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Figure 1. Traffic waves generated by human driving increase the energy consumption of traffic flow. A small fraction of
well-controlled automated vehicles can smooth the flow and the reduce energy consumption.

Abstract

This work presents an integrated framework of: vehicle dy-
namics models, with a particular attention to instabilities and
traffic waves; vehicle energy models, with particular atten-
tion to accurate energy values for strongly unsteady driving
profiles; and sparse Lagrangian controls via automated ve-
hicles, with a focus on controls that can be executed via
existing technology such as adaptive cruise control systems.
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This framework serves as a key building block in developing
control strategies for human-in-the-loop traffic flow smooth-
ing on real highways. In this contribution, we outline the
fundamental merits of integrating vehicle dynamics and en-
ergy modeling into a single framework, and we demonstrate
the energy impact of sparse flow smoothing controllers via
simulation results.

CCS Concepts: - Computer systems organization — Em-

bedded and cyber-physical systems; « Computing method-

ologies — Modeling and simulation; - Software and its
engineering — Software creation and management.

Keywords: automated vehicles, traffic control systems, mi-
crosimulation, energy models, fuel economy

1 Introduction

An emerging research direction is the development of con-
cepts and technologies that enable energy optimization of
traffic flow using automated vehicle technologies to con-
trol the overall traffic, by exploiting the influence of these
vehicles on the bulk traffic flow. In this endeavour it is cru-
cial to correctly model system-level impacts when sparse
controllers (i.e., automated vehicles) close the loop in the
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real-world application. Moreover, because most of the agents
remain human-controlled vehicles, the human-in-the-loop
aspects (particularly the reactions of humans to the con-
trollers) are critical for successful control design.

Because such automated vehicles may have different objec-
tives compared to human drivers or classical Adaptive Cruise
Controlled (ACC) vehicles, a critical enabler of real-world
deployment is an integrative simulation/software tool that
combines an accurate capture of vehicle dynamics, vehicle
energy modeling, as well as controllers, in a way that both
micro-scale and macro-scale flow features are reproduced
with suitable fidelity. Such tools are needed but not readily
available to support research and development.

To illustrate the importance of human driving behavior
on traffic flow, the seminal work [20] showed experimentally
that human-controlled traffic can exhibit “phantom jams” in
which a traffic jam emerges, not from an outside influence
such as an accident or lane-reduction, but from the collective
behavior of drivers. Phantom jams are an important area
of traffic control research because they represent a true in-
efficiency in the flow in which both system throughput is
degraded and average fuel efficiency declines [19, 26], and
frequently arise in non-automated (human) traffic flows [20].
It was subsequently shown [19] that these jams could be
effectively “smoothed out” with a single automated vehicle
on a ring of 20+ other human drivers. The result was that
throughput, and notably, energy efficiency of the system
were both improved.

Since then, a number of theoretical works have expanded
on techniques for using sparsely adopted connected and au-
tomated vehicles (CAVs) to smooth traffic [15, 25]. Despite
the potential for CAVs to significantly improve operation
conditions for congested traffic flow, currently available ve-
hicles in the form of ACC do not seem to display such a
tendency. Across [11, 12, 14], several commercially available
ACCs were tested experimentally, and all such systems ac-
tually contributed to phantom jams. As a result, there is a
gap between where traffic flow theory and experimentation
suggest CAVs could be and where they are in practice.

