Interpretable Minority Synthesis for Imbalanced Classification

Yi He, Fudong Lin, Xu Yuan* and Nian-Feng Tzeng
University of Louisiana at Lafayette

{yi.hel, fudong.lin1, xu.yuan, nianfeng.tzeng} @louisiana.edu

Abstract

This paper proposes a novel oversampling ap-
proach that strives to balance the class priors with a
considerably imbalanced data distribution of high
dimensionality. The crux of our approach lies
in learning interpretable latent representations that
can model the synthetic mechanism of the minority
samples by using a generative adversarial network
(GAN). A Bayesian regularizer is imposed to guide
the GAN to extract a set of salient features that are
either disentangled or intensionally entangled, with
their interplay controlled by a prescribed struc-
ture, defined with human-in-the-loop. As such, our
GAN enjoys an improved sample complexity, being
able to synthesize high-quality minority samples
even if the sizes of minority classes are extremely
small during training. Empirical studies substan-
tiate that our approach can empower simple clas-
sifiers to achieve superior imbalanced classifica-
tion performance over the state-of-the-art competi-
tors and is robust across various imbalance settings.
Code is released in github.com/fudonglin/IMSIC.

1 Introduction

Imbalanced data abound in a variety of human endeavors
such as online transactions, biomedical images, social me-
dia, among many others. In such data, whereas the dis-
tribution of samples representing the majority and minority
classes is highly skewed, the minority samples are usually of
much greater interest and tend to incur huge costs if misclas-
sified. For example, misclassifying a credit card fraud from
millions of legitimate transactions would result in a financial
loss, while failing to diagnose lung cancer from a massive
amount of CT images may end up with fatalities.

However, building classifiers from imbalanced data re-
mains a challenging task, where the key lies in how to bal-
ance the class priors so that the minority samples are more
focused. To that end, oversampling is a generic and preferred
solution over other methods such as undersampling or cost-
sensitive learning, as it neither suffers from the removal of
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Figure 1: Illustration of the outputs of linear and deep oversam-
pling techniques, where the digits “0”, “2”, “4”, and “5” repre-
sent the minority classes in an imbalanced ratio of 1 : 100. (a)
SMOTE [Chawla et al., 2002] outputs noises erroneously as non-
existent digits. InfoGAN [Chen et al., 2016] may either (b) lose
track of digit identities so as to generate samples from wrong classes
or (c) overfit to identical visual patterns thereby lacking diversity. (d)
Our approach synthesizes samples being both faithful and diverse.

valuable information nor entails expert knowledge to craft
domain-specific objective functions [Branco et al., 2016].
Yet, the crux of oversampling relies on two principles: i)
the fidelity, where synthesized samples should truly belong
to the minority classes, and ii) the diversity, where synthe-
sized samples should carry a variety of patterns so as to better
the classifier. To implement the two principles, the dominant
paradigm is to uncover the geometric shape underlying data,
on which new data points are synthesized within the local re-
gions, comprising both majorities and minorities (so to cover
various patterns), with the minority class dominating (so the
new points are likely to be the true minorities).
Unfortunately, this conventional oversampling paradigm
only works well for low-dimensional data and fails to gener-
alize to high-dimensional and complex data, such as images.
The reason is that the high-dimensional vectors usually lie on
or close to a non-linear manifold that is described by a much
smaller number of latent features. The previous methods ap-
plying a linear combination of existing data to synthesize new
points fail to respect such non-linear structures. As a result,
the synthesized samples being disparate from the manifold
will become noises, not belonging to any class, as shown in



Figure 1a, defying the fidelity principle.

To overcome the issue, it seems plausible to leverage deep
generative models to capture the non-linear intrinsic struc-
tures of data, hoping that the new points are synthesized faith-
fully. This idea, however, cannot work well, as the deep
models are usually data-hungry, while the minority classes
can afford very limited numbers of samples only. In effect,
the use of deep generative models gives rise to a prominent
fidelity-diversity tradeoff. That is, on the one hand, if the
minority samples do cover a variety of patterns (e.g., visual
concepts such as rotation and scaling), the samples carry-
ing each pattern cannot suffice to train a robust deep model,
where the synthesized samples are likely to be noises (e.g.,
images with non-existent or wrong digit identities) as shown
in Figures 1b. On the other hand, if the minority samples
carry limited patterns only, the deep models tend to discover
a converged region, making the synthesized samples nearly-
identical as shown in Figures 1c. The trained classifier would
suffer from overfitting and hence generalize poorly to the test
data that carry additional or different patterns.

