Platform-Oblivious Anti-Spam Gateway

Yihe Zhang
yihe.zhang1@louisiana.edu
University of Louisiana at Lafayette
Lafayette, LA, USA

ABSTRACT

This paper addresses a novel anti-spam gateway targeting multiple
linguistic-based social platforms to expose the outlier property of
their spam messages uniformly for effective detection. Instead of la-
beling ground truth datasets and extracting key features, which are
labor-intensive and time-consuming, we start with coarsely mining
seed corpora of spams and hams from the target data (aiming for
spam classification), before reconstructing them as the reference.
To catch each word’s rich information in the semantic and syntac-
tic perspectives, we then leverage the natural language processing
(NLP) model to embed each word into the high-dimensional vec-
tor space and use a neural network to train a spam word model.
After that, each message is encoded by using the predicted spam
scores from this model for all included stem words. The encoded
messages are processed by the prominent outlier techniques to pro-
duce their respective scores, allowing us to rank them for making
the outlier visible. Our solution is unsupervised, without relying
on specifics of any platform or dataset, to be platform-oblivious.
Through extensive experiments, our solution is demonstrated to
expose spammers’ outlier characteristics effectively, outperform
all examined unsupervised methods in almost all metrics, and may
even better supervised counterparts.

CCS CONCEPTS

« Security and privacy — Network security; Intrusion/anomaly
detection and malware mitigation.

KEYWORDS
spam detection, unsupervised, outlier detection, NLP

ACM Reference Format:

Yihe Zhang, Xu Yuan, and Nian-Feng Tzeng. 2021. Platform-Oblivious Anti-
Spam Gateway. In Annual Computer Security Applications Conference (AC-
SAC °21), December 6—10, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3485832.3488024

1 INTRODUCTION

Nowadays, the ever-growing use of social platforms (e.g., social net-
works, emails, and others) brings great convenience to our daily life,
leading to our high reliance on them for communications, conver-
sations, or discussion. At the same time, it also pervasively attracts
spammers’ interests to spread spam messages or information, that
pollute the social platforms purposefully. Existing anti-spam mech-
anisms have filtered the majority of spam messages, leaving out
only a small portion. Nonetheless, spam messages that escape from
anti-spam mechanisms are still plentiful, and they continuously
cause gross detriments to the normal users. It remains challeng-
ing to detect and remove them for mitigating the cyberspace risks

“Corresponding author

Xu Yuan®
xu.yuan@louisiana.edu
University of Louisiana at Lafayette
Lafayette, LA, USA

Nian-Feng Tzeng
tzeng@louisiana.edu
University of Louisiana at Lafayette
Lafayette, LA, USA

and sanitizing social environments. Given the fact that spammers
inevitably exhibit behavioral patterns which differ considerably
from those of normal users, such a disparity never disappears once
spammy behaviors are undertaken. Furthermore, skillful spammers
may keep evolving to imitate normal users by concealing their
behaviors for abnormality reduction. As a result, it is imperative to
design an intelligent spam detection system for mining the latent
patterns and use them for classifying spammers automatically.

To date, various supervised learning methods have been pro-
posed for spam detection. By extracting effective features and re-
lying on labeled ground-truth datasets, the machine learning clas-
sifiers learn the latent disparity inherent to spam and ham (i.e.,
non-spam) messages. Extensive work has undertaken on extract-
ing various features, including user profiles [13], behaviors [23],
message contents [32, 54], user relationships [9, 49], among others.
However, extracting key features has been widely recognized as a
challenging problem. In addition, all those features are tailored only
to a specific dataset or platform, with considerable effort involved
in deriving new customized features for every individual platform.
Furthermore, reliable large-sized ground-truth datasets are nec-
essary for supervised learning, but they represent another chal-
lenge. So far, there is no effective method for labeling a large-sized
dataset reliably. Moreover, the supervised methods may perform
poorly when applied to the real social networks data, where the
spam and ham messages are highly uneven, as revealed by promi-
nent research [29, 44, 52, 55]. Meanwhile, semi-supervised methods
[11, 18, 24] have been proposed to mitigate their reliance on the
ground-truth datasets. But, suitably sized ground-truth datasets
are still required, and one proposed solution generally performs
unsatisfactorily when applied to other platforms. Although diverse
unsupervised learning methods were pursued [28, 35, 50, 51] for
freeness from labeling datasets, they usually exhibit mediocre per-
formance.

To address the aforementioned concerns on feature extraction,
ground-truth labeling, cross-platform deployment, and unsatisfac-
tory performance, we aim to develop an effective platform-oblivious
framework for unsupervised spam detection. According to the fact
that spam messages account for a small portion of the total data
volume and that their patterns are fundamentally disparate in com-
parison to those from normal users, they can be easily detected and
removed, if exposed as the outliers of whole data volume. The promi-
nent outlier detection method proposed in [7] is effective in mining
the outlier property of a given dataset in three dimensions, i.e.,
Shapes, Magnitude, and Amplitude. However, not all spammers’ out-
lier characteristics are apparent, calling for an appropriate encoding
method to make spam messages visible in the three dimensions.

This paper introduces a novel spam detection approach by ex-
posing the outlier property of spams, deriving a platform-oblivious
framework to work in an unsupervised manner. Our approach is

https://doi.org/10.1145/3485832.3488024

unified and readily deployable to multiple linguistic-based social
platforms without involving extra effort individually. It relies on the
spam and ham words automatically mined from the target dataset
(aiming for spam classification), instead of the previously labeled
ground-truth dataset, to serve as the seed corpora of spams and
hams, respectively. A new method based on mining messages’ struc-
ture is proposed for automatically identifying the sets of spam seed
and ham seed corpora from the target dataset. We further refine
them with a series of techniques and then reconstruct them. Here,
the Gibbs sampling [36] is used to help us iteratively pre-label the
spam and ham datasets while sampling each word’s distribution
in the respective datasets. Such sampled word distributions are
used to calculate the spam scores of all words for reconstructing
both new spam and ham corpora. Furthermore, we employ the NLP
model to embed each word into the high-dimensional vector space
so that it can cover a rich set of words with the similar meanings
or structures. The neural network is then employed to learn the
high-dimensional representations of words and their associated
scores to train a spam word model, serving to predict other words’
spam scores in the target dataset.

Meanwhile, we represent each message in the target dataset by
a list of stem words, which are then inputted into the spam word
model to predict the spam scores, being used to encode this message.
In the end, Magnitude outlier approach stated in [7] is employed
with the input of encoded messages to calculate their outlier scores
for ranking them from the highest values to the lowest to exhibit
spams’ outlier property.

The contributions of our work are summarized as follows.

e We develop a novel anti-spam gateway that can clearly ex-
pose the outlier property of spam messages in the target
datasets. Our system is unsupervised without relying on fea-
ture extraction or ground-truth labeling, able to significantly
relieve the detection workload. Instead, our system utilizes
the target dataset to acquire the spam words, potentially
overcoming the spam feature drift problem to some extent.

e Our solution is unified for manifold linguistic-based social
platforms since it does not rely on any prior knowledge (e.g.,
features and training data) to mine linguistic information
and patterns. Thus, it is not tailored to any specific platform
and can be deployed and integrated into multiple platforms
to automatically conduct spam detection task, without addi-
tional effort individually. The experiments confirm that our
system works efficiently on the datasets from short message
service (SMS), Email, and Twitter, exposing spams as the
outliers of the respective dataset.

e We propose a novel technique to estimate both the spam
ratio in a dataset and the threshold value used for detecting
spams via the visualized outlier curve. Such a technique is
important, acting as a complement to the prior outlier tech-
nique, for automatically separating spam and ham regions.

e We implement our system and run it on four linguistic-based
datasets from various platforms. Experimental results show
that our system not only outperforms all examined unsuper-
vised solutions in almost all performance metrics under the
four datasets, but also may surpass its supervised counter-
parts, while avoiding ground-truth labeling costs.

$ 88

Messages/Post
streaming
Social platforms Email SMS Tweets
SpamTitan SpamHound Twitter anti-spam
Commercial Symantec Mail Truecaller Hootsuite
. SpamAssassin Massage Blocking
anti-spam

Razor2 Verified SMS

Our solution Outlier-based spam detection

e
@\
=

[1 I [1 I 000
Users agn agn agawn

Figure 1: Illustration of our proposed solution in target prob-
lem space.

As an unsupervised spam detection solution, our proposed ap-
proach is readily applicable to datasets collected from a given social
platform at different time points without any labeling nor model pa-
rameter rectification effort at all, for time-invariant portability with
equally high accuracy. For example, our solution was applied both
to the set of 2,094, 889 tweets collected over two days in November
2020, and to Twitter Normal Dataset [1] (with 5, 823, 230 tweets col-
lected in 2019, as detailed in Section 4.1). It reported 161,935 tweets
as spams and 1,932,954 as ham ones for the 2020 tweet dataset,
giving rise to the Precision and Recall being 86.3% and 82.4%, re-
spectively. The results are close to those obtained by our solution
on the 2019 Twitter Normal Dataset (which yielded the Precision
of 85.1% and the Recall of 78.4% as shown in Table 4). Hence, the
proposed solution confirms the clear advantage of an unsupervised
approach, able to be platform-oblivious and time-invariant. For the
rest of this paper, we focus on the platform-oblivious perspective of
our solution, knowing that its time-invariant feature holds equally.

