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ABSTRACT
Lifelong machine learning (LML) has extensively driven the devel-
opment of web applications, enabling the learning systems deployed
on web servers to deal with a sequence of tasks in an incremental
fashion. Such systems can retain knowledge from learned tasks
in a knowledge base and seamlessly applying it to improve the
future learning. Unfortunately, most existing LML methods require
labels in every task, whereas providing persistent human labeling
for all future tasks is costly, onerous, error-prone, and hence im-
practical. Motivated by this situation, we propose a new paradigm
named unsupervised lifelong learning with curricula (ULLC), where
only one task needs to be labeled for initialization and the system
then performs lifelong learning for subsequent tasks in an unsu-
pervised fashion. A main challenge of realizing this paradigm lies
in the occurrence of negative knowledge transfer, where partial
old knowledge becomes detrimental for learning a given task yet
cannot be �ltered out by the learner without the help of labels. To
overcome this challenge, we draw insights from the learning behav-
iors of humans. When faced with a di�cult task that cannot be well
tackled by our current knowledge, we usually postpone it and work
on some easier tasks �rst, which allows us to grow our knowledge.
Thereafter, once we go back to the postponed task, we are more
likely to tackle it well as we are more knowledgeable now. The
key idea of ULLC is similar – at any time, a pool of candidate tasks
are organized in a curriculum by their distances to the knowledge
base. The learner then starts from the closer tasks, accumulates
knowledge from learning them, and moves to learn the faraway
tasks with a gradually augmented knowledge base. The viability
and e�ectiveness of our proposal are substantiated through both
theoretical analyses and empirical studies.

1 INTRODUCTION
Machine learning has been instrumented in developing models for
advancing web search and knowledge mining [11, 12, 27]. These
models are usually developed in an isolated paradigm, where each
model is trained on a dataset drawn for solving a speci�c learning
task only. Once the task shifts or a di�erent task arrives, another
dataset needs to be collected and manually labeled, on which a
new model is trained for the shifted or new task. A comparison
with human intelligence reveals the ine�ciency of this isolated
machine learning paradigm. As a matter of fact, we humans rarely
learn in isolation; Instead, we retain knowledge from what we
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have learned, so as to become more competent in future problem
solving. Consider especially that the datasets in web applications
are usually very large and constantly skewed, a repeated process of
data collecting and new model training is rather ine�cient, where
possible knowledge reuse is ignored.

Lifelongmachine learning (LML), mimicking such a human learn-
ing ability, has been proposed to address the shortcomings of the
isolated learning paradigm [24, 38, 47]. In particular, LMLmaintains
a knowledge base, which accumulates the knowledge learned from
the tasks seen so far. Given a sequence of disparate tasks, the goal
of LML is to maximize the prediction performance of each arriving
task by leveraging the knowledge base. So far, LML has promoted a
wide range of new algorithms and systems in real applications on
web, such as semantic search [10], opinion mining [51], internet
commerce [5], and recommender systems [41], among many others.

Despite e�ective, existing LML learners highly rely on labels
scattering in all tasks to achieve good performance. Once no label
exists in an arriving task, the learner cannot identify which pieces
of previously learned knowledge are applicable for reuse and which
are detrimental. To illustrate, consider a learner for sentiment clas-
si�cation. Assume, its �rst task is to classify the movie reviews
of “Superman 4 (1987)” into positive or negative sentiments. After
reading a review, e.g., “The visual e�ect sucks, the moon is like a
toy”, a piece of knowledge that the word “toy” indicates a negative
opinion is learned and stored in the knowledge base. However,
when the learner is used to classify a new movie (task), e.g., “Toy
Story (1995)”, the word “toy” does not indicate any sentimental
meanings. With no label in this new task, the pieces of detrimental
knowledge are forcibly transferred from the knowledge base to
it, leading to substantial prediction errors. Even worse, as lifelong
learning can be deemed as an online bootstrapping process [38],
these errors will be propagated and escalated to subsequent tasks
to generate more errors. The overall learning performance could
thus be signi�cantly deteriorated.

To avert error propagation and escalation (a result of detrimental
knowledge transfer), labels are required. Unfortunately, requiring
all tasks being labeled is overwhelming. In practice, labels are often
not available for various reasons. At the user end, for example,
providing labels is in general costly, onerous, and error-prone. At
the system end, tasks have di�erent priorities while some tasks are
instantaneous (e.g., terrorism detection in social networks [48]),
making planning and pre-labeling close to impossible.

Motivated by this situation, this work investigates an important
question: Can an LML system, after being trained on one single
labeled task, continually learn from subsequent tasks in an unsu-
pervised fashion? To answer this question, we draw insight from
human learning instinction. Rather than learning future tasks in
an arbitrary order, humans usually organize tasks in a meaningful
curriculum, starting from tasks that they are more familiar with
and gradually moving to unfamiliar ones. During this process, as
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familiar tasks can be learned in high con�dence even without su-
pervision, humans are likely to become more knowledgeable for
dealing with those originally unfamiliar tasks by forming a knowl-
edge base without inducing many errors.

We cast this insight into a novel LML paradigm, termed as un-
supervised lifelong learning with curricula (ULLC). The key idea
is, instead of passively receiving and learning tasks in a random
sequence, ULLC actively chooses the next task to learn by orga-
nizing a few future tasks into a curriculum. High-level design of
ULLC is as follows. At the beginning, a number of tasks are pooled
in a bu�er, and the knowledge base is initialized as the originally
labeled task. After that, candidate tasks in the bu�er are ordered in
a curriculum according to their distances to the knowledge base.
The learner chooses the closest task to learn and predicts the in-
stances in this task. The labeled instances are ranked by their pre-
diction con�dence, measured by, e.g., the margin-maximization
principle [57], and those instances predicted in high con�dence
level will be merged into the knowledge base for knowledge ac-
cumulation. When a new task arrives, it is added to the bu�er,
substituting the learned task. The curriculum is updated by re-
ordering the candidate tasks, respecting the knowledge base that
now carries new instances. This process continues until no more
future task arrives.

A main challenge in realizing our paradigm lies in how to mea-
sure the distance between a candidate task and the knowledge base
for long time spans. Choosing a distance metric in a priori is un-
realistic, since a �xed metric may work well at the beginning but
can fail later on. For example, a metric posits the data distribution
underlying tasks follow Gaussians [55, 60] may incur errors when
the assumption does not hold in future tasks.

To support precise curriculum design, we tailor a new distance
metric. Our metric is attained by calibrating the complexity of the
feature alignment function that extracts the domain-invariant, com-
mon features between a candidate task and the knowledge base.
Intuitively, the more faraway the two domains are, the more di�cult
the common features can be extracted, and hence the more com-
plex the feature alignment function would be. This intuition lends
us to a novel elastic domain adversarial network (EDAN) design,
whose depth is adaptive and will be learned per task, approximating
feature alignment functions at di�erent complexity levels. Those
complexity levels hence serve as a metric for ordering the candi-
date tasks by their distance to the knowledge base. Note, this new
metric does not impose any assumption on data distribution or task
structure, it is thereby likely to be adaptable for long time spans.