To tackle the undesired tradeoff between fidelity and diver-
sity, this paper proposes a novel generative adversarial net-
work (GAN) architecture that learns interpretable latent rep-
resentations to describe the non-linear structures underlying
data. Our key idea is to impose a Bayesian regularizer to en-
courage the extracted features to interact in accordance with a
dependency structure given a priori. This structure can guide
the GAN to discover a set of features that carry salient seman-
tic meanings as we desire by controlling over the granularity
of the latent space. In particular, on the one hand, we enforce
the salient features that determine the class membership of
synthesized samples be strictly disentangled from other fea-
tures, so as to practice the fidelity principle. On the other
hand, we allow the features representing visual concepts to
be entangled in an informative manner, so as to observe the
diversity principle. As such, our GAN architecture enjoys
better sample efficiency and thus can synthesize high-quality
minority samples across various imbalance settings.

Specific contributions of this paper are as follows.

1. We propose a novel oversampling approach by leverag-
ing GAN to model the data generating mechanism with
non-linear latent representations.

2. A Bayesian regularizer is crafted to impose structural
constraints upon the learned space, guiding GAN to
discover a set of salient features that convey semantic
meanings and form dependency structures in a human-
controlled, and hence interpretable, manner.

3. Extensive experiments are carried out, and the results
substantiate that our approach can enable simple classi-
fiers to outperform the state-of-the-art imbalanced clas-
sification competitors across various imbalanced ratios.

2 Preliminaries, Challenge, and Our Idea

Problem Statement. Consider a set of N samples
{xZ}fV: 1 € X, deemed as the real data, which are drawn from
a complex yet unknown distribution x; ~ P...;. Suppose
they are in C' classes, with the numbers of samples in each

class being {n1,...,nc}and N = 25:1 ne. In this paper,
we consider a highly imbalanced setting, where the size of the
largest class (i.e., the majority) is much larger than that of the
smallest one (i.e., the minority) by at least two orders of mag-
nitudes. Our goal is to synthesize new samples for minority
classes, balancing the class priors for accurate classification.

We frame our design in a generative adversarial network
(GAN) regime. Let G and D denote the generator and the
discriminator, respectively. For a conventional GAN, G takes
in a noise vector z € R% and outputs the synthesized, fake
data; then, D receives both the data generated by G and the
original samples, striving to classify them as real or fake. As
such, the training process of a GAN can be deemed as a two-
player minimax game between G and D, defined as follows.

m(gin mgxﬁadv(G, D) — \Q(G), (1)

where Lygy (-, -) denotes the adversarial loss [Goodfellow et
al., 2014] and Q(G) is the regularization term. The intuition
behind Eq. (1) is that, while G aims to generate seemingly
authentic data to fool D, D tries its best to screen the fake data
out. To this end, subsequent GAN studies devise different
regularizers to impose constraints on the searching space of
G, hoping the learned G to possess various properties.

InfoGAN for Salient Feature Disentanglement. To have
control over the patterns of synthesized data, InfoGAN [Chen
et al., 2016] tailored a information-theoretic regularizer that
maximizes mutual information between a set of observed
variables and the generator distribution. Specifically, G re-
ceives the input vectors in the form of [z, c] ', where ¢ € R4
is a set of observed variables.

The regularizer is defined as Q(G) = I(c; G(z,c)), where
I(-, -) calculates mutual information and G(z, c) is the fake
samples output by G. The intuition behind this design is
to preserve the information of observed variables during
the generation process, so they can convey certain seman-
tic meanings, where each variable becomes an disentangled
salient feature of the synthesized samples (e.g., digit identi-
ties and visual concepts of images).

Challenge: the Fidelity-Diversity Tradeoff. To adopt In-
foGAN (or other GAN variants) for the minority synthesis, a
prominent tradeoff between fidelity and diversity arises. The
reason is that, as the mutual information term is computa-
tionally intractable, InfoGAN casts it into a variational lower
bound maximization problem instead. This approximation,
however, makes the optimization problem data-hungry, while
in our setting the minority classes can afford very limited
samples only. Hence, the independence of the extracted la-
tent features cannot be guaranteed, such that the generated
samples are likely to be noises and hence are not faithful. For
example in MNIST, the synthesized minorities may be non-
existent digits or seem to be the digits from majority classes.

