
Vol.:(0123456789)

Computational Optimization and Applications (2021) 80:781–830
https://doi.org/10.1007/s10589-021-00319-x

1 3

A distributed algorithm for high‑dimension convex
quadratically constrained quadratic programs

Run Chen1  · Andrew L. Liu1

Received: 4 January 2021 / Accepted: 3 September 2021 / Published online: 12 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
We propose a Jacobi-style distributed algorithm to solve convex, quadratically con-
strained quadratic programs (QCQPs), which arise from a broad range of applica-
tions. While small to medium-sized convex QCQPs can be solved efficiently by
interior-point algorithms, high-dimension problems pose significant challenges to
traditional algorithms that are mainly designed to be implemented on a single com-
puting unit. The exploding volume of data (and hence, the problem size), however,
may overwhelm any such units. In this paper, we propose a distributed algorithm for
general, non-separable, high-dimension convex QCQPs, using a novel idea of pre-
dictor–corrector primal–dual update with an adaptive step size. The algorithm ena-
bles distributed storage of data as well as parallel, distributed computing. We estab-
lish the conditions for the proposed algorithm to converge to a global optimum, and
implement our algorithm on a computer cluster with multiple nodes using message
passing interface. The numerical experiments are conducted on data sets of various
scales from different applications, and the results show that our algorithm exhibits
favorable scalability for solving high-dimension problems.

Keywords  Convex QCQP · Distributed algorithm · Proximal method · Parallel
computing

 *	 Run Chen
	 BigRunTheory@gmail.com

	 Andrew L. Liu
	 andrewliu@purdue.edu

1	 School of Industrial Engineering, Purdue University, West Lafayette, IN 47906, USA

http://orcid.org/0000-0002-5839-6090
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00319-x&domain=pdf

782	 R. Chen, A. L. Liu

1 3

1  Introduction

In this paper, we consider the following constrained optimization problem:

where Pi ∈ ℝ
n1×n1 , �i ∈ ℝ

n1 , and ri ∈ ℝ for i = 0, 1,… ,m1 are all given. Such a
problem is referred to as a quadratically constrained quadratic program (QCQP).
(Note that linear constraints are included with Pi = � , a matrix of all 0’s, for some
i.) If additionally, P0,P1,… ,Pm1

 are all positive semidefinite (PSD) matrices, then
the problem is convex. Convex QCQPs arise from a wide range of application areas,
including multiple kernel learning [16], ranking recommendations [5], signal pro-
cessing [11], radar applications [22], computer vision [1], and electric power system
operation [3], to name a few. Small to medium-sized convex QCQPs can be solved
efficiently by the well-established interior-point method (IPM) [19], which has poly-
nomial running time for solving convex optimization problems. However, in order to
write out the barrier function in the IPM for the feasible domain of a QCQP, decom-
position of matrices Pi = FT

i
Fi for i = 1,… ,m1 is usually required [18], which may

not be readily available through the input data. For example, in kernel-based learn-
ing applications, each quadratic constraint comprises a kernel matrix, whose com-
ponents are directly defined by a kernel function: Kjj� = k(�j, �j�) . The operations to
obtain a matrix decomposition, such as through Cholesky decomposition, typically
have computational complexity of O(n3) , which could become very costly as the size
of the matrices grows. When the dimension of the QCQPs increases dramatically
due to huge amount of data, or when the data just cannot be all stored in a cen-
tral location, a centralized algorithm, such as the IPM, may no longer be applicable.
This directly motivates the proposed algorithm in this paper, which not only does
not require any matrix decomposition , but also facilitates distributed storage of data
to achieve memory efficiency and enables parallel computing even for QCQPs of
non-separable constraints.

In addition to being a typical optimization problem, a convex QCQP is also a
special instance of a second-order cone program (SOCP), which is in turn a special
form of semi-definite program (SDP) [17]. When using commercial solvers, such as
CPLEX, to solve a convex QCQP, it is usually transformed into an SOCP through
preprocessing [13], and then a barrier-method-based optimizer is applied. To solve
large-scale conic programs, [20] applies an operator splitting method (such as the
well-known alternating direction method of multipliers, or ADMM) to the homo-
geneous self-dual embedding, which is an equivalent convex feasibility problem
involving finding a nonzero point in the intersection of a subspace and a cone. There
are also ADMM-based distributed algorithms for solving large-scale SDPs proposed
in [14, 21]; but they can only be applied to a class of decomposable SDPs with spe-
cial graph representations (chordal graphs, for example). To either translate a convex
QCQP to a standard SOCP or use the Schur Complement to rewrite each quadratic

(1)
minimize

�∈ℝn1

1

2
�TP0� + �T

0
� + r0

subject to
1

2
�TPi� + �T

i
� + ri ≤ 0, i = 1,… ,m1,

783

1 3

A distributed algorithm for high‑dimension convex…

inequality as a linear matrix inequality (LMI) and hence translate a convex QCQP
to an SDP , however, calls for matrix decomposition: Pi = FT

i
Fi for i = 1,… ,m1 .

As mentioned before, such operations can be very expensive for large-scale matri-
ces. There is another ADMM-based distributed algorithm that decomposes a general
QCQP with m constraints into m single-constrained QCQPs using a reformulated
consensus optimization form [10]. However, even the size of the single-constrained
QCQP can be very large in many applications, which may still need further decom-
position, making the overall algorithm’s efficiency in doubt. There is also a recent
approach to transform quadratic constraints into linear constraints by sampling
techniques and then to apply ADMM-based algorithms to solve the resulting high-
dimension quadratic programs (QPs) [2]. This approach is studied only for QCQPs
with all matrices being positive definite (PD), and all the test problems shown in
[2] are of a single constraint. How would the sampling approach perform with PSD
matrices in the constraints or with multiple quadratic constraints is unknown.

To overcome the above-mentioned limitations of the existing algorithms, we pro-
pose a novel first-order distributed algorithm, which decomposes a convex QCQP by
a method inspired by the idea of the predictor corrector proximal multiplier method
(PCPM) [6]. The advantages of our algorithm include the following: (i) non-sepa-
rable, quadratic functions can become naturally separable after introducing the so-
called predictor and corrector variables for both primal and dual variables, which
greatly facilitates distributed computing (with Jacobi-style parallel updating, as
opposed to Guass-Seidel style sequential updating); while ADMM-type algorithms
cannot be directly applied to QCQPs without separable constraints; (ii) both the
primal/dual predictor variables and corrector variables can be updated component-
wise, making the method well-suited for massively parallel computing, and each
n-by-n Hessian matrix can be stored column-wise in distributed computing units;
(iii) no matrix decomposition or inversion is needed.

Convergence of our algorithm to an optimal solution will be shown, along with
various numerical results. We first test the algorithm on solving standard QCQPs
with randomly generated data sets of different scales, and then apply it to solve high-
dimension multiple kernel learning problems. Numerical experiments are conducted
on a multi-node computer cluster through message passing interface (MPI), and
multiple nodes are used to highlight the benefits of distributed implementation of
our algorithm. Numerical results are compared with those obtained from the com-
mercial solver CPLEX (version 12.8.0, using the barrier optimizer). The comparison
will show that our algorithm can scale to very large problems at the cost of consum-
ing more cheap iterations to reach a higher accuracy. With a modest accuracy, our
algorithm exhibits favorable scalability for solving high-dimension QCQPs when
CPLEX fails to provide a solution due to memory limit or other issues.

The remainder of the paper is organized as follows. In Sect. 2, we briefly summa-
rize the original PCPM algorithm and highlight the novel idea in our proposed algo-
rithm. Section 3 provides convergence analyses of the algorithm, followed by dis-
cussions on how to implement the algorithm in a distributed framework in Sect. 4.
Numerical performance of various testing problems is reported in Sect. 5. Finally,
we conclude with some discussions in Sect. 6.

784	 R. Chen, A. L. Liu

1 3

2 � Algorithm description

2.1 � PCPM algorithm

To present our distributed algorithm, we first briefly describe the original PCPM
algorithm [6] to make this paper self-contained. For this purpose, it suffices to con-
sider a 2-block linearly constrained convex optimization problem:

where f1 ∶ ℝ
n1 → (−∞,+∞] and f2 ∶ ℝ

n2 → (−∞,+∞] are closed proper convex
functions, A1 ∈ ℝ

m×n1 and A2 ∈ ℝ
m×n2 are full row-rank matrices, � ∈ ℝ

m is a given
vector, and � ∈ ℝ

m is the corresponding Lagrangian multiplier associated with the
linear equality constraint. The classic Lagrangian function L ∶ ℝ

n1 ×ℝ
n2 ×ℝ

m
→ ℝ

is defined as:

It is well-known that for a convex problem of the specific form in (2) (where
the linear constraint qualification automatically holds), finding an opti-
mal solution is equivalent to finding a saddle point (�∗

1
, �∗

2
,�∗) such that

L(�∗
1
, �∗

2
,�) ≤ L(�∗

1
, �∗

2
,�∗) ≤ L(�1, �2,�

∗) . To find such a saddle point, a simple
dual decomposition algorithm can be applied to L(�1, �2,�) . More specifically, at
each iteration k, given a fixed Lagrangian multiplier �k , the primal decision vari-
ables (�k+1

1
, �k+1

2
) can be obtained, in parallel, by minimizing L(�1, �2,�

k) . Then a
dual update �k+1 = �k + �(A1�

k+1
1

+ A2�
k+1
2

− b) is performed.
While the above algorithmic idea is simple, it is well-known that convergence

cannot be established without more restrictive assumptions, such as strict convexity
of f1 and f2 (e.g., Theorem 26.3 in [23]). One approach to overcome such difficulties
is the proximal point algorithm, which obtains (�k+1

1
, �k+1

2
) by minimizing the proxi-

mal augmented Lagrangian function defined as L�(�1, �2,�
k) ∶= L(�1, �2,�

k)+
�

2
‖A1�1 + A2�2 − �‖2

2
+

1

2�
‖�1 − �k

1
‖2
2
+

1

2�
‖�2 − �k

2
‖2
2
 . The parameter � is given,

which determines the step-size for updating both primal and dual variables in each
iteration, and plays a key role in the convergence of the overall algorithm. The pri-
mal minimization step now becomes (with the Lagrangian function L(�1, �2,�

k)
explicitly written out in the form of Eq. (3)):

(2)
minimize

�1∈ℝ
n1 , �2∈ℝ

n2
f1(�1) + f2(�2)

subject to A1�1 + A2�2 = �, (�)

(3)L(�1, �2,�) = f1(�1) + f2(�2) + �T (A1�1 + A2�2 − �).

(4)

(�k+1
1

, �k+1
2

) = argmin
�1∈ℝ

n1 ,�2∈ℝ
n2

f1(�1) + f2(�2) + (�k)T (A1�1 + A2�2 − �)

+
�

2
‖A1�1 + A2�2 − �‖2

2

+
1

2�
‖�1 − �k

1
‖2
2
+

1

2�
‖�2 − �k

2
‖2
2
.

785

1 3

A distributed algorithm for high‑dimension convex…

With (4), however, �k+1
1

 and �k+1
2

 can no longer be obtained in parallel due to the
augmented term ‖A1�1 + A2�2 − �‖2

2
 . To overcome this difficulty, the PCPM algo-

rithm introduces a predictor variable �k+1:

Using the predictor variable, the optimization in (4) can be approximated as:

which allows �k+1
1

 and �k+1
2

 to be obtained in parallel again. After solving (6), the
PCPM algorithm updates the dual variable as follows:

which is referred to as a corrector update.

2.2 � A distributed algorithm for high‑dimension convex QCQPs

Now consider a convex QCQP problem in the following form:

where Pi ∈ ℝ
n1×n1 , �i ∈ ℝ

n1 , ri ∈ ℝ for i = 0, 1,… ,m1 , A ∈ ℝ
m2×n1 , B ∈ ℝ

m2×n2 and
� ∈ ℝ

m2 are all given. Note that we introduce a new variable � ∈ ℝ
n2 to explicitly

write out the linear-only terms �T
i
� with coefficients �i ∈ ℝ

n2 for i = 0, 1,… ,m1 ,
and also write out a linear equality constraint A� + B� = � separately. While
𝕏 =

∏n�

j=1
𝕏j ⊂ ℝ

n1 and each 𝕏j ⊂ ℝ
nj can be any closed and convex set in ℝnj with ∑n�

j=1
nj = n1 , we consider specifically the one-dimension box constraint here; that is

𝕏j = {xj ∈ ℝ
1|0 ≤ xj ≤ X̄j} for j = 1,… , n1.

The specific QCQP formulation in (8) is not more general than the standard
form (1). The reason that we write out a QCQP in this specific form is to empha-
size the fact that when dealing with QCQPs with linear constraints (including box
constraints), our algorithm does not require the problem to be reformulated into the
standard form in (1). This can be convenient from implementation perspective, as
several applications, including multiple kernel learning, naturally lead to a QCQP in
the form of (8).

To avoid technical difficulties, we make the blanket assumption throughout this
paper that the Slater’s constraint qualification (CQ) holds. Consequently, if an opti-
mal solution exists of (8), then there always exists a corresponding Lagrangian

(5)�k+1∶=�k + �(A1�
k
1
+ A2�

k
2
− �).

(6)

(�k+1
1

, �k+1
2

) = argmin
�1∈ℝ

n1 ,�2∈ℝ
n2

f1(�1) + f2(�2) + (�k+1)T (A1�1 + A2�2 − �)

+
1

2�
‖�1 − �k

1
‖2
2
+

1

2�
‖�2 − �k

2
‖2
2
,

(7)�k+1 = �k + �(A1�
k+1
1

+ A2�
k+1
2

− �),

(8)

minimize
�∈𝕏, �∈ℝn2

1

2
�TP0� + �T

0
� + �T

0
� + r0

subject to
1

2
�TPi� + �T

i
� + �T

i
� + ri ≤ 0, i = 1,… ,m1, (�i)

A� + B� = �, (�)

786	 R. Chen, A. L. Liu

1 3

multiplier (�, �) = (�1 ⋯ �m1
, �1 ⋯ �m2

)T . To apply the PCPM algorithm to the
QCQP in (8), at each iteration k, with a given primal–dual pair (�k, �k,�k, �k) , we
start with a dual predictor update:

where �
ℤ
(�) denotes the projection of a vector � ∈ ℝ

n onto a closed and convex set
ℤ ⊂ ℝ

n , and ℝ+ refers to the set of all non-negative real numbers.
After the dual predictor update step (9), we update the primal variables

(�k+1, �k+1) by minimizing the Lagrangian function L(�, �,�k+1, �k+1) evaluated at
the dual predictor variable (�k+1, �k+1) , plus the proximal terms. The primal minimi-
zation step can be written as

 Introducing the dual predictors � and � allows parallel updating of the primal vari-
ables � and � , exactly as in the general PCPM algorithm. However, the primal vari-
able � = (x1 … xj … xn1)

T cannot be further decomposed into parallel updating of
each component xj , due to the coupling terms �TPi� , i = 0, 1,… ,m1 , unless all Pi ’s
are diagonal matrices. To realize parallel updating of xj’s, we propose a simple idea
to use Pi�

k as a “predictor” for Pi� in the optimization (10a).
To illustrate the idea, it may be easier to consider the first-order optimality condi-

tion of (10a):

where N
�
(�k+1) is the normal cone to the convex set � =

∏n1
j=1

�j at the solution
point �k+1 . By approximating each (�i) using the predictor Pi�

k , i = 0, 1,… ,m1 , the
first-order optimality condition now becomes

(9)

∙ dual predictor ∶

�k+1
i

= �
ℝ+

(
�k
i
+ �

[1
2
(�k)TPi�

k + �T
i
�k + �T

i
�k + ri

])
, i = 1,… ,m1,

�k+1
i

= �k
i
+ �

[
A�k + B�k − �

]
i
, i = 1,… ,m2,

(10a)
�k+1 = argmin

�∈�

1

2
�TP0� + �T

0
� +

m1�
i=1

�k+1
i

�1
2
�TPi� + �T

i
�
�

+ (�k+1)TA� +
1

2�
‖� − �k‖2

2
,

(10b)�k+1 = argmin
�∈ℝn2

�T
0
� +

m1�
i=1

�k+1
i

�T
i
� + (�k+1)TB� +

1

2�
‖� − �k‖2

2
.