2 PROBLEM STATEMENT

This paper studies the spam detection problem in social platforms
where users post and/or interact via linguistic information (i.e.,
messages) for discussion or conversation. By realizing that the
spammy behaviors of a spammer will inevitably expose some na-
tures that are disparate when compared to normal users’ patterns,
we aim to capture such an inherent nature and develop a novel
platform-oblivious solution for its detection. «««< HEAD Our pro-
posed solution is to act as a complementary component to the
commercial anti-spam mechanisms (as shown in Figure 1), to fur-
ther filter out the residual spam messages that escape from existing
commercial anti-spam mechanisms. ======= Such a solution is to
act as a complementary component to the commercial anti-spam
mechanisms (as shown in Figure 1), to further filter out the residual
spam messages that escape from such anti-spam mechanisms. »»»>
6d01e4022cb92f8ca57d372b3da975ee09508ct6

3 AR BAEMA
» Ham

A Spam

of URLs
o
]
[]

1 -
0 50 100 150
Tweets ID

Figure 2: Spammers tend to employ more URLs than normal
users, causing them to stand out.

Ham

—+— Spam

0 1 2 3 4 5 6
Tweets features

Figure 3: Spam outliers, where an outlier feature value refers
to a substantially larger or smaller value than the mean, and
where 0-6 on the X-axis are 7 features extracted from each
tweet.

2.1 Motivation

Nowadays, commercial anti-spam mechanisms have been widely
deployed in social platforms, which can block the majority of spam
messages [41, 45]. However, there remains a small portion and yet
unignorable amounts that can escape from these mechanisms, per-
vasively polluting the social environments and causing cyberspace
risks. We observe that although spammers imitate the normal users
to conceal their spammy activities, their special behaviors inevitably
reveal inherent disparities with respect to the majority of normal
dataset, which can exhibit outlier characteristics detectable through
deep analyses.

Our empirical feat has unveiled that the outlier nature indeed
exists when analyzing some labeled ground truth datasets. For
example, [1] outlines a set of labeled tweets collected from Twitter
networks. We randomly select 189 tweets and analyze the number
of URLs included in each tweet. Figure 2 shows the numbers of URLs
involved in the spam and ham tweets, with red and blue points
denoting URL counts of the former and the latter, respectively.
Apparently, spammers tend to use more URLs than normal users
since an URL realizes redirection toward a certain malicious website.
This makes the spam tweets stand out, thus exhibiting the outlier
property. It should be noted that a disguise spammer may try to hide
its tweets’ outlier property by lowering the URL counts contained
therein, if the spammer knows the specific feature being targeted
for outlier detection. However, our solution employs a wide range
of features from both semantic and syntactic perspectives for outlier

detection and those features are not static, able to evolve over time,
as stated next.

The outlier property is evidenced by other features as well. Fig-
ure 3 shows different values of various features for spam and ham
tweets, with a total of 7 features (along the x-axis) considered, i.e.,
number of lists, number of favorites, number of statuses, number of
hashtags, username length, number of URLs, and user screen name
length. In this figure, red lines and blue lines indicate respectively
the spam and the ham tweets. It is observed that most spammers
exhibit themselves as outliers to some extent, with respect to the
values of these 7 features.

Figures 2 and 3 roughly exhibit a certain level of outlier property
for spams’ patterns when taking the proper features into account.
These results demonstrate that spam messages indeed have the
outlier property, thus motivating our development of a new spam
detection framework by exploring such property. Meanwhile, we
also observe some spam tweets still hide within the majority of
ham tweets. The reason is possibly due to the missing of some key
features or some spammers use sophisticated techniques to disguise
themselves, making their latent patterns inapparent. This signifies
that just selecting features to encode messages are inadequate. It is
necessary to develop a new encoding method to facilitate dataset
processing so that spam messages in the entire dataset can be
exposed as outliers. «««< HEAD In this work, we aim to have
a deep investigation into mining the disparate patterns between
spam and ham messages, for exposing the outlier characteristics of
spam messages in order to make them detectable. ======= In this
work, we aim to have a deep investigation to mine the disparate
patterns between spam and ham messages, for exposing the outlier
characteristics of spam messages in order to make them detectable.
»»»> 6d01e4022cb92f8ca57d372b3da975ee09508cf6 Our solution is
expected to be platform-oblivious, applicable to multiple linguistic-
based social platforms without rectification.

3 PLATFORM-OBLIVIOUS FRAMEWORK

In this section, we develop a platform-oblivious unsupervised sys-
tem that can be generally applied to different social platforms for
effectively singling out spam messages. Our system consists of the
following core components (shown in Figure 4): i) Rough Seed col-
lection (Section 3.1), ii) Reconstructing words corpora (Section 3.2),
iii) Training spam word model (Section 3.3), and iv) Outlier detection
(Section 3.4). Given any target dataset aiming for spam detection,
Section 3.1 proposes two measures to capture spam and ham’s
unique structures, respectively, in the target dataset, for helping
to roughly collect the spam and ham seed corpora. Section 3.2 nar-
rates the procedure for reconstructing spam and ham corpora by
leveraging the Gibbs sampling method [36] with our customized
design. Section 3.3 first details that each word in the reconstructed
corpora is embedded into the high dimensional vector space so as
to reflect its richer syntactic and semantic patterns, thereby able to
help cover a set of words that have the similar structure or meaning.
The neural network is then employed to train a spam word model
with the input of word vectors and the output of associated scores.
In Section 3.4, we use the trained spam model to predict the spam
scores of all stem words included in each message from the target
dataset and use them to encode this message. Then, the Magnitude

Target Dataset

Text Processing and
Segmentation

i v
Words Corpus || Embed Words into | -
Collection : | |Vector Space via NLP|
i Moldel
P,
Trained Spam Word

Sampling Word Neural Network

Distribution Model Model
v
Scoring Words Encoded Messages
v ¥

Embed Words into
Vector Space via NL
Model

Reconstruct Spam

and Ham Corpus Outlier Detection

Reconstruct Spam andj i
Ham Corpus
(Section 3.2)

Outlier Detection
(Section 3.4)

Ham Model
(Section 3.3)

Figure 4: Flowchart of our platform-oblivious spam detec-
tion system.

outlier approach [7] is employed by taking the encoded messages
as input to expose the outlier property of spam messages.

3.1 Seed Collection

Without the labeled ground truth for training, some patterns show-
ing the disparity between spams and hams have to be identified first
as the reference for distinguishing them in the design of our un-
supervised solution. Since spammers typically use certain specific
syntaxes and semantics for the spammy purpose, their messages are
constructed to have significant differences from the ham ones. This
inspires us to identify from the target dataset, two sets of words that
are highly likely to be used by spam and ham messages, respectively,
referring them as the spam seed and ham seed corpora. However,
deriving seed corpora is challenging, as for a given word, it is diffi-
cult to surely claim its polarity since it may have different semantic
meanings in various sentence structures. Inspired by the classical
directed acyclic word graphs language model often adopted to de-
tect unique structures of strings and substrings[30], we propose
two new methods, named as Average Longest Equivalent Relation
(ALER) and Mass Class Equivalent Relation (MCER), for calculating
the average length and the number, of different unique patterns in a
message, respectively. Our spam and ham corpora are constructed
according to ALER and MCER measures of all messages.

The initial step of our method is to pre-process the dataset in
two steps. (1) Word Cleaning: by removing auxiliary characters
and information from the dataset, such as the email address, URL
links, @ or hashtag information, etc. They are the regular format or
words that are commonly used in the social platforms but unhelpful
to mine spammers’ patterns, thus subject to removal safely. Then,
we remove the stop words that have little (or no) semantic meaning
by using the NLTK package in Python. (2) Stemming: by employing
the stemming process to further reduce inflected (or derived) words
to their stems, e.g., “take” and “took”. This step aims to use a unified
stem word to capture the corresponding spam or non-spam pattern.

With such two-step pre-processing, each message m; in a target
dataset D; can be represented with a list of stem words, denoted

as S; = {wj, wa,---}. For each S;, we discover all its N-grams
(with N ranging from 1 to 10, for simplicity, knowing that the
range can vary for different datasets) and put them into the set
of Sub(S;). We express all unique grams as Subr = Sub(S;) U
Sub(Sy),- -, Sub(Sk), where K is the number of messages. For
each gram s € Subr, if s appears in S, the corresponding index k
is recorded in Occ(s), i.e.,

Occ(s) = {kl|if s € Sub(Sy) for1 <k < K} . (1)
DEFINITION 1. For any two grams s; and sy, their equivalent
relation = is defined as: s; = s © Occ(s1) = Oce(sz).
Let [s1]occ and [s2]oce denote the equivalent classes of s; and
s2, respectively. If s; = s2, we have s1 € [s2]0ce» 52 € [s1]0c¢e, and
[s1]oce = [s2]0ce-

DEFINITION 2. Assume si,S2,- - ,Sp are grams in Subr and they
have the same equivalent relation to s, i.e, s; = s3--+ = sp. The
longest equivalent relation LER(s) is defined as:

LER(s) = max{|si|w, -, [snlw}, forsi, - ,sn € [s]oce

where | - | denotes the number of words in the gram.

The rationale of counting LER comprises three key points. First,
the LER measure of a gram s takes into account all other ones that
have the equivalent relation, and that may share the same syntac-
tic/semantic patterns. Second, the higher value of LER indicates
the more unique characteristic of a gram. Third, if a message in-
cludes a commonly used syntactic/semantic pattern, it signifies
more equivalent classes.

