
Reverse A�ack: Black-box A�acks on Collaborative
Recommendation

Yihe Zhang
yihe.zhang1@louisiana.edu

University of Louisiana at Lafayette
Lafayette, LA, USA

Xu Yuan∗
xu.yuan@louisiana.edu

University of Louisiana at Lafayette
Lafayette, LA, USA

Jin Li
lijin@gzhu.edu.cn

Guangzhou University
Guangzhou, Guangdong, China

Jiadong Lou
jiadong.lou1@louisiana.edu

University of Louisiana at Lafayette
Lafayette, LA, USA

Li Chen
li.chen@louisiana.edu

University of Louisiana at Lafayette
Lafayette, LA, USA

Nian-Feng Tzeng
tzeng@louisiana.edu

University of Louisiana at Lafayette
Lafayette, LA, USA

ABSTRACT
Collaborative �ltering (CF) recommender systems have been exten-
sively developed and widely deployed in various social websites,
promoting products or services to the users of interest. Meanwhile,
work has been attempted at poisoning attacks to CF recommender
systems for distorting the recommend results to reap commercial
or personal gains stealthily. While existing poisoning attacks have
demonstrated their e�ectiveness with the o�ine social datasets,
they are impractical when applied to the real setting on online social
websites. This paper develops a novel and practical poisoning attack
solution toward the CF recommender systems without knowing
involved speci�c algorithms nor historical social data information
a priori. Instead of directly attacking the unknown recommender
systems, our solution performs certain operations on the social
websites to collect a set of sampling data for use in constructing a
surrogate model for deeply learning the inherent recommendation
patterns. This surrogate model can estimate the item proximities,
learned by the recommender systems. By attacking the surrogate
model, the corresponding solutions (for availability and target at-
tacks) can be directly migrated to attack the original recommender
systems. Extensive experiments validate the generated surrogate
model’s reproductive capability and demonstrate the e�ectiveness
of our attack upon various CF recommender algorithms.

CCS CONCEPTS
• Security and privacy!Web application security.

KEYWORDS
Recommender System; Poisoning Attack

ACM Reference Format:
Yihe Zhang, Xu Yuan, Jin Li, Jiadong Lou, Li Chen, and Nian-Feng Tzeng.
2021. Reverse Attack: Black-box Attacks on Collaborative Recommenda-
tion. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’21), November 15–19, 2021, Virtual Event,
Republic of Korea. ACM, New York, NY, USA, 18 pages. https://doi.org/10.
1145/3460120.3484805

1 INTRODUCTION
The web service providers, driven by pro�ts, have devoted ef-
forts to promoting their products and enriching user experience,
through employing the recommender systems. The mainstream

∗Corresponding author

of recommender systems is based on the collaborative �ltering
(CF) methods, with a series of algorithms developed and some
of them widely deployed in the E-commerces [30, 42, 71], social
networks [56, 73], online websites [29, 67], and mobile applica-
tions [55, 85]. They aim to help the service providers promote prod-
ucts or services that can increase the visibility of their items (i.e.,
products and services) to the users of interest. Most social websites
reportedly are using the CF recommender algorithms, for exam-
ple, Amazon [33], Airbnb [43], NetEase Music [74], and eBay [88],
although the speci�c algorithms are not revealed. The essence of
a CF recommender system is to mine the intrinsic correlations of
user behaviors, item-item relationships, and user-item interactions,
to locate users/items in the preference of other users. In litera-
ture, the CF recommender algorithms can be categorized as being
item-based [8, 17, 54, 68], matrix-factorization-based [44, 77, 87],
neural network-based [6, 16, 37, 78, 86, 90], and graph structure-
based [5, 26]. Plentiful algorithms have been proposed, with some
of them already deployed into online websites for production use.

However, existing works have demonstrated that the CF recom-
mender systems are vulnerable to an attacker with the purpose of
distorting the recommender results for some speci�c pro�ts. Data
poisoning attack is the most popular and e�ective technique that
has been applied for recommendation result falsi�cation via inject-
ing fake users and operations to intentionally change the items or
users’ recommendation relationships so that the original recommen-
dation list is distorted. Various poisoning attack strategies have been
proposed to target item-based [9, 11, 19, 31, 32, 48, 58, 63, 70, 82],
matrix factorization-based [14, 23, 39, 51], neural network-based
[12, 20, 36, 53, 75, 80], graph-based recommender systems [24, 84],
respectively. However, all the aforementioned data poisoning at-
tack solutions fall into the white-box attack, where the speci�c
recommender algorithm and historical training data information
are all assumed to be exposed to the attacker. This is impractical
in real-world social websites, since the respective algorithm and
information typically are kept secret by service providers.

Although some approaches have been proposed in [15, 22, 72, 83]
without knowing the speci�c recommender algorithms, they still re-
quire certain historical data knowledge, e.g., the training set and the
frequency of items that were recommended within a certain period,
which are not always available in practice. In this paper, we aim to
develop a practical black-box attack strategy for e�ectively distort-
ing recommender systems embedded in social websites, without the

https://doi.org/10.1145/3460120.3484805
https://doi.org/10.1145/3460120.3484805

prior knowledge of either recommender algorithms or historical
data information. An attacker only needs to have public knowledge
obtained simply by performing the operations as normal users.

Our strategy is to construct a surrogate model that estimates
item proximities for the embedded recommender systems. Instead
of performing attack straight, we craft our attack strategy in the
surrogate model to optimize the attack pro�ts, and then directly
migrate such a strategy to the target social website for distorting
its recommendations. Speci�cally, we �rst intentionally perform
some regular operations (e.g., viewing, clicking, rating) as normal
users on the social websites through user’s interface and gather the
recommended results as the sampling data. Two alternative meth-
ods, i.e., random walk collection and random injection collection,
are proposed, to suit di�erent social websites. Since the sampling
data include a�uent and implicit information of the embedded
recommender algorithms (no matter which speci�c algorithm is
using), we construct a surrogate model by deeply learning the item
proximities. Focusing on attacking the surrogate model, we craft
our solutions for both the availability attack and the target attack.
We de�ne the objective functions of maximizing attack pro�ts, i.e.,
demoting and promoting recommendation results by the largest
degree, under the availability attack and target attack, respectively.
By solving the formulated optimization problems, the number of op-
erations can be obtained, representing our attack solutions, which
can be applied to target social websites for an e�ective attack.

We conduct extensive experiments to verify the capability of our
constructed surrogate model in estimating item proximities on the
sampling data from several online websites and some real-world
datasets. Results demonstrate that our models e�ciently calculate
the items’ distributional representations, highly correlated with
those obtained from the original recommender systems. To show
our attack performance, we conduct experiments solely on real-
world datasets due to ethical considerations. Our attack strategies
generated from the surrogate model are directly migrated to the
target recommender systems for attacking. Through experimenting
on 9 datasets, we obtain consistent results, exhibiting that both
availability attack and target attack work e�ectively on all 9 ex-
amined CF algorithms. In addition, our solutions outperform the
compared counterparts which conduct white-box attacks with both
the recommender algorithms and training sets known a priori.

2 BACKGROUND KNOWLEDGE
2.1 CF Recommender Systems
CF is a widely adopted method in many categories of recommender
systems and has been implemented in various social medias. It
makes the personalized recommendation of items or users to a
certain user by mining the latent intricate relationships of users
and items in the historical data for modeling the similarity of users’
interests or behaviors. Collectively, CF recommender systems can
be grouped into the following four categories.

1) Item-based CF calculates the similarity among users or items
using Pearson correlation, Vector cosine, Euclidean distance, and oth-
ers across the entire user-item relationship matrix, denoted by
MMMu� 2 Rm⇥n , where the rows representm users and the columns
represent n items, to identify the K most similar users or items for
recommendation. Each entry is a numerical value representing the

relationship between a user and an item. For example, in Movie-
Lens, each entry denotes a rating score (0.5 to 5) or no-relationship
(�) from a user to a movie. In Amazon, each entry represents the
visiting behavior (denoted as 1 or �) of a user to an item.
2) Matrix factorization-based CF further decomposes the user-item
interaction matrixMMMu� into the product of two lower dimensional
matrices, where the �rst one has a row for each user while the
second one has a column for each item. Such two lower dimensional
matrices can be considered as the distributional representation of
users or items, representing the latent factors of users or items
similarity. The product of two lower dimensional matrices will then
result in a full ranked matrix, which models all the users and items
relationships, assisting item recommendations.
3) Graph-based CF models the relationships of users or items as
the bipartite graphGGGb = {U,V, E} or co-visitation graphGGGc =
{V, E} whereU represents users,V denotes items and E denotes
relationships of two vertices. Graph-based recommender systems
recommend products to users based on the geometry relationships
of users and items in the user-item bipartite graph. Di�erent graph-
based techniques can be utilized to �nd users’ or items’ similarities
and relationships, which will be utilized to make recommendations.
4) Neural network-based CF encodes each user or item into a latent
vector space. At each hidden layer, new features can be extracted
from the previous vector space to a new vector space. At the output
layer, the similarity among the latent user vectors or item vectors
will be calculated. Such a method can make an in-depth calculation
of the inherent and sophisticated relationships of users to users,
items to items, or users to items so as to �nd the similarity patterns.

2.2 Related Works
Regarding item-based CF recommender systems, the early attack
solutions proposed in [11, 19] aimed to help the developer to build a
robust CF method when su�ering from unfair ratings in online trad-
ing communities. Later, [63] showed that by injecting users with
biased ratings, an attacker can promote or demote the target items.
[48] demonstrated that some naive methods like injecting Random-
Bot and AverageBot could also promote or demote the target item
by assigning the maximum or minimum ratings to the randomly
selected items, respectively. Furthermore, some advanced methods,
i.e., Bandwagon attack[9], Probe attack[57], Consistency attack[10]
and Segment attack [31], were proposed. These attack methods,
although e�ective, are not e�cient in poisoning recommender sys-
tems. To broaden the impact of poisoning attack, the authors in
[70, 82] proposed the power user/item attack model based on in-
degree centrality, via using power users to lunch an attack or solely
attack the power items. However, this line of attacks requires the
recommender algorithms or users’ historical knowledge.

Work on attacking the matrix factorization-based CF abounds.
Speci�cally, [51] leveraged the �rst-order KKT conditions to derive
the fake ratings for the attacking strategy. [39] developed a bi-level
program to perform target attacks. [14] proposed a generative ad-
versarial network (GAN)-based attack model to generate ratings
for fake user pro�les. [23] proposed to select the in�uential users
for attacking. However, each of these attacks targets only one spe-
ci�c algorithm while requiring full or partial historical user-item
interaction knowledge for designing the attack strategies.

In the line of graph-based CF system attacks, [84] proposed to
inject the fake co-visitations into a co-visitation graph. The opti-
mized attack strategy was derived by solving the constrained linear
optimization problems given a bounded number of fake visitations,
with full graph knowledge available. They then proposed a low
knowledge attack method, which is only feasible to the simpli�ed
recommender algorithm with the linear model. [24] proposed an
attack solution that calculates the fake user rating scores by solv-
ing an optimization problem. However, it still requires full graph
topology knowledge, often unavailable in the real-world systems.

Recently, the successful applications of neural network tech-
niques to recommender systems attract adversary attacks. Such
attacks target the personality ranking [36], E-commerce websites
[20], visual-based recommender systems [75], and others. However,
all these attacks rely on the gradient-based methods, such as Fast
Gradient Sign Method (FGSM) [28] and Projected Gradient Descent
(PGD) [46], requiring to generate the adversarial perturbations
from the entire datasets, apparently inapplicable to real-world so-
cial platforms, since the whole datasets are unlikely to be available.
Similarly, GAN-based [27] attack models [12, 15, 80] also su�er
from the same shortcomings. Moreover, [53] proposed to gener-
ate the applicable fake user pro�les based on GAN, but it needs
to use the existing real user pro�le as a “template”, which is very
hard to acquire from recommender systems and also raises the pri-
vacy issue. [41] and [89] proposed a poisoning attack on particular
neural-network based recommender systems. However, they re-
quires the whole knowledge of the recommender system structure
and of the dataset. Again, the speci�c neural network algorithms
in aforementioned works must be known prior to performing all
these attacks.

All the aforementioned attack solutions belong to the white-box
attack, since the speci�c recommender algorithms are known a
priori. Meanwhile, some black-box attacks without knowing the
recommender algorithms, have been pursued. Speci�cally, [83]
discovered the vulnerability of the YouTube recommender system
and conducted a real-world pollution attack. However, this attack
solution only distorted the partial functionality of the recommender
systems. In [22], reinforcement learning was introduced to develop
black-box attack on a source domain, with the attack solution then
transferred to the target systems. Such a solution has the strict
requirement that the source domain and the target system should
have overlapped user pro�les, but how to guarantee overlapped
user pro�les in real-world attack remains questionable. [72] also
employed reinforcement learning to develop a black-box attack
solution, leveraging the binary tree structure to generate fake user
pro�les. It requires knowledge on the recommended frequency of
some items within a certain period, which rarely holds in practice.

3 PROBLEM STATEMENT
This paper aims to design e�ective strategies to perform black-box
poisoning attacks on CF recommender systems that are embedded
in social websites, with the goal of twofold distortions: 1) demoting
recommended results and 2) promoting the target items, referring
to as availability attack and as target attack, respectively.