(11)

1

�
(�k − �k+1) ∈ P0�

k+1

⏟⏟⏟
(�0)

+�0 +

m1∑
i=1

�k+1
i

(
Pi�

k+1

⏟⏟⏟
(�i)

+�i
)
+ AT�k+1 +N

�
(�k+1),

(12)
1

�
(�k − �k+1) ∈ P0�

k + �0 +

m1∑
i=1

�k+1
i

(
Pi�

k + �i
)
+ AT�k+1 +N

�
(�k+1).

787

1 3

A distributed algorithm for high‑dimension convex…

With (12), it is easy to see that �k+1 can be obtained through component-wise calcu-
lations. (Note that the normal cone of box constraints has explicit algebraic expres-
sions and can also be decomposed component-wise with respect to �k+1 .) Unfortu-
nately, this simple idea would not work theoretically in the sense that convergence
to an optimal solution cannot be established. This is mainly due to the difficulty to
bound the error of ‖Pi�

k+1 − Pi�
k‖ along the iterations.

To overcome this hurdle, we propose a novel approach to split (12) into two
steps by first introducing “primal predictor” variable �k+1 for the primal decision
variable �k , followed by a corrector update:

 By focusing on box constraints for the generic set �j , and using the notation [�]j to
denote the jth component of a vector � , we can rewrite (13a) and (13b) component-
wise as follows, for each j = 1,… , n1 :

 where the projection onto the box constraint set �j can be expressed as:

With (14a) and (14b), in addition to the apparent benefits of updating the variables
component-wise, the multiplications of Pi�

k and Pi�
k+1 , i = 0, 1,… ,m1 in (14a) and

(14b) do not need to be carried out completely in each computing unit responsible
for updating yk+1

j
 and xk+1

j
 . The multiplications can be divided into multiple sub-

tasks, and each of them only needs the jth column of matrices Pi ’s and can be

(13a)

���� � (predictor) ∶

1

�
(�k − �k+1) ∈ P0�

k + �0 +

m1∑
i=1

�k
i

(
Pi�

k + �i
)
+ AT�k +N

�
(�k+1);

(13b)

���� � (corrector) ∶

1

�
(�k − �k+1) ∈ P0�

k+1 + �0 +

m1∑
i=1

�k+1
i

(
P
i
�k+1 + �

i

)
+ A

T�k+1 +N
�
(�k+1).

(14a)

∙ primal predictor of xk
j
∶

yk+1
j

∶=�
�j

(
xk
j
− �

[
P0�

k + �0 +

m1∑
i=1

�k
i

(
Pi�

k + �i
)
+ AT�k

]
j

)
,

(14b)

∙ primal corrector of xk
j
∶

xk+1
j

= �
�j

(
xk
j
− �

[
P0�

k+1 + �0 +

m1∑
i=1

�k+1
i

(
Pi�

k+1 + �i
)
+ AT�k+1

]
j

)
,

(15)𝛱
�j
(xj) ∶=

⎧⎪⎨⎪⎩

0, if xj < 0;

xj, if 0 ≤ xj ≤ X̄j;

X̄j, if xj > X̄j.

788	 R. Chen, A. L. Liu

1 3

accomplished locally by each computing unit. More detailed discussions of this
point are provided in Sect. 4.1.

The update of the other primal variable, �k+1 , can be performed in a similar
fashion, which is to split into two steps by first introducing a predictor variable
�k+1 for �k , followed by a corrector update:

 A dual corrector update is then performed for each Lagrangian multiplier
(�k+1, �k+1):

The overall structure of the proposed algorithm, which we name it PC2PM, to reflect
the fact that two sets of predictors and correctors are utilized, is presented in Algo-
rithm 1 below.

Note that the starting point of the PC2 PM algorithm can be arbitrary, and is
not required to be feasible. To establish convergence of the algorithm, the spe-
cific rules to update the step-size � are crucial, which is the main focus of the
next section. The implementation details, including distributed data storage, par-
allel computing through Message Passing Interface (MPI), and termination con-
ditions, are provided in Sect. 4.

(16a)

∙ primal predictor of uk
j
∶

vk+1
j

∶= uk
j
− �

[
�0 +

m1∑
i=1

�k
i
�i + BT�k

]
j
, j = 1,… , n2,

(16b)

∙ primal corrector of uk
j
∶

uk+1
j

= uk
j
− �

[
�0 +

m1∑
i=1

�k+1
i

�i + BT�k+1
]
j
, j = 1,… , n2.

(17)

∙ dual corrector ∶

�k+1
i

= �
ℝ+

(
�k
i
+ �

[1
2
(�k+1)TPi�

k+1 + �T
i
�k+1 + �T

i
�k+1 + ri

])
,

i = 1,… ,m1,

�k+1
i

= �k
i
+ �

[
A�k+1 + B�k+1 − �

]
i
, i = 1,… ,m2.

789

1 3

A distributed algorithm for high‑dimension convex…

3 � Convergence analysis

In this section, we establish sufficient conditions for the PC2 PM algorithm to con-
verge to an optimal solution from any starting point. First, we make a standard
assumption on (8) about the existence of an optimal solution.

Assumption 1  (Existence of an Optimal Solution) The convex QCQP (8) is assumed
to have an optimal solution, denoted by (�∗, �∗).

With Assumption 1 and the assumption on Slater’s CQ, we know that a saddle
point exist for the convex QCQP (8); more specifically, (�∗, �∗,�∗, �∗) is a saddle
point of (8) if for any � ∈ � , � ∈ ℝ

n2 , � ∈ ℝ
m1

+ and � ∈ ℝ
m2 , we have that

where L(�, �,�, �) is the Lagrangian function of (8):

The case when the convex QCQP is infeasible will be discussed in Sect. 4.4.
Next, we derive some essential lemmas for constructing the main convergence

proof.

Lemma 1  (Inequality of Proximal Minimization Point) Given a closed, convex set
ℤ ⊂ ℝ

n , and a closed, convex differentiable function F ∶ ℤ → ℝ . With a given point
�̄ ∈ ℤ and a positive number 𝜌 > 0 , if �̂ is a proximal minimization point; i.e.
��∶= argmin

�∈ℤ
F(�) +

1

2𝜌
‖� − �̄‖2

2
 , then we have that

Proof  Denote 𝛷(�) = F(�) +
1

2𝜌
‖� − �̄‖2

2
 . By the definition of �̂ , we have

∇��(̂�) = � . Since �(�) is strongly convex with modulus 1

�
 , it follows that

2�
�
�(�) −�(̂�)

�
≥ ‖�̂ − �‖2

2
 for any � ∈ ℤ . 	� ◻

For the ease of presenting the next two lemmas, we introduce a notation for the
linear approximation of the Lagrangian function (19).

Definition 1  With a given tuple
(
��, ��, ��

)
∈ 𝕏 ×ℝ

m1

+ ×ℝ
m2 , we define the follow-

ing function R ∶ 𝕏 ×ℝ
n2 → ℝ as a linear approximation of the Lagrangian function

L(�, �,�, �) evaluated at (��,��, ��).

(18)L(�∗, �∗,�, �) ≤ L(�∗, �∗,�∗, �∗) ≤ L(�, �,�∗, �∗),

(19)

L(�, �,�, �)∶=
1

2
�TP0� + �T

0
� + �T

0
� + r0

+

m1∑
i=1

�i
(1
2
�TPi� + �T

i
� + �T

i
� + ri

)
+ �T (A� + B� − �).

(20)2𝜌[F(��) − F(�)] ≤ ‖�̄ − �‖2
2
− ‖�� − �‖2

2
− ‖�� − �̄‖2

2
, ∀� ∈ ℤ.

790	 R. Chen, A. L. Liu

1 3

for any � ∈ � and � ∈ ℝ
n2.

Lemma 2  The update steps (9), (14a), (14a), (16a), (16b) and (17) are equivalent to
obtaining proximal minimization points as follows:

	� ◻

Since all the four optimization in (22a)–(22d) are convex optimization problems
with linear constraints, the proof follows directly from the first-order optimality con-
ditions of each of the optimization problems, and hence is omitted.

Lemma 3  At a saddle point (�∗, �∗,�∗, �∗) of the QCQP (8), the following inequality
holds for any � ∈ � , � ∈ ℝ

n2 , � ∈ ℝ
m1

+ and � ∈ ℝ
m2:

Proof  For any � ∈ � , � ∈ ℝ
n2 , � ∈ ℝ

m1

+ and � ∈ ℝ
m2 , we have that

L(�, �,�∗, �∗) ≥ L(�∗, �∗,�, �) by the saddle point inequality (18). We also have
the inequality 1

2
(� − �∗)TP0(� − �∗) +

∑m1

i=1
�i
�
1

2
(� − �∗)TPi(� − �∗)

�
≥ 0 due to the

(21)

R(�, �;��,��, ��)∶=(P0�
� + �0)

T� + �T
0
� + r0

+

m1∑
i=1

��
i

[
(Pi�

� + �i)
T� + �T

i
� + ri

]
+ (��)T (A� + B� − �),

(22a)

(�k+1, �k+1) = argmin
�∈ℝ

m1
+ , �∈ℝm2

− L(�k, �k,�, �)

+
1

2�k+1
‖� − �k‖2

2
+

1

2�k+1
‖� − �k‖2

2
;

(22b)

(�k+1, �k+1) = argmin
�∈𝕏, �∈ℝn2

R(�, �;�k,�k, �k)

+
1

2�k+1
‖� − �k‖2

2
+

1

2�k+1
‖� − �k‖2

2
;

(22c)

(�k+1, �k+1) = argmin
�∈𝕏, �∈ℝn2

R(�, �;�k+1,�k+1, �k+1)

+
1

2�k+1
‖� − �k‖2

2
+

1

2�k+1
‖� − �k‖2

2
;

(22d)

(�k+1, �k+1) = argmin
�∈ℝ

m1
+ , �∈ℝm2

− L(�k+1, �k+1,�, �)

+
1

2�k+1
‖� − �k‖2

2
+

1

2�k+1
‖� − �k‖2

2
.

(23)

R(�∗, �∗;�,�, �) −R(�, �;�,�, �)

≤

m1∑
i=1

(�∗
i
− �i)

(1
2
�TPi� + �T

i
� + �T

i
� + ri

)
+ (�∗ − �)T (A� + B� − �).

791

1 3

A distributed algorithm for high‑dimension convex…

positive semi-definiteness of each matrix P0,P1,… ,Pm1
 . Adding the two inequali-

ties together completes the proof. 	� ◻

We next establish fundamental estimates of the distance between the solution
point (�k+1, �k+1,�k+1, �k+1) at each iteration k and the saddle point (�∗, �∗,�∗, �∗).

Proposition 1  Let (�∗, �∗,�∗, �∗) be a saddle point of the QCQP (8). For all k ≥ 0 ,
we have that

and

Proof  The details of the proof are provided in “Appendix 2”. 	� ◻

(24)

‖�k+1 − �∗‖2
2
+ ‖�k+1 − �∗‖2

2

≤ ‖�k − �∗‖2
2
+ ‖�k − �∗‖2

2

−
�‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�

+ 2�k+1
�
(�k+1 − �k+1)TP0(�

k+1 − �k)

+

m1�
i=1

�k+1
i

(�k+1 − �k+1)TPi(�
k+1 − �k)

+

m1�
i=1

(�∗
i
− �k+1

i
)
�
1

2
(�k+1)TPi�

k+1 + �T
i
�k+1 + �T

i
�k+1 + ri

�

+ (�∗ − �k+1)T (A�k+1 + B�k+1 − �)

+

m1�
i=1

(�k+1
i

− �k
i
)
�
(Pi�

k + �i)
T (�k+1 − �k+1) + �T

i
(�k+1 − �k+1)

�

+ (�k+1 − �k)T
�
A(�k+1 − �k+1) + B(�k+1 − �k+1)

��
,

(25)

‖�k+1 − �∗‖2
2
+ ‖�k+1 − �∗‖2

2

≤ ‖�k − �∗‖2
2
+ ‖�k − �∗‖2

2

−
�‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�

+ 2�k+1
� m1�

i=1

(�k+1
i

− �∗
i
)
�1
2
(�k+1)TPi�

k+1 + �T
i
�k+1 + �T

i
�k+1 + ri

�

+ (�k+1 − �∗)T (A�k+1 + B�k+1 − �)

+

m1�
i=1

(�k+1
i

− �k+1
i

)
�1
2
(�k)TPi�

k + �T
i
�k + �T

i
�k + ri

�

+ (�k+1 − �k+1)T (A�k + B�k − �)

�
.

792	 R. Chen, A. L. Liu

1 3

Now we are ready to present the main convergence result. A key to the proof
depends on the rules to adaptively update the step-size. The rules, however, are
lengthy and purely technical, and hence their details are deferred to “Appendix 1”.

Theorem 1  (Global Convergence) Assume that the Slater’s CQ and Assumption 1
hold. At each iteration k of Algorithm 1, let the step-size �k+1 be updated accord-
ing to the update rules in “Appendix 1”. Then with an arbitrary starting point
(�0, �0,�0, �0) ∈ ℝ

n1 ×ℝ
n2 ×ℝ

m1 ×ℝ
m2 , the sequence {(�k, �k,�k, �k)} generated by

Algorithm 1 converges to a saddle point (�∗, �∗,�∗, �∗) of the QCQP (8).

Proof  Please see “Appendix 2” for details. 	� ◻

A point we want to emphasize here is that the convergence result is quite strong
in the sense that the entire iterative sequence, not just a subsequence, can be shown
to converge to an optimization solution, with an arbitrary starting point. Such a
result can help alleviate a strong assumption we made, which is to assume that a
given convex QCQP has an optimal solution. While the algorithm or its convergence
proof does not handle infeasible or unbounded cases, we will show in Sect. 4.4 that
from a practical perspective, our algorithm can just be blindly applied to a convex
QCQP, and either infeasibility or unboundedness can be inferred from observing the
behavior of the residuals we use for the algorithm’s stopping criteria, which are to
be defined in Sect. 4.3.

4 � Implementation

In this section, we discuss how to efficiently implement the PC2 PM algorithm, espe-
cially within a distributed framework.