Given the fact that a spam typically uses certain uncommon syn-
tactic and semantic patterns, we define the ALER measure, which
will be used last to filter out spam seeds. ALER of S; is calculated
by averaging over all LER measures of grams in Sub(S;), i.e.,

! 3 LERGs), @)

ALER(S;) = —————
= [Sub(Sol | &ptsn

where |Sub(S;)| denotes the total number of grams in Sub(S;).
Meanwhile, the MCER measure is defined to count the number of
different equivalent classes corresponding to a message, used last
for filtering the ham seed, i.e.,

MCER(S;) = #{[s]occls € Sub(S;)}, 3

where # counts the number of unique equivalent classes. To better
understand the ALER and MCER measures, we use a toy example
to show their calculation procedure, as follows:

ExampLE 3.1 (A Toy EXAMPLE). We use three messages shown in
Figure 5(a) as an example. After two-step pre-processing, i.e., word
cleaning and stemming, each message can be represented by a set of
stem words shown in Figure 5(b). Then, the N-grams of each message
can be found (see Figure 5(c)). We calculate the Occ according to
Eqn. (1) and derive the equivalent relations shown in Figure 5(d). For
each equivalent class (corresponding to each row in Figure 5(d)), we
calculate the respective LER value as shown in Figure 5(e). Specifically,
LER for the equivalent class [‘urgent’] occ is 5, since the longest gram
in the same class (i.e., ‘urgent grandson arrest night mexico’) contains
five words. Next, we can calculate the ALERs based on Eqn. (2). That
is, in message 1, there are total 15 grams, so ALER(S1) = 1/15 =
(5 * 15) = 5. In message 2, there are 10 grams, then ALER(S;) =

{urgent, grandson, arrest,

night, mexico}

Urgent your grandson was o))
arrested last night in Mexico.

{see, major, person, guide}

I will see the major person @
that can guide me.

{major, person, life}

You are the major person
. . 3)
in my life.

(a) Original messages (b) Two-step pre-processing

results

Index N-grams Count

{‘urgent’, ‘grandson’, ‘arrest’, ‘night’, ‘mexico’, ‘urgent grandson’, ‘grandson

a) arrest’, ‘arrest night’, “hight mexico’,’urgent grandson arrest’, ‘grandson arrest

night’, “arrest night mexico’, ‘urgent grandson arrest night’, ’grandson arrest
gift mexico’, ‘urgent grandson arrest hight mexico’}

{‘see’, ‘major’, ‘person’, ‘guide’, ‘see major’, ‘major person’, ‘person guide’,
‘see major person’, ‘major person guide’,’see major person guide’}

2)

3) {‘major’, ‘person’, ‘life’, ‘major person’, ‘person life’, ‘major person life’} 6

(c) N-grams of each message

N-grams Co-occurrence Index

{‘urgent’, ‘grandson’, “arrest’, ‘night’, ‘mexico’, ‘urgent grandson’, ‘grandson

arrest’, ‘arrest night’, ‘hight mexico’,’urgent grandson arrest’, ‘grandson arrest 0
night’, ‘arrest night mexico’, ‘urgent grandson arrest night’, *grandson arrest

gift mexico’, ‘urgent grandson arrest hight mexico’}

{‘see’, ‘guide’, ‘see major’, ‘person guide’, ‘see major person’, ‘major person

guide’,’see major person guide’} 2

{‘life’, ‘person life’, ‘major person life’} {3}

{*major’, ‘person’, ‘major person’} {2,3}

(d) Co-occurrence of N-grams

Equivalent Class

Longest member in the same class

[‘urgent’Joce [‘urgent grandson arrest hight mexico’]Joce 5
[*see’Joee [*see major person guide’ Joce 4
[“life’ Joce [‘major person lifeJoc 3

[‘major’Joce [‘major person’Joc 2

(e) Calculating LER

Message Equivalent Class

Urgent your grandson was arrested last night in Mexico. [‘urgent’Joce 1

I will see the major person that can guide me. [‘see’Jocc [‘major’Joce 2

You are the major person in my life. [‘life’Jocc [‘major’Joce 2

(f) MCER values
Figure 5: An example of calculating ALER and MCER.

1/10 % (4 % 7 + 2 % 3) = 3.4. In message 3, there are 6 grams, then
ALER(S3) = 1/6 % (3% 3+ 2 3) = 2.5. We then calculate MCER
based on Eqn. (3), with results shown in Figure 5(f). For example, in
message 1, there is only one unique equivalent class [‘urgent’]occ,
so MCER(S1) = 1. For message 2, two unique equivalent classes
['see’Jocc and [‘major’Jocc exist, so MCER(S2) = 2. For message 3,
there are two unique equivalent classes of [life’]occ and [‘major’Joce,
so MCER(S3) = 2.

We scan the spam and ham seeds that lie in the top 1% mea-
sures of ALER and MCER, respectively. More specifically, the stem
words in the messages which belong to top 1% ALER measure but
fail to appear in the messages with top 1% MCER measure, will
be considered as the spam seed. Similarly, the stem words in the
messages which belong to top 1% MCER measure but fail to appear
in the messages with top 1% ALER measure, will be used as the ham
seed. Notably, the threshold 1% is selected based on our empirical
study. We have conducted experiments on 3000 randomly selected

* 8000} ©
600} = -==- 1% threshood === 1% threshood
g o ham 6000] & . ham
ﬁ 400 § x spam x spam
g g 4000| &
=P .
=3 200 2000{ 8
k"‘"" e s w o i ---------
0 q 0 . - .
0

0 50 100 150
Message count

50
Message count

Figure 6: ALER and MCER measures of 3000 emails.

email messages from the Metsis email dataset [26] for verification.
Figure 6 shows the ALER and MCER measures of all messages. It
is observed that a set of spam and ham messages can be safely
singled out by setting the threshold values of 1% for ALER and
MCER, respectively. We further conduct extensive experiments (see
Section 4.5) on various datasets and vary threshold values from
0.2% to 10%. Experimental results confirms that 1% is a confident
threshold on various sized datasets in our system.

3.2 Reconstructing Words Corpora

We have roughly collected both spam seed and ham seed corpora
from the target dataset. But these two seed sets are raw and too tiny
if directly applied for spam detection. We next focus on mining in-
herent features of the roughly collected seed corpora for enhancing
spam and ham words corpora through reconstruction. We aim to
use the word distribution in the target dataset to reconstruct word
corpora, taking advantage of such inherent features for improving
our seed corpora. In the following, we give the details of sampling
word distribution and reconstructing word corpora.

3.2.1 Sampling Words’ Distribution. Given the spam seed corpus
Ss, ham seed corpus Sy, and target dataset D;, we aim to derive
a score for each word to represent the probability of a message
classified as a spam if it contains the word. We use s; € [0, 1] to
denote such a score for each word i while using L to denote the
label of a message, i.e., L = 1 for a spam message and L = 0 for
a ham message. Thus, if a message m; contains the word w;, its
probability of being a spam is Pr(L(m;) = 1)) = s;. Specifically,
if this score is close to 1, the message m; is more likely to be a
spam; otherwise, it is more likely to be a ham. For each word in
the spam seed or ham seed corpus, we set the spam scores to be
the constant values cs or ¢y, respectively, with 0.5 < ¢s < 1 and
0 < ¢ < 0.5. For each of other words not in the seed corpora but in
the target dataset, s; represents the posterior probability which will
be derived according to the distribution of a word presenting in the
final spam or ham datasets. Since the target dataset is unlabeled,
it is unrealistic to directly distinguish the spam and ham datasets
so as to calculate the words distribution (i.e., the frequency of a
word over the summation of all words’ appearance frequencies)
in each of these two datasets. The Gibbs sampling method [36]
is employed here to iteratively generate the sampling labels and
calculate the words’ distribution. We define a vector 0 with the
size of V, in which each element corresponds to one word and
its entry represents this word’s distribution in the dataset labeled
with L. The sampling values of 6y and 6; can be generated by the
following five steps.

Step 1: Label Initialization. Denote S, as the union of spam and
ham seed corpora, i.e., S = S5 N Sp,. The probability p; of message

m; being labeled as a spam is calculated by

~ [Tw,es,ns; Si
[T es,ns; §i + [wes,ns,; (1 - 5)

pj)
where p; is a posterior probability of Bayesian inference [17] and S
represents the set of stem words in message m;. Notably, for each
word w; in S, the spam score §; has been set to a constant value.
Assume each message follows Bernoulli trial and we randomly label
m; as a spam with the probability of p;. If all words from m; are not
in the seed corpora, m; is designated as a spam with the probability
of 0.5.