Speci�c contributions in this paper are summarized as follows.

(1) We propose a new ULLC paradigm that performs lifelong
learning with a one-time labeling e�ort only. The fact that
our paradigm can learn all future tasks in an unsupervised
fashion is especially promising and more applicable than
prior works that require full labeling information in all tasks.

(2) We devise a novel EDAN for adaptive distance metric, help-
ing order the candidate tasks in a curriculum by their dis-
tances to the knowledge base with high precision and �exibil-
ity. A theoretical analysis shows that our curriculum learning
strategy can provably lead to performance improvement over
task learning in an arbitrary order.

(3) We have carried out extensive experiments over both syn-
thetic and real datasets. Empirical results show that our ap-
proach can e�ectively overcome the detrimental knowledge
transferring issue in an unsupervised setting, and its perfor-
mance is comparable to supervised learning competitors.

The rest of this paper proceeds as follows. Section 2 reviews
related work. Section 3 formalizes our learning problem, spotlights
the challenge, and unfolds the high-level idea of our design. Section
4 elaborates the proposed approach. Section 5 presents theoretical
analysis. Section 6 reports experimental results and Section 7 con-
clude the work. Due to space limitation, proofs and derivation de-
tails are deferred to supplemental material (https://bit.ly/2T6nvJB).

2 RELATEDWORK
Our ULLC paradigm is closely related with Lifelong Learning, Mul-
titask Learning, and Domain Adaption. In this section, we review
the prior literatures in the three research avenues and discuss the
relations and di�erences between our approach and theirs.
Lifelong Learning, a.k.a. Continual Learning [29, 32, 42] or Never-
Ending Learning [1, 23, 36], aims to build general-purpose machines
that can learn from incrementally more tasks after being initially
trained. The crux of this research line lies in the overcoming of
catastrophic forgetting, i.e., the loss or disruption of previously
learned knowledge when new knowledge is added. In general, ex-
isting methods fall into two categories. One category comprises the
model-based methods, where the model parameters are regularized
to avoid drastic updates, striving to search a Pareto-e�ective so-
lution that performs satisfactorily for all seen tasks [3, 29, 32, 46].
The other category covers the rehearsal-based methods, where the
historical instances are (partially) stored in an external memory
(i.e., the knowledge base) and will be jointly trained along with new
tasks [18, 34, 40, 42, 45]. Unfortunately, existing methods mostly
require full knowledge of task labels whereas proving such con-
tinuous human supervision in all future tasks is unrealistic or too
expensive, hindering their deployment in real practices. Our ap-
proach much lifts this assumption, entailing a one-time labeling
e�ort in a single task only and envisioning no label from future
tasks, thereby enjoying a broader applicability.
Multitask Learning explores potential synergies across a set of
learning tasks in which each task su�ers from insu�cient training
instances. Prior studies have delivered both theoretical insights
[4, 7, 22] and empirical evidences [2, 21, 61] to show that, if the
multiple tasks are truly related, then the knowledge in one task can
guide the learning of other tasks, such that the sample complexity
of all learning tasks can be improved through jointly training. Once
the relatedness among tasks is weak, knowingwhich piece of knowl-
edge is shareable becomes important [26] because the knowledge
of one task could be irrelevant or adversarial to other tasks, which
is somehow close to the idea of combatting detrimental/negative
knowledge transfer in our context. However, the existing works
prescribe all tasks to be available beforehand, which are prohibi-
tive and in�exible in the sense that they do not support learning
in an on-line process. As new tasks arrive, their learning systems
are retrained from sketch by scanning both old and new data in
multiple iterations, leading to both memory and computational
overheads. Our ULLC paradigm does not bother to store a massive
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volume of data from multiple tasks before learning begins; Instead,
it allows the learning on the go, thereby being more �exible and
computational and memory friendly than multitask learning.
Domain Adaption, a.k.a. transfer learning [20, 37, 50] or trans-
ductive learning [28, 39, 49, 62], strives to improve the learning
e�ciency of one label-scarce domain as a target with the help of
one or multiple label-rich domains as auxiliaries. The key technique
is to extract a set of latent, domain-invariant features as a bridge,
through which the auxiliary-trained learners can be propagated
to the target domain. If the target domain is totally unlabeled, the
learning problem upgrades to unsupervised domain adaption (UDA)
[17, 33, 59], which is more challenging in the sense that no target
label is available for examining the existence of negative knowl-
edge transfer, where, in their context, the target domain shifts and
hence follows a quite disparate distribution from the auxiliaries.
Pioneer studies [8, 53, 58] circumvent negative transfer by �ltering
out unrelated auxiliary data, which can only be realized under two
restrictive assumptions. First, they require all auxiliary domains
to be labeled with groundtruth and readily available in a batch,
so they cannot work well in our setting where the tasks arrive in
sequence and only one (i.e., the �rst) task is labeled. Second, they
posit a �xed distance metric that will be valid for all domains in
future, which is less generalizable to data that do not follow the
prescribed distributions, e.g., Gaussians [55, 60]. Our ULLC para-
digm does not make these assumptions and thus is more general.
Moreover, our approach focuses on the improvements to all seen
tasks by maintaining a knowledge base, rather than their methods
that concern accurate modeling in the target domain only.

3 THE ULLC PARADIGM
Given a sequence of tasks {Ti | i = 0, 1, . . . ,N } in which we
suppose, without loss of generality, that T0 is with labels and all
other tasks {Ti }Ni=1 remain unlabeled. Let PT0

(X ,Y ) and PTi (X )

denote the instance-label joint distribution of T0 and the marginal
distribution of Ti , respectively, with X being the random variable
in an Rd input space and Y being the classi�cation label. At each
time step, one task is learned with its data instances predicted
(labeled). A knowledge base R(i) is maintained that retains and
accumulates the knowledge (represented by the labeled instances)
from the perviously learned tasks, i.e., {T0,T1, . . . ,Ti�1}.

3.1 The Learning Problem
Our goal is to learn a a series of good hypotheses h1, . . . ,hN 2 H ,
withH being a hypothesis space, that makes accurate prediction for
the unlabeled tasksT1, . . . ,TN . The hope is that the knowledge base
can always provide useful knowledge for any given task, such that
a hypothesis learned on R(i) can be transferred to a newly arriving
task Ti seamlessly, achieving decent classi�cation performance.

To achieve this goal, we use feature alignment [17], where the
key technique is to extract a common space that closes the cross-
domain discrepancy between R(i) and any given Ti . Speci�cally,
a feature alignment function is a mapping � : Rd 7! Rz , where
the z-dimensional latent space is spanned by a set of task-invariant
common features. As such, the data from R(i) and any Ti , after
being mapped via �, would follow a similar marginal distribution,
i.e., P(�(XR(i ) )) ⇡ P(�(XTi )). A hypothesis space de�ned on this

latent space can hence yield a desired hypothesis hi that works well
on both R(i) and Ti . The hypothesis hi and the feature alignment
function � are jointly trained through playing a min-max game as:

min
h

max
�
Ex,�⇠R(i )

⇥
� , hi

�
�(x)

� ⇤
�D

⇥
P(�(XR(i ) ))

�� P(�(XTi ))
⇤
,

(1)
where the �rst term represents the empirical risk su�ered by pre-
dicting labels for data in R(i) and the second term calibrates the
cross-domain distributional divergence between R(i) and Ti .