4.1 � Distributed storage of data and parallel computing

As mentioned in the introduction section, one key feature of the PC2 PM algorithm
for solving convex QCQPs is that when implemented across multiple computing
units, each computing unit does not need to store entire matrices. Instead, only each
primal computing unit needs to store certain columns of the matrices (that is, the
Hessian matrices in the objective function and the constraints). To illustrate this
point, we use the primal predictor update (14a) as an example. Assume that ideally
we have n1 primal computing units dedicated to updating yj , j = 1,… , n1 . To ease
the argument, we write out the updating rule again here:

(26)yk+1
j

= �
�j

⎛⎜⎜⎝
xk
j
− �

�
P0�

k + �0 +

m1�
i=1

�k
i

�
Pi�

k + �i
�
+ AT�k

�

j

⎞⎟⎟⎠
.

793

1 3

A distributed algorithm for high‑dimension convex…

In each unit j, only the values of xk
j
 , [Pi]j , [�i]j for i = 0, 1,… ,m1 and [A]j are needed

to be stored locally. To calculate [Pi�
k]j for i = 0, 1,… ,m1 , there is no need to store

the entire Pi matrices on each computing unit. Instead, the value of [Pi�
k]j can be

obtained using MPI to communicate among all primal computing units, where only
one column of the Pi matrices (and xk

j
 ) is stored locally. Here we use a simple exam-

ple to illustrate the mechanism. Let n1 = 3 , Fig. 1a shows how [P1�
k]j , j = 1, 2, 3 are

calculated in a distributed fashion through MPI. First, each computing unit j com-
pletes a subtask of multiplying [P1]j and xk

j
 using their locally stored information;

then the intermediate results are summed up using the MPI_Reduce function in a
root process to get the value of P1�

k . Each component of the vector P1�
k is then sent

back to the corresponding computing unit j using the MPI_Scatter function. After
obtaining the values of [Pi�

k]j for i = 0, 1,… ,m1 in this way, the update step (26)
can be carried out upon receiving the values of (�k

1
,… , �k

m1
) and �k from other dual

computing units dedicated for updating the dual variables using MPI_Send and
MPI_Recv functions, with the fact that [AT�k]j = [A]T

j
�k . Such a feature will be par-

ticularly beneficial for solving high-dimension QCQPs from real world applications,
as in many such cases the number of variables ( n1 for � and n2 for � ) can be
enormous.

In the 3-dimension example shown in Fig. 1a, once each [P1�
k]j is received by com-

puting unit j for j = 1, 2, 3 , a subtask of multiplying xk
j
 and [P1�

k]j is needed to calcu-
late the value of (�k)TP1�

k for dual update, such as in (9):

(27)�k+1
i

= �
ℝ+

(
�k
i
+ �

[
1

2
(�k)TPi�

k + �T
i
�k + �T

i
�k + ri

])
.

(a) Calculating [P1xk]j for each computing unit j. (b) Calculating (xk)TP1xk.

Fig. 1   Illustrations of matrix-vector multiplications using MPI functions

794	 R. Chen, A. L. Liu

1 3

Such a process is illustrated in Fig. 1b, which shows that the locally calculated inter-
mediate results are summed up using the MPI_Reduce function and sent to the cor-
responding dual computing unit. Other matrix-vector (and vector-vector) multiplica-
tions in the update steps of Algorithm 1 can all be calculated in a similar fashion.1

Next, we examine the speedup of using multiple compute nodes for parallel dis-
tributed computing. We run the PC2 PM algorithm on a multi-node computer cluster,
where each node has multiple cores (24 cores in our case). MPI is used to communi-
cate among all parallel processes mapped to cores belonging to different nodes. For
illustration purpose, we focus on a single-constraint convex QCQP:

which does not contain the block of decision variable � or linear constraint
A� + B� = � . We test the PC2 PM algorithm for solving (28) on a randomly gener-
ated data set with Pi ∈ ℝ

n1×n1 , �i ∈ ℝ
n1 and ri ∈ ℝ for i = 0, 1 . The dimension n1 is

set at 214 ≈ 1.6 × 104 . Each matrix Pi is randomly generated as a symmetric PSD
matrix in the form of Pi = QTDQ , where Q ∈ ℝ

n1×n1 is a randomly generated orthog-
onal matrix, and D = diag(d1,… , dn1) is a randomly generated diagonal matrix with
all non-negative entries. Since d1,… , dn1 are also the eigenvalues of each Pi , we
denote the largest eigenvalue as dmax and the smallest eigenvalue as dmin , and hence
make the condition number of each matrix as �(Pi) =

dmax

dmin
 . Then, the remaining

diagonal entries are randomly generated from the range [dmin, dmax] . We test differ-
ent condition numbers for all matrices, increasing from 102 to 106 . The values of the
smallest eigenvalue dmin and the largest eigenvalue dmax are listed in Table 1.

The components of each vector �i are randomly generated from the range
[−1.0, 1.0] , and each scalar ri is randomly generated from the range [−1.0, 0.0] to
guarantee the feasibility of the constraint sets.

Since the number of Lagrangian multipliers is 1, the number of dual comput-
ing units ndual-comp is also fixed as 1. The tasks of updating n1 components of the
primal decision variables � and � are evenly distributed among all the primal com-
puting units with the number nprimal-comp varying from 1 to 256 for comparison

(28)
minimize

�∈ℝn1

1

2
�TP0� + �T

0
� + r0

subject to
1

2
�TP1� + �T

1
� + r1 ≤ 0, (�1)

Table 1   Values of the smallest
eigenvalue d

min
 and the largest

eigenvalue d
max

 for different
condition numbers

Cond. num. Smallest eigenvalue Largest eigenvalue(
� =

d
max

d
min

) (
d
min

) (
d
max

)

102 0.1 10.0

104 0.003 30.0

106 0.00002 20.0

1  For more information, we refer the readers to our implementation codes programmed in C available
online at https://​github.​com/​BigRu​nTheo​ry/A-​Distr​ibuted-​Algor​ithm-​for-​Large-​scale-​Convex-​QCQPs.

https://github.com/BigRunTheory/A-Distributed-Algorithm-for-Large-scale-Convex-QCQPs

795

1 3

A distributed algorithm for high‑dimension convex…

purpose. Since each computing unit occupies a single core, the total number of
cores used is ncore = nprimal-comp + ndual-comp . The number of nodes needed is calcu-
lated as nnode = ⌈ncore∕24⌉ (where 24 is the number of cores per node). The elapsed
wall-clock time T used by the PC2 PM algorithm to converge with a tolerance
�PC

2PM = 10−3 , corresponding to different condition numbers, is listed in Table 2,
along with the calculated objective function values. (The specific stopping criteria
are given in Sect. 4.3.)

The computational speedup S is defined as the ratio of the elapsed run time taken
by a serial code to that taken by a parallel code for solving the same problem. More
specifically, S is defined as

The speedup of solving (28) is shown in Fig. 2.

(29)S∶=
T(1 + 1)

T(nprimal-comp + 1)
, nprimal-comp ≥ 2.

Table 2   Elapsed wall-clock time
used by PC2 PM for solving the
single-constraint convex QCQP
(28) with different condition
numbers ( �)

PC2 PM using multiple nodes (max. 24 cores per node)
(�PC2

PM = 10−3)

Elapsed wall-clock time (h)

nnode ncore � = 102 � = 104 � = 106

1 1 + 1 42.08 51.72 70.45
1 2 + 1 22.79 28.11 38.28
1 4 + 1 14.17 17.48 23.89
1 8 + 1 8.85 10.87 14.70
1 16 + 1 5.60 6.91 9.62
2 32 + 1 4.82 6.13 8.26
3 64 + 1 4.33 5.42 7.51
6 128 + 1 3.94 4.96 6.95
11 256 + 1 5.51 6.84 9.32

Obj. val. −420.621 −214.389 −324.428

Number of Primal Computing Units

2

4

6

8

10

12

C
om

pu
ta

tio
na

l S
pe

ed
up

 = 102

20 21 22 23 24 25 26 27 28

Number of Primal Computing Units

2

4

6

8

10

12

C
om

pu
ta

tio
na

l S
pe

ed
up

 = 104

20 21 22 23 24 25 26 27 28

Number of Primal Computing Units

2

4

6

8

10

12

C
om

pu
ta

tio
na

l S
pe

ed
up

 = 106

20 21 22 23 24 25 26 27 28

Fig. 2   Computational speedup of PC2 PM for solving the single-constraint convex QCQP (28) with dif-
ferent condition numbers ( �)

796	 R. Chen, A. L. Liu

1 3

For this specific case, parallel computing achieved linear speedup initially. How-
ever, due to communication overhead, the speedup plateaued (or even decreased)
when the number of computing units is too high. As such, we suggest that a proper
number of computing units needs to be carefully chosen when implementing the
PC2 PM algorithm to balance between computational speedup and communication
overhead.

4.2 � Adaptive step size with auto‑learned allocation weights

In establishing the global convergence of the PC2 PM algorithm, it is not specified
how the values of �s , s = 1,… , 8 are chosen in order to calculate the eight com-
ponents �1–�8 (see the update rules in “Appendix 1”). Here we develop a practical
rule to help determine the values of �s ’s along the iterations. The rule may also help
accelerate the algorithm’s performance, based on our numerical experiments.

Generally speaking, for first-order algorithms, to which the PC2 PM algorithm
also belongs, the larger value a step size could take, the fewer number of iterations
the algorithms would need to converge. For the step-size formula (49), it is easy
to observe that the value of each �s increases when the corresponding �s increases.
However, the �s ’s cannot be too large as their summation is bounded by 1 − �0 ≤ 1 .
A naive way to allocate the value of each �s is to evenly distribute the upper bound of
their summation; that is, �s =

1

8
(1 − �0) for s = 1,… , 8 , throughout the convergence.

Alternatively, we introduce a weight variable ws > 0 for each �s . At the beginning of
the algorithm, they are all initialized as 1, indicating an even allocation of the values
of the �s’s. At each iteration k = 1, 2,… , we calculate the values of �k

1
,… , �k

8
 based

on the following formulation:

After the step size �k+1 is determined by min{�k
1
,… , �k

8
} according to (49), the val-

ues of the weights wk+1
1

,… ,wk+1
8

 are updated based on the ratio of �k+1 to each �k
s
:

The idea of the above updating rule is to make sure that all the values of the �s ’s will
have a chance to be increased, avoiding the possibility that a particularly small �s
would always be chosen to determine the step size �k+1 , which would slow down the
whole algorithm.

For illustration purpose, we use the PC2 PM algorithm with the step-size updat-
ing rule of (49), (30) and (31) to solve the same single-constraint convex QCQP
(28) in the previous subsection. We test the algorithm on a data set of matrix
Pi , vector �i and scalar ri randomly generated in the same way as in the previ-
ous subsection for i = 0, 1 , but with n1 = 1024 and �(Pi) = 100 . The algorithm
is implemented on a single core as a serial code. (Note that the parallel comput-
ing has nothing to do with the number of iterations for the PC2 PM algorithm to

(30)�k
s
=

wk
s∑8

s=1
wk
s

(1 − �0), s = 1,… , 8.

(31)wk+1
s

=
�k+1

�k
s

wk
s
, s = 1,… , 8.

797

1 3

A distributed algorithm for high‑dimension convex…

converge.) Since it contains neither the decision variable � nor the linear equal-
ity constraint A� + B� = � , only �k

1
,… , �k

5
 need to be calculated at each iteration.

We compare the performance of the algorithm using equal weights versus using
the adaptive weights in (31). The number of iterations and the elapsed wall-clock
time used by the algorithm to converge with a tolerance �PC2PM = 10−4 are listed
in Table 3.

We also test using different values of �0 , including a fixed value varying from
0.5, 10−1,… , 10−6 to 0 and a diminishing value of 1√

k+1
 . The numerical results of

this specific instance suggest that by using auto-learned allocation weights, the
number of iterations for the algorithm to converge is cut by more than half. Com-
paring each rows, we also observe that the smaller the value of �0 is, the faster the
algorithm converges. Additionally, for the row of �0 = 0 , we plot out the compari-
son of values of the resulting step size �k at each iteration k using different weight
allocations, shown in Fig. 3.

Table 3   Number of iterations
and elapsed wall-clock time
used by PC2 PM for solving a
single-constraint convex QCQP
(28) with different settings of
(�0,… , �5)

Equal weight allocation Adaptive weight allocation

Value of �0 Num. iter. Time (s) Num. iter. Time (s)

0.5 59,496 123 28,272 62
10−1 33,055 74 15,713 36

10−2 30,050 68 14,287 32

10−3 29,780 68 14,158 32

10−4 29,753 68 14,145 32

10−5 29,750 67 14,143 31

10−6 29,750 67 14,143 31
0 29,750 66 14,143 31
Diminishing 30,094 70 14,378 33

Fig. 3   Comparison of values
of the step size using different
weight allocations when �0 = 0

0 1 2 3

Number of Iterations 104

-4

-3.5

-3

-2.5

Lo
g 10

(
eq

. w
ei

.,
ad

a.
 w

ei
.)

value of step size

eq. wei.

ada. wei.

798	 R. Chen, A. L. Liu

1 3

We observe that using the adaptive weights, the step size quickly converges to a
much larger value than using the equal weights, which explains the greatly reduced
number of iterations.

4.3 � Stopping criteria

Since we consider a convex QCQP and assume that the Slater’s CQ holds, the first-
order optimality conditions (aka the KKT conditions) are both necessary and suf-
ficient. More specifically, for an optimal solution (�∗, �∗) of the QCQP (8) and its
corresponding dual solution (�∗, �∗) , the following conditions are satisfied:

•	 Stationarity:

•	 Complementarity:

•	 Primal Feasibility:

•	 Dual Feasibility:

Conversely, any primal–dual pair (�∗, �∗;�∗, �∗) satisfying the above conditions is
optimal to the primal and dual of the QCQP (8), respectively. Based on the optimal-
ity conditions (32a)–(35), we choose stopping criteria for our algorithm to measure
stationarity, as well as complementarity and primal feasibility. (Note that dual fea-
sibility is always maintained by the projection step in each iteration, as shown in
(17).) More specifically, at each iteration k, we measure the following two residuals:

(32a)−
[
P0�

∗ + �0 +

m1∑
i=1

�∗
i
(Pi�

∗ + �i) + AT�∗
]
j
∈ N

�j
(x∗

j
), j = 1,… , n1

(32b)�0 +

m1∑
i=1

�∗
i
�i + BT�∗ = �

(33)�∗
i

[
1

2
(�∗)TPi�

∗ + �T
i
�∗ + �T

i
�∗ + ri

]
= 0, i = 1,… ,m1

(34a)
1

2
(�∗)TPi�

∗ + �T
i
�∗ + �T

i
�∗ + ri ≤ 0, i = 1,… ,m1

(34b)A�∗ + B�∗ − � = �

(35)�∗
i
≥ 0, i = 1,… ,m1

(36)resk
1
=

���� 1

n1 + n2

� n1�
j=1

�
resk

1
_xj

�2
+ ‖�0 +

m1�
i=1

�k
i
�i + BT�k‖2

2

�
, and

799

1 3

A distributed algorithm for high‑dimension convex…

where resk
1
_xj in (36) depends on the actual form of the constraint set � . Again, for

box constrains 0 ≤ xj ≤ X̄j , j = 1,… , n1 , we have that

and ����� = P0�
k + �0 +

∑m1

i=1
�k
i
(Pi�

k + �i) + AT�k . This comes from the rewriting
of the optimality condition (32a) using ����� as:

where

We terminate our algorithm when both of the two residuals drop below a pre-spec-
ified tolerance � . Note that the residuals defined in (36) and (37) are based on the
average residuals of all the constraints. Other forms of residual metric, such as using
the maximum residual of all the constraints, can also be used.