A naive solution to counter this fidelity issue is to repli-
cate or replay the minority samples multiple times along with
the majority samples during training. Unfortunately, this so-
lution leads to overfitting since the minority classes usually
contain samples having limited visual patterns. As a result,
the synthesized minorities are likely to be identical, lacking



diversity. A classifier trained on such synthesized minorities
cannot generalize well to the test data with additional or dif-
ferent patterns, yielding inferior classification performance.

QOur Idea: Bayesian Network Regularizer. To improve
sample efficiency, we model the joint distribution of the
observed variables and the extracted latent features with a
Bayesian network [Heckerman and Wellman, 1995; Beyazit
et al., 20201, which in turn functions as a GAN regularizer.
Three observations motivate this idea. First, a Bayesian struc-
ture captures feature relationships, leading to the extraction
of latent representation in a finer level of granularity, which
allows to model the joint distribution of variables in a high
degree of freedom. Namely, it can control the structure of
the latent feature space, in a way that it lets some variables
be strictly disentangled from other variables, while allowing
some other variables to be entangled in a pre-defined manner.
Second, compared to the unstructured method, having control
over the feature dependency structure lifts the requirement of
massive amounts of training data, making it better suit for
class-imbalanced settings. Third, capturing the dependency
structure among the latent features provides additional under-
standing about the data. Such an understanding in turn fosters
the (deep) model interpretability.

3 Our Approach

We aim to learn interpretable minority representations via the
joint consideration of strictly disentangled and informatively
entangled latent features. In Section 3.1, we elaborate the
learning objective function and the intuition behind its de-
sign. In Section 3.2, we scrutinize the parameter estimation
strategy tailored for efficiency improvement.

3.1 Bayesian Regularizer for Minority Synthesis

Our GAN architecture is illustrated in Figure 2. Let [z, c]
denote the input variables, in which the noise vector z im-
plicitly approximates the sample probability distribution and
c represents the observed variables expected to take on salient
meanings after training. Without loss of generality, we fol-
low [Chen et al., 2016; Beyazit et al., 2020] to draw z and
c from factored distributions such as Gaussian with identity
covariance, i.e., z, ¢ ~ N(0,1). 6 and 0p parameterize the
generator GG and discriminator D, respectively.

T

Latent Code Extraction. We consider D to comprise two
sub-networks, namely, a feature extractor and a classifier. In
particular, after receiving a sample being fake (i.e., generated
by G) or real, a feature extractor F' parameterized by 0 ex-
tracts the latent features from the sample, defined as:

F({x,G([z,c]",0c)};0p) = [2,c]", )

where the dimensions of z’ and ¢’ are identical to those of
z and c, respectively. Here, we deem ¢’ as the latent code,
in which each variable represents a salient feature, forming a
dependency structure with the observed variables in c.

Bayesian Modeling. We let a Bayesian network B model
the joint distribution of ¢ and ¢, w.r.t. a given connectivity
pattern, as a product of local distribution probabilities. De-
noted by p; = {pi1, Pi2, - - ., Pir } the parents of the i-th vari-
able ¢} in the latent code ¢/, k < |c| + |c/|. Note, 1) the
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Figure 2: The architecture of our proposed GAN with the depen-
dency structure among the observed variables and the extracted la-
tent code represented by a Bayesian network to guide the GAN train-
ing. Here, four salient features are extracted, among which 1) ¢} is
strictly disentangled and 2) ¢} and c} are entangled with c}.

observed variables in ¢ do not have parents as they are sam-
pled directly from a Gaussian; 2) any latent ¢ can be parented
by both observed or latent variables according to the topology
of B. The local conditional probability of ¢/ is defined as:

P(c; | pi) = N(w; pi; 07)
_ exp (= wpi)?
2ro? 2072

7 K2

], 3)

where w; and o7 denote the weight vector representing a lin-
ear structure between ¢ and its parents and the variance cap-
turing the Gaussian noise around such structure, respectively.