3.2 Challenge: Negative Knowledge Transfer
Each time step, a task Ti arrives, in which, unfortunately, its data
may follow an extensively disparate distribution from those stored
inR(i). Extracting the common space between two highly disparate
domains is fundamentally di�cult, so a very complex mapping � is
required, such that the second term in Eq. (1) can be minimized. For
such cases, deep neural networks [17, 33] are widely-used function
approximators that can learn � at arbitrary complexity levels.

However, an overly complex � is very likely to over�t hi to the
data in R(i) and yield inferior prediction performance on Ti . The
main reason is that those pieces of knowledge in R(i), which are
detrimental (negative) for learning Ti , are included in optimizing
Eq. (1), incurring a phenomenon known as negative knowledge trans-
fer [8, 53]. Such negative knowledge is non-detectable as no label
is available in Ti . We extrapolate the reasons as follows.

As the hypothesis hi is de�ned over the latent representations
�(x), we can deem the entire function hi (�( ·)) as the predictor,
which takes as input the data instances and outputs the predicted
labels. To full�l a large cross-domain gap, the mapping � needs to
be overly complex, so do the predictor hi (�( ·)). The more complex
the predictor, the better it �ts to the training data (i.e., the labeled
data in R(i) in our context), and the worse it generalizes to the
unseen data (i.e., the unlabeled data in Ti ). As a result, if no label
is available in Ti , this over�tting cannot be detected and alerted,
such that substantial prediction errors in Ti will be included in R(i)

with wrongly labeled instances. Even worse is that these errors
will propagate and escalate in learning the subsequent tasks, as in
an online bootstrapping process [38], where more errors will be
generated and accumulated. The overall learning performance is
hence much deteriorated, necessitating the combatting against the
negative knowledge transfer challenge.

3.3 Our Idea: Knowledge Retention with
Curriculum Learning

To overcome negative knowledge transfer, we abstract the human
learning intinction into an inductive bias. Like humans who usually
start with tasks that they are familiar with, our learner orders tasks
in a curriculum, starts learning the task that shares the most com-
monality with the data in R(i), grows knowledge from them, and
gradually become knowledgeable for dealing with those disparate
tasks. Through this way, since the task learned at each time step
can be accurately predicted even without the labels, few predic-
tion errors are accumulated. The overall classi�cation performance
across the subsequent tasks can hence be improved.

In particular, for the task sequence with a long time span, we
pool arriving tasks into a bu�er of size K and, at each time step, the
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candidate tasks in the bu�er are ordered by their distances to R(i).
We then select the task being closest to R(i) and jointly learn the
hypothesis hi and the feature alignment function � between the
selected task and R(i). After learning, we predict the data in the
selected task, and thereafter the instances being predicted with the
highest con�dence level are merged into R(i). At the next round,
a new task is bu�ered and all candidate tasks are re-ordered in a
new curriculum to respect the new instances added in R(i). This
process continues until no more task arrives.

4 OUR APPROACH
To implement the high-level idea into a concrete algorithm, the crux
of our approach lies in how to order the candidate tasks into a mean-
ingful curriculum. Section 4.1 and Section 4.2 serve to unfold the
technical details of our curriculum design. Speci�cally, Section 4.1
presents a novel elastic domain adversarial network (EDAN) archi-
tecture, which propagates the labels from the knowledge base to a
given task through adversarial training. Section 4.2 elaborates an
adaptive domain-wise distance metric, which is derived from the
trained EDAN and can support the designed curriculum with high
�exibility and precision. After having the curriculum, we choose a
task to learn. We end by exhibiting how the knowledge is retained
by storing the most con�dently predicted instances in Section 4.3.

4.1 Elastic Domain Adversarial Network
EDAN follows the spirit of pioneer works [17, 33] of exploiting a
generative adversarial network (GAN) framework. Unlike existing
methods that �x network depth in a priori, the main technical inno-
vation of EDAN is to treat the network depth as a learnable semantic.
Speci�cally, EDAN starts from an over-complete architecture, and
it automatically decides how and when to adapt its network depth
during the learning procedure, in accordance with the complexity
level of the feature alignment function it needs to approximate.
Figure 1 shows the computational graph of EDAN.

The key idea of EDAN is to extract the common space between
the knowledge base R(i) and an unlabeled new task Ti through
adversarial training, whereR(0) := T0 as an initialization. Given an
instance x, we denotem as its task membership, indicating whether
x is from R(i) (m = 0 if x ⇠ R(i)) or from Ti (m = 1 if x ⇠ Ti ). For
any instance from R(i), its label is known, denoted by �.

Consider an over-complete network with L hidden layers, the
output of its l-th hidden layer is recursively de�ned as:

h(l ) = F (h(l�1);W(l )) = � (W>

(l )h(l�1)),

8l = 1, . . . ,L; h(0) = x,

where F represents the feature alignment function for extract-
ing the task-invariant latent features, parameterized byW(l ) and
activated by a non-linear function � (·) such as sigmoid, ReLU, etc.

Denoted by h(l ) the output of the l-th hidden layer. A classi�er
C and a task discriminator D predict the label and the task mem-
bership of h(l ) as �̂(l ) = C(h(l );�� (l )) and m̂(l ) = D(h(l );�m (l )),
respectively. EDAN linearly combines the sub-predictions sug-
gested by all hidden layers to make the �nal predictions, namely,
�̂ =

ÕL
l=1 �(l )�̂(l ) and m̂ =

ÕL
l=1 �(l )m̂(l ), where �(l ) denotes the

weight factor of the l-th hidden layer. The objective of EDAN is

de�ned by the following min-max game:

min
F,C

max
D

L’
l=1

�(l )
⇣
L
(l )
sup(F ,C) � �L(l )

adv(F ,D)

⌘
, (2)

L
(l )
sup(F ,C) = E(x,�)2R(i ) [`(�, �̂(l ))], (3)

L
(l )
adv(F ,D) = E

(x,m)2R(i )[Ti
[`(m,m̂(l ))], (4)

where L
(l )
sup(F ,C) and L

(l )
adv(F ,D) represent the su�ered super-

vised sub-loss and the adversarial sub-loss of the l-th hidden layer,
respectively. Denoted by `( · , · ) a loss function, and � a positive
parameter to balance the two sub-loss terms.

The intuitions behind Eqs. (2) (3), and (4) are interpreted as fol-
lows. Each hidden layer extracts a common space that (i) represents
the input x in a more separable form (minimizing the supervised
loss) to satisfy the classi�er; and (ii) closes the cross-task distri-
bution discrepancy (maximizing the adversarial loss) to fool the
discriminator. A good hidden layer should jointly incur small super-
vised loss and large adversarial loss. Thus, to optimize Eq. (2), we
should increase weights for such good hidden layers and decrease
weights for other layers. To do this, we update the weight factors
using the hedging strategy [16, 44], de�ned as:

�(l ) =
exp

⇥
��

ÕT
t=1

�
L
(l )
sup(F ,C) � �L(l )

adv(F ,D)
� ⇤

ÕL
l=1 exp

⇥
��

ÕT
t=1

�
L
(l )
sup(F ,C) � �L(l )

adv(F ,D)
� ⇤ , (5)

which guarantees 8�(l ) 2 (0, 1). Denoted by � the discount rate pa-
rameter, whose value assignment is discussed later in Theorem 5.1
of Section 5. The number of training iterations is represented by T .