In order to enable addressing this disconnect, this work
develops a high fidelity simulation environment that allows
users to quickly implement and test CAV control schemes
in complicated traffic environments to assess their capac-
ity to smooth waves and improve energy consumption. A
number of microsimulation packages exist, both proprietary
and open-source. We build on the widely used open source
traffic simulation environment Simulation of Urban MObil-
ity (SUMO) [13], but recognize it does not directly produce
stop-and-go waves (a core feature of traffic that leads to
wasted energy). Additionally, we also recognize that suit-
able models to estimate energy from these trajectories are
needed. On one hand, aggregated models such as the US EPA
MOVES [1] model produce energy estimates, but based on
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average speeds on road segments. On the other extreme, mod-
els such as the US DOE Autonomie [18] are highly detailed
but computationally costly and not open-source compatible.
Recognizing the gap between the tools, here we outline our
preliminary work to producing a set of software tools that
enables researchers concerned with the development of ve-
hicle controllers to improve the energy efficiency of traffic to
develop, test, and benchmark their ideas. The resulting tools
take care of the intricacies of non-equilibrium traffic flow the-
ory (e.g., producing phantom jams) while also appropriately
approximating vehicle energy dynamics compatible with the
traffic dynamics. We demonstrate this energy modeling on
generic vehicle types and a Toyota RAV4 vehicle, which is
the vehicle platform we intend to use later for large scale
traffic control. We also incorporate clear metrics for bench-
marking through a leaderboard. The leaderboard provides
common traffic scenarios and reports metrics (e.g., system-
level energy and flow metrics) to assess controllers’ effect on
the flow dynamics on a system-level scale. While the tools
presented here are in a preliminary stage, they are already
being used by our multi-institution consortium that includes
more than 50 researchers building out these tools [17].

The remainder of the article is as follows. In Section 2
we discuss the challenges to integrate stop-and-go traffic
dynamics into SUMO. In Section 3 we outline our work to
build simplified energy models that approximate Autonomie
models and thus are suitable for integration with SUMO. In
Section 4 we discuss the integration efforts and a proof-of-
concept case study. Conclusions and future perspectives are
given in Section 5.

2 Traffic Dynamics Modeling

Traffic is primarily simulated and understood via two differ-
ent paradigms: macroscopic and microscopic. In macroscopic
modeling, aggregate states of traffic flow are modeled over
space and time. Relevant quantities are the flow rate, speed,
and density of traffic, and typically partial differential equa-
tions are used for simulation, resembling fluid dynamics.

In contrast, the microscopic view models interactions be-
tween individual vehicles. These techniques use the speed,
spacing-gap, and speed-difference of each vehicle in the net-
work to advance the simulation as a system of ordinary
differential equations. Since the primary focus of this work
is to understand how controllers implemented on a few CAVs
can improve traffic flow, the microscopic paradigm is a natu-
ral choice. It allows for high fidelity modeling of individual
vehicles, both from a control design perspective and from an
energy consumption perspective.

Of particular interest for using automated vehicles to
smooth traffic flow is the car-following behavior. Typically,
car-following models (CFMs) are either first-order or second-
order ODEs, corresponding to either modeling the speed of
a vehicle directly or prescribing its acceleration. Suitable for
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traffic waves are second-order models of the form

(1) = ferm(s(0),0(1), Ao (t))

$() = Ao(t) (1)

where 9(t) is the acceleration of an ego vehicle, governed
by the equation fcpy, s(t) is the space-gap to the lead vehi-
cle, v(t) is the vehicle’s speed, and Av(t) is the inter-vehicle
speed-difference. Generally, CFMs are used to describe the
driving behavior of human drivers, with some popular choices
being the Gipps Model [10], the Optimal-Velocity model [16],
and the Intelligent Driver Model (IDM) [22]. In this work we
use the IDM for human driving, which is of the form

3 . 2
fiom(s(8),0(2), Av(1)) = a [1 - (2] (£ ]
s*(v, Av) = sg +oT + %\/%M} ,

)
and a, b, vy, 6, T, and sy are model parameters that influence
driver behavior. Moreover, the acceleration (2) is replaced
by zero whenever fipy < 0 and v = 0.