Step 2: Word Distribution Initialization. With the labels from
Step 1, the target dataset splits into two datasets, with one for spam
and the other one for ham. In each one, we count the total number
of included messages, denoted as Cyp and C; for ham and spam,
respectively. Meanwhile, we count the frequency of each word
occurring in each dataset and use the vector Fp sized V to record
all words’ frequencies in dataset labeled as L, where each element
corresponds to one word. With Fy, we can initialize 6y and 6.
Step 3: Updating Labels. This step repeats. In each iteration, we
select one message m; with the label of I. We count the frequency
of each word in m; and update vector F; by subtracting such a
frequency value from the corresponding term. We remove m; from
dataset at hand and update C; by subtracting the message count by
1, i.e., C; = C; — 1. Before relabeling this message, we calculate the
likelihood of such a message as spam or ham, respectively, without
considering the spam/ham seed, denoted as vy (L =1 or L = 0):

ot [1 @™ o

Co+C1 + Br1 + Bro — 1 Wity m €S,

L

where ;1 and o represent the initialized hyper parameters of
Beta distribution corresponding to spam and ham datasets, respec-
tively. Referred to as the shape parameters of the Beta distribution,
Pr1 and S are set to the uniform distribution. 6y (i) represents
the respective value of w; in 0r, i.e., the current distribution of
word w; in the dataset labeled as L. oj; is the frequency of word
w; occurring in message mj. Since each message is assumed to
follow the Bernoulli trial [26] for designating as a spam or ham, the
probability of one message m; to be a spam is calculated as follows:

~ o1 - [Taes,ns; Vi
v1 - [Twes,ns, N5i + 00 - Ty es,ns; V(1 = 5)

where t is the number of sampling iterations. Then, we can assign
a new label] to m; with the probability of p being designated as a
spam. Then, we add this message to the respective dataset according
to the new label and increase the total count of messages in this
dataset by 1,i.e., C; = C;+1. Fy and] are also updated accordingly.
This step is iteratively executed till all messages are selected.

Step 4: Updating Word Distribution Vectors. We assume all
words distribution can be modeled as the Dirichlet distribution
in both spam and ham datasets [25]. Assume there is a total of
V words in the target dataset, then the Dirichlet distribution can
be considered as the V dimensional distributions. Let’s define a V
dimensional vector t; with each entry t1 (i) = FL(i) + yg, (;), where
Fy (i) is the frequency value corresponding to w; in Fy and yg_(;)
is a hyperparameter of word w;. Note that yg_(;) is added to the

p (6)

number of observed cases to avoid 0 observation in the dataset
labeled with L, with its value set to 1 in general [36]. Then, we can
sample 0] as O; ~ Dirichlet(¢y), where Dirichlet represents the
Dirichlet distribution. We denote (yr (1), ..., yr(V)) as the sample
of V words’ frequencies and draw such V independent random
samples from Gamma distribution, each with the density of

yiL“)‘l (i)e~yr ()
INGAO)
where I' represents the Gamma function. The values of (Y. 1, ..., Yx, ')

can be sampled via above Gamma distribution. Each value 01 (i) in
the sampling vector 6, can be calculated by

Gamma(ty, (i), 1) =

™)

yL (i)
Sy
Step 5: Recording 0y and 61. We store the current sampling vec-

tors 6 and 01 and go back to Step 3. Step 3, Step 4, and Step 5 repeat
until the average values of all elements in 6y and 6 converge.

0r(i) = 8

3.2.2 Scoring Each Word. The aforementioned procedure can iter-
atively generate a series of samples and score them. We have stored
the corresponding 0y and 6. Let Oﬁ denote the stored vector 01 in
the k-th iteration. These sampling values can be used to calculate
the spam score of each word by averaging the overall probability
of a word in 0 (i) and 61 (i) from all iterations, i.e., for each word
wi & Sy, the spam score s; is calculated as follows:

_ lz Hl(k)(i)
K44 0P i) + 080 (i)

where K represents the total number of sampling iterations.

©)

3.2.3 Reconstructing Spam and Ham Word Corpora. After getting
the spam scores of all words, we reconstruct the spam and ham
word corpora that can better capture the spam and ham patterns,
respectively. A word with a higher spam score means that any
message containing it has a higher probability of being a spam. We
rank the spam scores of all words and set a threshold to reconstruct
the spam and ham corpora. In particular, we set a spam threshold
to be 0.8 and collect all words with spam scores higher than 0.8 to
serve as the new spam corpus. Meanwhile, the ham threshold is set
to 0.4, with all words having the spam scores below 0.4 chosen to
serve as the new ham corpus. When scoring words in seed corpora,
we may initialize a word with higher score if it is deemed spam-
prone; otherwise, we set it with a lower score. In the late case, the
sampling process in Section 3.2 can help to find some other spam
words with higher confidence. Up to this point, we have addressed
reconstructing two more confident spam and ham corpora, with
each word in the two corpora being associated with a spam score.

3.3 Training Spam Word Model

The reconstructed spam and ham corpora as well as their accompa-
nying spam scores serve as the labeled dataset for training a spam
word model. Such a model can be put to use for encoding each
future message with a set of spam scores. To this end, we adopt
a neural network (NN) model for training the latent patterns by
means of encoded words. As the NN model takes the high dimen-
sional vectors as its input, we first have to encode each word in

the reconstructed corpora via a high dimensional vector. Here, we
employ the natural language processing (NLP) model to encode
each word into a high dimensional vector for richly mining latent
patterns. For example, for any two words having similar syntactic
or semantic patterns, the NLP model will output alike vectors. This
is critically important in capturing drift spammer patterns.

NLP Model Selection. There exist a cluster of NLP models that
aim to get word encoding vectors, like word2vec [27], GloVe [33],
and others, which are well trained for directly embedding all words
into the high dimensional vector space. The embedded vectors then
represent the syntactic (structural) and semantic (meaning) patterns
of words from the respective words corpus. Such NLP models are in
an unsupervised manner, therefore applicable to train our model for
encoding the word vectors. However, this way is time-consuming
unnecessarily without any performance guarantee. Instead, we rely
on pre-trained models to get the encoded high dimensional vector
of each word. There are lots of NLP models trained specifically for
different platforms, such as SMS [57], Email [20], and Twitter[22].
Our empirical study has unveiled that these NLP models can be
used across different platforms. Here, we select the model trained
from Twitter corpus [33] to serve as our NLP model, which covers
huge amounts of both normal and spam words.

Word Vector Extraction. The selected NLP model has a dictionary-
like format, allowing us to look up the corresponding vector of a
given word. This vector is then labeled with the spam score associ-
ated to the respective word. Each returned vector is denser, which
thus covers a set of words that have a similar structure or meaning.
In the case for a spammer to substitute one spam word with another
similar one in order to evade detection, the dense vector can still
cover it due to vector similarity. If the selected NLP model fails to
recognize some words present in the reconstructed word corpora,
we encode them with the “unknown” vectors and reassign high
scores to them, since they tend to be spam words.

Training Spam Word Model. The dense vectors (denoted as v)
of all words in the reconstructed word corpora and their associated
spam scores can be considered as the labeled ground-truth dataset
to train our employed neural network for in-depth learning on
inherent relationships among those dense vectors, with an aim
at generating a spam word scoring model. We consider a simple
five-layer neural network model, including one Input layer, three
Hidden layers, and one Output layer. The Output layer adopts the
standard sigmoid function, with a cross-entropy loss minimized by
the gradient descent on the function output.

3.4 Outlier Detection

With the trained spam word model, we are ready to employ it for
predicting all words’ spam scores in the target dataset and to encode
each message for the use of outlier detection.

Pre-processing Target Dataset. In Section 3.1, we have mined the

stem words from each message and stored themin S; = {wy, wp, - - }.

We then use the selected NLP model to look up the dense vector of
each word in S;. If a word does not appear in the NLP model, it is
encoded with an “unknown” vector and assigned to a high spam
score. Each message is thus represented in the following format,
M = {v1,vy,...}, where v; represents the dense vector of a corre-
sponding word w;. The trained spam word model from Section 3.3

is used to predict the spam score of each dense vector v;, say s;. The
message is represented by a list of scores, with each element holding
the value of corresponding word’s spam score. We rank all spam
scores in this vector and truncate each list to 10 elements, with 0
as padding values if the list includes less than 10 elements, . Then,
a message is converted in the form of scores list s = {s1, s, ..., S10}-
Outlier Detection. With encoded spam scores for each message,
we employ the Magnitude outlier from the prominent outlier detec-
tion method [7], to expose the outlier property of spam messages.
Let S = {s1,s2, ..., sN } denote the encoded functional data for all
messages in the target dataset. To reveal the magnitude outlier char-
acteristic of a message with its encoded vector of s, we calculate the
intercept (denoted as &;) and slope (denoted as B 1) of the linear re-
gression model of s in discrete version over each of other messages’
encoding s; € S. The intercept &; is expressed by &; = 5 — ﬁj§j,
where § and §; are the average values of all spam scores in s and s,
Cov(s,s;)
Var(s;)
Cov(s,sj) is the covariance between s and s; and Var(s;) is vari-
ance of sj. The magnitude index of each message can be calculated

by:

respectively, and B ; is the slope, defined as: B = , where

1y,
In(s,8) = ;;a] . (10)
After deriving the magnitude indices of all messages, we can rank
index values from the largest to the lowest. The spam messages’
property will be exposed to appear with larger values than non-
spam messages in general.

4 EXPERIMENTS

We implement our platform-oblivious detection system and conduct
extensive experiments to evaluate its performance. The main goal of
this section is twofold. First, we run our system on different datasets
from three social platforms and classify their respective spams to
show its effectiveness in exposing spams’ outlier property. Second,
we compare our system with existing supervised and unsupervised
methods in terms of spam classification performance. Besides, the
necessity of each design component and the impacts of various
parameters are also evaluated.