4.4 � Infeasibility and unboundedness

Lastly, we examine how the PC2 PM algorithm could computationally detect infeasibil-
ity or unboundedness of a convex QCQP.

First, we construct an infeasible QCQP as follows:

All the matrices Pi’s, vectors �i ’s and scalars ri ’s in (41) are randomly generated in
the same way as in Sect. 4.1, but with n1 = 1024 and �(Pi) = 100 . Letting � denote a

(37)resk
2
=

��������
1

m1 + m2

� m1�
i=1

�
�k
i
��12 (�

k)TPi�
k + �T

i
�k + �T

i
�k + ri

��
�2

+ ‖A�k + B�k − �‖2
2

� ,

(38)resk
1
_xj ∶=

⎧
⎪⎨⎪⎩

min{0,
�
�����

�
j
}, if xk

j
= 0�

�����
�
j
, if 0 < xk

j
< X̄j

max{0,
�
�����

�
j
}, if xk

j
= X̄j

,

(39)−
[
����∗

�

]
j
∈ N

�j
(x∗

j
),

(40)N
�j
(x∗

j
) ∶=

⎧⎪⎨⎪⎩

(−∞, 0], if x∗
j
= 0

[5pt]{0}, if 0 < x∗
j
< X̄j

[5pt][0,+∞), if x∗
j
= X̄j

.

(41)

minimize
�∈ℝn1

1

2
�TP0� + �T

0
� + r0

subject to
1

2
�TP1� + �T

1
� + r1 ≤ 0, (𝜆1)

1

2

(
� + �2

)T(
� + �2

)
���������������������������

≥0

+ 𝛥
���

>0

≤ 0. (𝜆2)

800	 R. Chen, A. L. Liu

1 3

positive scalar in the second quadratic constraint in (41) apparently makes the prob-
lem infeasible. We decrease � from 100 to 0.01 and apply the PC2 PM algorithm to
solve the resulting problems. The corresponding residuals are shown in Fig. 4.

We observe that the residual res2 , measuring the complementarity and the primal
feasibility as defined in (37), diverges for all �’s, while the other residual res1 still con-
verges. This is a strong indication that the original problem is infeasible.

Next, we construct an unbounded convex QCQP as follows:

The matrix D0 ∈ ℝ
n1×n1 is a diagonal matrix with all but the last diagonal entry

being 1, and its last diagonal entry is set as 0, hence making it a PSD matrix. The
vector �0 is an n1-dimension vector in the form of �0 = (0… 0 1)T . Conversely, the
vector �1 is also n1-dimension but in the form of �1 = (1… 1 0) . The dimension n1
is also set as 1024. All scalars ri ’s are randomly generated in the same way as in
Sect. 4.1. It can be easily seen that the convex QCQP (42) is unbounded along the
direction (0,… , 0,−1) . As shown in Fig. 5, when applying PC2 PM to solve (42), we
observe that both of the residuals converge, but the residual res1 , measuring station-
arity as defined in (36), converges to a non-zero value. This means that an optimal
solution is not found. If it is known that a feasible point exists to a convex QCQP (as
the example given by (42)) (and assume that a constraint qualification holds at the
feasible point), then by Theorem 1, if the algorithm does not find an optimal solu-
tion, it must mean that Assumption 1 is violated, which then implies that the origi-
nal problem is unbounded (as an optimal solution does not exist).

(42)
minimize

�∈ℝn1

1

2
�TD0� + �T

0
� + r0

subject to
1

2
�TD0� + �T

1
� + r1 ≤ 0. (�1)

0 2 4 6 8
Number of Iterations 103

0

0.2

0.4

0.6

0.8

1

(r
es

1, r
es

2)

104
Infeasible Convex QCQP

(= 100)

res1
res2

0 2 4 6 8
Number of Iterations 103

0

0.2

0.4

0.6

0.8

1

(r
es

1, r
es

2)

102
Infeasible Convex QCQP

(= 1)

res1
res2

0 2 4 6 8
Number of Iterations 103

0

0.2

0.4

0.6

0.8

1

(r
es

1, r
es

2)

102
Infeasible Convex QCQP

(= 0.01)

res1
res2

Fig. 4   Residuals of applying PC2 PM to solve an infeasible convex QCQP. The residual res2 diverges
when applying PC2 PM to solve (41)

801

1 3

A distributed algorithm for high‑dimension convex…

5 � Numerical experiments

In this section, we present more numerical results for solving high-dimension con-
vex QCQPs using our algorithm. We first conduct numerical experiments of apply-
ing the PC2 PM algorithm to solve convex QCQPs of the standard form (1), with
randomly generated data sets of various sizes. We then solve convex QCQPs with
explicit linear constraints as in (8), which naturally arise from multiple kernel learn-
ing applications. For both sets of experiments, we compare the performance of our
algorithm with the current state-of-the-art commercial solver CPLEX 12.8.0, which
uses the barrier optimizer for solving convex QCQPs. We implement PC2 PM with
multiple compute nodes on Purdue University’s Brown cluster using MPI, called
from a C program. Each node on the cluster has two 12-core Intel Xeon Gold “Sky
Lake” processors (that is, 24 cores per node) and 96 GB of memory. CPLEX 12.8.0
is also called using a C program and implemented on a single compute node (with
24 cores). Note that CPLEX alone, as a centralized algorithm, cannot be run on
multiple compute nodes using MPI, but it does allow multiple parallel threads that
can be invoked by the barrier optimizer. More specifically, CPLEX has a param-
eter, CPXPARAM_Threads, to call for multithread computing [12]. When CPX-
PARAM_Threads is set to be 1, CPLEX is single threaded; when it is set to be 0,
CPLEX can use up to 32 threads, or the number of cores of the machine (with each
core being a thread), whichever is smaller. In our experiments, we always set CPX-
PARAM_Threads as 0, which gives CPLEX 24 threads (since each of our compute
node has 24 cores).

5.1 � Solving standard‑form convex QCQPs

We first apply PC2 PM to solve convex QCQPs of the standard form (1), without the
decision variables � or the explicit linear constraints A� + B� − � = � . The input
data consist of matrix Pi , vector �i and scalar ri for i = 0, 1,… ,m1 , all of which
are randomly generated in the same way as in Sect. 4.1. The decision variable’s

Fig. 5   Residuals of applying
PC2 PM to solve an unbounded
convex QCQP. The residual res1
converges to a non-zero value
when applying PC2 PM to solve
(42)

0 2 4 6 8
Number of Iterations 103

0

0.05

0.1

0.15

0.2

(r
es

1, r
es

2)

Unbounded Convex QCQP

res1
res2

802	 R. Chen, A. L. Liu

1 3

dimension n1 is fixed as 214 ≈ 1.6 × 104 , and the number of constraints m1 increases
from 1 to 16.

To balance between the computation speedup and communication overhead, we
implement our algorithm with 128 cores allocated for primal variables’ updating:
(14a) (16a), (14b) and (16b), and m1 (the number of quadratic constraints) cores for
dual updating: (9) and (17). The total number of compute nodes needed is calculated
as nnode = ⌈ ncore

24
⌉ = ⌈ 128+m1

24
⌉ . The stopping criteria we used are defined in (36) and

(37), with the tolerance �PC2PM set to be 10−3 . Table 4 reports the elapsed wall-clock
time used by the PC2 PM algorithm, along with the amount of memory used by each
compute node and the final objective function value, with respect to the increasing
condition number � . The performance of CPLEX 12.8.0 with the same convergence
tolerance is also presented in Table 4 for comparison. In the first two groups of tests
with m1 = 1 and 2 , our algorithm compares favorably to CPLEX and uses much less
memory. For the rest groups of test cases, CPLEX fails to provide a solution (actu-
ally fails to complete even a single iteration) due to running out of memory; while
PC2 PM still converges within a reasonable amount of time. As the scale of the prob-
lem increases, our algorithm exhibits favorable scalability, due to its distributed stor-
age of data and the capability of massively parallel computing. Another interesting
observation from Table 4, though we do not know the underlying reason, is that
when the number of quadratic constraints ( m1 ) is small, PC2PM’s run time appears
to be sensitive to the condition number of matrices (i.e., the Hessian matrices of the
objective function and the constraints); yet when m1 becomes larger, the effect of
condition numbers on the run time appears to be subdued.

We also plot the two residuals resk
1
 and resk

2
 in Fig. 6, with resk

1
 corresponding to

the gradient of the Lagrangian function, and resk
2
 corresponding to the feasibility

and complementarity conditions. The three plots in a same row are with the same
number of constraints m1 , but with different condition numbers of the Hessian matri-
ces. As seen in Fig. 6, from left to right, when m1 is small, as the condition num-
ber � increases, more iterations are required for the PC2 PM algorithm to converge;
yet when m1 becomes larger, the number of iterations depends more on the absolute
value of the objective function than the condition number. Another observation is
that when the number of constraints increases (i.e., from top to bottom), the conver-
gence of the residuals becomes more smooth.

5.2 � Multiple kernel learning in support vector machine

In this subsection, we briefly introduce how the Support Vector Machine (SVM)
with multiple kernel learning can be formulated as a convex QCQP, and present
numerical results of applying our algorithm to solve high-dimension instances. As
discussed in [8], SVM is a discriminative classifier proposed for binary classifica-
tion problems. Given a set of ntr pairs of independently and identically distributed
training data points {(�j, lj)}

ntr
j=1

 , where �j ∈ ℝ
nd is the nd-dimension input vector and

lj ∈ {−1, 1} is its class label, SVM searches for a hyperplane that can best separate
the points from two classes. The hyperplane is defined as {� ∈ ℝ

n
d |f (�) =

�T� + �0 = 0} , where � ∈ ℝ
nd is a unit vector with ‖�‖2 = 1 , and �0 ∈ ℝ is a scalar.

803

1 3

A distributed algorithm for high‑dimension convex…

The points belonging to either class should be separated as far away from the hyper-
plane as possible, while still remain on the correct side. When the data points cannot
be clearly separated in the original space ℝnd , we instead search in a feature space
ℝ

nf , by mapping the input data space ℝnd to the feature space through a function

Table 4   Comparison of PC2 PM with CPLEX 12.8.0 for solving standard-form, high-dimension convex
QCQPs

n1 m1 � nnode ncore Mem./node (GB) Time (h) Obj. val.

102 3.94 −420.621

104 PC2PM 6 128 + 1 1.6/node 4.96 −214.389

1.6 � 106 (�PC
2
PM = 10−3) 6.95 −324.428

×104 102 4.97 −420.645

104 CPLEX 12.8.0 1 24 41.1 5.02 −214.423

106 (�Barrier = 10−3) 5.25 −324.465

102 2.28 −322.232

104 PC2PM 6 128 + 2 1.9/node 2.41 −161.960

1.6 � 106 (�PC
2
PM = 10−3) 1.87 −244.048

×104 102 10.82 −322.213

104 CPLEX 12.8.0 1 24 74.0 10.83 −161.910

106 (�Barrier = 10−3) 10.35 −244.035

102 1.46 −243.154

104 PC2PM 6 128 + 4 2.6/node 1.23 −126.184

1.6 � 106 (�PC
2
PM = 10−3) 1.46 −189.230

×104 102

104 CPLEX 12.8.0 1 24 O.O.M. N.A. N.A.

106 (�Barrier = 10−3) (> 96 GB)

102 2.13 −189.945

104 PC2PM 6 128 + 8 4.3/node 1.33 −97.974

1.6 � 106 (�PC
2
PM = 10−3) 1.54 −144.916

×104 102

104 CPLEX 12.8.0 1 24 O.O.M. N.A. N.A.

106 (�Barrier = 10−3) (> 96 GB)

102 3.72 −147.310

104 PC2PM 6 128 + 16 7.7/node 2.34 −74.854

1.6 16 106 (�PC
2
PM = 10−3) 3.04 −111.490

×104 102

104 CPLEX 12.8.0 1 24 O.O.M. N.A. N.A.

106 (�Barrier = 10−3) (> 96 GB)

804	 R. Chen, A. L. Liu

1 3

� ∶ ℝ
nd → ℝ

nf . For example, a 2-dimension data space can be lifted to a 3-dimen-
sion feature space. Using the function � , we can define a kernel function
k ∶ ℝ

nd ×ℝ
nd → ℝ as k(�, ��)∶= ⟨�(�), �(��)⟩ for any �, �� ∈ ℝ

nd , where ⟨, ⟩
denotes an inner product. The resulting discriminant function G ∶ ℝ

nd → {−1, 1} ,
which the SVM searches for, can be expressed as:

where � ≡ (�1,… , �ntr)
T is the weight vector and b is the bias. The popular choices

of kernel functions in the SVM literature include the linear kernel function kLIN , the
polynomial kernel function kPOL and the Gaussian kernel function kGAU :

(43)G(�) = sign
(ntr∑

j=1

�jljk(�j, �) + b
)
, ∀� ∈ ℝ

nd ,

0 10 20 30 40
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)
m1 = 1, = 102

res1
res2

0 10 20 30 40
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)

m1 = 1, = 104

res1
res2

0 10 20 30 40
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)

m1 = 1, = 106

res1
res2

0 1 2 3
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)

m1 = 4, = 102

res1
res2

0 1 2 3
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)
m1 = 4, = 104

res1
res2

0 1 2 3
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)

m1 = 4, = 106

res1
res2

0 0.5 1 1.5 2
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)

m1 = 16, = 102

res1
res2

0 0.5 1 1.5 2
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)

m1 = 16, = 104

res1
res2

0 0.5 1 1.5 2
Number of Iterations 104

-10

-8

-6

-4

-2

0

2

Lo
g 10

(r
es

1, r
es

2)
m1 = 16, = 106

res1
res2

Fig. 6   Convergence of residuals

805

1 3

A distributed algorithm for high‑dimension convex…

Instead of using a single kernel function, [16] explores SVM using a kernel function
that can be expressed as a non-negative combination of a pre-specified set of kernel
functions {k1,… , km} , with the non-negative coefficients �1,… , �m to be allocated;
that is, k(�, ��) =

∑m

i=1
�iki(�, �

�) for any �, �� ∈ ℝ
nd with �1,… , �m ≥ 0 . The alloca-

tion process can be expressed as solving a convex QCQP, where each �i is the Lagran-
gian multiplier corresponding to each quadratic constraint. The formulation of the con-
vex QCQP, as provided in [16], is as follows:

	 (i)	 1-norm Soft Margin SVM learns the coefficients through solving the follow-
ing convex QCQP:

	 (ii)	 2-norm Soft Margin SVM learns the coefficients through solving the follow-
ing convex QCQP:

where the vector � denotes an ntr-dimensional vector of all ones. Given a labeled
training data set Str = {(�j, lj)}

ntr
j=1

 and an unlabeled test data set St = {�j}
nt
j=1

 , a
matrix Ki ∈ ℝ

(ntr+nt)×(ntr+nt) can be defined on the entire data set Str ∪ St as

The submatrix Ki,tr ∈ ℝ
ntr×ntr is a square symmetric matrix, whose jj′ th element

is directly defined by a kernel function: [Ki,tr]jj�∶=ki(�j, �j�) for any �j, �j′ in Str .