The optimal parameters (w;,o?) for Eq.(3) can be esti-
mated in each observed training batch Specifically, in a batch
of size m, we denote the values of the i-th latent variable c;
asc; := [¢j,,...,c},,]" € R™ and the values of its par-
ents as P; := [pi1,... ,piml]—r € R™*F_ Thus, the local
conditional parameters can be estimated by solving the log-
likelihood function, defined as follows.

arg maxlog L(w;, 02 : ¢, P;) =
w1,02
1 Chm = Wi Pim)”
— 52 |los(zmo?) + 21— @

By estimating the parameters for all local conditionals,
we have the parameter of Bayesian network as 0z =
[(W1,62),..., (W, 62)] withn = k. The likelihood that the
dependency structure formed by the observed variables and
the latent code coincides the topology of B and is the joint
product of local conditionals, calculated by:

P(c,c’; B) H]Pc | pi, 05)P(ci; N(0,1)).  (5)

Notably, the likelihood in Eq. (5) takes the form of a fac-
torization of local conditionals and thus measures how well
B fits the generated samples. By maximizing Eq.(5), we
intermediately manipulate the data generator, regularizing it
to generate samples with respect to the fidelity and diversity
principles as we desire. In particular, the synthesized samples



are faithful since 1) they cannot be differentiated by the dis-
criminator and must belong to an existing class and 2) we can
enforce the disentanglement of salient features by controlling
which class they belong to, such that the minorities are syn-
thesized precisely. Also, the synthesized samples can be di-
verse and carry various visual patterns because the salient fea-
tures representing the visual concepts can be entangled in an
informative, controllable, and hence interpretable fashion.

3.2 Gradient-Based Parameter Estimation

Estimating the parameter 6z for the Bayesian regularizer en-
tails a series of estimations of local conditionals by solving
Eq. (4). Unfortunately, this process could be tedious and may
introduce an estimation bias depending on the number of mi-
nority samples in a training batch. It is expected to bypass
this process and estimate the parameters in a stochastic way,
so as to improve the efficiency and minimize the bias.

To this end, we inject the likelihood maximization pro-
cess into the loop of GAN training, guiding the GAN to
generate data with a desired structure among the extracted
features. Our solution is built upon the following observa-
tion. Suggested by Eq. (2), a mapping from observed vari-
ables to the latent code is parameterized by 6 and 6. By
taking the first-order derivative of Eq.(4) w.r.t. w; and o7,
we observe that the estimation of € entails the marginal,
along with the expectations between the observed and latent
variables, indicating that 6 and 6 together with the fac-
tored distribution of the observed variables contain sufficient
statistics to approximate fp. It allows to approximate the
joint distribution P(c, ¢’; B) with ¢ and 6F directly, omit-
ting O estimation, where the likelihood function is expressed
asL(0g,0F : c,c’, B). Based on this observation and Eq. (5),
we derive the objective function as follows.

arg max logL(0g, 0 : c,c’, B)
0c.0F

/

:argminz [Zﬁ(E(cé),E(pi’j);Gg,Gp)
ba:0r =7 L=
2|c’|—k

N Z ((E(c;), E(Pij); 0, 0F) |, (6)

Jj=1

where E(c}) and E(p; ;) correspond to the empirical expec-
tations of the i-th latent code and its k-th parent estimated
in one training batch, respectively. Denoted by p; the values
taken by the variables which are not the parents of ¢ in B.
The intuition behind Eq. (6) is as follows. The value of the
minus of two loss terms, both evaluated by ¢, shall decrease
if the salient features are correlated with their parents only,
i.e., the parenting variables can precisely infer the latent code
in the feedforward pass; Otherwise, if the salient features are
correlated with their non-parents or cannot be inferred from
their parents, this value increases. In practice, we implement
the loss metric ¢ with mean squared error, which equates
to the log-likelihood maximization for Gaussians in gener-
alized linear models [McCullagh, 2018]. Thus far, Eq.(6)
which functions as the Bayesian regularizer can be optimized
through gradient-based, stochastic updates. By enforcing the

observed variables and the latent codes to follow a specified
structure (i.e., I3), our GAN is guided to learn how to synthe-
size samples in an efficient and interpretable manner.