Of central interest in this work are phantom jams, in which
small disturbances to an otherwise steady traffic flow can
translate into large slow-downs that move move backwards
in the flow. Mathematically, phantom jams can be interpreted
as dynamic instabilities that grow into nonlinear waves [9].
In suitable scenarios, the (in)stability of a uniform flow is
equivalent to the concept of string-stability [23]. To deter-
mine whether a CFM can exhibit phantom jams due to string-
instability, a linear stability analysis using partial derivatives
can be applied to derive a transfer function:

§i (1) = o1 (yic1 — Yi) — 20 + a3yi—1

_of _ _of _of T

where a1 = 55, 0 = 3005 ~ 550 B = Ay -
o+ 3w
and F(w) = L

L+ o+ w?
Here F(w) represents the amplification of a perturbation
of frequency w, and y(t) is a linearization of the CFM. The
system is string stable if |F(w)| < 1 Vw € iR, which is
equivalent to the simple algebraic criterion

(3)

Traffic modeled with a given CFM is then able to exhibit
phantom jams when (3) is violated (see [5] for more details).

Leveraging this stability theory, a microsimulation envi-
ronment is set up in SUMO based on the IDM (2) to model
traffic streams of human drivers which exhibit phantom jams,
with the goal of designing CAV controllers to then smooth
those waves. To do this, IDM parameters are chosen such
that (i) a realistic fundamental diagram is reproduced; and
(ii) at/near the critical density, a transition from stability to
instability occurs with growth rates that grow waves from
small perturbations on a time scale of 10s—30s. We choose
a=13m/s®,b=2m/s®>, vp =30m/s,§ =4, T = 1s, and
So = 1m.

A>0 where A=a)—a:-2a;.
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The integrator time step for the simulation is chosen
small enough so that the stability criterion (3) and wave
behavior from the IDM are well-captured, but that it still
allows for efficient simulation. Moreover, strict adherence to
speed/acceleration/gap bounds of the discrete time-stepping
system is guaranteed via standard fail-safes. Random noise
is added to the prescribed IDM acceleration values to trig-
ger any dynamic instabilities (the noise effects are properly
filtered out when feeding accelerations into the energy mod-
els below). Finally, lane changing, geometries, vehicle inflow
spawning, and routing are all handled using SUMO’s existing
capabilities, while the aforementioned custom car-following
logic is implemented using the software package Flow [24],
and further implementation details are described in Section 4.
This framework leverages existing modeling work of the mi-
crosimulation to handle “real” traffic, while at the same time
allowing for high fidelity and principled choice/development
of a CFM that satisfies the critical requirement that it pro-
duces systematic instabilities and waves that resemble real
stop-and-go traffic.

