ∈ V(#i)}, where V(#i) is the set of vertexes of
the convex polytope #i, and li can be found by solving a convex
optimization problem. We then use ui and li and the distance
rcenter = ‖p̂− ( 1

k2 , ... 1
k2 )‖2 to de"ne upper and lower p-values as

p̂upper({u1, ...um}) = |U ≥ rcenter|
m ,

p̂lower({l1, ...lm}) = |L ≥ rcenter|
m .

The upper p-value can be then used as usual p-value for
testing the null hypothesis of uniformity at resolution k. The
gap between the upper and lower p-value is speci"c to DS and
measures lack of knowledge. In particular, if the gap between
upper and lower p-value indicates inability to make decision
about independence at this resolution.
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Figure 2. Empirical CDFs of the upper and lower p-values for H0 analyzed using three tests: (Top Left): Simplex DS, (Top Right) Dirichlet DS, and (Bottom): χ2. The x-axis is
the nominal p-value, the y-axis is proportion of p-values below p-value cuto!.

4. Simulation Results

To compare the performance of the Simplex and Dirichlet
methods, we consider a simple test of independence. First, 100
datasets of sample size n = 30 are generated under either the
following null or alternate hypotheses:

H0 ∼ Beta(1, 1)2,
H1 ∼ Beta(1, 2)2. (2)

Each of these datasets is then discretized into 2×2, 3×3, and 6×
6 contingency tables and each table is tested for independence
using the simplex DS, the Dirichlet DS, and the classical χ2 tests.
To generate the p-values for the test of independence, both the
simplex and Dirichlet DS generate 200 polytopes with a burn-in
of 300 for the former. The purpose of the low sample size (n =
30) in this simulation is to demonstrate that as the resolution
k and the number of multinomial categories k2 increases with
sample size held constant, the uncertainty indicated between the
gap between the upper and lower p-values increases.

In Figure 2, we present plots of the Empirical CDFs of the
upper and lower p-values under the assumption that H0 is true.
Well calibrated p-values follow a uniform distribution which
CDF is represented by the 45◦ line. As expected, we see that
p-values empirical CDFs from the χ2 test closely follow this
dotted line. The upper p-values for both DS tests are below the
dotted line, showing that these p-values are conservative, that

is, sub-uniform. Next, we see that while the upper p-values for
the Dirichlet and simplex method behave similarly, the lower p-
values of the simplex method are more skewed toward rejecting.
Consequently, Dirichlet DS has a much smaller gap between
the upper and lower p-values than the simplex DS. Finally, we
remark that there are no p-values for the 6 × 6 simplex method
as the computation timed out a$er 2 hr without producing a
simplex.

In Figure 3, we show empirical CDFs based on data generated
under the alternate hypothesis in Equation (2). All three tests
correctly lean toward rejecting the null hypothesis. In terms of
the power of the lower p-value, the simplex method performs
similarly to the Dirichlet method. However, the empirical CDFs
of upper p-values for the simplex method is lower than their
corresponding empirical CDFs for the Dirichlet DS empirical
Cr. This indicates that for the Dirichlet method has more power
to reject H0. In addition, we can see the gaps between lower and
upper p-value plots increase as the resolution increases in both
the simplex and Dirichlet DS.

As for runtime comparisons, the di!erence is substantial.
Generating one polytope under Dirichlet DS at the 3 × 3 level
takes approximately 2 seconds while a similar polytope takes
nearly 30 sec under Simplex DS. The di!erence in runtime
comparison gets larger with the 6 × 6 level, where the Dirichlet
DS is still under 5 sec while the Simplex DS timed out a$er at
least 2 hr.
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Figure 3. Empirical CDFs of the upper and lower p-values for H0 analyzed using three tests: (Top Left): Simplex DS, (Top Right) Dirichlet DS, and (Bottom): χ2. The x-axis is
the nominal p-value, the y-axis is proportion of p-values below the cuto!.

Method Runtime to generate one polytope

Dirichlet method for 2 × 2 1.76 sec
Dirichlet method for 3 × 3 2.15 sec
Dirichlet method for 6 × 6 4.15 sec

Simplex method 2 × 2 5.31 sec
Simplex method 3 × 3 29.60 sec
Simplex method 6 × 6 Timed out at > 2 hr

5. Discussion

Based on this small simulation example, it appears that the
Dirichlet DS might be better suited for performing the test
for independence than the simplex DS in terms of both speed
and frequentist performance. Dirichlet DS also has a rela-
tively easy way to adapt to situations with missing data with
a potential to be applied to adversarial attack scenarios. The
one negative is that unlike simplex DS, the Dirichlet DS does
not appear to be "ducial, that is, based on an inverse of a
data generating algorithm. On balance, it is not clear to us in
what practical situations the simplex DS would be the prefer-
able choice over the Dirichlet DS when conducting statistical
inference.
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