4 Experiments

This section experimentally validates that our approach can
empower simple classifiers to perform the state-of-the-art im-
balanced classification accuracy by synthesizing high-quality
minority samples across various imbalance settings.

Datasets. We benchmark our experiments on two widely
used image sets, namely, MNIST [LeCun er al., 2010] and
Fashion-MNIST [Xiao et al., 2017]. To simulate an imbal-
ance setting, we follow [Mullick et al., 2019] to choose spe-
cific classes as the minority and then randomly remove sam-
ples from those classes until the imbalanced ratio (IR, ratio
of the size of the largest class to that of the smallest class)
reaches a preset threshold. To verify the robustness of our ap-
proach, we use 6 different IR settings ranging from 50 to 500.
Notably, a dataset with IR over 10 can be deemed as highly
imbalanced and over 100, as extremely highly imbalanced.
The larger the IR, the more difficult the classification task.
To the best of our knowledge, cost-sensitive learning meth-
ods thinly restrict the IR under 10, while oversampling meth-
ods usually allow higher IRs. We perform a 10-fold cross-
validation to eliminate the randomization bias and record the
averaged results and the corresponding statistics.

Compared Methods. We take three imbalanced learn-
ing competitors, namely, SMOTE [Chawla et al., 2002],
InfoGAN [Chen et al., 2016], and DGC [Wang et al.,
2020]. Among them, SMOTE and InfoGAN represent the
interpolation-based oversampling techniques via capturing
linear relations and deep geometric relations among data, re-
spectively. DGC denotes a state-of-the-art imbalanced clas-
sifier, which does not explicitly synthesize new samples but
balances the sample counts of class priors in the latent fea-
ture space directly. Note, DGC operates in an end-to-end
fashion. To conduct a fair comparison, we synthesize the mi-
nority samples using SMOTE, InfoGAN, and our approach,
and then feed the balanced datasets (original plus synthesized
samples) to three CNNs with an identical architecture for
classification. Our evaluation aims to answer the following
three research questions.

Q1. Does our approach outperform the state-of-the-arts?

Given that the minority classes are of greater interests in real-
world applications, recall, which measures the percentage of
minority samples being correctly classified, is used. Also, to
test how well the methods can maintain an accurate prediction
on the majority classes, F1-score that represents the harmonic
mean of recall and precision is employed.

Table 1 presents the comparative results. We have four ob-
servations. First, our approach achieves the best performance
with 87.3% recall and 91.69% F1-score on average. The sta-
tistical evidence exhibits that our approach outperforms its
counterparts across 4 experimental settings, with 16% and
6.17% performance improvement on average in terms of re-
call and Fl-score, respectively. Second, SMOTE performs
the worst by achieving averagely 76.5% recall and 85.94%
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|
Method | 8 (IR=67:1) \ 9 (IR=100:1) \ Bag (IR=67:1) \ ‘Ankle boot (IR=100:1)
‘ Recall ‘ F1-Score ‘ Recall ‘ F1-Score ‘ Recall ‘ F1-Score ‘ Recall ‘ F1-Score
SMOTE | .829 +.002e | .899 +.001e | .767 &.003 e | .860 +.002e | .686 +.003 e | .812+.001e | .778 +.004e | .866 & .001 e
InfoGAN | .802 £ .003 e | .876+.000e | .780+.003 e | .855+ .001e | .734+.003e | .839+.001e | .815+.001e | .874+.000e
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Ours. | .893+.001 |.930+.000 | .859+.000 |.915+.000 |.831+.001 |.899+.000 | .908+.001 | .922+.000

Table 1: Experimental results (Mean Accuracy =+ Standard Deviation) with various IRs. The best results are bold. e indicates our approach
significantly outperforms the compared method (statistically, with the hypothesis supported by paired t-tests at 95% significance level).
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Figure 3: Classification results under different imbalance ratios,
with metrics being Left: Recall and Right: F1-Score.

Fl-score. This substantiates that the conventional oversam-
pling techniques leveraging the linear structure to synthesize
minority samples, cannot handle high-dimensional and com-
plex data well, thereby yielding inferior performance.