3.1 Threat Model
To perform the attacks, the amounts of adversarial behaviors (i.e.,
fake users and their operations) are constrained due to the resource
limitation and detection avoidance. An attacker will craft an ef-
fective attack strategy, subject to these constrained resources, for
optimizing the attack pro�ts in target social websites. By injecting
the well-crafted fake users and operations, an attacker can achieve
its goal of maximally distorting the recommendation results. In
practice, social websites do not expose the speci�c recommender
algorithms currently being used for security reasons. Public in-
formation only indicates that Amazon [33], Airbnb [43], NetEase
Music [74], Spotify [74], eBay [88], and others currently employ the
CF methods to produce high quality recommendations [54]. Thus,
when performing practical attacks on a social website, an attacker
does not have the knowledge of its speci�c recommender algorithm
being used, other than that it falls in the category of CF. Also, the
historical data of the users and items relationships are unknown to
the attacker either. All knowledge obtainable by an attacker is from
the attacker’s normal interactions with the social websites. In our
attack, we treat both the recommender system and historical data
in a target social website as a black box. Nonetheless, an attacker
can access the social website through its user interface to view or
visit users and items, via regular operations provided to users. The
attacker then collects the public data and uses them to design its
attack strategy. Following the attack strategy, the attacker injects
fake users and operations allowed by the systems, such as rating,
clicking, or viewing actions, to perform e�ective attacks.

3.2 Sketch of Our Attack Strategy
Before presenting design details in the next two sections (Sections 4
and 5), we �rst give a sketch of our black-box attack strategy. Since
an attacker neither knows recommendation algorithms nor has the
prior knowledge of users or items relationships, the �rst step is to
interact with target social websites via the normal operations and
collect a set of recommended results to serve as the sampling data
for learning. To this end, a surrogate model is developed for deeply
learning the recommendation relationships from the sampled data,
aiming to estimate the item proximities and the implicit patterns.
It will assist in developing solutions o�ine for evaluation. After
that, a solution that is e�ective on the surrogate model, is directly
transferred to the target social websites to achieve the similar at-
tack goals. Notably, the recommended objects can be either users
or items corresponding to di�erent social websites. For ease of
expression, we uniformly call them items in the following sections.

4 CONSTRUCTING SURROGATE MODEL
To construct the surrogate model, we �rst collect the sampling
data in online social websites for learning use. Two alternative
approaches, i.e., Random Walk Collection and Random Injection
Collection, are proposed for this purpose. Next, we design a train-
ing strategy for the surrogate model to e�ciently learn from the
collected dataset for exploring item proximities.

4.1 Sampling Data Collection
Random Walk Collection. This approach is suitable for those
websites that recommend items based on items’ similarities, e.g.,
Amazon, Net�ix, and Yelp, exampled as in Figures 1(a), 1(b), and

(a) Amazon (b) Net�ix (c) Yelp (d) MoiveLens

Figure 1: Layout on di�erent websites. Red and blue boxes denote the key item and the related recommendation, respectively.

Key item

Recommendation area

Item
1

Item
2

Ranking

Item
K

…

1 2 K

(a) Type-I layout

Rating
item 1

Rating
item 2 …

Rating
item R

Recommendation area

Item
1

Item
2

Item
K

…

Ranking
1 2 K

(b) Type-II layout

Figure 2: Two common recommendation web page layouts.

1(c). The recommendation web page layout suitable for apply-
ing this collection approach is illustrated in Figure 2(a), called
Type-I layout. There is one key item I and a recommendation
area which lists K similar items for recommendation, denoted as
F (I) = {I (1), I (2), . . . , I (K)}. Notably, rankings of these items are usu-
ally implicit to users but their proximities are disclosed. Our collec-
tion procedure takes into account such relative ranking information.
The indicator of recommendation area varies on di�erent social
websites. For example, in Amazon, this section is named as “Cus-
tomers who viewed this item also viewed”. To start the RandomWalk
Collection, we randomly select an item I1 (called the key item) for
the �rst sampling trail Cw (1). Assuming there are K similar recom-
mender items on the Type-I recommender area, we shall record all
of them asCw (1) = {(I1, I (1)1 , 1), (I1, I

(2)
1 , 2), . . . , (I1, I

(K)
1 ,K)}, where

1 to K are the listed rankings for them. Corresponding to each rec-
ommended item, a sampling score ck = e

��k is assigned based on
its ranking, where k is item’s ranking, and � is a parameter to adjust
item ranking importance, ranging from 0.001 to 0.5. Hence, each
item can be sampled with the probability of p(I (k)1) = ckÕK

i=1 ci
. The

larger the �, the higher the probability to sample a higher ranking
item. We iteratively execute operations above to select the next
nodes until the maximum walk lengthZ is reached. With further
trails sampled following the similar way, we eventually obtain a set
of sampled data, denoted as Cw = {Cw (1),Cw (2), . . . ,Cw (Z)}.
Random Injection Collection. This approach is suitable for those
websites that recommend items based on users’ historical prefer-
ences, e.g., MovieLens as shown in Figure 1(d). We call this type
of website a Type-II layout, as sketched in Figure 2(b), where the
items recommended to users are not targeted to one particular
item, but depending on users’ historical behaviors, e.g., rating or
viewing on a group of items. In this approach, an attacker can cre-
ate a set of user accounts on social media websites and randomly
perform some operations. The social media gives the top recom-
mendations to each user, which will be collected and stored in the
form of a list. Here, each operated item can be considered as the
target item. In particular, the fake users rate or view A items in

Ia Ib

Ic

Id

Ie

Ed(Ia, Ib)

Ed(Ia, Ic)

Ed(Ia, Id)

Ed(Ia, Ie)

Sim(Ia, Ic)

Sim(Ia, Ib)

(a)

.

1
2

K

1

2
2K

k

(b)

Figure 3: (a) Euclidean distance and Cosine similarity. (b) An
illustration of the surrogate model. Red, green, and yellow
triangles denote the target item, the recommended ones, and
other items, respectively. Gray arrows denote the gradient
direction. The numbers denote the recommendation rank.

the websites, with the fake ratings from a fake user u denoted as
Ri (u) = {(I (1)u , r

(1)
u), (I (2)u , r

(2)
u), . . . , (I (A)

u , r (A)
u)}, where I (k)u is the

k-th item rated by u and r (k)u is the corresponding rating. The rec-
ommendation area for Type-II layout is similar to that for Type-I
layout. We record all the recommended K items with their ranking
numbers, denoted as Ci (1) = {(I (1)u1 , r

(1)
u1 , I

(1)
1 , 1), (I

(1)
u1 , r

(1)
u1 , I

(2)
1 , 2),

. . . , (I (1)u1 , r
(1)
u1 , I

(K)
1 ,K), . . . , (I

(A)
u1 , r

(A)
u1 , I

(K)
1 ,K)}. Such a procedure

repeatedly executes to create a set of user accounts for collecting a
su�cient amount of sampling data. For Z fake users, the sampled
data are denoted as Ci = {Ci (1),Ci (2), . . . ,Ci (Z)}.

We explore popular websites across E-commerce, social net-
works, Entertainment, Tourism, and Review categories, that an
attacker can explore the two methods for sampling data, summa-
rized in Table 9 of Appendix A.1. It exhibits that an attacker could
use at least one method to collect data from these popular websites.

4.2 Generating Surrogate Model
We next construct a surrogate model to learn recommendation
patterns from the sampling data for producing item proximities.
Several challenges exist in designing such a surrogate model. First,
the model ought to thoroughly learn the item proximities by lever-
aging either ranking or rating information. But, how to design the
model for e�ectively capturing such item proximity remains chal-
lenging. Second, due to the limit of an attacker’s available resources
and the intent to avoid triggering websites’ detection mechanisms,
the sample data cannot be collected in any arbitrarily large size.
Hence, the constrained sample data size further raises the challenge
for developing a surrogate model to learn item proximities. Third,
the surrogate model is desired as simple as possible while realizing

items’ potential relationships without the knowledge of recom-
mender algorithm. How to simplify the surrogate model design
while still achieving our attack purpose remains open.

Notably, the design of surrogate model aims to learn the item
proximities under a small subset of the data. For example, when a
recommender system recommends new products based on histor-
ical user operations, a surrogate model is expected to e�ectively
learn the relationships from those recommended products. Poison-
ing the proximities of items therein may migrate to distort the
proximities over an entire dataset. Naturally, training a surrogate
model can be considered as a metric learning problem [18].

Euclidean distance metric is used to gauge the distance between
two items. For items Ia and Ib , as shown in Figure 3(a), the cor-
responding vectors are denoted by���a and���b . The Euclidean dis-
tance Ed(Ia , Ib) between Ia and Ib is calculated as Ed(Ia , Ib) =
k���a ����b k =

qÕd
i=1(���a (i) ����b (i))2, where d is the vector size. For

example, if item Ib is closer to item Ia than item Ic , the Euclidean
distance Ed(Ia , Ib) is smaller than the distance Ed(Ia , Ic). Then, a
recommender system using the nearest neighborhood strategy (like
YouTube [16]) would have a higher probability to recommend video
Ib than video Ic , if a user is watching video Ia . As such, items with
closer proximities have smaller Euclidean distances. Thus, we can
minimize the Euclidean distance among similar items to derive
item distributional representation. Similar to [38], the Euclidean
distance metric aims to minimize its metric loss:

Ld =
’

(Ii , Ij)2C

’
(Ii , Ik)<C

[m + Ed(Ii , Ij)2 � Ed(Ii , Ik)2]+, (1)

where C is either the sampling dataset Cw or Ci , Ii is the key item,
Ij is any recommended item, and Ik is any item not recommended.
[x]+ =max(x , 0) is hinge loss, andm is the safety margin size. By
minimizing Ld , we can capture the distance features among items.

Cosine similarity metric is also widely applied in collaborative
�ltering. Considering two items Ia and Ib with their vectors be-
ing ���a and ���b , the cosine similarity measures the cosine of the
angle between the two item vectors, calculated by: Sim(Ia , Ib) =
���a ·���b/(k���a k ⇥ k���b k), as shown in Figure 3(a). If users often pur-
chase items Ia and Ib together, the distributional expression of the
two items, say ���a and ���b , would have closer vector angle, with
Sim(Ia , Ib) ⇡ 1. If a user bought item Ia , he/she would receive item
Ib as a recommendation. Thus, a similar method to [65] is proposed
to minimize the Cosine similarity metric loss:

Lc =
’

(Ii , Ij)2C

’
(Ii , Ik)<C

(�lo�� (Sim(Ii , Ij) � Sim(Ii , Ik))), (2)

where � denotes the sigmoid function � (x) = 1/(1 + e�x).

4.2.1 Our Construction. We aim to design a uniform surrogate
model, applicable for e�ectively learning item proximities from all
categories of CF recommender systems. However, neither Euclidean
distance nor Cosine similarity metric loss can fully leverage a�uent
information (e.g., rankings and ratings) present in the sampling data
(Cw or Ci). As such, we take advantage of both metric losses and
include necessary information for use in constructing the surrogate
model. We de�ne six rules in training the surrogate model:

R1. For each key item Ike� , the recommended item Ipos is closer
to Ike� , than any other item Ine� not in the recommended area, i.e.,
Ed(Ike� , Ipos) < Ed(Ike� , Ine�)^Sim(Ike� , Ipos) > Sim(Ike� , Ine�).
R2. For each key item Ike� , the recommended item Ihrk with higher
ranking is closer to Ike� , than any lower-ranked item Ilrk , i.e.,
Ed(Ike� , Ihrk) < Ed(Ike� , Ilrk).
R3. For each key item Ike� , the recommended item Ihf q appearing
more frequently is closer to Ike� , than any lower frequency item Il f q ,
i.e., Sim(Ike� , Ihf q) > Sim(Ike� , Il f q).
R4. For a recommended item Ir ec , the higher-rated item Ihr t is closer
to Ir ec than any other item Ine� not in the recommended area, i.e.,
Sim(Ihr t , Ir ec) > Sim(Ine� , Ir ec).
R5. For a recommended item Ir ec , the lower-rated item Ilr t is farther
to Ir ec than any other item Ine� not in the recommended area, i.e.,
Sim(Ilr t , Ir ec) < Sim(Ine� , Ir ec).
R6. The surrogate model is universal across both Type-I and Type-II
websites.