4.1 Implementation

System Settings. We screen the spam and ham seed corpora from
the messages with top 1% ALER and MCER measures, respectively,
in the target dataset. Notably, the selection of 1% shall be validated
in Section 4.5. The spam and ham scores are set to be 0.8 and 0.4,
respectively, in the seed corpora. Such two thresholds are also
applied to identify the spam and ham words in the reconstruction
of new word corpora. The dimension of embedded word vectors is
the same as pre-trained NLP model [33], i.e., 25. The neural network
model parameters adopted in Section 3.3 are given in Table 1. In the
output layer, the mean squared error (MSE) is employed as the loss
function, i.e., MSE = % Xsi— $i)2, where n is the total number of
words in both reconstructed spam and ham corpora, s; is the spam
score of a word w;, and §; represents its predicted score.

Datasets. We conduct experiments on 4 real-world datasets from
three platforms, i.e., SMS, Email, and Twitter, depicted as follows.

Table 1: Parameters of the neural network model

Layer Type ‘ Drop off rate ‘ # of Neurons
Input 25
Fully Connected ReLU 0.5 64
Fully Connected ReLU 0.3 32
Fully Connected ReLU 0.1 8
Output 1

Table 2: The spams, hams, and spam ratios of four datasets

dataset Size Spam Ham Spam Ratio
Kaggle SMS 5,572 747 4,825 13.4%
Metsis Email 20,681 4,146 16,545 20.0%
Twitter Trending 677,938 108,470 569,468 16.0%
Twitter Normal 5,823,230 355,217 5,468,013 6.1%

o Kaggle SMS dataset [5] is a set of human-labeled cell-phone
messages collected for research. There are a total of 5,574
messages included, with each message labeled by a “ham”
(legitimate) or “spam” tag. Our experiment uses all messages
in this dataset for evaluation.

o Metsis Email Dataset [26] is a dataset including the email
sources from Enron dataset, SpamAssassin corpus and others.
We take the labeled 16, 545 ham and 4, 136 spam emails for
our experiments.
Twitter Trending Dataset [2] includes a total of 677, 938 tweets,
collected in 2019, with focus on users who posted trending
topics. A total of 108,470 tweets are labeled as spams via
the diversified approaches of checking suspended accounts,
clustering, and the rule-based method to pre-process the raw
dataset and then performing manual checking.

Twitter Normal Dataset [1] covers 2.5 million users collected

from Twitter networks in 2019. There are a total of 5, 823, 230

labeled tweets, in which 355, 217 of them are labeled as spams

via the same approach as for [2] with the combination of
several approaches and the manually checking is finally con-
ducted.

Table 2 summarizes the statistical information of the four datasets.
Compared Methods. We compare our solution to the existing
both unsupervised and supervised methods on spam detection. The
unsupervised methods include Alien-I and Alien-s [30], OUSLD [34],
JSF [58], Hashing [12], and Gibbs [15], in which Alien-1 and Alien-s
are outlier-based methods. The supervised methods include Bayesian
Inference [37], C4.5 [16], AdaBoost [60], SVM [48] and Neural Netowrk
(NN) [10].

Evaluation Metrics. We evaluate the performance of spam detec-

tion by using such standard metrics as recall (Rec = [%—“g'), precision

(Prs = %—%), and F; score (F; = 2 X %), where TS represents

the number of spams in the dataset, DS denotes the number of
detected spams, DS’ means the number of detected spams that are
indeed spams (i.e. true spams).

4.2 Outlier Exposure

We implement our proposed system with the setting in Section 4.1
and run it on four target datasets. The outlier results are ranked
from the largest values to the lowest. Figures 7(a), (b), (c), and (d)
show the ranked results from the datasets of Kaggle SMS, Email,

1.00
! X spam
0 0.75 ham
=
2.0.50
g
50.25
0.00{ -
0 2000 4000
Outlier ranking
(a) Kaggle SMS Dataset (b) Metsis Email Dataset
x 0.67
0.8 X spam X spam
© ham . ham
=0.6 g ¢
= 204 5
= 4 .
E 0.4 g :
= =02 ¢
Q0.2 S ‘
0.0 0.0

0 5000 1000C 0 5000 10000
Outlier ranking Outlier ranking
(c) Twitter Trending Dataset (d) Twitter Normal Dataset

Figure 7: The ranking of outlier scores of all messages.

Outlier Value

k j X
Outlier Ranking

Figure 8: The Lorenz curve and its three zones, colored in
orange, yellow and blue to indicate the Spam Zone, Uncertain
Zone, and Ham Zone, respectively.

Table 3: Spam counts and ham counts in the Spam Zone, Un-
certain Zone, and Ham Zone from each dataset

Dataset Spam Zone Uncertain Zone Ham Zone
Label Ham Spam Ham Spam Ham Spam
Kaggle SMS 21 311 339 320 4465 116
Metsis Email 394 1966 893 1376 15258 1492
Twitter Trending 7640 33424 | 40625 42591 532082 21576
Twitter Normal 20573 | 110154 | 86992 | 137683 | 5360448 | 107380

Twitter Trending, and Twitter Normal, respectively, where the x-
axis represents the ranking indices and the y-axis represents the
outlier scores from our system. Red cross and blue points signify
spam and ham, respectively. These figures exhibit our method can
expose the outlier property of spam messages in all four datasets,
where most of the spam messages have higher scores than ham
messages, resided in the leftmost parts.

Although the outlier property is visible, how to set a threshold
for effectively separating spams from hams is still a challenging
problem. Here, we propose a novel solution for intelligently identi-
fying a suitable spam threshold value to single out spam messages.
As the curves of all ranked values in Figure 7 follow exponential
ones, we regress ranked values according to an exponential func-

a-F
tion, i.e., L = e~ & , where a and b are the parameters to fit the

precision
0.25 recall

Fi-score

0.0 0.1 0.2 0.3
Spam threshold values

Figure 9: The performance of our system in Kaggle SMS
dataset with various spam threshold values.

ranked outlier values. F is the ranking value for a given outlier
score. This regression curve is also called Lorenz curve [14]. The
Lorenz curve of ranked outlier scores depicted in Figure 7(a) is
illustrated in Figure 8. With this curve, we take the leftmost point
that has the highest score and draw a tangent line at this point,
which intersects with the x-axis at a point k. Any point left to k
will be considered as an outlier. We define the region left to point k
as the Spam Zone, colored in orange in Figure 8. We draw another
tangent line of the Lorenz curve with the slop of —1, and assume it
intersects with the x-axis at point j. The region between the points
of k and j is defined as the Uncertain Zone, while the region at the
right of j is denoted as the Ham Zone. Uncertain Zone and Ham
Zone are colored in yellow and blue, respectively. Table 3 shows
the number of spams and hams in each region of every dataset. For
the messages in Spam Zone and Ham Zone, we are confident to tell
them as spams and hams, respectively. However, the messages in
Uncertain Zone are hard to be classified surely. If we assume 50%
of messages in the Uncertain Zone are spams, the spam ratio in a
target dataset, denoted as R, can be estimated by: R = W,
where nq and ny refer to the message counts in Spam Zone and
Uncertain Zone, respectively. N is the total number of messages
in the target dataset. Based on our estimation, the spam ratios of
four target datasets are 11.9%, 16.9%, 12.2%, and 4.1%, respectively.
When compared to the true spam ratios of target datasets, i.e., 13.4%,
20.0%, 14.6%, and 6.1%, respectively, from Table 2, our estimated
spam ratios are very close to the true values.

Figure 9 shows the values of precision, recall, and F; score under
different threshold values for the outlier ranking curve, for the
Kaggle SMS dataset. It also exhibits the best performance to result
from the threshold of around 11% to 13%, very close to the true
spam ratio (i.e., 13.4%) and the estimated spam ratio (i.e., 11.9%).
It implies the estimated spam ratios from our proposed solution
can be safely employed by our system to filter out outlier spams
effectively. In the following experiment, the threshold values for
distinguishing spams among outlier ranking values are set to be
11.9%, 16.9%, 12.2%, and 4.1%, respectively, for datasets of Kaggle
SMS, Metsis Email, Twitter Trending, and Twitter Normal.

4.3 Performance Comparison

We conduct extensive experiments on the four aforementioned
datasets to compare our method with the existing unsupervised
and supervised methods listed in Section 4.1.

Comparing to Unsupervised Methods. We run the existing un-
supervised methods and our outlier method for 10 times on each
dataset and calculate the averaged values of precision, recall, and
F; score. Table 4 lists the complete results of our method and of

existing unsupervised solutions on four datasets. We observe our
method has the precision and recall of 89.6%, 79.4%, of 85.2%, 71.2%,
of 88.7%, 82.6%, and of 85.1%, 78.4%, respectively, for the Kaggle
SMS, Metsis Email, Twitter Trending, and Twitter Normal datasets.
When comparing to other unsupervised solutions, our solution
is observed to clearly outperform in terms of three performance
metrics, except for the recall measure of Gibbs under Metsis Email
dataset. This demonstrates the advantage of our method in terms of
performance improvement. The reason is that our method explores
the generating process of data, by iteratively refining data for use.
Since a generative model renders a better learning capacity over a
discriminative model [31], our method is thus able to capture spam
patterns more precisely.