3 Energy Models

This project requires vehicle energy models that are (a) ac-
curate for highly non-constant velocities; (b) representative
of a variety of vehicle types; yet also (c) structurally sim-
ple enough to allow for fast evaluation, use in optimiza-
tion/control, and open source implementation. To meet re-
quirements (a) and (b), the Autonomie software [3] is em-
ployed on a selection of representative vehicles (Table 1),
and a systematic model-reduction procedure is devised to
generate simple fitted models that meet requirement (c).
Vehicle portfolio: The selected vehicles are chosen to
satisfy diversity and prevalence in the US. The top 5 vehicles
in Table 1 represent generic vehicles that are representative
for current market vehicles of that specific type [3]. Toy-
ota RAV4 is chosen because this is the consortium’s [17]
intended primary controller vehicle used for flow smoothing.
Each vehicle model represents a class of vehicles that have
comparable weight (with load assumed half full) and fuel
consumption characteristics. The road share in Table 1 is
obtained as follows: (i) share of trucks (Class3 PND) vs. pas-
senger vehicles (rest) from TN DoR [21] vehicle registration
data (as future field tests are expected in TN); (ii) distribution
within passenger vehicles from CNCDA [4] sales data.
Autonomie: The simulation software Autonomie Rev 165P7
includes detailed vehicle dynamics, energy models, and a
library for several types of vehicles, which can be used for
estimating fuel/energy consumption and other vehicle per-
formances such as emissions, regenerative braking, etc. [3].
Each vehicle model is composed of detailed plant and con-
troller models for its components, including engine, drive-
train, driver, and environment. The RAV4 model is based on
a small SUV template, adapted to the specifications of the
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RAV4 [7]. Autonomie works with MATLAB and Simulink,
where its blocks and files can be modified and customized.
Virtual chassis dynamometer: In order to compute ve-
hicle performance maps in a full parameter space of driving
situations, the Autonomie model framework is modified as
follows: (1) in the driver model, braking is deactivated, and
the accelerator is forced to a prescribed test pattern; (2) in the
environment model, a PI controller is inserted to artificially
adjust road grade so that actual vehicle speed matches the
target speed as the accelerator test pattern varies power deliv-
ered to the wheels; (3) in the gearbox demand and transient
controllers, gear shifting is deactivated; (4) in the engine tran-
sient controller, the idle speed controller logic is bypassed
to simply pass through the engine torque demand; (5) in
the wheel plant, additional load is introduced to cancel the
artificial road grade signal.
The thus modified model is then run, gear-by-gear, through
a complete velocity-load phase space, where the load rep-
resents various acceleration values. Each set point is held
for 10 seconds to allow the model to reach local equilibrium.
The resulting maps (vehicle speed to engine speed, vehicle
speed and wheel force to engine torque, and engine speed
and torque to fuel-rate) are then used in the next step.
Semi-principled model: We formulate a simplified, semi-
principled, model that has a physics-based part (using vehicle
mass, road load coefficients, gear ratios, final drive ratio, tire
diameter, maximum engine torque, maximum engine speed,
and engine idle speed), but it also relies on the maps obtained
from the above virtual chassis dyno. The model takes as in-
puts the instantaneous vehicle speed v, acceleration a, and
road grade 0, and outputs engine speed, engine torque, fuel
consumption, gear, transmission output speed, wheel force,
wheel power, and feasibility of the given (v, a, ) with respect
to engine speed and engine torque. Gear scheduling is based
on choosing the (feasible) gear that yields the minimal fuel
consumption. In contrast to the original Autonomie model,
this simplified model now yields the fuel consumption rate
f (and other outputs) as a direct function f = F(v, a, 0).
The model version used herein is simplifying real vehicle
dynamics by assuming that the torque converter is always
locked (in reality, an open torque converter bypass facilitates
vehicle launch and mitigates driveline vibration). This sim-
plification results in slight underpredictions of the fuel rate
in lower gears, and it will be improved in future versions.
Tuning parameters: Beyond the physics-based vehicle
parameters, the simplified model also uses a few tuning pa-
rameters. These are extracted in an automated fashion from
the original Autonomie vehicle model run on test cycles:
minimum engine torque after gear shifting, fuel cut speed,
upshifting engine speeds, and downshifting vehicle speeds.
Fitted polynomial model: To generate even simpler
models, a further simplification step is applied. For each
vehicle, the semi-principled model is evaluated on a grid in
aregion of the feasible (v, a)-space. To these data, a (capped)
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vehicle model model model HV
(engine type) error SP  error FP  share
Compact Sedan (SI) -2.0% -2.7%  23.59%
Midsize Sedan (SI) 2.7% 2.9%  32.92%
Midsize SUV (SI) —2.2% -2.3%  17.56%
Midsize Pickup (SI) -3.1% -3.0%  10.32%
Class3 PND (CI) 02%  —21% 15.61%
2019 RAV4 (SI) ~1.6%  -1.0% -

Table 1. Vehicle models. Error SP (FP) is the relative er-
ror of the semi-principled (fitted polynomial) model vs. Au-
tonomie baseline. (HV=human vehicle; SI=spark-ignition;
CI=compression-ignition; PND=pickup-and-delivery)

degree 3 bivariate polynomial (in v and a) is fitted (least
squares sense with non-negativity constraints on the 10 pa-
rameters) of the form

f(v,a) = max{CO +Cyo + Co0® + C30° + poa+
piav +p2a02 + qoai + qlaiv, ﬁ} s

where a, = max{a, 0}, and f is the minimum fuel rate, which
is not necessarily zero because different vehicles have differ-
ent criteria for enacting a fuel cut.