Notably, Euclidean distance metric loss and Cosine similarity
metric loss can only satisfy the rule R1, which is not su�cient for
use. Hence, according to these rules, the following loss function is
de�ned for our surrogate model, yielding

Ls =
’

(Ii , Ij)2C

’
(Ii , Ik)<C

r̂i (�lo�� (Sim(Ii , Ij) � Sim(Ii , Ik))

+wi, j [m + lo�(
|M|
kIi , Ij

) + Ed(Ii , Ij)2 � Ed(Ii , Ik)2]+),
(3)

where r̂i indicates a Standard Mapping Rating, which is used to
normalize the rating for fake user u on item Ii at di�erent websites,
to capture the properties of rules R4 and R5. It can be expressed by

r̂i = ri � (rmin +
rmax � rmin

2
), (4)

where ri is user’s rating on item Ii , rmin and rmax represent the
minimum and maximum ratings, respectively, on the website. For
example, in MovieLens, rmin = 0.5 and rmax = 5. Notably, there is
no ranking information in the sampling Cw collected from websites
like Amazon, Airbnb, Yelp, etc., so we just simply set ri = 1 as it is
implicit feedback information.wi, j represents the Approximated
Ranking Weight (ARW) for the ranking of item Ij to item Ii , which
has been widely used in [38, 81], calculated by:

wi, j = lo�(ranks (Ii , Ij) + 1), (5)

where ranks (Ii , Ij) is the ranking of Ij to Ii within the surrogate
model. Given Ii and Ij , the direct item ranking calculation of them
is extremely expensive, so we approximate the ranking by:

ranks (Ii , Ij) = b |M| ⇥ �

|S| c, (6)

where S is a list of sampled items from the surrogate model, � is the
count of all items Ik 2 S satisfying [Ed(Ii , Ij)2 � Ed(Ii , Ik)2]+ > 0,
|M| is the total number of unique items in the collected dataset,
and kIi , Ij is the rank of item Ij to item Ii based on the targeted rec-
ommender system and collected in the sampling dataset Cw or Ci .
Notably, the use of ARW in Eqn. (5) can achieve the surrogate model
rules R2 and R3. Since both Type-I and Type-II layout cases are
taken into accounts in Eqn. (3), the rating information is considered
in Eqn. (4), and the ranking information is included in Eqn. (5), our

design naturally meets rule R6. Figure 3(b) illustrates the relative
locations of items of di�erent rankings from our surrogate model.

In the training phase, the negative items Ik in item-pairs (Ii , Ik) <
C are randomly sampled from the entire item space. The number of
sampled negative items is set to 4 for each key item. The training
process terminates after the item distributional expressions become
stable. The trained model will represent our constructed surrogate
model, which can estimate item proximities in a way similar to the
recommender system, enabling us to develop an attack strategy on
this model and then apply it directly to the original recommender
systems to achieve a similar goal by poisoning the item proximities.

4.2.2 Relationship between Our Surrogate Model and the
Original Recommender System. We further explore the relation-
ships between our surrogate model and the original recommender
system. A recommender system explores the user-item relation-
ship from the historical user-item interaction dataset. Each item
is encoded into a dense vector called the item embedding in most
recommender systems. Usually, item embedding does not hold a
speci�c meaning but captures the relationship to other items. The
main di�erence between recommender algorithms and learning
metrics lies in that the former focuses on recommendation accuracy
while the latter aims to capture item proximities.

To test the capability of the surrogate model in capturing such
relationships, we trained �ve recommender systems onml-1m [60]
dataset, including item-based CF (IBCF [54]), matrix factorization-
based CF (MF [45], CML [38], and BPR [65]), and graph-based CF
(GCF [13]). Next, we use our constructed surrogate model (with
learning metric Ls) to learn item relationships from the data col-
lected from each of the recommender system. For comparison, we
also take into account another two learning metrics Ld and Lc ,
corresponding to Eqns. (1) and (2), respectively. The Pearson corre-
lation values between the item-item similarities from recommender
systems and item-item similarities learned by the surrogate model
under three metrics are listed in Table 1.

From Table 1, we can observe Pearson correlation values of items
similarity between our surrogate model (with Ls) and all �ve exam-
ined recommender system are always more than 0.5. As evidenced
in [69], these values (greater than 0.5) can clearly claim that the two
systems are highly correlated. In contrast, for the surrogate model
with Ld and Lc , their correlations to �ve recommender systems
are much lower, with only one or two correlation values can reach
to 0.5. For example, the surrogate models with Ld metric and with
Lc metric mostly correlates to CML and BPR, respectively, both
having the correlation values of more than 0.5. The reason is that
CML encodes item into Euclidean space while BPR uses cosine sim-
ilarity to represent item relationships. But corresponding to other
recommender systems, their values are much inferior, as low as 0.19
and 0.20, respectively. These results demonstrate the e�ectiveness
of our constructed surrogate model with Ls in terms of learning
the item proximities.

5 CRAFTING ATTACKING STRATEGY
This section presents both availability attack and target attack on
our surrogate model, with the resulting attack strategies directly
applicable to original recommender system for similar attack goals.
An attacker aims to maximize the pro�t, leading to (1) the minimum

Table 1: Pearson correlation values
Type-I Type-II

Ld Lc Ls Ld Lc Ls

IBCF [54] 0.41 0.46 0.56 0.45 0.48 0.57
MF[45] 0.32 0.38 0.48 0.27 0.35 0.50
CML[38] 0.51 0.25 0.65 0.53 0.36 0.68
BPR[65] 0.19 0.55 0.56 0.20 0.57 0.61
GCF[13] 0.44 0.46 0.57 0.51 0.42 0.62

IiI1
i

I2
i

I3
i

Ij

Ĩ2
i

Ĩ1
i

Ĩ3
i

Ĩj

Before attack
After attack

�Ij

�I2
i

�I1
i

�I3
i

(a)

I1

I2

I3

I4
I6

I7
I8

I9
0.5

0.1

0.1

0.1

0.6
0.1

0.1
0.1

1st order relationship
2nd order relationship

I5

0.1

(b)

Figure 4: (a) Attacking item proximities by altering the item
distributional representations. (b) Sampling itemswith �rst-
order relationship or second-order relationship.
recommendation accuracy for availability attack or (2) maximally
promoting target items to the normal users for target attack.

5.1 Attack Objective Functions
Availability attack objective function. Given that the goal of
availability attack is to demote the original recommendations, our
design should be able to measure the discrepancy of recommended
results before and after the attack. The pro�t of an attacker depends
on the degree of distortion on recommendations. Instead of directly
attacking the original recommender system, we perform our attack
on the surrogate model to �nd the attack strategy that can be
for later use. We de�ne Yi = {I1i , . . . , IKi } and Ỹi = {Ĩ1i , . . . , ĨKi },
respectively, as the K most similar items to a targeted item Ii before
and after the attack, respectively, on the surrogate model. Iki and
Ĩ
k
i represent the k-th similar item for the item Ii before and after
the attack, respectively. The metric of accuracy, i.e., S(Y, Ỹ), is
introduced to measure the discrepancy before and after the attack.
Notably, we enable the surrogate model to estimate the K most
similar items to an item, so that it is then su�cient to consider only
the top-K recommendations.

Denote Sim(Ii , Ij) and Sim�(Ii , Ij) as the cosine similarity be-
tween the items Ii and Ij from the surrogate model before and after
the attack, respectively. If the cosine similarity Sim�(Ii , Ij) between
Ii and any item Ij (Ij is not in the Ii ’s original most K similar items)
is larger than Sim�(Ii , Iki) between Ii and its k-th (k  K) similar
item I

k
i , i.e., Sim�(Ii , Iki) � Sim�(Ii , Ij) < 0, we say this attack is

successful. To poison the item space, we de�ne S(Y, Ỹ) as:

S(Y, Ỹ) =
|M |’
i=1

|M |’
j=1

K’
k=1

� (�i, j,ik (Sim�(Ii , Iki) � Sim�(Ii , Ij))) ,

where� (·) is the sigmoid function and�i, j,ik is a constant which de-
notes similarity di�erence before the attack: �i, j,ik = Sim(Ii , Iki) �
Sim(Ii , Ij). By minimizing S(Y, Ỹ), we can minimize the recom-
mendation accuracy comparing to that before the attack. We can

consider that minimizing S(Y, Ỹ) is equivalent to deriving new
item distributional representations in the surrogate model item
space. Assuming the original item distributional representation set
isWWW , and the poisoned item distributional representation set isW̃WW ,
we have �̃��i = ���i + ����i ,���i 2WWW ,�̃��i 2 W̃WW , as shown in Figure 4(a).
Since we do not aim to alter too many original item distributional
representations during the attack, as otherwise it may require to
inject too many fake operations, we add kW̃WW �WWW k2 as a constrained
term. We can adopt the Lagrange multiplier method [66] to formu-
late our attack as follows:

OPT-A: min
W̃WW

S(Y, Ỹ) + �kW̃WW �WWW k2 , (7)

where � is the penalty coe�cient, setting to 0.01 in our experiments.
Target attack objective function. Denote T = {I1t , I2t , . . . , IKt }
as the K target items that an attacker wishes to promote. We de-
�ne a metric successful score, expressed as HT(·), to measure the
attacker’s pro�t on the degree of success in promoting target items.
Speci�cally, HT(·) denotes the fraction of normal users whose top-
K recommendations include the target items after the attack on
the surrogate model. Denote Sim(Ii , Ikt) as the cosine similarity
between any item Ii and its k-th target item before the attack. A
successful attack lifts the t-th target item before any other item
Ij in Ii ’s recommendation, say Sim�(Ii , Ikt) > Sim�(Ii , Ij). An at-
tacker aims to promote target items to as many users as possible
and promote as many target items as possible for each user. The
target attack is modeled as:

HT (Ỹ) =
|M |’
i=1

|M |’
j=1

K’
k=1

� (�i, j,tk (Sim�(Ii , Ikt) � Sim�(Ii , Ij))) ,

where Ij can be any item not in the target items set T , and �i, j,tk =
Sim(Ii , Ikt) � Sim(Ii , Ij). By maximizing HT (Ỹ), we maximize the
successful score of the target attack. To constrain the range of item
space shifting, the target attack problem OPT-T is formulated as:

OPT-T: max
W̃WW

HT (Ỹ) + �kW̃WW �WWW k2 . (8)

After solving Eqn. (7) (for OPT-A) or Eqn. (8) (for OPT-T), we get
the poisoned item distributional representationsW̃WW , which include
a set of reference item vectors, i.e., �̃��i 2 W̃WW . An attacker needs to
operate the items to achieve the attack objective, which lets each
distributional vector move towards the reference item vector, e.g.,
���i ! �̃��i . Here, the challenge is how to “move” the item distribu-
tional vector toward the reference item vector. We next construct a
reference matrix which can help the attacker to achieve this goal.

5.2 Reference Matrix
Reference matrix is an |M| ⇥ |M| matrix, with each entry Ri j
representing the relationship between item Ii and item Ij .
Generating First-Order Reference Matrix RRR1. First-Order Ref-
erence MatrixRRR1 captures the �rst-order proximity features among
items from the surrogate model. It illustrates how close two items
are related to each other, e.g. item Ii and item Ij are bought at the
same time, or they both get high ratings from the same user. In our
surrogate model, the �rst-order proximities of item I1 are shown
in Figure 4(b) with green arrows. To generate RRR1, we start from an
arbitrary item Ii as the key item. Then we sample the next key item

Ij with probability p(Ij |Ii) = Sim(Ii , Ij)/
ÕK
k=1 Sim(Ii , Ik). Note that

the key item is sampled from Ii ’s K most similar items for acceler-
ating the sampling speed. For each sampled item pair (Ii , Ij), we
add 1 to the corresponding entry Ri j in RRR1. Next, we use the item
Ij as the new key item to continue reference sampling, which stops
upon reaching a relatively large number, e.g., 1, 000, 000. Each entry
Ri j in RRR1 can be considered as the number of co-occurring times
for items Ii and Ij under �rst-order proximity.
Generating Second-Order Reference Matrix RRR2. This Refer-
ence MatrixRRR2 captures the second-order proximity feature among
items from the surrogate model, e.g., item Ii and item Ik are usually
bought together with item Ij , respectively. As shown in Figure 4(b),
items I7, I8, and I9 have the second-order proximity with item I1.
To generate RRR2, we start from an arbitrary item Ii as the key item.
Then, we sample the next key item Ik with probability p(Ik |Ii , Ij) =
Sim(Ii , Ij) ·Sim(Ij , Ik)/

ÕK
j=1

ÕK
k=1(Sim(Ii , Ij) ·Sim(Ij , Ik)). For each

sampled item pair (Ii , Ik), we add 1 to the corresponding entry Ri j
in RRR2. The steps above repeat until exhausting all item pairs. The
entry Ri j in RRR2 represents the number of co-occurring times for
items Ii and Ij under the second-order proximity.
OurAttackReferenceMatrixRRR1,2. Since di�erent recommender
systems have di�erent capabilities to learn the �rst-order proximity
and the second-order proximity, we de�ne the reference matrix
RRR1,2 considering both proximities: RRR1,2 , 1/2RRR1 + 1/2RRR2.
Relationship Between Surrogate Model and Reference Ma-
trix. Considering the surrogate model expressed by Eqn. (3), its
�rst part lo�� (Sim(Ii , Ij) � Sim(Ii , Ik) is the well-known pointwise
mutual information (PMI) of item Ii and item Ij [50]. It captures
the feature of co-occurring timesCi, j for items Ii and Ij in the sam-
pling dataset. Reference Matrix estimates the co-occurring times
with respect to the item vectors, which is learned by the surrogate
model. The second part can be considered as a regularization term
that constrains item vectors into a speci�cation space. Thus, for
Type-I recommendation, the reference matrix’s values signify the
co-occurring countCi, j of item pairs. For Type-II recommendation,
the values in the reference matrix re�ect the weighted co-occurring
count r̂iCi, j of item pairs, with r̂i = ri � (rmin + (rmax � rmin)/2).