Comparing to Supervised Methods. We run the supervised meth-
ods listed in Section 4.1 on all four datasets via varying the ratio
of training set over test set (denoted as r) from 1 : 10to 1 : 1
for comparison with our method. Due to the page limit, we only
include the detailed results from the Twitter Normal dataset un-
der various ratios of training set over test set, as listed in Table 5.
In the experiment, we keep the test set size as 1 million, and in-
crease the training set from 0.1 million, 0.2 million, 0.33 million,
0.5 million to 1 million. The corresponding ratios of training set
size over to test set size (i.e., r)are 1 :10,1:5,1:3,1:2and
1: 1. From this table, we observe the performance of all supervised
methods improves with the increasing of r, i.e., the increasing of
training set size. However, the results of our solution do not change
since it is an unsupervised method, without relying on the training
dataset. It is also observed that when r = %, r= % and r = %,
our method can beat all supervised methods in terms of all three
performance metrics. When r = %, our solution still outperforms all
supervised solutions in terms of recall. For precision, all the super-
vised methods except SVM outperform our method. When r = 1, all
supervised methods outperform ours in at least two metrics. These
results demonstrate that all supervised methods highly rely on the
training set size, with their performance level rising for a bigger
training set size. However, in a large dataset, it is impractical to
reliably label 50% (i.e., r = %) of dataset for training, since doing
so may bring excessive human overhead. In contrast, our method
does not require any ground truth labeling, but can still achieve
moderate performance.

We next conduct experiments by fixing the training set size and
varying the test set sizes to compare the performance of supervised
solutions and our method. We take the Twitter Trending dataset as
an example and select 10, 000 labeled tweets, i.e., 1,446 spam and
8,554 ham messages, to serve as the training set. Table 6 shows the
results of all supervised solutions and our method, with the test set
size growing from 10, 000 to 50, 000. We observe the performance
of our method fluctuates only slightly as the test set size grows,
whereas all supervised counterparts suffer from fast performance
degradation on all metrics with an increase in the test dataset
size. This demonstrates the robustness of our proposed solutions.
Specifically, when the test set size exceeds 30k, our method almost
beats all examined supervised solutions.

Table 4: Comparisons of precision and recall under our solution and under unsupervised methods for all four datasets

Dataset Kaggle SMS Metsis Email Twitter Trending | Twitter Normal
Metric (%) Prs Rec Prs Rec Prs Rec Prs Rec
Alien-1 [30] 79.4 51.1 82.2 59.4 79.4 53.3 74.1 60.6
Alien-s [30] 78.9 52.9 81.8 51.5 78.5 56.3 77.9 58.5
OUSLD [34] 54.4 42.5 58.2 57.9 61.1 51.4 60.0 52.5
JSF [58] 50.7 44.6 70.7 34.9 60.6 44.4 57.7 38.7
Hashing [12] | 39.7 41.4 39.5 37.1 41.5 44.1 46.3 47.2
Gibbs [15] 64.5 55.0 63.9 72.0 45.2 67.1 51.5 66.2
Our Method | 89.6 79.4 85.2 71.2 88.7 82.6 85.1 78.4

Table 5: Comparisons of supervised methods and our solu-
tion with various ratios of training set over test set, with the
size of test set fixed to 1 million

r | Metric (%) | Bayes | C4.5 | Ada | SVM | NN | Ours
1 Prs 80.2 732 | 765 | 739 | 774 | 844
10 Rec 32.0 37.4 | 48.6 10.3 243 | 77.4
1 Prs 81.8 79.6 | 81.0 75.3 78.9 | 84.4
5 Rec 38.5 449 | 525 103 | 238 | 77.4
1 Prs 82.5 80.8 | 83.1 | 784 | 79.3 | 84.4
3 Rec 48.1 50.2 | 58.2 | 135 | 447 | 774
1 Prs 84.6 87.0 | 87.4 | 833 | 855 | 84.4
2 Rec 63.6 61.5 | 60.1 66.7 71.2 | 77.4
1 Prs 88.0 84.7 | 91.5 85.1 90.6 84.4
1 Rec 74.5 72.1 | 813 | 744 | 784 | 774

Table 6: Comparisons of the supervised solutions and our
solution with various sizes of test dataset

Size | Metric (%) | Bayes | C4.5 | Ada | SVM | NN | Ours
10k Prs 89.4 89.2 | 90.5 | 87.2 | 90.6 | 85.5
Rec 71.5 71.1 | 72.2 | 65.7 | 73.5 | 71.6
20k Prs 85.1 839 | 83.7 | 835 | 855 | 853
Rec 64.4 67.5 | 66.2 | 593 | 71.2 | 70.3
30k Prs 84.7 83.1 | 82.6 | 83.2 | 852 | 85.3
Rec 63.5 60.2 | 624 | 536 | 709 | 71.0
50k Prs 83.2 813 | 82.2 | 814 | 83.1 | 85.7
Rec 61.2 55.8 | 61.2 | 43.5 | 67.2 | 72.2

4.4 Importance of Each Design Component

We conduct the ablation studies to evaluate the necessity and im-
portance of each component in our design. «««< HEAD In par-
ticular, the components of Seed Collection, Word Copra Reconstruc-
tion, and Spam Word Model, corresponding to Sections 3.1, 3.2,
and 3.3, respectively, will be removed in turn, as design variants
to evaluate the performance of the remaining system. =======
In particular, the modulos of Seed Collection, Word Copra Recon-
struction, and Spam Word Model, corresponding to Sections 3.1,
3.2, and 3.3, respectively, will be removed in turn, as design vari-
ants to evaluate the performance of the remaining system. »»»>
6d01e4022cb92f8ca57d372b3da975ee09508cf6 The three correspond-
ing variants are denoted as %, m, and W, respectively. Ta-
ble 7 presents the evaluation results (i.e., Precision and Recall) of
@, Gibbs, and NLP under the Metsis Email dataset. From this
table, we observe that all three variants perform worse than our
complete system in terms of precision. Regarding the recall, our

system performs markedly better than Gibbs, slightly better than

Table 7: Results of Ablation Studies

Model —_— =
. ode Seed Gibbs NLP | Ours
Metrics (%)

Prs | 626 483 685 | 85.2

Rec | 707 514 701 | 712
— SMS —— Trend
o Netsis Normal

08

2 0.6

o 0.4

0.2

05T 35315678010

theshold %
(@)

Figure 10: F1 scores of our system on four experimented
datasets when varying the thresholds values of ALER and
MCER measurement from 0.2% to 10%.

NLP, but marginally worse than Seed. However, considering both
precision and recall metrics, which are important to signify the
overall classification performance, we can conclude that all design
components are necessary and important in contributing to our
system performance.

4.5 Impact of Seed Threshold

We conduct experiments to show the impact of various threshold
values for ALER and MCER on our system performance. Figure 10
shows the F1 scores of our system under various ALER and MCER
thresholds, ranging from 0.2% to 10%. Notably, ALER and MCER
are always set to the same value. From this figure, we can see our
system performance on Twitter Trend and Twitter Normal datasets
fluctuates only slightly when the threshold values increases from
0.2% to 10%, with most F1 scores being higher than 0.75. The reason
is that the two datasets are large, so even when the threshold values
rise to 10%, most of selected seeds are indeed spam or ham words.
On the other hand, for the two small datasets Metis and SMS, an
increase in threshold values will significantly degrade our system
performances, since a large threshold value leads to a high false
positive rate of spam seed corpus, thus substantially misleading

Spam model training accuracy
Outlier detection Fj-score

0 2000 1000
of unique words

6000

(a) Kaggle SMS dataset

Spam model training accuracy
Outlier detection Fij-score

0 20000 40000
of unique words

60000

(b) Metsis Email dataset

Figure 11: Impact of word richness in the target dataset.

the remaining processing in our system. But from the four datasets,
whose sizes range from 5, 574 to 5, 823, 230, our system can always
achieve high F1 score values when setting the threshold value to 1%.
As such, considering the dataset size may vary widely in practice,
we believe it is safe to uniformly set the threshold values of ALER
and MCER as 1%.

4.6 Impact of Word Richness

From Table 4, we observe that our solution performs differently
across 4 target datasets. By analyzing the datasets, we find the
difference resulting from unique words included in the datasets.
We thus explore how the unique word count affects our system
performance, by taking Kaggle SMS and Metsis Email datasets
as the examples, which contain 6,300 and 78,000 unique words,
respectively.

Figure 11 (a) and Figure 11(b) depict the trends of spam model
training accuracy and our solution’s F; scores as the unique word
counts increase in Kaggle SMS and Metsis Email datasets, respec-
tively. We observe the spam model training accuracy keeps decreas-
ing with an increase in the unique word counts. The reason is that
given more unique words, the regression task in the neural network
model becomes more difficult. This degrades the accuracy of our
spam word model.

On the other hand, it is found that when the number of unique
words is small, the F; scores of our solution keep improving with
an increase in the unique word count in both datasets. The reason
is that if the number of unique words is small, the Gibbs sampling
method employed in Section 3.2 is likely to overfit these words,
causing the model to suffer from low generalization. It misleads to
wrong spam scores in the spam model training phase, thus making
our system perform poorly. With more words included, this over-
fitting problem can be alleviated to help improve the performance

of our solution. However, when the unique word count becomes
excessive, i.e., around 40,000 in Figure 11 (b), the Gibbs sampling
method is likely to be saturated. In this situation, two words that
are semantically or syntactically different may be forced to merge
into the same distribution and thus to assign with similar spam
scores. This will mislead our system, lowering the F; score.

5 RELATED WORK

Existing works in spam detection can be categorized into supervised,
semi-supervised, and unsupervised methods.