Training EDAN is to searching parameters of F , C, and D that
deliver a saddle point of Eq. (2). In this work, we train EDAN with
stochastic updates with backpropagation and gradient reversal
operator [17]. Since the page limits preclude a detailed discussion,
we defer the technical details of training EDAN to Section 1 of
supplemental material.

4.2 Curriculum Design via EDAN
We now tailor a novel distance metric for ordering tasks in a curricu-
lum. Speci�cally, among K candidate tasks in a bu�er, we prioritize
the task that shares the most common knowledge with the current
base R(i) at each time step. Our metric is to quantify this level of
commonality between R(i) and each candidate task.

For three reasons, the network depth of the learned EDAN, which
is represented by the weight factors of the hidden layers, is a good
device for this quanti�cation. First, due to the diminishing feature
reuse issue in overcomplete networks [25, 31], the deep layers in
EDAN tend to converge slower than shallow layers. As a result,
the output of shallow layers are likely to incur smaller overall loss
(supervised sub-loss minus adversarial sub-loss), making weight
factors of shallow layers larger than others according to Eq. (5).

Second, for converged layers, the prediction results of deep lay-
ers are more accurate than those of shallow layers, because the
deep layers have larger learning capacities. Thus, over T training
iterations, the deep layers in total su�er less loss than shallow lay-
ers, and thus the weight factors of deep layers are larger than those
of shallow ones for such layers.
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Figure 1: Computational graph of EDAN. The dots denote the inputs/outputs of the hidden layers. The squares indicate the
computational operations and the arrows represent the feedforward �ow.
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Figure 2: T-SNE visualization of three tasks, and two di�erent updating trends of weight factors.

Third, the weight factors of deepest layers are likely to stay small.
The reason is that once a hidden layer’s output becomes very close
to the minimizer of the overall loss, the remaining layers that are
deeper than this particular layer cannot suggest better prediction
results. Since those deepest layers have accumulated substantial
loss over T iterations, and they cannot yield smaller loss than that
optimal layer does, their weight factors would thus stay small.

Overall, when EDAN is being training, the weight factors of
shallow layers �rst sharply increase. Then, deep layers start to take
over and their weights gradually surpass those of shallow layers
at certain point. The weights of deepest layers will increase the
latest yet remain small. After convergence, if the weight factors of
the shallower layers are larger than those of deeper layers, then
learning a shallow representation can satisfy Eq. (2), indicating that
the candidate task is indeed close to the knowledge base. Otherwise,
if the weight factors of deep layers are larger, a complex mapping
function is needed to learn more representative latent features
(which may lead to negative knowledge transfer), suggesting that
the candidate task is quite faraway.
Intuition Veri�cation. A simple example (reduced from D6 in
Section 6.1) is given in Figure 2 to illustrate the above intuitions.
Figure 2a visualizes the samples of three tasks, one labeled task T0

and two unlabeled tasks T1 and T5, via T-SNE embedding [35]. It is
obvious that T0 is close to T1 but quite disparate from T5. Figures 2b
and 2c illustrate the updating trends of the weight factors when
EDAN learns a pair of two similar tasks (i.e., T0 and T1) and that

of two disparate tasks (i.e., T0 and T5), respectively. We observe
that, in both �gures the weight factors of shallow layers sharply
increase at initial iterations. After that, in Figure 2b, shallow layers
converge with large weights, indicating that shallow representa-
tions are su�cient to align two close tasks. In contrast, in Figure 2c,
deep layers dominate, where only a complex feature alignment
function can extract the commonality between two disparate tasks.
These �ndings coincide our intuition, justifying that the weight
factors of the learned EDAN can quantify the complexity level of
the feature alignment function needed for extracting the common
space between two tasks. As such, those weight factors soon deliver
us a new metric for the domain-wise distance calibration.
The Metric. For more e�ectively curriculum design, we reduce
the weight factors of an EDAN to a single value, as the weight
factors of the hidden layers are vectors and meaningfully ordering
them is not easy. We use the idea of weighted entropy [19] for such
reduction. Speci�cally, we de�ne Q = �

ÕL
l=1 l · �(l ) log �(l ) as

the domain-wise distance metric. Conceptually, if Q is small, then
shallow layers dominate and play more important roles in �nal
predictions while the deep ones are trivial. If Q is large, then either
the weights of all layers are uniformly distributed or those of deep
layers are large, both of which mean that the trained network is
indeed deep. With these Qs, our approach organizes the candidate
tasks into a curriculum and chooses the task that yields the minimal
Q to learn in each time step.
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4.3 Knowledge Base Augmentation
After choosing a candidate task from the bu�er, we use the classi-
�ers of EDAN to predict its instance labels. The predicted instances
need to be stored into the knowledge base, such that the new knowl-
edge is continuously accumulated. As such, those tasks, which are
quite disparate from the initially labeled T0, become learnable, since
an augmented knowledge base is more likely to share commonality
with those disparate tasks. The common space can then be easily
extracted without needing an overly complex feature alignment
function, circumventing the negative knowledge transferring issue.

However, simply throwing all predicted instances into the knowl-
edge base may not work and is limited by two aspects. On the one
hand, the knowledge base itself, storing all data as more tasks be-
ing learned, would soon grow to an unmanageably large size. This
would lead to memory overhead in a lifelong learning setting, as
when the task sequence would stop inputting remains unknown.

On the other hand, the instances per task are predicted with
di�erent con�dence levels. Consider, for example, that an adversary
arranges the tasks in a reversed sequence, in the sense that those
tasks being disparate to the original labeled T0 arrive before the
more similar tasks. Under such circumstances, all candidate tasks
in the bu�er may be not su�ciently close to T0 in the initial time
steps. As a result, the instances of the selected task are predicted
with uncertainty. Integrating those instances being predicted with
low con�dence into the knowledge base is likely to introduce noises,
which will hurt the learning performance of the subsequent tasks.

To restrict the knowledge base under a manageable size and to
eliminate the noises, we choose to integrate those instances that
are most con�dently predicted. We employ the margin-maximum
principle [57] to �nd out such instances, de�ned as

max
x⇠Ti

L’
l=1

�(l ) · �̂(l ) ·
�>� (l )h(l )

k�� (l )k2
, (6)

where Ti is the learned task at the current time step and h(l ) de-
notes the feature representation of x output from the l-th hidden
layer. From Eq. (6), we observe that the margin for the input x is a
weighted sum of the sub-margins, each of which is independently
calculated based on the output of a speci�c hidden layer.