(44a)kLIN(�,�
�)∶=�T��, ∀�,�� ∈ ℝ

nd

(44b)kPOL(�, �
�)∶=(1 + �T��)2, ∀�,�� ∈ ℝ

nd

(44c)kGAU(�, �
�))∶=e

−
‖�−��‖2

2

2𝜎2 , 𝜎 > 0,∀�,�� ∈ ℝ
nd .

(45)

minimize
�∈ℝntr ,�0∈ℝ

− �T� + R�0

subject to
1

2
�T

[1
Ri

Gi(Ki,tr)
]
� − �0 ≤ 0, i = 1,… ,m, (�i)

ntr∑
j=1

lj�j = 0, (�)

0 ≤ �j ≤ C, j = 1,… , ntr,

(46)

minimize
�∈ℝ

ntr
+ ,�0∈ℝ

1

2
�T

[1
C
Intr

]
� − �T� + R�0

subject to
1

2
�T

[1
Ri

Gi(Ki,tr)
]
� − �0 ≤ 0, i = 1,… ,m, (�i)

ntr∑
j=1

lj�j = 0, (�)

(47)Ki∶=

(
Ki,tr Ki,(tr,t)

KT
i,(tr,t)

Ki,t

)
.

806	 R. Chen, A. L. Liu

1 3

The submatrices Ki,(tr,t) ∈ ℝ
ntr×nt and Ki,t ∈ ℝ

nt×nt are defined in the same way but
with different input vectors. The matrix Gi(Ki,tr) ∈ ℝ

ntr×ntr in the quadratic con-
straint of (45) and (46) is a square symmetric matrix with its jj′ th element being
[Gi(Ki,tr)]jj� = ljlj� [Ki,tr]jj� . Note that each kernel matrix Ki,tr is a symmetric PSD
matrix (see Proposition 2 in [16]), then each Gi(Ki,tr) is also a symmetric PSD
matrix, since Gi(Ki,tr) = LKi,trL , where L∶=diag(l1,… , lntr) . Let Ri denote trace(Ki)
for i = 1,… ,m , and R =

∑m

i=1
�iRi can be fixed as a given number. The parameter C

is a fixed positive scalar from the soft margin criteria.
Once the optimal primal–dual solution (�∗;�∗

1
,… , �∗

m
) is found from either (45)

or (46), combining with those pre-specified ki’s, it can be used to label the test data
set according to the following discriminant function GMKL ∶ ℝ

nd → {−1, 1}:

Compared with (43), the only difference is the replacement of a non-negative com-
bination of ki ’s with coefficients �∗

1
,… , �∗

m
 . The test set accuracy (TSA) can then

be obtained by measuring the percentage of the test data points accurately labeled
according to the function (48).

The formulation (45) and (46) provide instances of convex QCQPs in the form of
(8), and we apply the PC2 PM to solve them. The first input data set we used is the
Two-norm Problem from [4], which is also used in [16]; however, our data set has a
much larger size than in [16]. We first generate 8000 data points, with each data
point being a 20-dimension vector, drawn from a multivariate normal distribution
with a unit covariance matrix and the mean of (a,… , a) . These data points form the
first class that are all labeled with 1. Another 8000 points of 20-dimension vectors
are drawn from another multivariate normal distribution with also a unit covariance
matrix but the mean of (−a,… ,−a) . They form the second class that are all labeled
with −1 . The value of a is set as 2√

20
 , the same as in [4]. Together, these two classes

of data points form our first input data set with the size of 8000 + 8000 = 16,000 .
The second input data set is the HEPMASS Data Set from the UCI Repository.2 This
data set is used in high-energy physics experiments for learning particle-producing
collisions from a background source. Each data point is generated from Monte Carlo
simulations of collisions, and has 28 attributes. We randomly selected 16,000 data
points from the original 10, 500, 000-sized data set as our inputs. We use a set of
pre-specified kernel functions {k1,… , k5} that contains all Gaussian kernel functions
defined in (44c) whose �2 equal to 0.01, 0.1, 1, 10 and 100 respectively. Each matrix
Ki is normalized and Ri = trace(Ki) is set to be 1.0 for i = 1,… , 5 . Then
R =

∑5

i=1
�iRi =

∑5

i=1
�i , is restricted to be 5.0. The value of the parameter C is

(48)GMKL(�j�) = sign
(ntr∑

j=1

�∗
j
lj
[m∑
i=1

�∗
i
ki(�j, �j�)

]
+ b

)
, ∀�j� ∈ St.

2  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​HEPMA​SS.

https://archive.ics.uci.edu/ml/datasets/HEPMASS

807

1 3

A distributed algorithm for high‑dimension convex…

fixed as 1.0 for 2-norm soft margin SVMs, and is set as 3.0 for Two-norm Problem
and 5.0 for HEPMASS Data Set when using 1-norm soft margin SVMs. Numerical
results of both 1-norm and 2-norm soft margin SVMs using the above five kernel
functions are summarized in Table 5.

Each data set of a total number of 16,000 data points is randomly partitioned into
80% for training and 20% for testing. The reported values in each row of Table 5 are
averaged over five different random partitions.

We implement PC2 PM using 128 cores for primal updates and 5 cores for dual
updates, which amount to a total of 6 compute nodes on Purdue’s Brown cluster.
The average elapsed wall-clock time used by PC2 PM to converge with a tolerance
�PC

2PM = 10−3 is presented in Table 5, along with the averaged amount of memory
used by each node. We also report in Table 5 the average learned non-negative coef-
ficients �∗

1
,… �∗

5
 , as well as the average TSA. The performance of CPLEX 12.8.0

with the same tolerance is also presented in Table 5 for comparison. As shown by
the values of the coefficients learned, the Gaussian kernel function k4 with �2 = 10.0
is selected by the models of both two soft margin SVMs for the Two-norm Problem;
the HEPMASS Data Set selects the Gaussian kernel function k5 with �2 = 100.0 . For
2-norm soft margin SVMs, PC2 PM converges much faster than CPLEX, and also
uses much less memory (as expected). For TSA, both PC2 PM and CPLEX obtain
the same value, calculated using their own optimal solution point (�∗, �∗

1
,… , �∗

m
) .

Table 5   Comparison of PC2 PM with CPLEX 12.8.0 for solving multiple kernel learning problems using
5 Gaussian kernel functions

Two-norm problem
(For 1-norm soft margin SVM, we let PC2 PM converge with res1 < 0.015 instead of 10−3 , while still
keep res2 < 10−3.)

SVM Mem./node Time �∗
1

�∗
2

�∗
3

�∗
4

�∗
5

TSA

Criteria (GB) (h) (%)

SM1 PC2PM 2.1/node 6.06 0.000 0.000 0.000 6.543 0.000 97.84
C = 3.0 CPLEX 12.8.0 O.O.M. ( > 96) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SM2 PC2PM 2.0/node 0.72 0.000 0.000 0.000 5.005 0.000 97.83
C = 1.0 CPLEX 12.8.0 73.6 3.09 0.001 0.000 0.000 4.997 0.002 97.83

HEPMASS data set
(For 1-norm soft margin SVM, we let PC2 PM converge with res1 < 0.02 instead of 10−3 , while still keep
res2 < 10−3.)

SVM Mem./node Time �∗
1

�∗
2

�∗
3

�∗
4

�∗
5

TSA

Criteria (GB) (h) (%)

SM1 PC2PM 2.1/node 6.51 0.000 0.000 0.000 0.000 6.992 76.77
C = 5.0 CPLEX 12.8.0 O.O.M. ( > 96) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SM2 PC2PM 2.0/node 0.17 0.000 0.000 0.000 0.000 5.088 78.43
C = 1.0 CPLEX 12.8.0 71.5 3.12 0.001 0.000 0.000 0.013 4.985 78.33

808	 R. Chen, A. L. Liu

1 3

For 1-norm soft margin SVMs, CPLEX fails to provide a solution due to running
out of memory, while PC2 PM still solves the problem.

In Table 6, we also report the numerical results of applying PC2 PM to solve
2-norm soft margin SVMs for the HEPMASS Data Set, using 9 Gaussian kernel
functions with �2 equal to 10−4 , 10−3 , 10−2 , 10−1 , 100 , 101 , 102 , 103 and 104 respec-
tively. Though the number of constraints doubles, PC2 PM still converges within
a reasonable amount of time, and remains memory efficient. The Gaussian kernel
function k7 with �2 = 100.0 is still selected by the model. We further search the
range of [10−4, 104] using 17 Gaussian kernel functions with �2 equal to 10−4 , 10−3.5 ,
10−3 , … , 103 , 103.5 , 104 . The Gaussian kernel function k12 with �2 = 101.5 is selected
instead, and we observe a slightly increased average TSA.

While the numerical experiments so far have demonstrated the scalability of the
PC2 PM algorithm due to its distributed data storage and natural decomposition to
facilitate parallel computing, in the following experiments, we show the benefits of
the PC2 PM algorithm for not requiring any matrix decompositions. In this test, we
use three kernel functions, instead of five, to solve (45) and (46). The three kernel
functions consist of k1—the Gaussian kernel function with �2 = 100.0 , k2 —a lin-
ear kernel function defined in (44a), and k3 —a polynomial kernel function defined
in (44b). The value of the parameter C is fixed as 1.0, and is only changed to 2.0
when using 1-norm soft margin SVM for HEPMASS Data Set. All the other settings
remain the same as in the previous experiment (except for the value of R, which is
set as 3.0). The numerical results are reported in Table 7.

For all groups of tests, CPLEX returns an error stating that the quadratic constraint
containing G3(K3,tr) is not convex, which is theoretically impossible because each
matrix Gi(Ki,tr) is at least a PSD matrix as we discussed previously; while PC2 PM
solves all the instances without any issues. The error returned by CPLEX is created
likely by the failure of matrix decomposition of a large-scale PSD matrix due to pre-
cision limit. Once we reduce the size of the matrices in (45) and (46), CPLEX can
then solve the instances without error messages. This numerical experiment illus-
trates that not requiring matrix decomposition in the PC2 PM is not just of computa-
tional convenience; it can indeed make the algorithm more robust to solve large-scale
problems without facing potential issues caused by floating point arithmetic.

Table 6   Numerical results of applying PC2 PM to solve 2-norm soft margin SVMs using multiple (9, 17)
Gaussian kernel functions for the HEPMASS data set

HEPMASS data set

PC2 PM SM2 C = 1.0

�2 search m nnode ncore Mem./node Time Non-zero �’s TSA

Range (GB) (h) (%)

[10−4, 104] 9 6 128 + 9 2.9/node 0.43 �∗
7
= 8.995 (�2 = 102) 79.62

17 7 128 + 17 4.4/node 1.51 �∗
12

= 17.001 (�2 = 101.5) 80.60

809

1 3

A distributed algorithm for high‑dimension convex…

6 � Conclusion and future works

In this paper, we propose a novel distributed algorithm, built upon the original idea
of the PCPM algorithm, that can solve non-separable convex QCQPs in a Jacobi-
fashion (that is, parallel updating). Numerical results show that our algorithm,
termed as PC2PM, exhibits much better scalability when compared to CPLEX,
which uses the IPM to solve convex QCQPs. The scalability of the algorithm is
attributed to the three key features of the algorithm design: first, the PC2 PM algo-
rithm can decompose primal (and dual) variables down to the scalar level and
update them in parallel, even when the quadratic constraints are non-separable.
Second, when implementing the algorithm, only the related columns of all the Hes-
sian matrices need to be stored locally, instead of the entire matrices on each of
computing unit in a parallel computing setting. Third, our algorithm does not need
any matrix decomposition (unlike any semi-definite-programming-based approach),
which can improve the algorithm’s robustness, especially when solving convex
QCQPs with PSD matrices, as demonstrated in our numerical experiments sum-
marized in Table 7. The second and the third feature together make our algorithm
particularly suitable to solve extreme-dimension QCQPs, which likely will cause
memory issues for other algorithms.

In addition to the scalability of the PC2 PM algorithm, its ability to solve non-sep-
arable, quadratically constrained problems in Jacobi-fashion should also be empha-
sized, as in general it is very difficult to design distributed algorithms with Jacobi-
style update (as opposed to the sequential Gauss-Seidel update) to solve optimization

Table 7   Comparison of PC2 PM with CPLEX 12.8.0 for solving multiple kernel learning problems using
3 kernel functions

Two-norm problem

SVM Mem./node Time �∗
1

�∗
2

�∗
3

TSA

Criteria (GB) (h) (%)

SM1 PC2PM 1.7/node 3.16 0.000 3.029 0.000 91.29
C = 1.0 CPLEX 12.8.0 Non-con. error N.A. N.A. N.A. N.A. N.A.
SM2 PC2PM 1.5/node 1.69 0.000 3.054 0.000 97.85
C = 1.0 CPLEX 12.8.0 Non-con. error N.A. N.A. N.A. N.A. N.A.

HEPMASS data set

SVM Mem./node Time �∗
1

�∗
2

�∗
3

TSA

Criteria (GB) (h) (%)

SM1 PC2PM 1.6/node 6.43 0.000 3.021 0.000 72.81
C = 2.0 CPLEX 12.8.0 Non-con. error N.A. N.A. N.A. N.A. N.A.
SM2 PC2PM 1.4/node 0.83 0.000 3.019 0.000 80.51
C = 1.0 CPLEX 12.8.0 Non-con. error N.A. N.A. N.A. N.A. N.A.

810	 R. Chen, A. L. Liu

1 3

problems with non-separable constraints. Whether the algorithm idea from PC2 PM
can be extended to solve more general convex problems is certainly worth explor-
ing. There are several other lines of research that can be done to improve the current
work. First, while we proved convergence of PC2PM, we cannot prove its conver-
gence rate as of now. Second, while the parallel updating of the primal variables
is a nice property of PC2PM, it is still a synchronous algorithm in the sense that
the algorithm needs to wait for all primal and dual updates to be done before it can
move to the next iteration. An asynchronous implementation of the algorithm will
no doubt make it even more suitable for distributed computing, and we defer it to
our future work. Third, there have been increasing works on solving large-scale non-
convex QCQPs. As mentioned in the introduction section, one algorithm idea is to
solve it with a sequence of convexified QCQPs, where our algorithm is then applica-
ble. This naturally leads to an algorithm with nested loops, where the outer loop lays
out sequential convexification, and the inner loop invokes our algorithm. It would be
interesting to see how such a nested algorithm performs in practice, especially with
high-dimension problems.