5.3 Complete Attack Solutions
Now, we can summarize our attack solution to poison the item
distributional representations by using the reference matrix.
Phase I: Reproducing items’ proximities. We use the sampling data
to train the surrogate model as shown in Section 4.2 and apply this
trained model to calculate the similarities Sim(Ii , Ij) between any
two items Ii and Ij .
Phase II: Optimizing OPT-A or OPT-T. For availability attack, we
�nd the original top-K similar items for each item Ii before perform-
ing the attack. Notably, the original top-K similar items for each
item Ii do not change during algorithm execution. Since Sim(Ii , Iki)
for k = 1, . . . ,K are constant, we use the gradient method to min-
imize Eqn. (7). Then we derive the reference item vectors W̃WW by
using Stochastic Gradient Descent (SGD)[7] method. Speci�cally,
in each iteration of the SGD algorithm, three items Ii , Iki , and Ij are
selected, where Iki is item Ii ’s k-th similar item. The optimization
stops whenW̃WW becomes stable. For target attack, we �rst randomly
select an item I

k
t from the target item set T . Then items Ii and Ij

are randomly selected. Since Sim(Ii , Ij) is a constant derived from
surrogate model, Stochastic Gradient Ascent (SGA) method is used
to maximize Eqn. (8) to derive the reference item vectors.
Phase III: Generating reference matrix. We generate the reference
matrix RRR1,2 before attack with respect toWWW . Then we generate
referencematrix R̃RR1,2 after optimizing OPT-A or OPT-T by using the
item reference vectorW̃WW . Since reference matrix estimates the item
co-occurrence count, we derive the count di�erences as �RRRI

1,2 =

max{R̃RR1,2 � RRR1,2, 0} for attacking Type-I websites and �RRRI I
1,2 =

R̃RR1,2 �RRR1,2 for attacking Type-II websites.
Phase IV: Crafting fake user strategy.We craft fake users’ behaviors
according to �RRRI

1,2 or �RRRI I
1,2. Fake user crafting strategies are di�er-

ent on Type-I and Type-II websites. For Type-I social websites, fake
users can only click and purchase items. The strategy for crafting
fake users are to �nd item pairs matching the count change matrix
�RRR1,2. However, �nding a perfect match is an NP-hard problem.
We use a greedy method to generate fake users. Speci�cally, we
�rst sample the item pairs from the count changing matrix with
the likelihood according to the values. Assuming item pair (Ii , Ij)
is sampled, we subtract 1 from the matrix and add the item pair to
the attack area of fake user û1’s operation list, i.e.,

ũ : {(item item| {z }
attack area

) + (item item item| {z }
�ller area

) + · · · + (item item| {z }
attack area

)}

Then, we randomly sample several popular items and �ll them
in the �ller area until meeting the maximum requirement. In our
attack, we set the total length of each user operation list to 50,
which is divided into ten segments. Each segment contains one
sampled item pair and 3 �ller items. Thus, there are a total of 10
item pairs and 30 �ller items in each fake user’s operation list.

For Type-II websites, fake users can rate items. To simplify the
attack strategy, the �rst step is to sample the item pair (Ii , Ij) ac-
cording to the absolute value as the likelihood in �RRRI I

1,2. We set a
default rating value for item Ij as the maximum rating rmax . The
rating of Ii depends on the sign of �RRRI I

1,2(Ii , Ij). The maximum
rating rmax is assigned to Ii if �RRRI I

1,2(Ii , Ij) > 0; otherwise, the
minimum rating rmin is assigned to Ii . Next, we subtract r̂i from
the corresponding entry in �RRRI I

1,2. For item Ik sampled for a �ller
area, its rating is assigned as the average rating of Ik on the web-
site. After calculating one fake user’s operation list, we continue to
calculate other fake users’ operation lists until reaching the attack
budget,

ÕU
i=1 |ũi |  �max .

Phase V: Injecting fake users. Finally, we inject fake users on the
websites and operate on items according to the strategy derived in
Phase IV.

6 EXPERIMENT
We implement our proposed black-box attack and conduct extensive
experiments for performance evaluation. Our main goal is twofold.
First, we evaluate the capability of our constructed surrogate model
in reproducing original recommendations. Second, we perform our
crafted availability attack and target attack solutions on a set of CF-
based recommender systems to quantify our attack performance.

6.1 Experimental Setup

6.1.1 Dataset. Our experiments are conducted on two types of
data, one is collected by us from online websites and the other is
from existing real-world datasets, described sequentially as follows.
1) Sampling Data Collection from Online Websites. We em-
ploy the Random Walk Collection method (in Section 4.1) to collect
sampling trails from three real-world websites, i.e., Airbnb, Ama-
zon, and NetEase Music, and apply the Random Injection Collection
method (in Section 4.1) to gather the data from MovieLens. The
underlying recommender algorithms of the three websites are all
unknown to us. For each sampling trail, the key item is randomly
selected. Speci�cally, in Amazon, we collect 50, 000 unique items
from the entire website (AmazonR) and another 50, 000 unique
items from Books category (AmazonB). In NetEase Music, 10, 000
unique songs are collected. For Airbnb, we collect data from three
locations in di�erent scales, i.e., Manhattan (AirbnbMA), New York
City(AirbnbNY), and United States (AirbnbU S), collecting 5, 000,
10, 000, and 50, 000 unique items, respectively. In MovieLens, 2, 000
and 5, 000 unique movies are collected, denoted respectively as
Moi�eLens2k andMoi�eLens5k . In this procedure, we strictly follow
the rules (regulated by Airbnb [1], Amazon [3], and MovieLens[61])
to gather the data. Since NetEase Music does not provide robot
rules for data crawling, we follow similar rules to select songs
in each website and record those recommended songs from the
“similar songs” section. We set a threshold of 4 requests/min, far
below servers’ limits in all four platforms. For collecting data in
MovieLens, we repeatedly rate di�erent items and collect the results
returned from the recommending area. For data privacy considera-
tion, each gathered item is directly hashed to a unique string as its
index, without exposing its name or other information.
2) Real-world Datasets. We consider several real-world datasets
widely adopted by the literature, as stated below.
• MovieLens [34] (ml-100k ,ml-1m, andml-20m).MovieLens dataset
collected users’ ratings from MovieLens website [59], containing
user ID, item ID, ratings and timestamp. Each user has rated at
least 20 movies. We randomly sample three di�erent dataset sizes:
100K ratings (ml-100k), 1M ratings (ml-1m), and 20M ratings (ml-
20m), for experiments.

• Net�ix [62] (nf). This is a Net�ix Prize Open Competition dataset
which contains movies and their rating information from users.
The dataset nf is sampled from the users, each of which has rated
at least 20 movies.

• Amazon [35] (am-b and am-d). Amazon dataset contains reviews
fromAmazon [2] spanningMay 1996 - July 2014, with each record
containing user ID, item ID, ratings and timestamp. The dataset
am-b and am-d are sampled from the categories of Books and
Digital Music, respectively, with each user rating at least 5 items
and each item having at least 5 reviews.

• Twitter [47] (tr). This dataset includes the entire follower-
following topology of Twitter [76] network, collected in 2009.
We sample the dataset tr by selecting users with more than 20
friends or followers.

• Google+ [49] (�+). �+ is sampled over the users on Google+ with
more than 20 friends or followers.

• AMiner Citation Network [4] (ac). This is a citation dataset ex-
tracted from DBLP, ACM, MAG (Microsoft Academic Graph),
and other sources by AMiner. ac is sampled over articles with at
least 5 citations.

The numbers of users and items included in each dataset are
listed in Table 10 in Appendix A.2. For each of these real-world
datasets, we collect 100, 000 sampling trails for training our surro-
gate model.

6.1.2 CF Recommender Algorithms. Each of four categories of CF
recommender algorithms takes 1 to 4 algorithms listed below for
experiments:

• (1) Item-based CF: IBCF [54];
• (2) Matrix Factorization-based CF: Singular vector decomposition
(SVD)[64], Alternating least squares (ALS)[40], and Bayesian
personalized ranking (BPR)[65];

• (3) Neural Network-based CF: Neural collaborative �ltering
(NCF)[37], Collaborative metric learning (CML)[38], Deep col-
laborative �ltering (DCF)[52], and EmbeddingDotBias model in
the fast.ai library (FAST)[25];

• (4) Graph-based CF: Knowledge graph convolution networks
(KGCN)[79].

6.1.3 Counterpart Methods. For availability attack, since there is
no existing work for comparison, we consider a baseline attack
counterpart, i.e., RandomA: an attacker randomly selects the items
to perform operations. If ratings are needed, the attacker generates
random ratings centering around the averaged rating in dataset.

For target attack, we consider the following �ve attack counter-
parts from the literature. (1) RandomT [48]: An attacker randomly
selects some �ller items along with the targeted items to perform
operations. If ratings are needed, the attacker generates the high-
est ratings for target items and random ratings for �ller items. (2)
A�era�e [48]: An attacker performs operations on the target items
and a set of �ller items sampled based on the item degrees. (3)
Bandwa�on [10]: An attacker operates on both the targeted items
and a set of popular items. (4) PGAT [51]: An attacker carefully
selects a set of items to operate upon for boosting a subset of items.
(5) SGLDT [51]: An attacker carefully selects a set of items and
mimics normal user behaviors to perform attacks. All compared
counterparts belong to the white-box attacks with full or partial
knowledge. Those requiring the least knowledge for attacking will
be presented in Section 6.3. In addition, it should be noted that
the counterparts of PGAT and SGLDT are designed speci�cally for
attacking MF-based CF with the full knowledge of underlying algo-
rithms, dataset, and item relationship information. In contrast, our
attack belongs to the black-box attack, without knowledge about
prior information.

6.1.4 Metrics and Se�ings. We de�ne a precision metric PRES@K

to measure the performance of our surrogate model in reproducing
original recommender systems’ outcomes. The metric is de�ned
as the fraction of the top-K recommended items falling into the
recommended ones of the original recommender system. That is,
PRES@K =

Õ
i
|FK (i)\LK

s (i) |
K /|M|, where |M| is the total number

of items, and F
K (i) and LK

s (i) indicate the top-K recommended
items for item i from the target recommender system and from the
surrogate model, respectively. On the other hand, we de�ne two
other metrics, precision PRE@K and hit ratio HR@K , to measure

Table 2: Performance of the surrogate model on online data

Type PRES@K (%) K

3 5 10 15 20

Type-I

AirbnbU S 85.12 83.34 81.25 78.61 65.76
AirbnbNY 86.60 92.76 93.54 93.20 88.46
AirbnbMA 95.21 97.33 97.42 97.25 96.14
AmazonR 65.30 75.46 73.81 66.53 50.21
AmazonB 72.15 78.02 80.11 77.26 75.43
NetEase Music 83.26 81.30 - - -

Type-II Moi�eLens2k 70.08 71.13 74.56 77.67 79.34
Moi�eLens5k 71.26 73.42 78.96 80.01 82.22

the performance of our availability attack and target attack, respec-
tively, when attacking the original recommender systems. Speci�-
cally, PRE@K represents the fraction of items demoted from users’
top-K recommender list, i.e., PRE@K =

Õ
i
|FK (i)�F̃K (i) |

K /|M|,
where F̃K (i) denotes the top-K recommended items after the attack.
HR@K indicates the fraction of target items promoted to user’s
top-K recommender list, i.e., HR@K =

Õ
i
|F̃K (i)\T |

K /|M|.
In our surrogate model, the vector size for item representation is

set to 128. The hyper-parameters for all the targeted recommender
systems are taken from original papers or in default settings from
the library. All experiments are implemented by one lab computer,
with AMD Ryzen 5 5600X CPU and 64 GB DRAM, equipped with
one Nvidia GeForce RTX 3080 GPU.

6.2 Performance of Surrogate Model
6.2.1 Recommendation on Online Social Data. We train our sur-
rogate model based on data collected from di�erent online web-
sites. To test its reproductive capability, we randomly select 5, 000
unique items in each dataset collected from Airbnb, Amazon, and
MoiveLens, and 2, 000 unique songs from NetEase Music. For each
selected item, we use the trained surrogate model to �nd its top-K
similar items, with K being 3, 5, 10, 15, and 20, respectively. No-
tably, NetEase Music only supports the top-5 recommendation, so
we consider its K to be 3 and 5. We compare the surrogate model’s
top-K similar items to the top-K recommendations from the original
online websites. Table 2 shows the results of PRES@K .

From this table, we can see our surrogate model performs best
on the AirbnbMA with PRES@K values always higher than 95%
under various K values. Speci�cally, when K = 5 and K = 10,
our surrogate model achieves the PRES@K of 97.33% and 97.42%.
We notice that, the surrogate model performs worse on AirbnbU S
than on AirbnbNY and AirbnbMA. The reason is that the portion
of collected items over the entire data in AirbnbU S is only 7.58%,
smaller than those in AirbnbNY and AirbnbMA, which are 20%
and 25%, respectively. Similarly, our model performs the worst on
AmazonR with the highest and lowest PRES@K values of 75.46%
and 50.21%, respectively, for K = 5 and K = 20. The reason is that
Amazon includes over 350 million items, but the number of items
included in our sampling trails takes only 0.014%. Nonetheless,
we see better performance if the surrogate model is learned on
just one category of items, AmazonB , with 82.22% of PRES@K

for K = 20. In NetEase Music , our model still achieves 83.26%
and 81.30% for K = 3 and K = 5, even though the portion of
collected items only equals 0.1%. This is because only popular
songs in NetEase Music support the similarity recommendation,

meaning that collected songs are popular and making our model
learn the item relationships easier. For sampling data collected from
MovieLens, the PRES@K are all higher than 70%. Obviously, the
surrogate model is seen to perform better on Moi�eLens5k than
on Moi�eLens2k . These results show that our surrogate model is
e�ective on learning the item relationship of original recommender
systems, without the prior knowledge of both the recommender
algorithms and data information. The model enables us to perform
e�ective attacks. It also gives us the insight that the attacker can
focus more on each small category of items in websites, to be more
practical and e�ective.