From a geometric viewpoint, the larger the margin is, the more
faraway from the decision hyperplane this instance locates. In
Eq. (6), �� (l ) represents a vector being orthogonal to the decision
hyperplane. Choosing the instances with the largest margin is
therefore equivalent to selecting those that are predicted with the
least uncertainty.

The process of EDAN training, curriculum design, and knowl-
edge base augmentation continues until no more future task arrives.
Through this way, all tasks are learned in a desired ordering, ending
up with decent overall learning performance.

5 THEORETICAL ANALYSIS
In this section, we borrow the regret from online learning [9] and
the generalization risk from multi-source domain adaption [6, 14]
to analyze the theoretical properties of our approach. The proofs
are deferred to the supplemental material. By the analyses, we aim
to answer two research questions.

First, we observe that EDAN makes predictions by ensembling
the solutions from all layers. Suppose there exists an oracle knowing
the optimal depth of training a domain adversarial network for each
arriving task in a foresight. The learning performance of such an
oracle-supervised domain adversarial network naturally represents
the global optimum, necessitating to answer the �rst question.

Q1. How does the learning performance of EDAN compare to
such an oracle-supervised domain adversarial network?

T������ 5.1. Denoted by LEDAN = E(x,�)2T0 [`(�, �̂)] the em-
pirical risk of EDAN. Suppose the ?-th hidden layer is a hindsight
optimum, yielding the minimal empirical risk de�ned as LORC =

E(x,�)2T0 [`(�, �̂(?))].With parameter � = 8
p
1/lnT , we have

LEDAN < LORC +
lnL

T (1 � e�� )
, (7)

where T denotes the number of training iterations.

This theorem answers Q1, as it states that the empirical risk
LEDAN is comparable to LORC and is bounded by a small scalar.
Note, in practice we do not have the oracle, so the layer yielding the
optimal prediction cannot only be obtained in a foresight. There-
fore, Theorem 5.1 gives an upper bound of the empirical risk of
EDAN. In e�ect, EDAN enjoys a lower empirical risk than a domain
adversarial network with depth chosen in an ad-hoc way.

Second, in addition to EDAN, the other important building block
of our approach is the curriculum learning strategy, where i) a
knowledge baseR(i) accumulates knowledge from the tasks learned
in a desired ordering and ii) a lifelong learner being trained on the
R(i) predicts the next chosen task.

Speci�cally, suppose i � 1 tasks have been learned in such a
curriculum that dH(T0,T1)  dH(T0,T2)  . . .  dH(T0,Ti�1),
where dH(· , · ) is H -divergence representing the distance between
two tasks over the hypothesis space H . By our approach, the
knowledge base R(i) embodies the instances from those i � 1 tasks
{T1, . . . ,Ti�1}. Let ĥ 2 H denote the hypothesis learned from R(i).

Now, a new task Ti arrives, where the groundtruth hypothesis
h⇤ underlies. Note, no such h⇤ can be obtained in practice, as Ti has
no label. Comparing the empirical risks of ĥ and h⇤ su�ered on Ti
allows to answer:

Q2. Does lifelong learning with curricula lead to prediction per-
formance improvement?

T������ 5.2. Denoted by �Ti (ĥ) and �Ti (h
⇤
) the empirical risks

su�ered by using ĥ and h⇤ to predict data in Ti , respectively. We have

�Ti (ĥ)  �Ti (h
⇤
) + dH(R(i),Ti ) + K , (8)

where dH(R(i),Ti )  dH(T0,Ti ) and K is a scalar bounded byp
log(2|R(i) |)/|R(i) |.

Also, we let hT0 be the hypothesis learned from T0 directly,
where neither curriculum learning is involved nor knowledge base
is constructed.

P���������� 5.3. Let �Ti (hT0 ) denote the empirical risk su�ered
by using hT0 to predict data in Ti . For any time step i > 0, as |R(i)

| >

|T0 |, we have �Ti (ĥ) < �Ti (hT0 ).
6
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Figure 3: Illustration of four tasks in MNIST-Rainbow (D1).

Task Review

Movies “Cheap CG. The �ght is on a not-so-epic, toy-
like representation of Moon.” (�)

Toys “I prefer wood or cloth toy to plastic so I love
that these be soft and crinkle.” (+)

Headphones “There be a sort of echo in the cup that sound
like one of those kid microphone toy.” (�)

Figure 4: Demonstration of three tasks and corresponding
reviews in Amazon Product Review (D2).

Theorem 5.2 and Proposition 5.3 together answer Q2 from two
aspects. i) Theorem 5.2 states that using a hypothesis trained from
R(i) for predicting Ti yields comparable performance with the
groundtruth hypothesis underlying Ti . As more tasks are handled,
both the H -divergence term and the scalar K get smaller, tight-
ening up this performance bound. ii) Proposition 5.3 shows that
predicting Ti with a hypothesis trained on R(i) enjoys a lower
empirical risk than that trained on T0. This �nding coincides the
intuition that, as R(i) embodies additional instance (representing
knowledge) from the learned tasks {T1, . . . ,Ti�1}, it is more likely
to be close to Ti , such that the common space between R(i) and Ti
can be easily extracted. The negative knowledge transferring issue
can be circumvented, improving the overall learning performance.

6 EVALUATION
In this section, we present empirical evidences to substantiate the
viability and e�ectiveness of our proposed approach. Speci�cally,
Section 6.1 introduces the studied datasets. Section 6.2 elaborates
the experiment setup. Experimental results are given in Section 6.3.

6.1 Datasets
We benchmark the experiments on six datasets, among which �ve
datasets are widely used in the lifelong learning literature and one
dataset is synthesized by ourselves. Notably, the datasets are in
di�erent modalities including images (i.e., D1), natural languages
(i.e., D2), sensory data (i.e., D4), and structured data (i.e., D3, D5,
and D6), validating the promise of our approach in generalizing to
a wide range of web application �elds.
MNIST-Rainbow (D1) is created by [15], comprising 56 tasks.
Each task has 900 images with 28⇥28 pixels, transformed from the
original hand-written digits with various color-mapping, shearing,
rescaling, and rotating. Figure 3 illustrates four tasks in this dataset
to show their disparateness.

Amazon Product Review (D2) is introduced by [13], which in-
cludes reviews crawled from 20 types of diverse products in Ama-
zon (i.e., 20 tasks). Each task has 2000 reviews (instances), and the
learning tasks are to classify those reviews into positive (rating
> 3) or negative (rating < 3) sentiments. Figure 4 demonstrates
three tasks in which it is worth to note that the same word “toy”
conveys disparate semantic meanings across tasks.
Linux Kernel Codebase (D3) is collected by [54], which contains
21,193 source code paths from 10 projects written in the C language,
including Linux, libc, etc.. Since each project was built by a separate
group, it is reasonable to consider paths that are from a single
project as data instances that form an individual task. Each path is
encoded by 13 features. The goal is to predict whether each path is
an error path (or not).
Land Mine Detection (D4) includes 14,820 data instances asso-
ciated with 9 features, which were captured by radars located in 29
di�erent geographical regions [56]. Each data instance refers to an
area in a speci�c region, and the goal is to detect whether a land
mine is present in an area or not. We treat data instances collected
from each single region as a di�erent task. This dataset and the
following were also used in [43] for evaluation.
London School Data (D5) consists of examination performances
(pass or fail) from 15,362 students in 139 schools in London [30].
Scores for students from an individual school are treated as data
instances in a single disparate task. Each student is described by 27
features, and the goal is to predict the examination results (pass or
fail) for all students.
Synthetic Classi�cation Tasks (D6) contains 11 binary tasks
with 10 features and 1000 data instances per task. One task was
randomly selected as T0, and the remaining unlabeled tasks (T1
through T10) are deemed as the input task sequence. To simulate
disparate data distributions, we mapped the features in the unla-
beled tasks, following the idea in [52]. For Ti , its i out of 10 features
are mapped with random Gaussian matrices. As such, we have
a-prior knowledge that T1 is the closest to T0 (as only one feature
in T1 is mapped), followed by T2, and T10 is the most faraway task.