Appendix 1: Step‑size update rule for �k+1

With a given scalar 0 ≤ 𝜖0 < 1 , and a series of positive scalars
𝜖1,… , 𝜖8 > 0 that satisfy

∑8

s=1
�s ≤ 1 − �0 , we define the following function

� ∶ 𝕏 ×ℝ
n2 ×ℝ

m1

+ ×ℝ
m2 → (0,+∞) to update the adaptive step size �k+1 in Algo-

rithm 1 at each iteration k:

where

	 (i)	 �1 =

� �1
‖P0‖F , if ‖P0‖F ≠ 0

�1, if ‖P0‖F = 0,
 with ‖ ⋅ ‖F representing the Frobenius norm of

a matrix;
	 (ii)	 �2(�

k, �k,�k) = mini{�2i(�
k, �k,�k)} , where

 for all i = 1,… ,m1 , with ai = | 1
2
(�k)TPi�

k + �T
i
�k + �T

i
�k + ri| ≥ 0 , and

bi = �k
i
≥ 0 . For ci , if ‖Pi‖F ≠ 0 , ci =

𝜖2
m1‖Pi‖F > 0 ; otherwise ci =

𝜖2
m1

> 0 .
The constant M > 0 can be any fixed, arbitrarily large scalar;

(49)
�k+1 = �(�k, �k,�k, �k)

∶= min
{
�1, �2(�

k, �k,�k), �3(�
k,�k, �k), �4, �5(�

k), �6, �7, �8
}
,

𝜌2i(�
k, �k,�k)∶=

⎧⎪⎪⎨⎪⎪⎩

−bi +
�

b2
i
+ 4aici

2ai
, if ai > 0

ci

bi
, if ai = 0, bi > 0

M, if ai = 0, bi = 0,

811

1 3

A distributed algorithm for high‑dimension convex…

	 (iii)	 �3(�
k,�k, �k) =

 where a = ‖P0�
k + �0 +

∑m1

i=1
�k
i
(P

i
�k + �

i
) + A

T�k‖2 ≥ 0 , b = 2‖�k‖2 ≥ 0 and

c =
2𝜖3
‖P‖F > 0 with P ∈ ℝ

m1n1×n1 denoting the stacked matrix
⎛
⎜⎜⎝

P1

⋮

Pm1

⎞
⎟⎟⎠
;

	 (iv)	 �4 =

� �4
‖Q‖F , if ‖Q‖F ≠ 0

�4, if ‖Q‖F = 0
 , where Q ∈ ℝ

m1×n1 denotes matrix
⎛
⎜⎜⎝

�T
1

⋮

�T
m1

⎞
⎟⎟⎠
 , with

the �i ’s being the vectors in the linear terms of � in the QCQP (8);

	 (v)	 �5(�
k) =

� �5
‖�k‖2‖P‖F

, if ‖�k‖2 ≠ 0

�5, if ‖�k‖2 = 0
;

	 (vi)	 �6 =

� �6
‖C‖F , if ‖C‖F ≠ 0

�6, if ‖C‖F = 0
 , where C ∈ ℝ

m2×n2 denotes matrix
⎛⎜⎜⎝

�T
1

⋮

�T
m2

⎞⎟⎟⎠
 , with

the �j ’s being the vectors in the linear terms of � in the QCQP (8);

	(vii)	 �7 =

� �7
‖A‖F , if ‖A‖F ≠ 0

�7, if ‖A‖F = 0
 , where A is the matrix in the linear constraint

A� + B� = � in (8);

	(viii)	 �8 =

� �8
‖B‖F , if ‖B‖F ≠ 0

�8, if ‖B‖F = 0
 , where B is the matrix in the linear constraint

A� + B� = � in (8).

� □

While the rules to update the step-size �k+1 may appear to be very cumbersome,
the calculations are actually quite straightforward. Since the Frobenius norm of all
matrices can be obtained in advance, the values of �1 , �4 , �6 , �7 and �8 are pre-deter-
mined. Given a current solution (�k, �k,�k, �k) , �2 , �3 and �5 can also be easily cal-
culated. The minimum of all the �s ’s then determines the value of the adaptive step
size �k+1.

⎧
⎪⎪⎨⎪⎪⎩

min

�
2𝜖3,

−b +
√
b2 + 4ac

2a

�
, if a > 0

min
�
2𝜖3,

c

b

�
, if a = 0, b > 0

2𝜖3, if a = 0, b = 0,

812	 R. Chen, A. L. Liu

1 3

Appendix 2: Proofs in Sect. 3

Proof of Proposition 1

We first prove the inequality (24). Consider the linear approximation of the Lagran-
gian function of a QCQP, as defined in (21), with a given point � k ≡ (�k, �k, �k) . Let
�̂ = (�k+1, �k+1) , the (k + 1) th iteration of the primal predictor of �k and �k in the
PC2 PM algorithm, as given in (14a) and (16a), respectively. By Lemma 2, we know
that �̂ is the unique minimizer of the corresponding proximal minimization problem in
(22b). By defining �̄ = (�k, �k) and � = (�k+1, �k+1) , and using Lemma 1, we have that

which leads to the following expanded inequality

Now consider the R function at a different given point � k+1 ≡ (�k+1,�k+1, �k+1) .
With a slight abuse of notation, we now let �̂ = (�k+1, �k+1) , the primal correctors at
the (k + 1) th iteration of the PC2 PM algorithm. Also letting � = (�∗, �∗) , but keeping
�̄ = (�k, �k) , by (22c) in Lemmas 2 and 1, we have that:

(50)2𝜌k+1
�
R(��;𝜁 k) −R(�;𝜁 k)

�
≤ ‖�̄ − �‖2

2
− ‖�� − �‖2

2
− ‖�� − �̄‖2

2
,

(51)

2�k+1
�
(P0�

k + �0)
T�k+1 + �T

0
�k+1 + r0

+

m1�
i=1

�k
i

�
(Pi�

k + �i)
T�k+1 + �T

i
�k+1 + ri

�

+ (�k)T (A�k+1 + B�k+1 − �)

�

− 2�k+1
�
(P0�

k + �0)
T�k+1 + �T

0
�k+1 + r0

+

m1�
i=1

�k
i

�
(Pi�

k + �i)
T�k+1 + �T

i
�k+1 + ri

�

+ (�k)T (A�k+1 + B�k+1 − �)

�

≤

�
‖�k − �k+1‖2

2
+ ‖�k − �k+1‖2

2

�

−
�
‖�k+1 + �k+1‖2

2
+ ‖�k+1 − �k+1‖2

2

�

−
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�
.

813

1 3

A distributed algorithm for high‑dimension convex…

which leads to the following expanded inequality

The final piece to derive inequality (24) is to utilize Lemma 3. Let (�∗, �∗,�∗, �∗) be
a saddle point of QCQP (8), and again, � k+1 = (�k+1,�k+1, �k+1) . By Lemma 3, we
have that

Multiplying both sides by 2�k+1 and expanding the R function, we have that

2𝜌k+1
�
R(��;𝜁 k+1) −R(�;𝜁 k+1)

�
≤ ‖�̄ − �‖2

2
− ‖�� − �‖2

2
− ‖�� − �̄‖2

2
,

(52)

2�k+1
�
(P0�

k+1 + �0)
T�k+1 + �T

0
�k+1 + r0

+

m1�
i=1

�k+1
i

�
(Pi�

k+1 + �i)
T�k+1 + �T

i
�k+1 + ri

�

+ (�k+1)T (A�k+1 + B�k+1 − �)

�

− 2�k+1
�
(P0�

k+1 + �0)
T�∗ + �T

0
�∗ + r0

+

m1�
i=1

�k+1
i

�
(Pi�

k+1 + �i)
T�∗ + �T

i
�∗ + ri

�

+ (�k+1)T (A�∗ + B�∗ − �)

�

≤

�
‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2

�

−
�
‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2

�

−
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(53)

R(�∗, �∗;� k+1) −R(�k+1, �k+1;� k+1)

≤

m∑
i=1

[
(�∗

i
− �k+1

i
)

(
1

2
�k+1

T

Pi�
k+1 + �T

i
�k+1 + �T

i
�k+1 + ri

)]

+ (�∗ − �k+1)T (A�k+1 + B�k+1 − �).

814	 R. Chen, A. L. Liu

1 3

Adding the three inequalities (51), (52) and (54) yields the inequality (24) in
Proposition 1.

To prove the second inequality, (25), in Proposition 1, we use a similar approach as
above, just replacing the linear approximation function R with the original Lagrangian
function L . More specifically, let �̂ = (�k+1, �k+1) . By (22a) in Lemma 2, we know that

Letting �̄ = (�k, �k) and choosing a specific � = (�k+1, �k+1) , we use Lemma 1 to
obtain that

which yields the following expanded inequality:

(54)

2�k+1
{
(P0�

k+1 + �0)
T�∗ + �T

0
�∗ + r0

+

m∑
i=1

�k+1
i

[
(Pi�

k+1 + �i)
T�∗ + �T

i
�∗ + ri

]

+ (�k+1)T (A�∗ + B�∗ − �)

}

− 2�k+1
{
(P0�

k+1 + �0)
T�k+1 + �T

0
�k+1 + r0

+

m∑
i=1

�k+1
i

[
(Pi�

k+1 + �i)
T�k+1 + �T

i
�k+1 + ri

]

+ (�k+1)T (A�k+1 + B�k+1 − �)

}

≤ 2�k+1
{ m∑

i=1

(�∗
i
− �k+1

i
)
[1
2
(�k+1)TPi�

k+1 + �T
i
�k+1 + �T

i
�k+1 + ri

]

+ (�∗ − �k+1)T (A�k+1 + B�k+1 − �)

}
.

(55)
�̂∶=(�k+1, �k+1)

= argmin
�∈ℝ

m1
+ , �∈ℝm2

− L(�k, �k,�, �) +
1

2�k+1
‖� − �k‖2

2
+

1

2�k+1
‖� − �k‖2

2
.

(56)

2𝜌k+1
��

− L(�k, �k;��)

�
−

�
− L(�k, �k;�)

��
≤ ‖�̄ − �‖2

2
− ‖�� − �‖2

2
− ‖�� − �̄‖2

2
,

815

1 3

A distributed algorithm for high‑dimension convex…

Similarly, again with some abuse of notation, letting �̂ = (�k+1, �k+1) , by (22d) in
Lemma 2, we have that

By choosing � to be (�∗, �∗) , while keeping �̄ at (�k, �k) , we have from Lemma 1 that

which yields the following expanded inequality:

Adding the two inequalities (57) and (60) leads to the second inequality, (25), in
Proposition 1. � □

Proof of Theorem 1

By adding the two inequalities (24) and (25) in Proposition 1, we have that

(57)

2�k+1
� m1�

i=1

(�k+1
i

− �k+1
i

)

�
1

2
(�k)TP

i
�k + �T

0
�k + �T

0
�k + r

i

�
+ (�k+1 − �k+1)T (A�k + B�k − �)

�

≤

�
‖�k − �k+1‖2

2
+ ‖�k − �k+1‖2

2

�

−
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k+1‖2

2

�
−
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(58)

�̂∶=(�k+1, �k+1)

= argmin
�∈ℝ

m1
+ , �∈ℝm2

− L(�k+1, �k+1,�, �) +
1

2�k+1
‖� − �k‖2

2
+

1

2�k+1
‖� − �k‖2

2
.

(59)
2𝜌k+1

��
− L(�k+1, �k+1;��)

�
−

�
− L(�k+1, �k+1;�)

��

≤ ‖�̄ − �‖2
2
− ‖�� − �‖2

2
− ‖�� − �̄‖2

2
,

(60)

2�k+1
� m1�

i=1

(�∗
i
− �k+1

i
)

�
1

2
(�k+1)TPi�

k+1 + �T
0
�k+1 + �T

0
�k+1 + ri

�

+ (�∗ − �k+1)T (A�k+1 + B�k+1 − �)

�

≤

�
‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2

�

−
�
‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2

�
−
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�
.

816	 R. Chen, A. L. Liu

1 3

(61)

‖�k+1 − �∗‖2
2
+ ‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2

≤ ‖�k − �∗‖2
2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2

−
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�

−
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2
+ ‖�k+1 − �k‖2

2

�

+ 2�k+1(�k+1 − �k+1)TP0(�
k+1 − �k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(a)

+

m1�
i=1

2�k+1�k+1
i

(�k+1 − �k+1)TPi(�
k+1 − �k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(b)i

+ 2�k+1
m1�
i=1

(�k+1
i

− �k+1
i

)
�1
2
(�k+1)TPi�

k+1 −
1

2
(�k)TPi�

k
�

⏟⏞⏞⏞⏟⏞⏞⏞⏟
(c)

+ 2�k+1
m1�
i=1

(�k+1
i

− �k+1
i

)�T
i
(�k+1 − �k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(d)

+ 2�k+1
m1�
i=1

(�k+1
i

− �k
i
)�T

i
(�k+1 − �k+1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(e)

+ 2�k+1
m1�
i=1

(�k+1
i

− �k
i
)(Pi�

k)T (�k+1 − �k+1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(f)

+ 2�k+1
m1�
i=1

(�k+1
i

− �k+1
i

)�T
i
(�k+1 − �k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(g)

+ 2�k+1
m1�
i=1

(�k+1
i

− �k
i
)�T

i
(�k+1 − �k+1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(h)

+ 2�k+1(�k+1 − �k+1)TA(�k+1 − �k)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(i)

+ 2�k+1(�k+1 − �k)TA(�k+1 − �k+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(j)

+ 2�k+1(�k+1 − �k+1)TB(�k+1 − �k)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(k)

+ 2�k+1(�k+1 − �k)TB(�k+1 − �k+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(l)

.

817

1 3

A distributed algorithm for high‑dimension convex…

Next, we establish an upper bound for each term of the term from (a) to (l) in (61)
using the adaptive step size �k+1 = �(�k, �k,�k, �k) , as defined in (49).

(a)	 First, we want to show that

 To prove this (and several inequalities below), we first show an extension of
the Young’s inequality3 on vector products that will play a key role in the fol-
lowing proof. Given any two vectors �1, �2 ∈ ℝ

n , we have that

 where � is a non-zero real number. Applying Young’s inequality on each sum-
mation term with p = q = 2 , we obtain that

 Applying (64) on (a) yields

 The second inequality holds due to the property that given a matrix A ∈ ℝ
m×n

and a vector � ∈ ℝ
n , ‖A�‖2 ≤ ���A���2‖�‖2 (see Theorem 5.6.2 in [9]), where

we use the notation |||⋅|||2 to denote the matrix norm ���A���2∶=sup
�≠�

‖A�‖2
‖�‖2  . The

last inequality holds due to the property ���A���2 ≤ ‖A‖F [7], where
‖A‖F∶=

�∑m

i=1

∑n

j=1
�Aij�2

� 1

2 denotes the Frobenius norm. From (65), if ‖P0‖F ≠ 0 ,
then letting �2 = 1

‖P0‖F yields

 Since �k+1 ≤ �1 =
�1

‖P0‖F , we obtain (62). If, on the other hand, ‖P0‖F = 0 , then
letting �2 = 1 yields

(62)(a) ≤ �1

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(63)�T
1
�2 =

n∑
j=1

z1jz2j =

n∑
j=1

(
1

�
z1j

)(
�z2j

)
≤

n∑
j=1

|||
1

�
z1j
|||
|||�z2j

|||,

(64)�T
1
�2 ≤

n�
j=1

�
1

2

�
1

�
z1j

�2

+
1

2

�
�z2j

�2
�
=

1

2�2
‖�1‖22 + �2

2
‖�2‖22.