6.2.2 Recommendation on Real-world Datasets. We implement dif-
ferent recommender algorithms, i.e., IBCF , SVD, ALS , BPR, NCF ,
CML, DCF , KGCN , and FAST discussed in Section 6.1.1 on each
real-world dataset, to make item recommendations. The Random
Injection Collection method proposed in Section 4.1 is employed to
collect the sampling trails from these datasets when running di�er-
ent algorithms. Speci�cally, in each dataset under one algorithm,
we sample 100, 000 trails, each including the top-20 recommended
items (or users). Those sampled trails are used to train our surro-
gate model for recommendation. We evaluate the performance of
the surrogate model by considering the top-5 and top-10 recom-
mendations. Table 3 shows the PRES@K values of our surrogate
model on each dataset when reproducing the results of di�erent
recommender algorithms. We observe that the PRES@K values of
our surrogate model are always more than 70% in all test scenarios,
meaning it reproduces at least 70% of original recommendations.
In di�erent datasets, the surrogate model has disparate perfor-
mance in mimicking di�erent recommender algorithms. Speci�-
cally, for dataset ml-100k and �+, the surrogate model can best
reproduce BPR in the top-10 recommendation with the PRES@10
of 95.12% and 88.21%, respectively. Inml-1m,ml-20m, nf , tr , and
ac , it best mimics CML, with PRES@10 values of 93.17%, 89.26%,
87.05%, 87.65% and 82.46%, respectively. In am-b and am-d , it best
reproduces IBCF with PRES@10 values of 92.75% and 91.84%, re-
spectively. The results demonstrate that our surrogate model is
e�ective in learning the item proximities from the black-box CF
recommendations.

When comparing di�erent datasets, the surrogate model per-
forms best onml-100k for both top-5 and top-10 recommendations
with the averaged PRES@5 of 90.39% and PRES@10 of 91.59%,
respectively. It performs worse in the ac dataset, able to recover
75.79% top-5 recommender results and 76.98% top-10 recommen-
dations in average. The performance discrepancy is caused by the
number of items in the dataset. For example, there are 1682 items in
ml-100k while 4, 107, 340 nodes are in ac . Our collected sample trails
fromml-100k include almost all items, but from ac , they include
only a small portion of items. When examining four movie datasets
(i.e.,ml-100k ,ml-1m,ml-20m, and nf), the averaged PRES@10 are
91.59%, 90.29%, 85.14%, and 81.34%, respectively. We also explore
the impacts of various parameters (i.e., the numbers of items and
sampling trails), which are deferred to Appendix A.3.

6.3 Attack Performance
We evaluate our attack performance corresponding to di�erent
CF recommender algorithms. For ethical consideration, we use

merely the real-world datasets to perform the attack under those
algorithms. When generating the surrogate model and performing
attack, our solutions are in the black-box setting. However, all
compared methods perform white-box attacks with full or partial
knowledge of recommender algorithms and dataset information.
Details about the knowledge requirement of each attack are given
in Table 4. Three knowledge requirements are shown: 1) Item,
which includes item information and item statistics (e.g., average
rating and popularity), 2) Relationship, which denotes the item-
item relationships in the historical dataset, and 3) Al�orithm which
is the speci�c algorithm used by the targeted recommender system.
Notably, RandomT , A�era�e , and Bandwa�on require to have item
information while PGAT and SGLDT require full attack knowledge.
In contrast, both our proposed availability and target attacks require
none of such knowledge, applicable to various categories of CF
algorithms.

For each category of CF algorithms, both the results of availabil-
ity and target attacks are examined. We de�ne the attack ratio (f r)
as the fraction of the injected fake user count over the total number
of users in dataset.

A�ack Performance on Item-based CF (IBCF). Table 5 shows
the averaged PRE@10 values of our availability attack and baseline
attack RandomA on IBCF with 4 examined datasets (ml-100k , am-b,
tr , and ac), when the attack ratio f r increases from 0.1% to 5%. We
observe the PRE@10 values of our availability attack are always
much higher than those from RandomA with the same f r in the
same dataset. When f r = 0.1%, the PRE@10 results of RandomA
are only in the range of 1.07% and 1.76% across all datasets, but
our attack achieves results in the range of 5.05% to 9.34%. When
f r increases from 0.1% to 5%, the PRE@10 values of our availabil-
ity attack rise much faster than those of RandomA. Speci�cally,
PRE@10 values of our attack in ac dataset increase from 5.05%
to 80.16%. Among the four datasets, RandomA performs the best
for am-b, under which its PRE@10 values rise only from 1.23% to
15.33%. Our attack performs the worst for tr dataset, but under
which its PRE@10 values grow from 6.28% to 50.71%. Our attack
always well outperforms its RandomA counterpart under any given
dataset. Note that, for f r = 5% onml-100k , only 48 fake users are
required for PRE@10 value to reach 44.28%. The running times of
our attack are 43.1s, 1253.6s, 1074.3s, and 652.4s, respectively, for
attackingml-100k , am-b, tr , and ac datasets.

Table 6 shows theHR@10 results of our target attack (Re�erseT)
and RandomT , on IBCF , underml-20m, am-b, and �+ datasets. For
f r = 0.1%, our target attack achieves the HR@10 of 4.38%, 6.22%,
and 5.33% on three datasets, respectively, compared favorably to
those of all other attacks which always yield no more than 2%.
The HR@10 values of our target attack increase much faster than
those of all other attackers, when f r increases from 0.1% to 5%.
Speci�cally, for f r = 5%, the HR@10 values of our target attack on
three datasets increase to 38.53%, 39.81%, and 46.04%, respectively.
However, for RandomT , its HR@10 values under three datasets
increase only to 8.77%, 3.51%, and 3.14%, respectively.

A�ack Performance on Matrix Factorization-based CF (SVD,
ALS , and BPR). Due to the space limitation, we show our results
for only two datasets, i.e.,ml-100k and am-d . Figures 5(a) and 5(b)

Table 3: Performance (PRES@K) of the surrogate model on real-world datasets
PRES@K IBCF SVD ALS BPR NCF CML DCF KGCN FAST

K 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10

ml-100k 94.31 94.67 92.56 93.55 92.11 92.70 93.63 95.12 91.07 90.62 90.25 93.76 82.19 85.76 88.14 88.40 89.26 89.77
ml-1m 91.07 92.56 90.42 91.57 90.29 93.08 90.35 91.77 90.55 91.24 90.03 93.17 81.37 82.18 86.72 87.91 88.42 89.15
ml-20m 84.25 87.64 85.20 86.04 85.46 87.28 82.46 83.31 85.29 85.59 87.45 89.26 82.38 82.67 80.04 80.27 83.79 84.21
nf 82.06 85.70 75.97 74.20 78.22 81.60 83.20 80.72 82.01 81.34 85.60 87.05 71.52 71.08 81.35 84.65 84.26 85.63
am-b 90.04 92.75 85.30 86.06 86.01 83.39 85.55 87.64 83.71 85.54 88.32 89.49 74.32 75.79 80.01 82.35 81.19 82.20
am-d 91.22 91.84 80.14 85.06 86.37 86.88 86.78 88.42 86.28 88.36 86.25 87.56 81.25 83.34 78.45 79.23 81.27 83.15
tr 82.69 85.31 80.25 87.34 82.07 83.18 83.05 84.29 82.65 82.99 85.34 87.65 76.25 79.57 77.65 78.27 77.12 81.21
�+ 87.02 85.47 82.05 84.26 78.45 78.61 85.34 88.21 87.12 88.65 87.73 88.43 73.93 74.66 82.35 83.33 82.22 85.39
ac 78.15 79.50 73.66 77.99 75.19 74.82 78.20 78.41 75.13 77.49 81.78 82.46 70.27 70.35 74.61 75.82 75.16 76.02

Table 4: Comparisons of knowledge requirements among
di�erent attack methods

Attack methods Knowledge requirements
Item Relationship Al�orithm

Availability attack RandomA
p ⇥ ⇥

Re�erseA ⇥ ⇥ ⇥

Target attack

RandomT
p ⇥ ⇥

A�era�e
p ⇥ ⇥

Bandwa�on
p ⇥ ⇥

PGAT
p p p

SGLDT
p p p

Re�erseT ⇥ ⇥ ⇥
Table 5: PRE@10 results of our availability attack Re�erseA
and its counterpartRandomA on the Item-basedCF (i.e., IBCF)

PRE@10(%) Attack Ratio (%)
0.1 0.3 0.5 1.0 3.0 5.0

RandomA

ml-100k 1.07 2.21 3.56 7.25 9.52 11.07
am-b 1.23 3.56 6.79 11.80 12.31 15.33
tr 1.76 2.39 2.54 3.28 4.21 8.64
ac 1.58 3.96 5.35 6.74 8.56 13.14

Re�erseA

ml-100k 5.83 7.74 9.31 13.75 22.16 44.28
am-b 9.34 14.33 20.01 25.65 36.81 63.04
tr 6.28 7.52 9.49 15.35 24.06 50.71
ac 5.05 8.94 12.25 25.80 51.36 80.16

Table 6: HR@10 results of our target attack and baseline at-
tacks on IBCF over three datasets

HR@10(%) Attack Ratio (%)
0.1 0.3 0.5 1.0 3.0 5.0

RandomT

ml-20m 1.26 1.87 1.95 2.33 6.45 8.77
am-b 1.55 1.76 1.92 2.05 2.44 3.51
�+ 1.58 1.96 2.35 2.74 2.56 3.14

Re�erseT

ml-20m 4.38 5.89 7.03 11.72 21.07 38.52
am-b 6.22 8.72 9.21 12.08 16.35 39.81
�+ 5.35 6.55 7.87 14.25 27.26 46.04

show the PRE@10 of our availability attack and RandomA for top-
10 recommendations onml-100k and am-d , where SVD, ALS , and
BPR indicate the results of RandomA attack while SVDA, ALSA,
and BPRA indicate our availability attack results respectively under
the SVD, ALS , and BPR algorithms. The numerical values corre-
sponding to the �gures are also listed in Appendix A.4. We observe
that our availability attacks on three algorithms greatly outper-
form RandomA under both datasets. Speci�cally, underml-100k (or
am-d), the PRE@10 values of our availability attacks on SVD, ALS ,
and BPR reach 24.34%, 29.33%, 33.26% (or 45.82%, 53.14%, 57.74%),
respectively, when f r increases to 5%. In addition, our availability
attack performs better even with only 2% fake users injected than
RandomA attack with 5% fakes users injected.

0 2 4
Attack ratio (%)

0

10

20

30

P
R

E
@

10
(%

)

ALS
SV D
BPR

ALSA
SV DA
BPRA

(a)ml -100k

0 2 4
Attack ratio (%)

0

10

20

30

40

50

P
R

E
@

10
(%

)

ALS
SV D
BPR

ALSA
SV DA
BPRA

(b) am-d

Figure 5: Availability attack on MF-based recommender sys-
tem withml-100k and am-d datasets.

We next examine our target attack on SVD, ALS , and BPR, com-
paring its results with those of RandomT , A�era�e , Bandwa�on,
PGAT , and SGLDT attack methods. Our experiments are still con-
ducted under theml-100k and am-d datasets for evaluation. Table 7
lists the HR@10 results of our target attack and of the other �ve
attack methods under SVD, ALS , and BPR algorithms, when f r

increases from 0.1% to 5%. According to those table columns, our
attack is seen to perform far better than RandomT , A�era�e , and
Bandwa�on, for both datasets. It performs a little bit inferior to
PGAT and SGLDT for both datasets, but notably PGAT and SGLDT
are of white-box attacks, requiring full knowledge on underlying
recommendation algorithms, dataset, and item relationships infor-
mation as exhibited in Table 4, deemed impractical for real-world
attacks. Also, PGAT and SGLDT are limited to only attacking the
Matrix Factorization-based CF algorithm. In contrast, our attack
belongs to the black-box ones, applicable to various categories of
CF algorithms.