Notably, in each of the �rst �ve datasets (i.e., D1 – D5), the data
distributions of tasks are naturally disparate from each other. We
randomly pick one task to label as the initial task and keep other
tasks remain unlabeled as the input task sequence. However, in each
dataset, we do not know which tasks are more similar to the initial
task in advance. To validate whether the tasks are indeed ordered
in a desired curriculum, D6 is synthesized in which we know in a
priori that the distances from the input tasks to T0 monotonically
increase in a sequence of T1,T2, . . . ,T10.

6.2 Experiment Setup
6.2.1 Compared Methods. We evaluate our approach against �ve
state-of-the-art methods. In the below, we describe their high-level
ideas and discuss why we choose them as baselines.

• UDA [17] and DAN [33], both of which are unsupervised
domain adaptation methods, learn the latent common space
between two tasks with separately devised domain adver-
sarial networks. Their di�erence is that UDA relies on the
output from the last hidden layer in making predictions
while DAN considers outputs from all hidden layers.

7
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• GeppNet [18] builds a dual-memory network to deal with
multiple tasks in an incremental fashion. It stores data of
each learned task and regularly replays old data interleaved
with new data to mitigate catastrophic forgetting.

• EWC [29] preserves learned knowledge by penalizing pa-
rameter changes, and allows new tasks to update only those
parameters that are less important to old tasks.

• GEM [34] stores subsets of samples from previous tasks as
episodic memories, which are used to regularize the gradient
when processing a new task – the gradient is projected onto
a new direction that minimizes the loss su�ered on new task
and does not increase the losses on episodic memories.

The reasons why we choose those competitors are as follows. On
the one hand, UDA and DAN share the same idea of employing do-
main adversarial networks to predict the unlabeled tasks, However,
UDA and DAN focused on a single-source-single-target setting,
where the labeling information is propagated from the initially
labeled task to each and every unlabeled tasks only. They did not
accumulate knowledge from the learned unlabeled tasks and, as a
result, the negative knowledge transfer is likely to be incurred if an
arriving task is quite faraway. Comparing with UDA and DAN, our
approach accumulates knowledge from the learned tasks, enjoying
potential improvement of learning performance.

On the other hand, GeppNet, EWC, and GEM represent the state-
of-the-art lifelong learning (continual learning) methods, which use
diverse strategies to retain knowledge from the learned tasks. EWC
belongs to the model-based lifelong learning family which focus on
regularizing the model parameters but do not store historical data,
while GeppNet and GEM are the rehearsal-based lifelong learners
in which the historical data are stored in an external memory. It
is thus bene�cial to compare with such diverse strategies, so as
to investigate which is the best practice for knowledge retention
in our setting. Note that all the three methods are supervised, re-
quiring labeled data in all tasks, while our approach entails one
labeled task only. A comparison with them reveals whether our
unsupervised lifelong learner can attain a comparable performance
with those supervised counterparts, directly testing the tightness
of our Theorem 5.2.

6.2.2 Parameter Se�ings. For our approach, we initialize the over-
complete EDAN with 10 hidden layers and 100 units per layer.
ReLU is employed for the common features extraction and softmax
and sigmoid are used by the classi�ers and task discriminators for
predicting the labels and task memberships, respectively. ADAM
optimizer with a step size of 10�5 decaying in 5e�4 and a mini-
batch of 64 is used for training EDAN. The weight factor �(l ) is
initialized as 0.1 for each layer, and is updated with Eq. (5). The
discount rate � is initialized 0.85 and decays with the rule suggested
by Theorem 5.1. We con�gure the baselines as follows. For UDA
and DAN, three di�erent network architectures are built with 3, 6,
and 10 hidden layers. For GeppNet, EWC, and GEM, three ratios
(10%, 30%, and 50%) of labeled data are given in all tasks. Other
parameters are set as suggested in the respective literatures.

6.2.3 Evaluation Protocol. For GeppNet, EWC, and GEM where
labels are required in all tasks, 20% instances in each task (except
the initially labeled task) are held-out as a test set. The tasks are

input in an incremental manner. After all tasks have been learned,
the labels of the test set are revealed, over which the the accuracy
is calculated. We shu�e the input task sequence 10 times to repeat
the experiments and report the average results.

For UDA, DAN, and our approach, the algorithm is given a bu�er
of unlabeled tasks at each iteration, from which one task is chosen
to learn. For UDA and DAN, the choice is random; For our approach,
the choice is based on the curriculum. UDA and DAN starts the next
iteration directly without knowledge retention, while our approach
starts the next iteration after augmenting the knowledge base. Once
all unlabeled tasks are learned, the true labels are revealed, and the
accuracy is calculated across all predicted data.

In addition to the accuracy, which evaluate the algorithm perfor-
mance in an end-to-end fashion, we introduce a new metric, termed
forward transfer error (FTE), de�ned as:

FTE =
1

|TF |

N’
i=1

|TF |’
j=1

h
�j , ĥi

�
�i (xj )

� i
, (9)

where TF denote the task that is most faraway from the original
labeled task. Denoted by ĥi and �i the hypothesis and the feature
alignment function learned at the i-th time step, respectively. The
intuition behind FTE is that, after learning each candidate task, we
enforce the learner to predict the most disparate task. If the learner
gradually grows its knowledge to become more competent in deal-
ing with the most disparate task, FTE should get lower over time.
Otherwise, FTE �uctuates arbitrarily, meaning that the learner does
not retain any useful knowledge from the past learning iterations.

Moreover, the bu�er size of our approach may yield an accuracy-
e�ciency tradeo�. Conceptually, among a larger bu�er, it is more
likely to choose a task that the learner can predict with the highest
accuracy, where learning with curriculum is more helpful. However,
a larger bu�er will consume longer time to order the candidate
tasks within it. To calibrate this tradeo�, we apply two bu�er sizes,
dividing our approach into two variants. One is termed ULLC-
A(ccuracy), the other is termed ULLC-S(peed). In ULLC-A, we use
large bu�ers, with the bu�er size for D2, D3, D4, and D6 being 20
and for D1 and D5 being 50. In ULLC-S, the bu�er size is small,
which is �xed as 5 for all datasets.