Third, InfoGAN and DGC, both of which exploit deep
models to capture the non-linear latent structure underlying
data, enjoy better performances over SMOTE, with 2.3% and
2.92% recall improvement, respectively, and 0.27% and 1.2%
F1-score improvement, respectively. This verifies the useful-
ness of modeling the data generating mechanism with salient
features (latent code). Fourth, all methods perform worse in
Fashion-MNIST than in MNIST, making an intuitive sense
because Fashion-MNIST contains real-world data that carry
more plentiful yet complex hidden patterns. We observe
that InfoGAN and DGC decrease their recalls by 2.09% and
1.6% in Fashion-MNIST, respectively, from those in MNIST.
This indicates that the data-hungriness of InfoGAN and DGC
leads to inferior performance results in highly imbalanced
settings, where the very limited sizes of minority classes can-
not afford sufficient samples to allow them to properly char-
acterize the complex patterns hidden behind Fashion-MNIST.
On the contrary, our approach enjoys a higher sample effi-
ciency by leveraging a Bayesian structure and hence performs
robustly in Fashion-MNIST, with only a 0.76% drop in recall.

Q2. How robustly can our approach perform in a variety of
imbalance settings?

We answer this question with Figure 3, in which the trends
of recall and F1-score in different imbalance ratios are illus-
trated. Our observations are as follows. First, our approach
outperforms the compared methods in terms of recall and F1-
score across all IR settings. Also, as IR increases, the per-

formance of our approach deteriorates less noticeably ( for
large IRs > 400) than the compared methods. Second, DGC
outperforms InfoGAN in low IR settings but its recall and
F1-score drop more steeply than InfoGAN. Hence, InfoGAN
exceeds DGC as IR increases. This is because DGC models a
structural relationship between the latent code and the class
labels in a closed form, missing out the intra-relationship
among variables in the latent code. Therefore, DGC concep-
tually incurs high sample complexity, being more sensitive
to different IRs. Both InfoGAN and our approach respect
such variable-wise interactions and thus are more robust than
DGC. Third, our approach enjoys a higher sample efficiency
than InfoGAN, evidencing that our employed Bayesian struc-
ture can model the variable-wise interaction in a more explicit
manner than mutual information.

Q3. How interpretable are our extracted salient features,
and how well are they under control?

The answer to this question serves as an ablative study, re-
vealing the effectiveness of our approach in implementing the
fidelity and diversity principles during the minority synthesis
process. To preserve the fidelity, we desire a strict disentan-
glement of the latent features deciding which classes the syn-
thesized samples belong to. To this end, we apply a one-to-
one dependency structure to the observed variables and the
latent code, as shown in Figure 4a. Beyond a visual, qual-
itative validation, we quantify the disentanglement capacity
of our approach by using the dSprites dataset, following the
setups of [Kim and Mnih, 2017]. The disentanglement scores
calculated for InfoGAN and our approach across various IRs
are reported in Figure 4b. The higher the score, the better the
disentangling performance, with our approach clearly outper-
forming InfoGAN in all IR settings.

To verify whether our approach can synthesize samples
with salient features being interacted in a pre-defined struc-
ture, we entangle the variables in the latent code as depicted
in Figure 4c. The correspondingly synthesized samples are
demonstrated in Figures 4d and 4e, where, the first two fea-
tures extracted by the model in Figure 4d are thickness (c1)
and width (c2), and the features in Figure 4e are rotation (c;)
and width (c2). From the figures, we observe that the inter-
action of these features leads to an entangled latent variable
c3 which conveys the semantic meanings of ¢; and ¢ jointly.
These results suggest that the Bayesian regularizer can guide
GAN to entangle or disentangle extracted latent variables in
accordance with a given dependency structure.



/

Z“C}*Cg) IR 100 200 300
10— 1@ InfoGAN 525 410 .361
""" , Ours. 585 479 388

O

(a) Disentangled. (b) dSprite scores.

SO CEl 0 0 0 0 ofgls 5 55 5
SEEEE SRl 0 0 0 0Ol 5 5 5 5 5

\ ¥
@ 8¢ &0 0 0 O0OLKIS 5555
(c) Entangled. (d) Thick + Rotate. (e) Size + Rotate.

Figure 4: Bayesian regularizer to control the salient feature space.

5 Related Work

As our work tightly relates to deep generative modeling and
imbalanced classification, in this section, we discuss how it
connects with and differs from the prior arts.