A�ack Performance on NN-based CF (i.e., NCF , CML, DCF ,
and FAST). Figures 6(a) and 6(b) depict the results of our avail-
ability attack and RandomA for NCF , CML, DCF , and FAST under
ml-1m and am-b, where NCF , CML, DCF , and FAST indicate the
results of RandomA whereas NCFT ,CMLT , DCFT , and FASTT rep-
resent the results of our availability attack. The numerical values
corresponding to the two �gures are also listed in Appendix A.5.
We can see that our availability attacks always beat RandomA under
both datasets. Speci�cally, inml-1m, our method achieves the best
result (i.e., NCFA) when attacking the NCF algorithm, with the
maximum PRE@10 value of 39.01%. Here, the required fake users
amount is only 302, giving rise to the total number of users to be
6040 as shown in Table 10 in Appendix A.2. In am-d , the best result
is achieved by CMLA when attacking the CML algorithm, with the

Table 7: Comparison of our target attack Re�erseT and other target attack methods on MF-based CF Algorithms

HR@10(%)
ALS SVD BPR

Attack Ratio (%) Attack Ratio (%) Attack Ratio (%)
0.1 0.5 1.0 3.0 5.0 0.1 0.5 1.0 3.0 5.0 0.1 0.5 1.0 3.0 5.0

ml-100k

RandomT 0.85 0.91 0.94 1.61 3.85 0.91 0.92 0.96 1.64 3.88 0.93 0.94 0.97 1.70 3.94
A�era�e 0.94 1.11 1.33 2.21 5.30 0.93 1.08 1.28 2.08 4.87 0.94 1.17 1.41 2.13 5.40
Bandwa�on 0.96 1.27 1.52 2.67 12.42 0.99 1.22 1.38 2.52 11.04 1.08 1.32 1.48 2.76 13.83
PGAT 1.51 3.57 4.82 10.62 30.58 1.10 2.76 3.35 9.11 27.55 1.22 3.89 6.01 17.03 36.54
SGLDT 1.55 3.76 5.03 10.85 31.22 1.78 2.86 4.01 10.53 26.67 1.15 3.71 5.86 15.39 35.21
Re�erseT 1.24 2.01 2.62 8.77 25.42 1.32 2.64 3.40 9.04 25.80 1.82 2.94 4.53 13.65 29.76

am-d

RandomT 0.55 0.79 0.94 2.04 8.65 0.53 0.79 0.88 1.98 8.63 0.57 0.76 0.94 2.10 8.67
A�era�e 0.58 0.84 1.01 2.15 11.35 0.49 0.77 0.89 2.03 11.26 0.64 0.85 1.13 2.24 11.53
Bandwa�on 0.83 0.92 1.25 5.66 20.01 0.79 0.87 1.11 5.32 19.94 0.81 1.00 1.30 5.97 20.29
PGAT 1.98 3.71 7.61 21.29 46.35 2.55 5.51 9.06 25.80 46.62 1.99 4.33 8.41 15.05 45.20
SGLDT 2.13 3.54 7.74 22.36 47.83 3.08 5.78 10.08 26.01 49.62 1.87 5.22 8.67 16.37 47.28
Re�erseT 1.65 2.93 4.30 16.87 35.85 2.04 3.89 5.17 21.65 43.28 1.75 2.70 3.97 13.62 44.60

0 2 4
Attack ratio (%)

0

10

20

30

P
R

E
@

10
(%

)

NCF
CML
DCF
FAST
NCFA
CMLA
DCFA
FASTA

(a)ml -1m

0 2 4
Attack ratio (%)

0

20

40

60

P
R

E
@

10
(%

)

NCF
CML
DCF
FAST
NCFA
CMLA
DCFA
FASTA

(b) am-b

Figure 6: Comparison between our availability attack and
RandomA under NN-based CF recommender algorithms with
ml-1m and am-b datasets.

maximum PRE@10 value of 66.72%. Our method performs worse
on FAST for both datasets, but its PRE@10 values still reach 23.04%
and 42.18%, respectively, for the attack ratio f r = 5%. On the other
hand, RandomA achieves the best attack performance (i.e., NCF)
under both datasets when attacking the NCF algorithm among all.
But its PRE@10 values are still far less than those of our attack on
all four algorithms.

Figures 7(a) and 7(b) show the results of target attack under
NCF , CML, DCF , and FAST inml-1m and am-b, respectively. The
respective numerical values can be found in Appendix A.6. All
HR@10 values of RandomT ,A�era�e , and Bandwa�on on attacking
NCF ,CML,DCF , and FAST algorithms fall into the red shaded area.
Clearly, our target attack beats all three other attacks under both
datasets. Our method achieves the best results (i.e., CMLT) when
attacking theCML algorithm, with the maximum HR@10 values of
31.26% and 53.08%, respectively, for the attack ratio f r = 5%. Our
target attack performs the worst on FAST under both datasets, but
it still has the HR@10 values of 18.64% and 36.62%, respectively.
Other baseline target attacks yeild the best HR@10 values under
two datasets equal to only 10.54% and 11.37%, respectively, even
upon injecting 5% fake users.
A�ack Performance on Graph-based CF (i.e., KGCN). We next
perform our availability attack and target attack under the KGCN
with theml-100k ,am-d , and tr datasets.We compare our availability
attack to RandomA and compare our target attack to RandomT , over
three datasets. Table 8 lists the attack results with various attack
ratios, ranging from 0.1% to 5%. Our availability and target attacks
both are seen to signi�cantly outperform other methods, across

0 2 4
Attack ratio (%)

0

10

20

H
R

@
10

(%
)

NCFT

CMLT

DCFT

FASTT

Baseline

(a)ml -1m

0 2 4
Attack ratio (%)

0

10

20

30

40

50

H
R

@
10

(%
)

NCFT

CMLT

DCFT

FASTT

Baseline

(b) am-b

Figure 7: Target attack on neural network-based recom-
mender system underml-1m and am-b datasets.
Table 8: The results of our availability attack, target attack,
RandomA, and RandomT under graph-based CF, i.e., KGCN

PRE@10(%) Attack Ratio (%)
0.1 0.3 0.5 1.0 3.0 5.0

RandomA

ml-100k 1.57 2.30 2.51 3.74 5.05 7.64
am-d 1.67 2.80 4.55 7.25 11.36 15.27
tr 1.18 1.94 2.07 3.82 4.72 9.26

Re�erseA

ml-100k 3.40 5.89 7.69 12.54 18.53 25.87
am-d 5.30 7.26 10.33 17.56 42.08 56.36
tr 5.36 7.10 10.25 18.50 36.11 49.04

HT@10(%) Attack Ratio (%)
0.1 0.3 0.5 1.0 3.0 5.0

RandomT

ml-100k 0.66 0.74 1.25 1.34 2.08 5.77
am-d 0.82 1.01 1.89 2.42 5.30 8.05
tr 0.93 1.00 1.54 1.97 3.22 5.49

Re�erseT

ml-100k 1.04 3.97 6.72 11.74 17.62 22.78
am-d 1.27 5.36 10.02 16.30 30.11 38.42
tr 1.10 3.29 7.82 11.23 15.39 30.60

all datasets. Speci�cally, with am-d under availability attack, our
method achieves PRE@10 of 5.30%, 7.26%, 10.33%, 17.56%, 42.08%,
and 56.36% when r increases from 0.1% to 0.3%, 0.5%, 1%, 3% and
5%, while RandomA only has the PRE@10 of 1.67%, 2.80%, 4.55%,
7.25%, 11.36% and 15.27%. For target attack, our attack yields the
best HT@10 of 38.42% while RandomT only has HT@10 of 8.05%.

6.4 Practicality of Our Attacks
The experimental results in Section 6.3 have exhibited the advantage
of both proposed availability and target attacks over the compared
counterparts on various dataset sizes. In the real-world scenario,
it is impractical and rare to attack the entire websites or a large
category with many users; instead, an attacker may more likely be

20 40 60 80 100
of fake users

20

40

P
R

E
@

10
(%

)

Crime/Documentary

Blues

(a) Availability attack

20 40 60 80 100
of fake users

10

20

30

40

H
R

@
10

(%
)

Crime/Documentary

Blues

(b) Target attack

Figure 8: Availability attack and target attack on NCF for
‘Crime/Documentary’ and ‘Blues’ subcategories.

interested in a speci�c subcategory. Hence, we next conduct ex-
periments to show our attack performance on some subcategories,
for validating the practicality of our solutions. We extract two sub-
categories ‘Crime/Documentary’ and ‘Blues’ from theml-20m and
am-d dataset, respectively. The former subcategory includes 40
items and 858 users whereas the latter one has 3205 items and 6772
users. The recommender system NCF is employed as the underlying
algorithm to train the original dataset, i.e.,ml-20m, and am-d , for
recommendation. For each subcategory, we take 100, 000 sampling
trails, and use the collected data for training our surrogate model
and for generating our availability and target attack strategies. The
crafted fake users and their operations from our solution will be
injected into the original dataset for distorting the recommendation
results of the subcategory. Figure 8(a) shows the PRE@10 values
of our availability attack under the two subcategories. From this
�gure, we observe that attack performance rises with an increase
in the fake user amounts. Speci�cally, when adding 100 fake users,
our attack can achieve the PRE@10 values of 50.75% and 58.87%,
respectively, on ‘Crime/Documentary’ and ‘Blues’ subcategories.
Figure 8(b) shows theHR@10 of our target attack on the two subcat-
egories. It is seen that when adding 100 fake users, our target attack
achieves the HR@10 values of 39.65%, and 42.89%, respectively. We
also observe that although the ‘Blues’ subcategory includes more
users and items, our attack performance is better under it than
under the ‘Crime/Documentary’ subcategory. The reason is that,
the items in am-d have less ratings (i.e., 3.14 rating in average) than
those in ml-20m (i.e., 748 ratings in average), thereby making it
easier for the item relationships to be distorted.

To further validate the practicality, we explore 21, 967 subcat-
egories de�ned by eBay[21] and then browse each subcategory
name from two largest E-commerce websites (eBay and Amazon),
to see the size of each category. We found that, in eBay, 19.39% of
the subcategories contain less than 1000 items and 41.98% of the
subcategories contain less than 10, 000 items. In Amazon, 26.91% of
subcategories contains less than 1000 items and 76.51% of the sub-
categories contain less than 10, 000 items. The detailed distribution
of all subcategory sizes are shown in Figure 11 of Appendix A.8.
Such results evidence subcategories commonly have limited num-
bers of items in real-world websites.

We further evaluate our attack performance upon the compli-
cated recommender systemsthe and the dynamic recommender
systems, with results deferred to Appendix A.9 and Appendix A.10,
respectively, due to the page limit.

7 DISCUSSION
Our work presents a novel black-box attack solution to the social
websites that employ the CF-based recommender systems, with
higher practicality and e�ectiveness. This section gives some dis-
cussions on our work below.

First, the social websites possess large numbers users and items,
so it is unrealistic and uncommon to target the entire websites or a
large category with many users, for achieving the attack purpose.
Instead, an attacker may more likely be interested in the speci�c
subcategories to attack. For performing an e�ective real-world
attack, one can let each attack target a subcategory/group of items
(with fewer items as what pervasively exists in social websites
detailed in Section 6.4) and then launch multiple parallel attacks to
di�erent subcategories simultaneously. This way of attack is more
practical and e�ective.

Second, our data sampling collection strictly follows the social
websites’ rate limitation, never triggering their incorporated abnor-
mal behavior detection mechanisms. The ‘robots.txt’ �le stipulates
the crawler’s behaviors, which can only acquire resources that are
publicly available from the social websites. Our experiments in Sec-
tion 6 never trigger any blocking by the social websites. On the other
hand, our real attacks are only performed on the local dataset for
testing, rather than the actual websites themselves, avoiding from
causing spam/malicious behaviors to the real-world. In practice, an
attacker my leverage clusters to boost the number of requests to a
speci�c website.

Third, this work aims to demonstrates the plausibility of our
black-box attack on a collection of CF-based recommender systems.
De�nitely, some recommender systems may incorporate certain
features extracted from users/items to enhance their recommen-
dation outcomes. Given that the nature of our solution is to �rst
learn the item proximities via a surrogate model, able to capture the
complicated patterns from the recommender systems, our proposed
attack shall still work on those systems. The strong reproductive ca-
pability of our surrogate model on the online social data presented
in Section 6.2 has validated that our surrogate model is powerful
enough to learn the item proximity regardless of the underlying
algorithms. Our experimental results in Section A.9 on attacking
the recommender system with features incorporated have validated
this point. More exploration is left in our future work.

8 CONCLUSION
This paper has developed a novel black-box poisoning attack to the
CF recommender systems embedded in social websites. Without
prior knowledge about the recommender algorithm or historical
data information, we collected data from social websites and learned
their implicit patterns for training a surrogate model, which can
reproduce the recommendation functionality of the original rec-
ommender system. We then crafted solutions for surrogate model
attack before applying them to attack the original recommender sys-
tems for similar goals. Extensive experimental results have demon-
strated that our proposed solutions are more e�ective in all four
categories of CF recommender algorithms than their counterparts.

ACKNOWLEDGEMENT
This work was supported in part by NSF under Grants 1763620,
1948374, and 2019511. Any opinion and �ndings expressed in the
paper are those of the authors and do not necessarily re�ect the
view of funding agency.

REFERENCES
[1] A�����. robots.txt. https://www.airbnb.com/robots.txt, 2021.
[2] A�����. Amazon.com. https://www.amazon.com/, 2020.
[3] A�����. robots.txt. https://www.amazon.com/robots.txt, 2021.
[4] A�����. Aminer.org. https://aminer.org/citation/, 2020.
[5] A�����G����, F., D������, B., B������, A., M�����������, M., ��� G�����, A.

Global citation recommendation using knowledge graphs. Journal of Intelligent
& Fuzzy Systems 34, 5 (2018), 3089–3100.