6.3 Results
We present the experimental results in this section, aiming to an-
swer four research questions (Q3 – Q6) as follows.

Q3. How does our approach compare to the state-of-the-arts?
To answer this question, we present the classi�cation results of
the two variants of our approach, namely, ULLC-A and ULLC-S,
along with those of the competitors in Table 1. All the results are
in the format of mean accuracy ± standard deviation, obtained
from running each experiment 10 times. To show the statistical
signi�cance, we carry out a paired t-test on the results. If a result of
our approach outperforms the compared methods with hypothesis
supported at 95% signi�cance level, we count a “win”. If our result
outperforms but does not surpass the 95% signi�cance level, we
count a “tie”. Otherwise, we count a “loss”. The win/tie/loss counts
are summarized at the two bottom rows in Table 1.

From the table, we make three observations. First, ULLC-A sig-
ni�cantly outperforms UDA and DAN in all settings with a 23.48%

8
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Table 1: Experimental results in format ofmean accuracy± standard deviation (%). In the parentheses, “L” denotes themaximal
network depth while “%” indicates the ratio of labeled instances. The results are from 10 experiment repeats. ULLC-A and
ULLC-S are our approaches. The win/tie/loss counts are summarized in the last two lines.

Label ? Method D1 D2 D3 D4 D5 D6

Labels In
All Tasks

GeppNet (10%) 59.0 ± 6.5 61.4 ± 4.4 65.5 ± 6.3 67.7 ± 5.8 66.4 ± 5.4 68.6 ± 9.2
GeppNet (30%) 65.7 ± 6.1 68.0 ± 3.2 72.0 ± 4.1 76.8 ± 4.9 83.7 ± 4.9 74.6 ± 5.6
GeppNet (50%) 79.8 ± 5.2 74.3 ± 3.1 78.3 ± 5.7 82.5 ± 4.2 86.3 ± 4.6 82.1 ± 6.8

EWC (10%) 67.5 ± 1.6 61.8 ± 1.4 71.7 ± 1.3 73.6 ± 0.7 69.4 ± 0.9 77.3 ± 1.3
EWC (30%) 76.0 ± 1.9 69.3 ± 0.8 82.1 ± 1.3 84.5 ± 2.2 80.0 ± 0.9 86.1 ± 1.5
EWC (50%) 86.2 ± 1.2 78.2 ± 1.6 87.3 ± 1.1 89.2 ± 1.9 84.6 ± 1.1 92.9 ± 1.2

GEM (10%) 76.3 ± 2.1 62.5 ± 1.0 74.5 ± 2.6 71.0 ± 3.1 72.3 ± 1.6 75.2 ± 2.7
GEM (30%) 82.6 ± 1.8 72.4 ± 1.1 86.7 ± 2.7 84.2 ± 2.0 85.7 ± 2.1 87.3 ± 1.9
GEM (50%) 90.3 ± 0.5 84.7 ± 0.9 90.9 ± 1.2 86.0 ± 2.4 89.6 ± 1.6 94.8 ± 1.8

No Label in
T1, . . . ,TN

UDA (L = 3) 69.3 ± 1.8 63.2 ± 2.0 58.1 ± 2.3 63.4 ± 1.7 61.4 ± 1.4 65.6 ± 2.2
UDA (L = 6) 79.4 ± 2.2 65.7 ± 1.6 57.4 ± 1.9 71.4 ± 0.9 65.1 ± 1.2 64.9 ± 1.9
UDA (L = 10) 76.8 ± 0.5 65.3 ± 0.8 52.6 ± 1.7 51.0 ± 1.5 68.2 ± 1.5 50.3 ± 1.1

DAN (L = 3) 74.2 ± 2.5 68.4 ± 0.5 61.8 ± 2.3 72.6 ± 1.7 69.8 ± 1.7 70.4 ± 2.2
DAN (L = 6) 72.7 ± 0.8 66.9 ± 0.2 63.2 ± 1.9 68.8 ± 0.9 71.5 ± 1.9 67.5 ± 1.9
DAN (L = 10) 74.6 ± 1.1 70.1 ± 0.2 51.7 ± 1.7 50.0 ± 1.5 52.0 ± 1.2 50.1 ± 1.1

(Ours.) ULLC-A 85.4 ± 1.1 75.8 ± 0.4 86.5 ± 0.7 82.4 ± 0.4 83.3 ± 1.3 89.4 ± 0.8
(Ours.) ULLC-S 80.7 ± 2.9 71.3 ± 1.5 78.6 ± 5.4 75.7 ± 4.1 75.4 ± 2.2 81.3 ± 8.6

W/T/L ULLC-A(ccuracy) * 10 / 3 / 2 11 / 2 / 2 11 / 1 / 3 10 / 0 / 5 9 / 1 / 5 10 / 3 / 2
ULLC-S(peed) 6 / 6 / 3 8 / 3 / 4 7 / 4 / 4 5 / 4 / 6 7 / 2 / 6 9 / 1 / 5

* ULLC-A wins unsupervised methods in all settings and only loses when the counterpart is a supervised method with a 50% (and
sometimes 30%) of labeling.

increased accuracy in average. This reveals that storing instances
from the learned tasks helps grow the knowledge of the lifelong
learner, such that the overall prediction performance is improved.

Second, for UDA and DAN, the optimal network depth that yields
the best performance varies across di�erent datasets. This necessi-
tates a machinery that adaptively tunes the neural architecture in
accordance with the data complexity, instead of setting the network
depth in a priori. Our devised EDAN provides such a machinery and
achieves decent empirical performance. This �nding coincides with

our theoretical analysis in Theorem 5.1, showing that the adaptive
nature of our EDAN could achieve comparable (better, empirically)
results than those domain adversarial networks whose depths are
set in an ad-hoc manner.

Third, ULLC-A wins GeppNet in 13 out of 18 settings across all
datasets, increasing the classi�cation accuracy by 13.28%. Compared
with EWC and GEM, overall, ULLC-A wins when 10% labels are
given, ties when 30% labels are given, and loses when 50% labels are
available. These �ndings indicate that ULLC-A is comparable to the
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Figure 5: Runtime performance of our ULLC-A and ULLC-S approaches with their competitors in second(s). The colored bars
correspond to UDA, DAN, GeppNet, EWC, GEM, ULLC-A, and ULLC-S, in sequence (as shown in the legend at the bottom
panel). The variances are indicated in lined intervals, attached on top of the bars.
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Figure 6: The trends of FTE in predicting the most disparate
task with respect to the number of learned tasks. Red lines
are the best �tting exponential curves.

state-of-the-art lifelong learning methods that are supervised and
require a complete labeling information in all tasks. The fact that
ULLC-A can perform accurate predictions with no label needed in
any future tasks promises the optimism of applying ULLC-A to real
applications where the labeling budget is very limited.

Q4. What is the tradeo� between accuracy and e�ciency?
Intuitively, our two algorithms both consume more computation
time than the compared methods, where the extra runtimes mainly
amount for ordering the candidate tasks into the curricula. To gauge
this runtime overhead, we have compared the runtime performance
of our approaches to the compared methods across all datasets, as
illustrated in Figure 5.