(65)

(a) ≤2�k+1
�

1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
‖P0(�

k+1 − �k)‖2
2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
������P0

������22‖�k+1 − �k‖2
2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
‖P0‖2F‖�k+1 − �k‖2

2

�
.

(66)(a) ≤ �k+1‖P0‖F
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

3  Young’s inequality states that if a and b are two non-negative real numbers, and p and q are real num-
bers greater than 1 such that 1

p
+

1

q
= 1 , then ab <

ap

p
+

bq

q
.

818	 R. Chen, A. L. Liu

1 3

 Since �k+1 ≤ �1 = �1 , (62) is also obtained.
(b)	 Here we want to show that

 Applying (64) on each term (b)i yields

•	 If ‖Pi‖F ≠ 0 , then letting �2
i
=

1

‖Pi‖F yields

 where 𝜇̃k+1
i

∶=𝜆k
i
+ 𝜌k+1| 1

2
(�k)TPi�

k + �T
i
�k + �T

i
�k + ri| ≥ 𝜇k+1

i
 . If we can

bound 𝜌k+1𝜇̃k+1
i

≤
𝜖2

m1‖Pi‖F , then we can achieve

 By substituting ai = | 1
2
(�k)TPi�

k + �T
i
�k + �T

i
�k + ri| ≥ 0 , bi = �k

i
≥ 0 and

ci =
𝜖2

m1‖Pi‖F > 0 , we can rewrite 𝜌k+1𝜇̃k+1
i

−
𝜖2

m1‖Pi‖F as ai(�k+1)2 + bi�
k+1 − ci ,

which is simply a quadratic function of �k+1 with parameters ai , bi and ci . To
bound 𝜌k+1𝜇̃k+1

i
≤

𝜖2
m1‖Pi‖F is equivalent to find proper values of �k+1 that keep

the quadratic function stay below zero.

–	 If ai = 0 and bi = 0 , then �k+1 ∈ (0,+∞).
–	 If ai = 0 and bi > 0 , then �k+1 ∈ (0,

ci

bi
].

–	 If ai > 0 , then �k+1 ∈ (0,
−bi+

√
b2
i
+4aici

2ai
].

	  Since �k+1 ≤ �2(�
k, �k,�k) ≤ �2i(�

k, �k,�k) , it satisfies all the above three
conditions, we then obtain (71), and hence (68).

•	 If ‖Pi‖F = 0 , then letting �2
i
= 1 yields

(67)(a) ≤ �k+1
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(68)
m1�
i=1

(b)i ≤ �2

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(69)

(b)
i
≤ 2�k+1�k+1

i

�
1

2�2
i

‖�k+1 − �k+1‖2
2
+

�2
i

2
������Pi

������22‖�k+1 − �k‖2
2

�

≤ 2�k+1�k+1
i

�
1

2�2
i

‖�k+1 − �k+1‖2
2
+

�2
i

2
‖P

i
‖2
F
‖�k+1 − �k‖2

2

�
.

(70)
(b)

i
≤ 𝜌k+1𝜇k+1

i
‖P

i
‖
F

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�

≤ 𝜌k+1𝜇̃k+1
i

‖P
i
‖
F

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
,

(71)(b)i ≤
�2
m1

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

819

1 3

A distributed algorithm for high‑dimension convex…

 Similarly, if we can bound 𝜌k+1𝜇̃k+1
i

≤
𝜖2
m1

 , then we can also achieve (71). By
substituting ai = | 1

2
(�k)TPi�

k + �T
i
�k + �T

i
�k + ri| ≥ 0 , bi = �k

i
≥ 0 and

ci =
𝜖2
m1

> 0 , we can rewrite 𝜌k+1𝜇̃k+1
i

−
𝜖2
m1

 as ai(�k+1)2 + bi�
k+1 − ci . The

same analysis can be followed as discussed in the case of ‖Pi‖F ≠ 0.
(c)	 Next, we want to show that

 By using P to denote
⎛
⎜⎜⎝

P1

⋮

Pm1

⎞
⎟⎟⎠
 , we can rewrite

 where ⊗ denotes the Kronecker product; that is, given a matrix A ∈ ℝ
m1×n1 and

a matrix B ∈ ℝ
m2×n2 ,

A⊗ B∶=

⎛⎜⎜⎝

a11B ⋯ a1m1
B

⋮ ⋮

am11
B ⋯ am1n1

B

⎞⎟⎟⎠

 . Applying (64) to (74)

yields

 Since we have the property that |||A⊗ B|||2 = |||A|||2|||B|||2 (see Theorem 8
in [15]), the last inequality holds due to

 together with |||
|||
|||Im1×m1

|||
|||
|||2 = 1 and ������(�k + �k+1)T ������2 ≤ ‖(�k + �k+1)T‖

F
=

‖�k + �k+1‖2 . Note that ‖P‖F ≠ 0 , otherwise the QCQP is simply a QP.

•	 If ‖�k + �k+1‖2 ≠ 0 , then letting �2 = 1

‖�k+�k+1‖2‖P‖F yields

(72)
(b)i ≤𝜌

k+1𝜇k+1
i

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�

≤𝜌k+1𝜇̃k+1
i

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(73)(c) ≤ �3

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(74)(c) = 𝜌k+1
{
(�k+1 − �k+1)T

[
Im1×m1

⊗ (�k + �k+1)T
]
P(�k+1 − �k)

}
,

(75)

(c) ≤ 𝜌k+1
�

1

2𝛿2
‖�k+1 − �k+1‖2

2

+
𝛿2

2

���
���
���Im1×m1

⊗ (�k + �k+1)T
���
���
���
2

2
���P���2

2
‖�k+1 − �k‖2

2

�

≤ 𝜌k+1
�

1

2𝛿2
‖�k+1 − �k+1‖2

2
+

𝛿2

2
‖�k + �k+1‖2

2
‖P‖2

F
‖�k+1 − �k‖2

2

�
.

(76)|||
|||
|||Im1×m1

⊗ (�k + �k+1)T
2

2
=
|||
|||
|||Im1×m1

2

2

|||
|||
|||(�

k + �k+1)T
2

2
,

(77)
(c) ≤

1

2
𝜌k+1‖�k + �k+1‖2‖P‖F

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�

≤
1

2
𝜌k+1‖�k + �̃k+1‖2‖P‖F

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
,

820	 R. Chen, A. L. Liu

1 3

 where ỹk+1
j

∶=xk
j
+ 𝜌

���
�
P0�

k + �0 +
∑m1

i=1
𝜆k
i

�
Pi�

k + �i
�
+ AT�k

�
j

��� ≥ yk+1
j

 . If
we can bound 𝜌k+1‖�k + �̃k+1‖2 ≤ 2𝜖3

‖PT‖F , then (73) can be obtained. We first
bound

 By substituting a = ‖P0�
k + �0 +

∑m1

i=1
�k
i

�
Pi�

k + �i
�
+ AT�k‖2 ≥ 0 ,

b = 2‖�k‖2 ≥ 0 and c = 2𝜖3
‖P‖F > 0 , we can bound 𝜌k+1‖�k + �̃k+1‖2 − 2𝜖3

‖P‖F
using a(�k+1)2 + b�k+1 − c , which is simply a quadratic function of �k+1 with
parameters a, b and c. Bounding 𝜌k+1‖�k + �̃k+1‖2 ≤ 2𝜖3

‖P‖F can be guaranteed
by finding the proper values of �k+1 that keep the quadratic function stay
below zero.

–	 If a = 0 and b = 0 , then �k+1 ∈ (0,+∞).
–	 If a = 0 and b > 0 , then �k+1 ∈ (0,

c

b
].

–	 If a > 0 , then �k+1 ∈ (0,
−b+

√
b2+4ac

2a
].

	  Since �k+1 ≤ �3(�
k,�k, �k) , it satisfies all the above three conditions, we

obtain (73).
•	 If ‖�k + �k+1‖2 = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �3(�
k,�k, �k) ≤ 2�3 , (73) is also obtained.

(d)	 To show that

 by letting Q =

⎛⎜⎜⎝

�T
1

⋮

�T
m1

⎞⎟⎟⎠
 , we can rewrite that

 Applying (64) to (81) yields

•	 If ‖Q‖F ≠ 0 , then letting �2 = 1

‖Q‖F yields

(78)

𝜌k+1‖�k + �̃k+1‖2 −
2𝜖3
‖P‖

F

≤ 𝜌k+1
�
2‖�k‖2 + 𝜌k+1‖P0�

k + �0 +

m1�
i=1

𝜆k
i

�
P
i
�k + �

i

�
+ A

T�k‖2
�
−

2𝜖3
‖P‖

F

.

(79)(c) ≤
1

2
�k+1

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�

(80)(d) ≤ �4

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
,

(81)(d) = 2�k+1
[
(�k+1 − �k+1)TQT (�k+1 − �k)

]
.

(82)
(d) ≤2�k+1

�
1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
���Q���2

2
‖�k+1 − �k‖2

2

�

≤2�k+1
� 1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
‖Q‖2

F
‖�k+1 − �k‖2

2

�
.

821

1 3

A distributed algorithm for high‑dimension convex…

 Since �k+1 ≤ �4 =
�4

‖Q‖F , we obtain (80).
•	 If ‖Q‖F = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �4 = �4 , (80) is also obtained.
(e)	 Similarly, to show

 we can rewrite that

 Applying (64) to (86) yields that

•	 If ‖Q‖F ≠ 0 , then letting �2 = 1

‖Q‖F yields

 Since �k+1 ≤ �4 =
�4

‖Q‖F , we obtain (85).
•	 If ‖Q‖F = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �4 = �4 , (85) is also obtained.
(f)	 To show

 we can rewrite

 Applying (64), we have that

(83)(d) ≤ �k+1‖Q‖F
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(84)(d) ≤ �k+1
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(85)(e) ≤ �4

�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
,

(86)(e) = 2�k+1
[
(�k+1 − �k)TQ(�k+1 − �k+1)

]
.

(87)
(e) ≤2�k+1

�
1

2�2
‖�k+1 − �k‖2

2
+

�2

2
���Q���2

2
‖�k+1 − �k+1‖2

2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k‖2

2
+

�2

2
‖Q‖2

F
‖�k+1 − �k+1‖2

2

�
.

(88)(e) ≤ �k+1‖Q‖F
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(89)(e) ≤ �k+1
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(90)(f) ≤ �5

�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
,

(91)(f) = 2𝜌k+1
{
(�k+1 − �k)T

[
Im1×m1

⊗ (�k)T
]
P(�k+1 − �k+1)

}
.

822	 R. Chen, A. L. Liu

1 3

 Similarly, the last inequality holds due to

•	 If ‖�k‖2 ≠ 0 , then letting �2 = 1

‖�k‖2‖P‖F yields

 Since �k+1 ≤ �5(�
k) =

�5
‖�k‖2‖P‖F , we obtain (90).

•	 If ‖�k‖2 = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �5(�
k) = �5 , (90) is also obtained.

(g) To show

 By letting C =

⎛⎜⎜⎝

�T
1

⋮

�T
m2

⎞⎟⎟⎠
 , we can rewrite

 Applying (64), we have that

•	 If ‖C‖F ≠ 0 , then letting �2 = 1

‖C‖F yields

 Since �k+1 ≤ �6 =
�6

‖C‖F , we obtain (95).
•	 If ‖C‖F = 0 , then letting �2 = 1 yields

(92)

(f) ≤ 2𝜌k+1
�

1

2𝛿2
‖�k+1 − �k‖2

2

+
𝛿2

2

���
���
���Im1×m1

⊗ (�k)T
���
���
���
2

2
���P���2

2
‖�k+1 − �k+1‖2

2

�

≤ 2𝜌k+1
�

1

2𝛿2
‖�k+1 − �k‖2

2
+

𝛿2

2
‖�k‖2

2
‖P‖2

F
‖�k+1 − �k+1‖2

2

�
.

|||
|||
|||Im1×m1

⊗ (�k)T
2

2
=
|||
|||
|||Im1×m1

2

2

|||
|||
|||(�

k)T
2

2
.

(93)(f) ≤ �k+1‖�k‖2‖P‖F
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(94)(f) ≤ �k+1
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(95)(g) ≤ �6

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
,

(96)(g) = 2�k+1
[
(�k+1 − �k+1)TC(�k+1 − �k)

]
.

(97)
(g) ≤2�k+1

�
1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
���C���2

2
‖�k+1 − �k‖2

2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
‖C‖2

F
‖�k+1 − �k‖2

2

�
.

(98)(g) ≤ �k+1‖C‖F
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(99)(g) ≤ �k+1
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

823

1 3

A distributed algorithm for high‑dimension convex…

 Since �k+1 ≤ �6 = �6 , (95) is also obtained.
(h)	 Next, we want to show that

 Similarly, we can rewrite

 Applying (64) on the above equality leads to

•	 If ‖C‖F ≠ 0 , then letting �2 = 1

‖C‖F yields

 Since �k+1 ≤ �6 =
�6

‖C‖F , we obtain (100).
•	 If ‖C‖F = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �6 = �6 , (100) is also obtained.
(i)	 To show

 we apply (64) on the rewriting of (i), which leads to

•	 If ‖A‖F ≠ 0 , then letting �2 = 1

‖A‖F yields

 Since �k+1 ≤ �7 =
�7

‖A‖F , we obtain (105).
•	 If ‖A‖F = 0 , then letting �2 = 1 yields

(100)(h) ≤ �6

�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(101)(h) = 2�k+1
[
(�k+1 − �k)TC(�k+1 − �k+1)

]
.

(102)
(h) ≤2�k+1

�
1

2�2
‖�k+1 − �k‖2

2
+

�2

2
���C���2

2
‖�k+1 − �k+1‖2

2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k‖2

2
+

�2

2
‖C‖2

F
‖�k+1 − �k+1‖2

2

�
.

(103)(h) ≤ �k+1‖C‖F
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(104)(h) ≤ �k+1
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(105)(i) ≤ �7

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
,

(106)
(i) ≤2�k+1

�
1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
���A���2

2
‖�k+1 − �k‖2

2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
‖A‖2

F
‖�k+1 − �k‖2

2

�
.

(107)(i) ≤ �k+1‖A‖F
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

824	 R. Chen, A. L. Liu

1 3

 Since �k+1 ≤ �7 = �7 , (105) is also obtained.
(j)	 Similarly, to show

 we apply (64) on the rewriting of (j), which yields

•	 If ‖A‖F ≠ 0 , then letting �2 = 1

‖A‖F yields

 Since �k+1 ≤ �7 =
�7

‖A‖F , we obtain (109).
•	 If ‖A‖F = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �7 = �7 , (109) is also obtained.
(k)	 Next, to show

 we apply (64) on the rewriting of (k):

•	 If ‖B‖F ≠ 0 , then letting �2 = 1

‖B‖F yields

 Since �k+1 ≤ �8 =
�8

‖B‖F , we obtain (113).
•	 If ‖B‖F = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �8 = �8 , (113) is also obtained.

(108)(i) ≤ �k+1
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(109)(j) ≤ �7

�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(110)
(j) ≤2�k+1

�
1

2�2
‖�k+1 − �k‖2

2
+

�2

2
���A���2

2
‖�k+1 − �k+1‖2

2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k‖2

2
+

�2

2
‖A‖2

F
‖�k+1 − �k+1‖2

2

�
.