Supervised Machine Learning methods rely on the ground truth
dataset to let a machine learning classifier learn the latent patterns
of spammers for classification. Extensive works are based on the
fact that spammers and normal users behave differently, making
it possible to extract effective features that can reveal such differ-
ences for the machine learning classifiers to learn latent patterns.
These features include, but are not limited to, user profiles [13],
user behaviors [23], message contents [21, 54], user relationships
[9, 49]. Feature extraction also becomes prevalent in other machine
learning-based applications such as fake review detection [32, 40],
rumor detection [19, 53, 61], etc. However, effective feature extrac-
tion has been well known as a challenging problem, especially if we
aim to leverage them across different social platforms. Moreover,
all of the aforementioned works require to have large-sized reliable
ground truth datasets. It has been widely recognized that acquir-
ing a large-sized reliable ground truth dataset is a challenging and
painful problem. More importantly, some research [29, 44, 52, 55]
have realized that the supervised methods may encounter substan-
tial performance degradation when classifying the imbalanced data
(like spam messages only occupy a small portion).
Semi-Supervised Learning methods [11, 18, 24, 62] have been
proposed to relax the reliance on the ground truth dataset. For
example, Zhou et al. [62] explored the supervision power from
multiple classifiers, where a labeling query occurs only if all clas-
sifiers are comparably confident on a disagreed unlabeled sample.
Chen et al. [11] proposed an asymmetric self-learning approach
that extracts “changed spams” from incoming tweets. Liu et al. [24]
proposed a solution for extracting time-sensitive features to track
the feature change, and Imam et al. [18] used unlabeled data to
learn the structure of the feature space, helping to refine the result
from supervised classifiers. SpamGAN [42] was also proposed by
using both unlabeled and labeled datasets to train a GAN-based
spam review classifier. However, they still rely on a certain amount
of reliable ground truth datasets, which are not easy to acquire.
Unsupervised Methods aim to let the spam detection task free
from labeling effort. Several categories of unsupervised methods
have been explored, such as behavior-based, content-based, and
graph-based ones, for spam detection. In the behavior-based cat-
egory, Mukherjee et al. [28], and Wang et al. [51] have developed
unsupervised solutions based on the observation that spammers and
non-spammers behave differently, able to model such behavioral
disparities by such features as frequency of activities, crawl actions,
register duration, click behaviors, and others. In the content-based
category, the hash values of the first k N-grams [56], the document
complexity [46], locality-sensitive hashing [59], min-hash [12], and

Natural Language Processing [34] have been investigated. In graph-
based methods, the social network graph is leveraged and analyzed
to find the differences of spams and hams [35, 43, 50] . However,
existing unsupervised methods, in general, markedly underperform
their supervised counterparts. Moreover, they are tailored to spe-
cific platforms, making them unable to adapt to multiple platforms.
Outlier Detection belongs to the unsupervised category as well
and it relies on the fact that spammer’s patterns have significant
disparities versus those of the major data volume, thus possessing
the outlier property potentially. Some works have been proposed
to explore the outlier property through different technologies or
approaches, i.e., data density [38], density-based clustering methods
[8], principal component analysis (PCA) [39], combined artificial
bee colony and k-nearest neighbors [6], and P-value [47]. However,
the performance of all aforementioned approaches are unsatisfac-
tory, especially when applying to different platforms.

6 DISCUSSION

This work relies on the fact that the spam messages account for a
small portion in any social platform so that they can be exposed as
the outliers. This holds true for almost all social platforms, where
the existing anti-spam mechanisms have filtered the majority of
spam messages, leaving out only a small portion of spam mes-
sages to represent an even smaller fraction of messages that pass
anti-spam mechanism’s checking, as also affirmed by earlier re-
ports [3, 4, 41, 45]. This refers to the imbalanced data, where the
supervised methods typically encounter dilemma [29, 44, 52, 55]
when classifying the inside minority set (i.e., spam). Our work aims
to overcome this dilemma by proposing an effective unsupervised
solution, which can be integrated into the existing anti-spam mech-
anisms for further filtering spam messages.

Our solution can overcome the spammer feature drift problem
to some extent due to the following two design strategies. First,
we don’t rely on feature extraction from any labeled ground truth
dataset, and instead directly refine the spam and ham corpora ex-
isting in the target dataset. Second, for each word in the refined
spam and ham corpora, we embed it into a high dimensional vector,
which allows it to cover a richer set of words having similar syn-
tactic or semantic patterns. Even spammers evolve by substituting
some words with new ones in a spam, the resulting spam may still
yield a vector for successful detection as an outlier.

This work only focuses on the English-based social platforms. It
is interested for one platforms based on other languages, such as
Spanish, Chinese, Japanese, Korean, and others, leaving as an open
problem for future pursuit. On the other hand, our work targets text-
only spam in linguistic-based social platforms. It is also necessary
to develop a platform-oblivious solution to detect malicious images
from social platforms like Facebook and Instagram, whereas the
images take a large portion. This line of research will be deferred
in our future work.

7 CONCLUSION

This paper has proposed a novel platform-oblivious spam detec-
tion framework that can work effectively across multiple social
platforms to expose spams’ outlier property for accurate spam de-
tection. With new solutions developed to mine the spam and ham

seed corpora from the target dataset and to reconstruct the refined
corpora as the references for distinguishing spams from hams, our
framework avoids reliance on laborious ground truth labeling and
has the potential of capturing the spammer feature drift. Through
employing the NLP and neural network models to train a spam
word model, the framework can identify the words with similar
semantic and syntactic information, without relying on the feature
extraction employed by all previous supervised learning methods.
It encodes all messages in the target dataset efficiently for effec-
tive processing by the outlier techniques to expose spams’ outlier
property. The results from extensive experiments demonstrate that
our solution can indeed expose the outlier characteristics of the
vast majority of spams. In addition, it is exhibited to outperform all
examined unsupervised methods and can better supervised counter-
parts, with its performance kept consistently superior when applied
to multiple platforms.

ACKNOWLEDGEMENT

This work was supported in part by NSF under Grants 1763620,
1948374, and 2019511. Any opinion and findings expressed in the
paper are those of the authors and do not necessarily reflect the
view of funding agency.

REFERENCES

[1] Twitter normal dataset.
A0vOJ4amZ6P60qjlryJKAoPItFbf Wy.

[2] Twitter trending dataset. https://drive.google.com/open?id=1jfldhjTUx_
gtbYXhW1QwMzhfnIv7NgFe.

[3] Facebook transparent report. https://transparency.facebook.com/community-
standards-enforcement#spam, 2020.

[4] Twitter transparent report. https://transparency.twitter.com/en/platform-
manipulation.html#platform-manipulation-jan-jun-2019, 2020.

[5] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami. Contributions to the study
of sms spam filtering: new collection and results. In 11th ACM Symposium on
Document Engineering, pages 259-262, 2011.

[6] R. Aswani, S. Ghrera, A. K. Kar, and S. Chandra. Identifying buzz in social media:
a hybrid approach using artificial bee colony and k-nearest neighbors for outlier
detection. Social Network Analysis and Mining, 7(1):38, 2017.

[7] A. Azcorra, L. F. Chiroque, R. Cuevas, A. F. Anta, H. Laniado, R. E. Lillo, J. Romo,
and C. Sguera. Unsupervised scalable statistical method for identifying influential
users in online social networks. Scientific Reports, 8(1):6955, 2018.

[8] F.Cao, M. Estert, W. Qian, and A. Zhou. Density-based clustering over an evolving
data stream with noise. In Proceedings of the SIAM International Conference on
Data Mining, pages 328-339, 2006.

[9] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection of fake

accounts in large scale social online services. In Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, pages 15-15, 2012.

P.P. Chan, C. Yang, D. S. Yeung, and W. W. Ng. Spam filtering for short messages

in adversarial environment. Neurocomputing, 155:167-176, 2015.

C. Chen, J. Zhang, Y. Xiang, and W. Zhou. Asymmetric self-learning for tackling

twitter spam drift. In Proceedings of the IEEE Conference on Computer Communi-

cations Workshops, pages 208-213, 2015.

F. Concone, G. LO RE, M. Morana, and C. Ruocco. Twitter spam account detection

by effective labeling. In 3rd Italian Conference on Cyber Security, ITASEC 2018,

volume 2315, 2019.

E. De Cristofaro, N. Kourtellis, I. Leontiadis, G. Stringhini, S. Zhou, et al. Lobo:

Evaluation of generalization deficiencies in twitter bot classifiers. In Proceedings

of the 34th Annual Computer Security Applications Conference, pages 137-146,

2018.

[14] J. L. Gastwirth. A general definition of the lorenz curve. Econometrica: Journal of

the Econometric Society, pages 1037-1039, 1971.

C.R. Giannella, R. Winder, and B. Wilson. (un/semi-) supervised sms text message

spam detection. Natural Language Engineering, 21(4):553-567, 2015.

[16] J.M.Goémez Hidalgo, G. C. Bringas, E. P. Sanz, and F. C. Garcia. Content based sms
spam filtering. In Proceedings of the ACM Symposium on Document Engineering,
pages 107-114, 2006.