We �rst observe that our ULLC-A algorithm su�ers from around
14⇥ slowdown in D1, 6⇥ slowdown in D2, D3, D4, and D6, and 35⇥
slowdown in D5, when compared with its counterparts. The main
overhead lies in re-ordering a large number of candidate tasks at
each time step, as the bu�er size applied in ULLC-A is quite large.

In case e�ciency becomes critical, our ULLC-S algorithm, using
a small and �xed bu�er size, can be readily applied. As shown in
Figure 5, we observe that the slowdowns of ULLC-S in average
are 3⇥ in D1, D2, D3, D4, and D6 and 8⇥ in D5, which is much
improved than ULLC-A. Although a small bu�er may lead to infe-
rior performance, from Table 1, we observe that such an accuracy
tradeo� is not signi�cant in practice. Speci�cally, compared with
ULLC-A, ULLC-S sacri�ces a 7.6% accuracy in average to gain the

computation e�ciency. It is worth to point out that ULLC-S still
outperforms GeppNet (10%), EWC (10%), and GEM (10%) in all
datasets, outperforms GeppNet (30%) with two exceptions only, and
outperforms EWC (30%) in two datasets.

Overall, the accuracy-e�ciency tradeo� exists in our approach.
We have proposed two variants, namely, ULLC-A and ULLC-S,
as a countermeasure, where ULLC-A yields better classi�cation
accuracy by paying o� a longer runtime and ULLC-S attains a
slightly inferior accuracy but enjoys a much improved computation
e�ciency. One can easily con�gure which variants to be applied to
suit speci�c application requirements, either focusing more on the
accuracy or on the e�ciency.

It is worth to note that, our approach operates in an unsupervised
fashion, in the sense that it does not require a continuous human
supervision to provide any labels for the future tasks. We believe
such an accuracy-e�ciency tradeo� pays o� since, in practice,
even a proportional labeling e�ort is onerous. For example, in our
experiments where the datasets contain from 10,000 to 21,193
instances, even 10% labels would entail tedious and costly human
e�orts. Our approach provides an apparatus to avoid the human
labeling overhead.

Q5. How do the curriculum design and knowledge retention im-
prove the learning accuracy?

We study this question from two perspectives. First, we illustrate
the trends of forward transfer error (FTE), an evolution trends of
classi�cation error rate at the most disparate task as more tasks are
learned, as shown in Figure 6. Speci�cally, for D6, by construction,
T10 is the most disparate task. For other datasets, as no such infor-
mation is available, we treat the task that is lastly learned in the
curriculum as the most disparate task.

From the �gure, we observe that our approach can gradually
make more accurate predictions on the most disparate task as more
candidate tasks have been learned. This phenomenon demonstrates
that our lifelong learner indeed becomes competent for predicting
those tasks that it was originally unfamiliar with (i.e., those tasks
being disparate from the knowledge base at initial time steps), by
growing its knowledge gradually with a curriculum.

Second, from Table 1, we observe that, GeppNet su�ers from high
variance with few exceptions. The reason is that, GeppNet imposes
weak constraint when updating network parameters, thereby being
brittle to the input task sequence. If a disparate task is handled early
by GeppNet, then the old knowledge is overwritten, deteriorating
the accuracy of GeppNet in predicting the pervious tasks. Our
approach overall enjoys both a higher accuracy and a lower variance
over GeppNet, demonstrating that learning tasks in a meaningful
curriculum can improve the overall prediction performance.

Q6. Is the weighted entropy a good heuristic for ordering candi-
date tasks in curriculum?

We leverage D6 to answer this question at two levels. At the coarse
level, we know in a priori that the unlabeled tasks T1 through T10

are increasingly further away from the labeled T0 in D6. Thus, if the
weighted entropy can precisely order tasks, then the curriculum
learned by our approach should coincide with this a prior task
ordering in D6. At the �ne level, we enforce the learner to use
the knowledge base formed at each time step to predict the most
disparate task T10, which is similar to the setting in Q5. During this
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Figure 7: Illustration of the task learning order (curriculum) in D6. The �gures plot the trends of the weight factors during
training EDAN, where �(1) and �(9) correspond to the shallowest and the deepest layers, respectively. The captions indicate the
tasks learned at each time step and calculate the weighted entropy Q based on the weight factors after convergence and the
classi�cation accuracy by applying the learner to T10.

process, we plot the weight factors of the learned EDAN and record
the corresponding weighted entropies (i.e., the Qs) and prediction
accuracies (i.e., the ACCs) in Figure 7. If the weighted entropy is
a good heuristic, it should precisely characterizes the changes of
the weight factors along the time horizon and builds a direct link
between the weight factors and the accuracies.

The curriculum that the ULLC-A algorithm learned for 8 time
steps is illustrated Figure 7 (We omitted the �gures for two steps
to save space). Our observations are as follows. First, the captions
of the sub-�gures 7a – 7h describe the task that is chosen and is
merged into the knowledge base at each time step, representing
the curriculum learned by our approach. From the captions, we
observe that the tasks are chose in the ordering of T1, followed by
T2, and all the way to T9. This ordering coincides with the a prior
task ordering in D6, verifying that a desired curriculum is obtained
with the help of weight entropy.

Second, the weight entropy is strongly correlated with the predic-
tion accuracies and the weighted factors of trained EDAN. Specif-
ically, in sub-�gures 7a – 7d, as the knowledge base remains far-
away from T10, the deeper layers in EDAN dominate, which is
precisely characterized by the higher-valued weighted entropies.
In sub-�gures 7e – 7h, once the knowledge base approaches T10,
shallow layers start to take over, which is re�ected by the weighted
entropies with decreasing values. Meanwhile, the pattern is clear
that, as the value of weighted entropy goes down, the prediction
accuracy increases. This �nding con�rms that the weighted en-
tropy is a good heuristic to reduce the weight factors (vectors) into
a single value to ease task ordering, as we desired.

7 CONCLUSION
This paper proposed a novel lifelong learning paradigm, named un-
supervised lifelong learning with curricula (ULLC), which enables
a learning system to continuously learn from a sequence of future
tasks that are quite disparate from the initial task it was trained
on. As labeling is a costly, tedious, and error-prone in practice,
providing constant labeling e�orts for all future tasks is close to
impossible. Our paradigm that requires no labels from any future
task is thus particularly promising. The main challenge in our par-
adigm lies in the occurrence of negative knowledge transfer, as it
is fundamentally di�cult to identify which pieces of previously
learned knowledge are helpful or detrimental for learning a future
task without the presence of task labels. Our key idea to overcome
this challenge is curriculum learning. That is, instead of selecting
the knowledge pieces to best match a given task, our learner ac-
tively selects the next task to learn, based on its distance to the
knowledge base, which is formed by retaining and accumulating
data instances that are predicted with high con�dence from ear-
lier tasks. A theoretical analysis substantiated that our curriculum
learning idea provably leads to performance improvements over
other lifelong learners that deal with tasks in an arbitrary order.
An empirical study with various real-world datasets shows that
our approach achieves comparable performance to its supervised
learning counterparts, con�rming the viability of our approach.
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