(111)(j) ≤ �k+1‖A‖F
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(112)(j) ≤ �k+1
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(113)(k) ≤ �8

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
,

(114)
(k) ≤2�k+1

�
1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
���B���2

2
‖�k+1 − �k‖2

2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k+1‖2

2
+

�2

2
‖B‖2

F
‖�k+1 − �k‖2

2

�
.

(115)(k) ≤ �k+1‖B‖F
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

(116)(k) ≤ �k+1
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
.

825

1 3

A distributed algorithm for high‑dimension convex…

(l)	 Last, to show

 we apply (64) on the rewriting of (l):

•	 If ‖B‖F ≠ 0 , then letting �2 = 1

‖B‖F yields

 Since �k+1 ≤ �8 =
�8

‖B‖F , we obtain (117).
•	 If ‖B‖F = 0 , then letting �2 = 1 yields

 Since �k+1 ≤ �8 = �8 , (117) is also obtained.
The summation of terms (a) to (l) can now be bounded as:

(117)(l) ≤ �8

�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
,

(118)
(l) ≤2�k+1

�
1

2�2
‖�k+1 − �k‖2

2
+

�2

2
���B���2

2
‖�k+1 − �k+1‖2

2

�

≤2�k+1
�

1

2�2
‖�k+1 − �k‖2

2
+

�2

2
‖B‖2

F
‖�k+1 − �k+1‖2

2

�
.

(119)(l) ≤ �k+1‖B‖F
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(120)(l) ≤ �k+1
�
‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2

�
.

(121)

(a) +

m1�
i=1

(b)i + (c) + (d) + (e) + (f) + (g) + (h) + (i) + (j) + (k) + (l)

≤ (�1 + �2 + �4 + �5 + �7)‖�k+1 − �k+1‖2
2

+ (�1 + �2 + �3 + �4 + �7)‖�k+1 − �k‖2
2

+ (�6 + �8)‖�k+1 − �k+1‖2
2
+ (�6 + �8)‖�k+1 − �k‖2

2

+ (�3 + �4 + �6)‖�k+1 − �k+1‖2
2
+ (�4 + �5 + �6)‖�k+1 − �k‖2

2

+ (�7 + �8)‖�k+1 − �k+1‖2
2
+ (�7 + �8)‖�k+1 − �k‖2

2

≤ (

8�
s=1

�s)
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

+ ‖�k+1 − �k+1‖2
2
+ ‖�k+1 − �k‖2

2

+ ‖�k+1 − �k+1‖2
2
+ ‖�k+1 − �k‖2

2

+ ‖�k+1 − �k+1‖2
2
+ ‖�k+1 − �k‖2

2

�

≤ (1 − �0)
�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

+ ‖�k+1 − �k+1‖2
2
+ ‖�k+1 − �k‖2

2

+ ‖�k+1 − �k+1‖2
2
+ ‖�k+1 − �k‖2

2

+ ‖�k+1 − �k+1‖2
2
+ ‖�k+1 − �k‖2

2

�
.

826	 R. Chen, A. L. Liu

1 3

Substituting it back into (61), we have that for all k ≥ 0,

which implies for all k ≥ 0:

It further implies that the sequence {‖�k − �∗‖2
2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2
}

is monotonically decreasing and bounded below by 0; hence the sequence must be
convergent to a limit, denoted by �:

Taking the limit on both sides of (122) yields:

Additionally, (124) also implies that {(�k, �k,�k, �k)} is a bounded sequence,
and there exists a sub-sequence {(�kj , �kj ,�kj , �kj)} that converges to a limit point
(�∞, �∞,�∞, �∞) . We next show that the limit point is indeed a saddle point and is
also the unique limit point of {(�k, �k,�k, �k)} . Given any � ∈ � and � ∈ ℝ

n2 , we
have:

(122)

‖�k+1 − �∗‖2
2
+ ‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2

≤ ‖�k − �∗‖2
2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2

− �0

�
‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

+ ‖�k+1 − �k+1‖2
2
+ ‖�k+1 − �k‖2

2
+ ‖�k+1 − �k+1‖2

2
+ ‖�k+1 − �k‖2

2

�
,

(123)

0 ≤‖�k+1 − �∗‖2
2
+ ‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2
+ ‖�k+1 − �∗‖2

2

≤‖�k − �∗‖2
2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2

≤‖�k−1 − �∗‖2
2
+ ‖�k−1 − �∗‖2

2
+ ‖�k−1 − �∗‖2

2
+ ‖�k−1 − �∗‖2

2

≤⋯ ≤ ‖�0 − �∗‖2
2
+ ‖�0 − �∗‖2

2
+ ‖�0 − �∗‖2

2
+ ‖�0 − �∗‖2

2
.

(124)lim
k→+∞

‖�k − �∗‖2
2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2
+ ‖�k − �∗‖2

2
= �.

(125)

lim
k→+∞

‖�k+1 − �k+1‖2
2
= 0, lim

k→+∞
‖�k+1 − �k‖2

2
= 0,

lim
k→+∞

‖�k+1 − �k+1‖2
2
= 0, lim

k→+∞
‖�k+1 − �k‖2

2
= 0,

lim
k→+∞

‖�k+1 − �k+1‖2
2
= 0, lim

k→+∞
‖�k+1 − �k‖2

2
= 0,

lim
k→+∞

‖�k+1 − �k+1‖2
2
= 0, lim

k→+∞
‖�k+1 − �k‖2

2
= 0.

827

1 3

A distributed algorithm for high‑dimension convex…

The positive semi-definiteness of each Pi for all i = 0, 1,… ,m guarantees the non-
positiveness of (�) , which makes the last inequality hold. Applying Lemma 1 on
(22c) with �̂ = (�k+1, �k+1) , �̄ = (�k, �k) and � = (�, �) yields:

(126)

2�k+1
[
L(�k+1, �k+1,�k+1

, �k+1) − L(�, �,�k+1
, �k+1)

]

= 2�k+1
{[1

2
(�k+1)TP0�

k+1 −
1

2
�TP0�

]
+ �T

0
(�k+1 − �) + �T

0
(�k+1 − �)

+

m1∑
i=1

�k+1
i

[1
2
(�k+1)TP

i
�k+1 −

1

2
�TP

i
�
]
+

m1∑
i=1

�k+1
i

�T
i
(�k+1 − �)

+

m1∑
i=1

�k+1
i

�T
i
(�k+1 − �)

+ �k+1
A(�k+1 − �) + �k+1

B(�k+1 − �)
}

= 2�k+1
[
−

1

2
(�k+1 − �)TP0(�

k+1 − �) −

m1∑
i=1

�k+1
i

1

2
(�k+1 − �)TP

i
(�k+1 − �)

]

⏟⏞⏞⏟⏞⏞⏟
(�)

+ 2�k+1
[
(P0�

k+1 + �0)
T (�k+1 − �) + �T

0
(�k+1 − �)

+

m1∑
i=1

�k+1
i

(P
i
�k+1 + �

i
)T (�k+1 − �) +

m1∑
i=1

�k+1
i

�T
i
(�k+1 − �)

+ �k+1
A(�k+1 − �) + �k+1

B(�k+1 − �)
]

≤ 2�k+1
[
(P0�

k+1 + �0)
T (�k+1 − �) + �T

0
(�k+1 − �)

+

m1∑
i=1

�k+1
i

(P
i
�k+1 + �

i
)T (�k+1 − �) +

m1∑
i=1

�k+1
i

�T
i
(�k+1 − �)

+ �k+1
A(�k+1 − �) + �k+1

B(�k+1 − �)
]
.

828	 R. Chen, A. L. Liu

1 3

Adding the above two inequalities yields

Taking the limits over an appropriate sub-sequence {kj} on both sides and using
(125), we have:

Similarly, given any � ∈ ℝ
m1

+ and � ∈ ℝ
m2 , applying Lemma 1 on (22d) with

�̂ = (�k+1, �k+1) , �̄ = (�k, �k) and � = (�, �) yields

Taking the limits over an appropriate sub-sequence {kj} on both sides and using
(125), we have:

(127)

2�k+1
�
(P0�

k+1 + �0)
T�k+1 + �T

0
�k+1 + r0

+

m1�
i=1

�k+1
i

�
(Pi�

k+1 + �i)
T�k+1 + �T

i
�k+1 + ri

�

+ �k+1(A�k+1 + B�k+1 − �)
�

− 2�k+1
�
(P0�

k+1 + �0)
T� + �T

0
� + r0

+

m�
i=1

�k+1
i

�
(Pi�

k+1 + �i)
T� + �T

i
� + ri

�

+ �k+1(A� + B� − �)
�

≤ ‖�k − �‖2
2
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2

+ ‖�k − �‖2
2
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2

≤
�‖�k − �k+1‖2

2
+ ‖�k+1 − �‖2

2

�
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2

+
�‖�k − �k+1‖2

2
+ ‖�k+1 − �‖2

2

�
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2
= 0.

(128)

2�k+1
[
L(�k+1, �k+1,�k+1, �k+1) − L(�, �,�k+1, �k+1)

]

+ 2�k+1
{
(�k+1 − �k+1)TP0(�

k+1 − �)

+

m∑
i=1

�k+1
i

[
(�k+1 − �k+1)TPi(�

k+1 − �)
]}

≤ 0.

(129)L(�∞, �∞,�∞, �∞) ≤ L(�, �,�∞, �∞), ∀� ∈ 𝕏,∀� ∈ ℝ
n2 .

(130)

2�k+1
�
L(�k+1, �k+1,�, �) − L(�k+1, �k+1,�k+1, �k+1)

�

≤ ‖�k − �‖2
2
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2

+ ‖�k − �‖2
2
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2

≤
�‖�k − �k+1‖2

2
− ‖�k+1 + �‖2

2

�
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2

+
�‖�k − �k+1‖2

2
− ‖�k+1 + �‖2

2

�
− ‖�k+1 − �‖2

2
− ‖�k+1 − �k‖2

2
= 0.

829

1 3

A distributed algorithm for high‑dimension convex…

Therefore, we show that (�∞, �∞,�∞, �∞) is indeed a saddle point of the Lagrangian
function L(�, �,�, �) . Then (124) implies that

Since we have argued (after Eq. (125)) that there exists a bounded sequence of
{(�k, �k,�k, �k)} that converges to (�∞, �∞,�∞, �∞) ; that is, there exists {kj} such
that limkj→+∞ ‖�kj − �∞‖2

2
+ ‖�kj − �∞‖2

2
+ ‖�kj − �∞‖2

2
+ ‖�kj − �∞‖2

2
= 0 , which

then implies that � = 0 . Therefore, we show that {(�k, �k,�k, �k)} converges globally
to a saddle point (�∞, �∞,�∞, �∞) . � □

Acknowledgements  The authors would like to acknowledge the support of National Science Founda-
tion Grant CMMI-1832688 and the Emerging Frontiers grant from the School of Industrial Engineering
at Purdue University. Specially, we wish to thank Professor Jong-Shi Pang of University of Southern
California for the helpful comments and discussions. In addition, we would like to thank Purdue Rosen
Center for Advanced Computing for providing the computing resources and technical support.

References

	 1.	 Aholt, C., Agarwal, S., Thomas, R.: A QCQP approach to triangulation. In: European Conference
on Computer Vision. Springer, pp. 654–667 (2012)

	 2.	 Basu, K., Saha, A., Chatterjee, S.: Large-scale quadratically constrained quadratic program via low-
discrepancy sequences. In: Advances in Neural Information Processing Systems, pp. 2297–2307
(2017)

	 3.	 Bose, S., Gayme, D.F., Chandy, K.M., Low, S.H.: Quadratically constrained quadratic programs
on acyclic graphs with application to power flow. IEEE Trans. Control Netw. Syst. 2(3), 278–287
(2015)

	 4.	 Breiman, L., et al.: Arcing classifier. Ann. Stat. 26(3), 801–849 (1998)
	 5.	 Chatterjee, S., Saha, A., Basu, K.: Constrained multi-slot optimization for ranking recommendations

(2018). US Patent App. 15/400738
	 6.	 Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization prob-

lems. Math. Program. 64(1–3), 81–101 (1994)
	 7.	 Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore

(2013)
	 8.	 Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Infer-

ence, and Prediction. Springer, Berlin (2009)
	 9.	 Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
	10.	 Huang, K., Sidiropoulos, N.D.: Consensus-ADMM for general quadratically constrained quadratic

programming. IEEE Trans. Signal Process. 64(20), 5297–5310 (2016)
	11.	 Huang, Y., Palomar, D.P.: Randomized algorithms for optimal solutions of double-sided QCQP with

applications in signal processing. IEEE Trans. Signal Process. 62(5), 1093–1108 (2014)
	12.	 IBM ILOG CPLEX optimization studio CPLEX Parameters Reference, Version 12 Release 8

(1987–2017)
	13.	 IBM ILOG CPLEX optimization studio CPLEX User’s Manual, Version 12 Release 7 (1987–2017)
	14.	 Kalbat, A., Lavaei, J.: A fast distributed algorithm for decomposable semidefinite programs. In:

54th IEEE Conference on Decision and Control, pp. 1742–1749 (2015)
	15.	 Lancaster, P., Farahat, H.K.: Norms on direct sums and tensor products. Math. Comput. 26(118),

401–414 (1972)

(131)L(�∞, �∞,�, �) ≤ L(�∞, �∞,�∞, �∞), ∀� ∈ ℝ
m1

+ ,∀� ∈ ℝ
m2 .

(132)lim
k→+∞

‖�k − �∞‖2
2
+ ‖�k − �∞‖2

2
+ ‖�k − �∞‖2

2
+ ‖�k − �∞‖2

2
= �.

830	 R. Chen, A. L. Liu

1 3

	16.	 Lanckriet, G.R., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix
with semidefinite programming. J. Mach. Learn. Res. 5(Jan), 27–72 (2004)

	17.	 Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone program-
ming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

	18.	 Nemirovski, A.: Interior point polynomial time methods in convex programming. Lecture Notes
(2004)

	19.	 Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming.
SIAM, Philadelphia (1994)

	20.	 O’donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homo-
geneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016)

	21.	 Pakazad, S.K., Hansson, A., Andersen, M.S., Rantzer, A.: Distributed semidefinite programming
with application to large-scale system analysis. IEEE Trans. Autom. Control 63(4), 1045–1058
(2018)

	22.	 Rabaste, O., Savy, L.: Mismatched filter optimization for radar applications using quadratically con-
strained quadratic programs. IEEE Trans. Aerosp. Electron. Syst. 51(4), 3107–3122 (2015)

	23.	 Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A distributed algorithm for high-dimension convex quadratically constrained quadratic programs
	Abstract
	1 Introduction
	2 Algorithm description
	2.1 PCPM algorithm
	2.2 A distributed algorithm for high-dimension convex QCQPs

	3 Convergence analysis
	4 Implementation
	4.1 Distributed storage of data and parallel computing
	4.2 Adaptive step size with auto-learned allocation weights
	4.3 Stopping criteria
	4.4 Infeasibility and unboundedness

	5 Numerical experiments
	5.1 Solving standard-form convex QCQPs
	5.2 Multiple kernel learning in support vector machine

	6 Conclusion and future works
	Acknowledgements
	References