[6] B�����, O., ��� K����������, N. Item2vec: neural item embedding for collab-
orative �ltering. In Proceedings of the 26th International Workshop on Machine
Learning for Signal Processing (MLSP) (2016), pp. 1–6.

[7] B�����, L. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of the International Conference on Computational Statistics (COMPSTAT)
(2010), pp. 177–186.

[8] B�����, J. S., H��������, D., ��� K����, C. Empirical analysis of predictive
algorithms for collaborative �ltering. In Proceedings of the 14th Conference on
Uncertainty in Arti�cial Intelligence (1998), pp. 43–52.

[9] B����, R., M�������, B., ��� B������, R. Limited knowledge shilling attacks
in collaborative �ltering systems. In Proceedings of 3rd International Workshop
on Intelligent Techniques for Web Personalization (ITWP), 19th International Joint
Conference on Arti�cial Intelligence (IJCAI) (2005), pp. 17–24.

[10] B����, R., M�������, B., Z������, R., ��� B������, R. Identifying attack models
for secure recommendation. Beyond Personalization (2005).

[11] C����, J. Collaborative �ltering with privacy via factor analysis. In Proceedings of
the 25th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (2002), pp. 238–245.

[12] C���, D.�K., K���, J.�S., K��, S.�W., ��� L��, J.�T. Cfgan: A generic collaborative
�ltering framework based on generative adversarial networks. In Proceedings of
the 27th ACM International Conference on Information and Knowledge Management
(2018), pp. 137–146.

[13] C���, H., L�, X., ��� H����, Z. Link prediction approach to collaborative
�ltering. In Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL’05) (2005), pp. 141–142.

[14] C��������������, K., ��� B�������, A. Adversarial recommendation: Attack
of the learned fake users.

[15] C��������������, K., ��� B�������, A. Adversarial attacks on an oblivious
recommender. In Proceedings of the 13th ACMConference on Recommender Systems
(2019), pp. 322–330.

[16] C��������, P., A����, J., ��� S�����, E. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems (2016), pp. 191–198.

[17] D�������, J., L������, B., L��, J., N����, P., V�� V����, T., G����, U., G����, S.,
H�, Y., L������, M., L���������, B., �� ��. The youtube video recommendation
system. In Proceedings of the 4th ACM Conference on Recommender Systems (2010),
pp. 293–296.

[18] D����, J. V., K����, B., J���, P., S��, S., ��� D������, I. S. Information-theoretic
metric learning. In Proceedings of the 24th International Conference on Machine
Learning (2007), pp. 209–216.

[19] D���������, C. Immunizing online reputation reporting systems against unfair
ratings and discriminatory behavior. In Proceedings of the 2nd ACM Conference
on Electronic Commerce (2000), pp. 150–157.

[20] D� N���, T., M��������, D., ���M����, F. A. Taamr: Targeted adversarial attack
against multimedia recommender systems. In Proceedings of the 50th Annual
IEEE/IFIP International Conference on Dependable Systems and NetworksWorkshops
(DSN-DSML’20) (2020).

[21] �B��. US new category structure. https://ir.ebaystatic.com/pictures/aw/
pics/catchanges/2021/May/NTF-update/US_New_Structure_(May2021)_NFT-
update.csv, 2021.

[22] F��, W., D���, T., Z���, X., M�, Y., L��, H., W���, J., T���, J., ��� L�, Q.
Attacking black-box recommendations via copying cross-domain user pro�les.

[23] F���, M., G���, N. Z., ��� L��, J. In�uence function based data poisoning
attacks to top-n recommender systems. In Proceedings of The Web Conference
(2020), pp. 3019–3025.

[24] F���, M., Y���, G., G���, N. Z., ��� L��, J. Poisoning attacks to graph-based
recommender systems. In Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC) (2018), pp. 381–392.

[25] ����.��. collab. https://docs.fast.ai/collab.html, 2020.
[26] F����, F., P������, A., R������, J.�M., ��� S������, M. Random-walk computa-

tion of similarities between nodes of a graph with application to collaborative

recommendation. IEEE Transactions on Knowledge and Data Engineering 19, 3
(2007), 355–369.

[27] G���������, I., P������A�����, J., M����, M., X�, B., W�����F�����, D., O����,
S., C��������, A., ��� B�����, Y. Generative adversarial nets. In Proceedings of
the Advances in Neural Information Processing Systems (2014), pp. 2672–2680.

[28] G���������, I. J., S�����, J., ��� S������, C. Explaining and harnessing
adversarial examples.

[29] G������, M., ��� C����, H. Real-time personalization using embeddings for
search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (2018), pp. 311–320.

[30] G����������M������, A., ��� R�����, L. Personal price aware multi-seller
recommender system: Evidence from ebay. Knowledge-Based Systems 150 (2018),
14–26.

[31] G����, I., B����, A., ��� P����, H. Shilling attacks against memory-based
privacy-preserving recommendation algorithms. KSII Transactions on Internet &
Information Systems 7, 5 (2013).

[32] G����, I., K�����, C., B����, A., ��� P����, H. Shilling attacks against recom-
mender systems: A comprehensive survey. Arti�cial Intelligence Review 42, 4
(2014), 767–799.

[33] H�������, L. The history of amazon’s recommendation algorithm. https://www.
amazon.science/the-history-of-amazons\-recommendation-algorithm, 2020.

[34] H�����, F. M., ��� K������, J. A. The movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems (TIIS) 5, 4 (2016), 19.

[35] H�, R., ��� M�A����, J. Ups and downs: Modeling the visual evolution of
fashion trends with one-class collaborative �ltering. In Proceedings of the 25th
International Conference on World Wide Web (WWW) (2016), pp. 507–517.

[36] H�, X., H�, Z., D�, X., ��� C���, T.�S. Adversarial personalized ranking for
recommendation. In Proceedings of the 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval (2018), pp. 355–364.

[37] H�, X., L���, L., Z����, H., N��, L., H�, X., ��� C���, T.�S. Neural collaborative
�ltering. In Proceedings of the 26th International Conference on World Wide Web
(WWW) (2017), pp. 173–182.

[38] H����, C.�K., Y���, L., C��, Y., L��, T.�Y., B�������, S., ��� E�����, D. Collab-
orative metric learning. In Proceedings of the 26th International Conference on
World Wide Web (WWW) (2017), pp. 193–201.

[39] H�, R., G��, Y., P��, M., ��� G���, Y. Targeted poisoning attacks on social rec-
ommender systems. In Proceedings of the IEEE Global Communications Conference
(GLOBECOM) (2019), pp. 1–6.

[40] H�, Y., K����, Y., ��� V�������, C. Collaborative �ltering for implicit feedback
datasets. In Proceedings of the 8th IEEE International Conference on Data Mining
(2008), pp. 263–272.

[41] H����, H., M�, J., G���, N. Z., L�, Q., L��, B., ��� X�, M. Data poisoning attacks
to deep learning based recommender systems. In Proceedings of the Annual
Network & Distributed System Security Symposium (NDSS) (2021).

[42] H����, T., Z���, H., ��� Z���, K. Food recommender system on amazon. San
Diego: University of California San Diego (2017).

[43] I�����, B. How airbnb uses machine learning to detect host prefer-
ences. https://medium.com/airbnb-engineering/how-airbnb-uses\-machine-
learning-to-detect-host-\preferences-18ce07150fa3, 2020.

[44] K����, Y., B���, R., ��� V�������, C. Matrix factorization techniques for recom-
mender systems. IEEE Computer, 8 (2009), 30–37.

[45] K����, Y., B���, R., ��� V�������, C. Matrix factorization techniques for recom-
mender systems. Computer, 8 (2009), 30–37.

[46] K������, A., G���������, I., ��� B�����, S. Adversarial examples in the
physical world.

[47] K���, H., L��, C., P���, H., ��� M���, S. What is twitter, a social network or a
news media? In Proceedings of the 19th International Conference on World Wide
Web (WWW) (2010), pp. 591–600.

[48] L��, S. K., ��� R����, J. Shilling recommender systems for fun and pro�t. In
Proceedings of the 13th International Conference on World Wide Web (WWW)
(2004), pp. 393–402.

[49] L�������, J., ���M������, J. J. Learning to discover social circles in ego net-
works. In Proceedings of the Annual Conference on Advances in Neural Information
Processing Systems (NIPS) (2012), pp. 539–547.

[50] L���, O., ��� G�������, Y. Neural word embedding as implicit matrix factor-
ization. Proceedings of the Annual Conference on Advances in Neural Information
Processing Systems 27 (2014), 2177–2185.

[51] L�, B., W���, Y., S����, A., ��� V����������, Y. Data poisoning attacks on
factorization-based collaborative �ltering. In Proceedings of the Advances in
Neural Information Processing Systems (NIPS) (2016), pp. 1885–1893.

[52] L�, S., K�����, J., ��� F�, Y. Deep collaborative �ltering via marginalized de-
noising auto-encoder. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management (CIKM) (2015), pp. 811–820.

[53] L��, C., C���, S., L�, H., X���, Y., L�, L., ��� Y���, Q. Attacking recommender
systems with augmented user pro�les.

[54] L�����, G., S����, B., ��� Y���, J. Amazon.com recommendations: Item-to-item
collaborative �ltering. IEEE Internet Computing, 1 (2003), 76–80.

[55] L��, D., ��� J����, W. Personalized app recommendation based on hierarchical

https://www.airbnb.com/robots.txt
https://www.amazon.com/
https://www.amazon.com/robots.txt
https://aminer.org/citation/
https://ir.ebaystatic.com/pictures/aw/pics/catchanges/2021/May/NTF-update/US_New_Structure_(May2021)_NFT-update.csv
https://ir.ebaystatic.com/pictures/aw/pics/catchanges/2021/May/NTF-update/US_New_Structure_(May2021)_NFT-update.csv
https://ir.ebaystatic.com/pictures/aw/pics/catchanges/2021/May/NTF-update/US_New_Structure_(May2021)_NFT-update.csv
https://docs.fast.ai/collab.html

embedding. In Proceedings of the IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computing, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (2018), pp. 1323–1328.

[56] M�, T., Z���, J., T���, M., T���, Y., A��D������, A., A��R������, M., ��� L��,
S. Social network and tag sources based augmenting collaborative recommender
system. IEICE Transactions on Information and Systems 98, 4 (2015), 902–910.

[57] M�������, B., B����, R., B������, R., ��� S������, J. J. Attacks and remedies
in collaborative recommendation. IEEE Intelligent Systems 22, 3 (2007), 56–63.

[58] M�������, B., B����, R., B������, R., ��� W�������, C. E�ective attack
models for shilling item-based collaborative �ltering systems. In Proceedings of
the WebKDD Workshop (2005), pp. 13–23.

[59] M��������. Movielens. https://movielens.org/, 2019.
[60] M��������. Movielens datasets. https://grouplens.org/datasets/movielens/, 2019.
[61] M����L���. robots.txt. https://movielens.org/robots.txt, 2021.
[62] N������.���. Net�ix. https://www.kaggle.com/net�ix-inc/net�ix-prize-data/,

2019.
[63] O’M�����, M., H�����, N., K���������, N., ��� S��������, G. Collaborative

recommendation: A robustness analysis. ACM Transactions on Internet Technology
(TOIT) 4, 4 (2004), 344–377.

[64] P������, A. Improving regularized singular value decomposition for collab-
orative �ltering. In Proceedings of KDD Cup and Workshop (2007), vol. 2007,
pp. 5–8.

[65] R�����, S., F������������, C., G������, Z., ��� S�������T�����, L.
Bpr: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[66] R����������, R. T. Lagrange multipliers and optimality. SIAM Review 35, 2
(1993), 183–238.

[67] R�����S����, J., G������, J. A., G������G��������, J., ��� B��������, D. Resdec:
online management tool for implementation components selection in software
product lines using recommender systems. In Proceedings of the 23rd International
Systems and Software Product Line Conference-Volume B (2019), p. 63.

[68] S�����, B., K������, G., K������, J., ��� R����, J. Item-based collaborative
�ltering recommendation algorithms. In Proceedings of the 10th International
Conference on World Wide Web (WWW) (2001), pp. 285–295.

[69] S�������, R., S�������, T., M���, Y., ��� S��������, V. Humpty dumpty:
Controlling word meanings via corpus poisoning. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P) (2020), pp. 1295–1313.

[70] S��������, C. E., ���W�����, D. C. Attacking item-based recommender systems
with power items. In Proceedings of the 8th ACM Conference on Recommender
Systems (2014), pp. 57–64.

[71] S����, B., ��� L�����, G. Two decades of recommender systems at amazon.com.
IEEE Internet Computing 21, 3 (2017), 12–18.

[72] S���, J., L�, Z., H�, Z., W�, Y., L�, Z., L�, J., ��� G��, J. Poisonrec: An adaptive
data poisoning framework for attacking black-box recommender systems. In
Proceedings of the IEEE 36th International Conference on Data Engineering (ICDE)
(2020), pp. 157–168.

[73] S��, Z., H��, L., H����, W., W���, X., Z���, X., W���, M., ��� Y��, H. Rec-
ommender systems based on social networks. Journal of Systems and Software 99
(2015), 109–119.