Moreover, a fit for the boundary of the feasibility region
is produced, in the form of a function g(v), above which
(v, a)-pairs are infeasible. Figure 2 shows a plot of the semi-
principled and fitted polynomial models for a midsize SUV.

Semi-principled model Simplified polynomial model

-
o

fuel consumption (grams/s)

"o 10

20 20
v (m/s) v (m/s)
Figure 2. Semi-principled fuel consumption model (left) and
simplified polynomial model (right) for midsize SUV. The
red curve is g(v), the boundary of the feasiblity region.

30 40 0 10 30 40

Model validation: For each vehicle, the accuracy of both
model simplifications is validated against the Autonomie
ground truth based on standard drive cycles (for that vehicle
type). Used are: (a) the EPA cycles UDDS, FTP-75, US06, 505
for light-duty vehicles [8]; (b) the globally (UNECE) approved
WLTC [2]. Table 1 summarizes, for each vehicle, the relative
error of both model types relative to Autonomie, averaged
over all respective drive cycles. One can see that on average,
all simplified models are safely within 4% relative error.
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4 Integration and Simulation Results

The major components of microsimulation that SUMO han-
dles are car-following, lane-changing, and routing. We have
built an interface layer on top of SUMO using Flow [24],
which serves as the backbone infrastructure of our inte-
grated framework. Flow builds on SUMO’s underlying logic
to allow both for custom definition of car-following logic,
and for the implementation of vehicle level control schemes,
such as in the form of reinforcement learning (RL). Through
Flow, microsimulations with custom network geometries are
instantiated in SUMO and interfaced with different vehicle
controllers and behavior models, road networks, traffic en-
vironments, vehicle energy models, etc. This framework is
modular in its components and features, thereby enabling a
systematic assessment of different choices of model design.

Simulation outputs are post-processed in a custom data
pipeline implemented in Amazon AWS cloud. Output data
are uploaded to AWS S3 storage as CSV files, which then
triggers automatic post-processing using AWS Lambda and
AWS Athena services. A load-balancing mechanism is imple-
mented to handle parallel uploads at any scale. Centralized
storage allows for standardized post-processing that is de-
coupled from simulating vehicle dynamics; i.e., simulations
do not need to be rerun as post-processing procedures and
models are updated. SQL queries are used to compute several
key performance indicators (KPIs). Resultant table schemata
are intentionally designed to facilitate quick file ingestion
and plot rendering by an online benchmarking leaderboard
for ranking controller strategies. The leaderboard, built with
DataTables & Plotly. js, features standardized scenarios,
evaluation metrics and plots, and vehicle distributions.

The primary KPI of this study is fuel economy (i.e., miles
per gallon (mpg)) of the whole traffic flow, leveraging the
energy models from Section 3 to estimate fuel consumption®.
Further, the evaluation pipeline has implemented several
vehicle distributions by mapping vehicles to energy mod-
els. CAVs are mapped to the RAV4 model, and others are
mapped onto the “human” vehicles according to proportions
shown in Table 1. Several other KPIs (e.g., network speed, net-
work inflow rate) and plots (e.g., time-space diagrams, mpg
histograms, various telemetry vs. relative time or distance)
further illustrate each controller’s performance relative to a
standardized baseline of uncontrolled traffic flow with waves.