Deep Generative Models. Popularized by [Kingma and
Welling, 2013] and [Goodfellow er al., 2014], Variational
Auto-Encoders (VAEs) and Generative Adversarial Networks
(GANSs) have become the de facto solutions to model the data
generation mechanism with deep architectures. To compare,
VAEs explicitly model the data density functions via varia-
tional approximations, while GANs implicitly learn the data
densities by setting up a two-player game between a generator
and a discriminator. Subsequent VAEs [Higgins et al., 2017;
Adel et al., 2018] investigate how to further disentangle latent
features by imposing constraints on the variational posterior.
Compared to VAEs, GANs need to implement additional ap-
paratus for the latent feature disentanglement. A prominent
work is InfoGAN [Chen et al., 2016], where the mutual infor-
mation between the observed and the extracted latent feature
subsets are maximized to realize the disentanglement. In ad-
dition to a set of subsequent studies such as [Tran er al., 2017;
Lee et al., 20201, we are aware of two recent works [Kim et
al., 2019; Beyazit et al., 2020] that also respect dependency
structure among variables in the latent space with Bayesian
treatment. However, these works were to extract various
types of salient features while our task is imbalanced classifi-
cation. The technical challenge and focus are thus different.

Despite effective, most existing deep generative models en-
vision uniformly distributed data and usually perform poorly
in an imbalanced setting with scarce minority samples [Ojha
et al., 2020]. Exploiting deep generative models for im-
balanced classification is relatively under-explored. Our ap-
proach strives to fill this gap, enabling the extraction of in-
terpretable and salient features with high sample efficiency,
thereby enjoying a robust and quality minority synthesis
across various imbalance settings.

Imbalanced Classification. Existing studies can be clas-
sified into two categories [Branco e al, 2016; Huang et
al., 2016]. First, cost-sensitive learning, which tailors task-
specific loss functions, such that the minority classes are more
focused during the optimization process [Elkan, 2001]. Re-

cent advances include focal loss [Lin et al., 2017a] and dice
loss [Li et al., 2020al, which have manifested remarkable per-
formance in the tasks of computer vision and natural language
processing, respectively. Unfortunately, they entail extensive
domain expert knowledge to craft the learning objectives and
to tune the hyperparameters [Li et al., 2020b], thereby being
less accessible for users without such knowledge.

Second, resampling techniques, which manipulate the class
priors by either dampening majorities (i.e., undersampling) or
synthesizing minorities (i.e., oversampling) strategically. As
undersampling tends to remove valuable information [Lin et
al., 2017b], especially in highly imbalanced settings, over-
sampling becomes superior.

However, the mainstream oversampling studies focus on
generating artificial points with a linear combination of the
existing data [Chawla et al., 2002; He et al., 2008; 2018; Yin
et al., 2020], failing to respect the fact that high-dimensional
and complex data usually lie around a lower-dimensioned,
non-linear manifold. Few studies have explored how to cap-
ture such intrinsic structures with deep models [Guo er al.,
2019; Wang et al., 2020] with their methods operating in an
end-to-end, black-box fashion, leaving the data generating
mechanism agnostic and unknown. Therefore, these studies
always suffer from tedious parameter-tuning processes based
on various domains, tasks, and imbalance settings. Our ap-
proach opens the black box and explicitly models the data
generating distribution in an interpretable feature space, con-
trolled with human-in-the-loop.

6 Conclusion

This paper has proposed a novel oversampling approach
which exploits the generative adversarial network (GAN) to
model the data generating mechanism for the minority sam-
ples. The crux of our design lies in the learning of latent
yet interpretable representations to capture the non-linear ge-
ometric structure underlying data. To this end, we have de-
vised a Bayesian regularizer which guides the GAN to extract
a set of salient features that interact in accordance with a de-
pendency structure given a priori. As such, we can control
over the learned space by intentionally entangle or disentan-
gle the salient feature as we wish, so as to synthesize minority
samples that carry diverse patterns and are faithful to the class
labels. We have carried out both quantitative and qualitative
experiments in a variety of imbalanced settings. The results
substantiate that 1) our approach can synthesize high-quality
samples in even extremely high imbalance ratios, and 2) our
synthesized samples can help the simple classifiers to outper-
form the state-of-the-art imbalanced learning methods.
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