[17] J.P. Huelsenbeck and F. Ronquist. Mrbayes: Bayesian inference of phylogenetic
trees. Bioinformatics, 17(8):754-755, 2001.

https://drive.google.com/open?id=1y-

(10]

[11

(12]

[13]

[15]

https://drive.google.com/open?id=1y-A0vOJ4amZ6P6oqjIryJKAoPItFbfWy
https://drive.google.com/open?id=1y-A0vOJ4amZ6P6oqjIryJKAoPItFbfWy
https://drive.google.com/open?id=1jfIdhjTUx_gtbYXhW1QwMzhfnIv7NgFe
https://drive.google.com/open?id=1jfIdhjTUx_gtbYXhW1QwMzhfnIv7NgFe
https://transparency.facebook.com/community-standards-enforcement#spam
https://transparency.facebook.com/community-standards-enforcement#spam
https://transparency.twitter.com/en/platform-manipulation.html#platform-manipulation-jan-jun-2019
https://transparency.twitter.com/en/platform-manipulation.html#platform-manipulation-jan-jun-2019

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[42]

[43]

N. Imam, B. Issac, and S. M. Jacob. Semi-supervised learning approach for
tackling twitter spam drift. International Journal of Computational Intelligence
and Applications, 2019.

Z.Jin, J. Cao, H. Guo, Y. Zhang, and J. Luo. Multimodal fusion with recurrent
neural networks for rumor detection on microblogs. In Proceedings of the 25th
ACM International Conference on Multimedia, pages 795-816, 2017.

D. Jlailaty, D. Grigori, and K. Belhajjame. Mining business process activities
from email logs. In Proceedings of the IEEE International Conference on Cognitive
Computing, pages 112-119, 2017.

S. Kennedy, N. Walsh, K. Sloka, A. McCarren, and J. Foster. Fact or factitious?
contextualized opinion spam detection. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics: Student Research Workshop, pages
344-350, 2019.

J. Kim, T. Hong, and P. Kim. Word2vec based spelling correction method of
twitter message. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, pages 2016-2019, 2019.

B. Liu, Z. Ni, J. Luo, J. Cao, X. Ni, B. Liu, and X. Fu. Analysis of and defense
against crowd-retweeting based spam in social networks. World Wide Web, pages
1-23, 2018.

J. Liu. A time-sensitive spam filter algorithm dealing with concept-drift. In
Proceedings of the 4th International Conference on Machinery, Materials and Com-
puting Technology, 2016.

R. E. Madsen, D. Kauchak, and C. Elkan. Modeling word burstiness using the
dirichlet distribution. In Proceedings of the 22nd ACM International Conference on
Machine Learning, pages 545-552, 2005.

V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with naive bayes-
which naive bayes? In Proceedings of the CEAS, volume 17, pages 28-69, 2006.
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the
Advances in Neural Information Processing Systems, pages 3111-3119, 2013.

A. Mukherjee, A. Kumar, B. Liu, J. Wang, M. Hsu, M. Castellanos, and R. Ghosh.
Spotting opinion spammers using behavioral footprints. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 632-640, 2013.

S.S. Mullick, S. Datta, S. G. Dhekane, and S. Das. Appropriateness of performance
indices for imbalanced data classification: An analysis. Pattern Recognition,
102:107197, 2020.

K. Narisawa, H. Bannai, K. Hatano, and M. Takeda. Unsupervised spam detection
based on string alienness measures. In Proceedings of the International Conference
on Discovery Science, pages 161-172, 2007.

A.Y.Ng and M. L Jordan. On discriminative vs. generative classifiers: A compar-
ison of logistic regression and naive bayes. In Advances in Neural Information
Processing Systems, pages 841-848, 2002.

S. Nilizadeh, F. Labréche, A. Sedighian, A. Zand, J. Fernandez, C. Kruegel,
G. Stringhini, and G. Vigna. Poised: Spotting twitter spam off the beaten paths.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security, pages 1159-1174, 2017.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing, pages
1532-1543, 2014.

F. Qian, A. Pathak, Y. C. Hu, Z. M. Mao, and Y. Xie. A case for unsupervised-
learning-based spam filtering. In Proceedings of the SIGMETRICS, volume 10,
pages 367-368, 2010.

S. Rayana and L. Akoglu. Collective opinion spam detection: Bridging review
networks and metadata. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 985-994, 2015.

P. Resnik and E. Hardisty. Gibbs sampling for the uninitiated. Technical report,
2010.

M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to
filtering junk e-mail. In Proceedings of the Learning for Text Categorization: Papers
from the 1998 workshop, volume 62, pages 98—105, 1998.

M. Schneider, W. Ertel, and F. Ramos. Expected similarity estimation for large-
scale batch and streaming anomaly detection. Machine Learning, 105(3):305-333,
2016.

V. Sharan, P. Gopalan, and U. Wieder. Efficient anomaly detection via matrix
sketching. In Proceedings of the Advances in Neural Information Processing Systems,
pages 8069-8080, 2018.

S. Shehnepoor, M. Salehi, R. Farahbakhsh, and N. Crespi. Netspam: A network-
based spam detection framework for reviews in online social media. IEEE Trans-
actions on Information Forensics and Security, 12(7):1585, 2017.

S. H. Somanchi. The mail you want, not the spam you don’t.
https://cloud.googleblog.com/2015/07/the-mail-you-want-not-the-spam-
you-dont.html, 2015.

G. Stanton and A. A. Irissappane. Gans for semi-supervised opinion spam de-
tection. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, pages 5204-5210, 7 2019.

E. Tan, L. Guo, S. Chen, X. Zhang, and Y. Zhao. Unik: Unsupervised social
network spam detection. In Proceedings of the 22nd ACM international conference

[44]

[45]

[46]

(50]

[51]

(53]

[54]

[55]

[56

[58

[59

[60

e
N

(62]

on Information & Knowledge Management, pages 479-488, 2013.

J. Tian, Y.-C. Liu, N. Glaser, Y.-C. Hsu, and Z. Kira. Posterior re-calibration
for imbalanced datasets. In Proceedings of the Advances in Neural Information
Processing Systems, volume 33, pages 8101-8113, 2020.

TitanHQ. Spamtitan anti spam solution - block over
https://trust.titanhq.com/acton/media/31047/spamtitan-spam-filter-ma,
2021.

T. Uemura, D. Ikeda, and H. Arimura. Unsupervised spam detection by document
complexity estimation. In Proceedings of the International Conference on Discovery
Science, pages 319-331, 2008.

M. G. Vigliotti and C. Hankin. Discovery of anomalous behaviour in temporal
networks. Social Networks, 41:18-25, 2015.

V. Vishagini and A. K. Rajan. An improved spam detection method with weighted
support vector machine. In Proceedings of the International Conference on Data
Science and Engineering, pages 1-5, 2018.

B. Wang, L. Zhang, and N. Z. Gong. Sybilscar: Sybil detection in online social
networks via local rule based propagation. In Proceedings of the IEEE Conference
on Computer Communications, pages 1-9, 2017.

B. Wang, L. Zhang, and N. Z. Gong. Sybilblind: Detecting fake users in on-
line social networks without manual labels. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses, pages 228-249, 2018.
G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao. Unsupervised clickstream
clustering for user behavior analysis. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pages 225-236, 2016.

Y. Wang, W. Gan, J. Yang, W. Wu, and J. Yan. Dynamic curriculum learning
for imbalanced data classification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5017-5026, 2019.

K. Wu, X. Yuan, and Y. Ning. Incorporating relational knowledge in explainable
fake news detection. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 403-415, 2021.

Y. Yao, B. Viswanath, J. Cryan, H. Zheng, and B. Y. Zhao. Automated crowdturfing
attacks and defenses in online review systems. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, pages 1143-1158, 2017.
J. Yin, C. Gan, K. Zhao, X. Lin, Z. Quan, and Z.-]. Wang. A novel model for
imbalanced data classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 6680-6687, 2020.

K. Yoshida, F. Adachi, T. Washio, H. Motoda, T. Homma, A. Nakashima, H. Fu-
jikawa, and K. Yamazaki. Density-based spam detector. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 486-493, 2004.

L. You, Y. Li, Y. Wang, J. Zhang, and Y. Yang. A deep learning-based rnns model for
automatic security audit of short messages. In Proceedings of the 16th International
Symposium on Communications and Information Technologies, pages 225-229,
2016.

J. Yu and J. Jiang. A hassle-free unsupervised domain adaptation method using
instance similarity features. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing, pages 168-173, 2015.

Q. Zhang, H. Ma, W. Qian, and A. Zhou. Duplicate detection for identifying
social spam in microblogs. In Proceedings of the IEEE International Congress on
Big Data, pages 141-148, 2013.

X. Zhang, G. Xiong, Y. Hu, F. Zhu, X. Dong, and T. R. Nyberg. A method of sms
spam filtering based on adaboost algorithm. In Proceedings of the 12th World
Congress on Intelligent Control and Automation, pages 2328-2332, 2016.

Z. Zhao, P. Resnick, and Q. Mei. Enquiring minds: Early detection of rumors
in social media from enquiry posts. In Proceedings of the 24th International
Conference on World Wide Web, pages 1395-1405, 2015.

Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowledge
and Information Systems, 24(3):415-439, 2010.

99.9

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Motivation

	3 Platform-Oblivious Framework
	3.1 Seed Collection
	3.2 Reconstructing Words Corpora
	3.3 Training Spam Word Model
	3.4 Outlier Detection

	4 Experiments
	4.1 Implementation
	4.2 Outlier Exposure
	4.3 Performance Comparison
	4.4 Importance of Each Design Component
	4.5 Impact of Seed Threshold
	4.6 Impact of Word Richness

	5 Related Work
	6 Discussion
	7 Conclusion
	References