Experimental setup: The benchmarking pipeline is de-
signed for a broad customizable range of scenarios, para-
metric studies, and vehicle distributions. The scenario dis-
cussed herein features a network model of CA SR-134 (~1-
mile stretch from the I-210 Pilot project [6]). The road is
assumed flat, and ramps are disengaged to isolate the ef-
fects of waves due to congestion. All human-driven vehicles
are dynamically equivalent, utilizing the IDM parameters

!The energy models of Section 3 are implemented twice in: (1) Flow for RL
optimization; (2) AWS for post-processing evaluation.
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Figure 3. Fuel economy results of three vehicle controllers
over parameter vqesired (X-axis) and penetration rates (sub-
plots). Red (black) circles denote decreased inflow rate (net-
work speed) by more than 10%. Red dashed line denotes
baseline fuel economy, and green dashed line highlights the
true average traffic speed downstream.

from Section 2 and SUMO’s lane-changing. User-defined,
longitudinally-controlled CAVs are evenly injected at pre-
scribed penetration rates. Edges are added upstream and
downstream to remove boundary effects from metrics evalu-
ation. Unless unsafe, vehicles are injected at 2050 vehicles
per hour (a value that was found to lead to both reasonable
congestion and desirable wave formation). Congestion is
achieved by imposing a 5 m/s speed limit immediately down-
stream from the simulation domain. The simulator uses a
ballistic integration scheme with a time step of 0.4 s. Zero-
mean Gaussian noise of standard deviation 0.1 m/s? is added
to the acceleration to provoke waves, as previously discussed.
The simulation is warmed up for 720 s to let waves establish
throughout the domain and then run for 1200 s.

Sparse Lagrangian traffic controllers: As a demonstra-
tion of the framework, two parameterized vehicle controllers
are submitted through the pipeline at various penetration
rates (5%-10%): (1) FollowerStopper (FS) [19] with varied
Udesired (3 m/s—7 m/s) and (2) IDM with Relaxation (IDM+R) [5],
given by 9 = fipm(s, v, Av) + ¥ (Vdesired — ©). For simplicity, the
human CFM parameters in (2) are assumed precisely known
here. The control gain y is a tunable parameter. Here we
study varying tgesired (3 m/s—7 m/s) and y (0.5 /s & 1.0 /s).

Results: As shown in Figure 3, as long as tgesired 1S a rea-
sonable estimate of the true average speed of traffic, all tested
controllers result in significant energy improvements, with
the exception of the FS for vgesired < 3.5 m/s. As the flagging
thresholds in Figure 3 show, the FS sacrifices on network
speed and throughput when v4esireq is too low, while the
IDM+R controller generally appears more robust in those
regards, yet still performs well in fuel economy. Furthermore,
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Figure 4. Time-space diagrams of controllers at 10% penetra-
tion rate and vgesired = 5 m/s, which yield similar fuel econ-
omy. The uncontrolled baseline shows unimpeded waves;
controlled cases show some wave dissipation.

the IDM+R controller consistently matches or outperforms
the FS. The IDM+R controller has a free parameter y (how
aggressively to steer v towards vgesired). The results suggest
that more aggressive control (i.e., larger y) has equal or pos-
itive impact if vgesired does not significantly underestimate
the average speed. Otherwise, the more aggressive controller
suffers from similar drawbacks as the FS. Conversely, overes-
timating the true average speed results in less efficient wave
dampening.

Figure 4 & 5 shows how the controllers act to interrupt
the progression of waves via their increased tendencies to
drive at uniform speeds. It is apparent that no controller
removes all waves, and that there are qualitative differences
across the different controllers. Most prominently, the FS
conducts noticeably more wave removal than the IDM+R
controllers; however, it does so at the expense of allowing
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Figure 5. The same time-space diagrams in Figure 4 zoomed
in on both axes to highlight individual trajectories.

more lane changes. These aspects result in an overall similar
performance in terms of energy metrics.

5 Conclusions and Outlook

The presented framework provides a standardized bench-
marking tool for researchers to develop and assess Lagrangian
traffic-smoothing controllers. Neither of the presented con-
trollers were constructed to be optimal; rather they are sim-
ple recipes taken from existing work that prove the concept.
The authors present this work as a vision of how future
optimized controllers may be evaluated against one another.
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