[74] S�����. China’s ai-powered netease is music to your ears, 2020.
[75] T���, J., D�, X., H�, X., Y���, F., T���, Q., ��� C���, T.�S. Adversarial training

towards robust multimedia recommender system. IEEE Transactions on Knowledge
and Data Engineering (2019).

[76] T������. Twitter.com. https://twitter.com/, 2020.
[77] W���, C., L��, Q., W�, R., C���, E., L��, C., H����, X., ��� H����, Z.

Con�dence-aware matrix factorization for recommender systems. In Proceedings
of the 32nd AAAI Conference on Arti�cial Intelligence (2018).

[78] W���, H., W���, N., ��� Y����, D.�Y. Collaborative deep learning for recom-
mender systems. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2015), pp. 1235–1244.

[79] W���, H., Z���, M., X��, X., L�, W., ���G��, M. Knowledge graph convolutional
networks for recommender systems. In Proceedings of the 28th International
Conference on World Wide Web (WWW) (2019), pp. 3307–3313.

[80] W���, J., Y�, L., Z����, W., G���, Y., X�, Y., W���, B., Z����, P., ��� Z����, D.
Irgan: A minimax game for unifying generative and discriminative information
retrieval models. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval (2017), pp. 515–524.

[81] W�����, J., B�����, S., ��� U������, N. Large scale image annotation: learning
to rank with joint word-image embeddings. Machine Learning 81, 1 (2010), 21–35.

[82] W�����, D. C., ��� S��������, C. E. When power users attack: assessing impacts
in collaborative recommender systems. In Proceedings of the 7th ACM Conference
on Recommender Systems (2013), pp. 427–430.

[83] X���, X., M���, W., D�����, D., S������, A. C., F�������, N., ��� L��, W.
Take this personally: Pollution attacks on personalized services. In Proceedings
of the 22nd USENIX Security Symposium (USENIX) (2013), pp. 671–686.

[84] Y���, G., G���, N. Z., ��� C��, Y. Fake co-visitation injection attacks to recom-
mender systems. Proceedings of the Annual Network & Distributed System Security

10 20 30 40 50
of nodes in one sampling trial

0

20

40

60

80

100

P
R

E
S
@

10
(%

)

AirbnbUS

AirbnbNY

AirbnbMANH

Amazon
NetEase Music
MoiveLens

(a) Impact on PRES@10.

10 20 30 40 50
of nodes in one sampling trial

0

20

40

60

80

100

H
R

@
10

(%
)

ml-100k
ml-1m
ml-20m

nf
am-b
am-d

tr
g+
ac

(b) Impact on HR@10.

Figure 9: Impact of the number of nodes in one sampling
trail.

5000 10000 15000
of sampling trials

0

20

40

60

80

100

P
R

E
S
@

10
(%

)

AirbnbUS

AirbnbNY

AirbnbMANH

Amazon
NetEase Music
MoiveLens

Figure 10: Impact of the number of sampling trails.

Symposium (NDSS) (2017).
[85] Y��, H., W���, W., C���, L., D�, X., N�����, Q. V. H., ���H����, Z. Mobi-sage-

rs: A sparse additive generative model-based mobile application recommender
system. Knowledge-Based Systems 157 (2018), 68–80.

[86] Y���, R., H�, R., C���, K., E�����������, P., H�������, W. L., ��� L�������,
J. Graph convolutional neural networks for web-scale recommender systems.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2018), pp. 974–983.

[87] Y�, Y., G��, Y., W���, H., ��� W���, R. Joint user knowledge and matrix
factorization for recommender systems. World Wide Web 21, 4 (2018), 1141–1163.

[88] Y���, M. B. Complementary item recommendations at ebay scale. https:
//tech.ebayinc.com/engineering/complementary-item\-recommendations-at-
ebay-scale/, 2020.

[89] Z����, Y., L��, J., C���, L., Y���, X., L�, J., J�������, T., ��� T����, N.�F.
Towards poisoning the neural collaborative �ltering-based recommender systems.
In European Symposium on Research in Computer Security (2020), pp. 461–479.

[90] Z���, C., B��, J., S���, J., L��, X., Z���, Z., C���, X., ��� G��, J. Atrank: An
attention-based user behavior modeling framework for recommendation. In
Proceedings of the 31th AAAI Conference on Arti�cial Intelligence (2018).

A APPENDIX
A.1 The Indicators of Di�erent Social Websites
Table 9 summarizes the popular websites of di�erent categories
where an attacker can apply the two methods for sampling data.
It exhibits an attacker could use at least one method to collect
sampling data from these popular websites.

A.2 Table 10: Statistics of each dataset
A.3 Impacts of Various Parameters
We further conduct experiments to evaluate the impacts of various
parameters involved in the sampling trails collection phase.
Impact of node counts on each sampling trail. We target to
the CML recommender algorithm and vary the number of nodes
on each sampling trail from 5 to 50 in the sampling collection

https://movielens.org/
https://grouplens.org/datasets/movielens/
https://movielens.org/robots.txt
https://www.kaggle.com/netflix-inc/netflix-prize-data/
https://twitter.com/

Table 9: The sampling data collection methods that can be adopted by the popular social websites.

Website Random Walk
Collection

Type-I Recommendation
Indicator

Random Injection
Collection

Type-II Recommendation
Indicator

E-commerce
Amazon Y

Products related to this item
Customers who bought this item also bought
Customers who viewed this item also viewed

Y Gift ideas inspired by your shopping history
Inspired by your browsing history

eBay Y Similar sponsored items
People who viewed this item also viewed Y Sponsored items based on your recent views

Taobao Y Find similar items

Tourism Airbnb Y More places to stay

Social network Twitter Y You might like Y Who to follow
Facebook Y People You May Know

Entertainment

MovieLens Y Similar movies Y Top picks
NetEase Music Y Similar songs
Net�ix Y More like this Y Main view
YouTube Y Up next Y YouTube’s homepage

Review Yelp Y You might also consider

Table 10: Statistics of the dataset

Dataset ml-100k ml-1m ml-20m nf am-b am-d tr �+ ac

users 943 6, 040 138, 494 480, 189 8, 026, 324 478, 235 8, 262, 545 106, 476 4, 107, 340
items 1, 682 3, 706 26, 745 17, 770 2, 330, 066 266, 414 8, 262, 545 106, 476 4, 107, 340

phases. Figure 9(a) shows the performance (i.e., PRES@10) of our
surrogate model for reproducing CML with varying node counts
in the sampling trail. The results exhibit PRES@10 values increase
�rst and then drop. This indicates that both too many and too few
nodes will degrade the performance of surrogate model. The reason
is that too few nodes will limit the total number of collected items,
which thus cannot help surrogate model to capture the su�cient
intrinsic patterns for training. On the other hand, too many nodes
will capture more noises and redundant information, which will
harm the surrogate model training. Our empirical study shows if
the dataset size is unknown, 20 nodes in each trail can derive a
satisfactory surrogate model.

We continue to examine the impact of the node counts in each
trail on the attack performance. Figure 9(b) shows the results (i.e.,
HR@10) of our target attack on theCML with various node counts
in the sampling trail. The trending is similar as in Figure 9(a), where
the HR@10 values �rst increase and then drop. This set of experi-
ments also con�rms that 20 is a suitable choice for the node count
in the sampling trail.
Impact of the Number of Sampling Trails. We target to the
IBCF recommender algorithm and vary the number of sampling
trails from 1, 000 to 15, 000. Figure 10 shows the performance (i.e.,
PRES@10) of the surrogate model when varying the number of
sampling trails. We can see the performance of surrogate model
improves with the increasing of sampling trails amount until it
reaches to the stable status. ForAirbnbMANH , which is the smallest
dataset, it reaches to stable status with fewer sampling trails than
other datasets. For the two largest datasets, Amazon and NetEase
Music, they reach to the stable status slower than others. This
implies that for a larger dataset, we should collect more sampling
trails to train our surrogate model. That is, the PRE@10 andHT@10
values �uctuate respectively from 49.6% to 52.2% and from 40.5%
to 44.2% only. This experiment demonstrates that our attack is
e�ective to dynamic recommender systems as well.

101 103 105

Subcategory size

10�5

10�4

10�3

10�2

R
at

io

(a) eBay.

101 102 103 104

Subcategory size

10�4

10�3

R
at

io

(b) Amazon.

Figure 11: Distributions of subcategory size on eBay and
Amazon.

A.4 Table 11: Availability Attack on Matrix
Factorization-based CF Algorithms

A.5 Table 12: Availability Attack on Neural
Network-based CF Algorithms

A.6 Table 13: Target Attack on Neural
Network-based CF Algorithms

A.7 Table 14: Availability attack and target
attack on NCF with ‘Crime/Documentary’
and ‘Blues’ subcategories

A.8 Figure 11: Subcategory Size Distributions
on eBay and Amazon

A.9 Attack Complicated Recommender
Systems

Some CF-based recommender algorithms may incorporate certain
features to enhance the recommender systems’ recommendation
capability, so we conduct experiments to validate our attack per-
formance on such a category of systems. We considerml-1m and

Table 11: Comparison of our availability attack Re�erseA and other availability attackmethodRandomA onmatrix-factorization
based CF Algorithms

PRE@10(%)
ALS SVD BPR

Attack Ratio (%) Attack Ratio (%) Attack Ratio (%)
0.1 0.3 0.5 1.0 3.0 5.0 0.1 0.3 0.5 1.0 3.0 5.0 0.1 0.3 0.5 1.0 3.0 5.0

ml-100k RandomA 1.44 1.89 2.33 2.95 5.45 7.24 1.67 1.96 2.38 3.14 6.08 8.22 1.48 1.85 2.37 3.72 6.38 9.29
Re�erseA 3.57 3.69 4.82 6.41 11.42 24.34 4.27 4.88 7.38 3.40 15.08 29.33 3.57 4.01 5.98 9.07 16.34 33.26

am-d RandomA 1.32 0.62 1.95 2.95 5.67 8.15 1.53 0.65 2.24 3.55 6.45 9.82 1.44 0.63 1.55 2.84 6.02 9.28
Re�erseA 5.53 2.08 5.82 7.01 21.54 45.82 5.87 3.25 6.12 7.52 23.87 53.14 3.66 2.35 5.65 5.89 29.94 57.74

Table 12: Comparison of our availability attack Re�erseA and other availability attack method RandomA on neural network
based CF Algorithms

PRE@10(%)
RandomA Re�erseA

NCF CML DCF FAST NCF CML DCF FAST

ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b

Attack ratio (%)

0.1 1.00 1.51 1.02 1.42 0.94 0.99 1.23 1.22 2.26 2.19 2.38 3.67 2.12 2.23 2.89 2.37
0.3 1.18 1.96 1.15 6.41 1.10 2.05 1.32 1.93 2.59 2.65 2.66 3.98 2.27 2.40 4.27 3.12
0.5 1.34 2.33 1.24 2.27 1.18 2.18 1.55 2.58 2.87 2.82 2.94 4.12 2.52 2.65 3.25 3.83
1.0 1.87 3.59 1.62 3.33 2.05 3.45 1.75 3.68 5.67 3.89 4.26 6.76 3.42 5.66 4.64 8.02
3.0 5.82 6.72 5.58 6.34 5.12 6.28 4.34 5.23 16.54 18.09 15.21 32.15 12.11 28.37 13.51 18.89
5.0 14.32 16.33 13.52 14.52 13.20 14.02 11.10 13.33 39.01 52.87 36.44 66.72 34.18 53.50 23.04 42.18

Table 13: Comparison of our target attack Re�erseT and other target attack method RandomT on neural network based CF
Algorithms

PRE@10(%)
RandomT Re�erseT

NCF CML DCF FAST NCF CML DCF FAST

ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b ml-1m am-b

Attack ratio (%)

0.1 0.45 0.87 0.63 1.42 0.77 0.92 0.97 0.99 0.85 1.19 0.72 1.29 0.84 1.43 0.89 1.35
0.3 0.48 0.91 0.71 6.41 0.80 0.95 0.98 1.01 0.90 1.75 0.79 2.12 0.86 1.60 1.29 1.45
0.5 0.57 0.96 0.77 2.27 0.82 0.98 1.00 1.05 0.92 1.82 0.81 2.35 0.87 1.65 1.75 1.83
1.0 0.63 1.05 0.83 3.33 1.01 1.12 1.23 1.22 1.24 2.89 0.95 3.64 0.97 2.66 2.18 3.05
3.0 1.35 6.72 1.98 2.70 2.11 3.52 2.76 6.84 7.52 14.09 7.46 25.16 5.88 19.37 6.34 11.55
5.0 3.72 11.37 4.75 10.10 4.98 10.06 10.54 11.26 30.01 42.98 30.40 51.04 22.38 45.07 18.64 36.62

Table 14: Availability attack and target attack on NCF with Crime/Documentar� and Blues subcategories

NCF
Fake users

10 30 50 70 100 10 30 50 70 100
PRE@10(%) HR@10(%)

Crime/Documentar� 13.16 21.35 33.95 42.08 50.75 10.75 15.67 25.39 32.07 39.65
Blues 6.43 11.52 20.08 32.45 58.87 5.82 9.87 14.39 25.52 42.89

Table 15: Attack on complicated recommender system

PRE@10(%) Attack Ratio (%)
0.1 0.3 0.5 1.0 3.0 5.0

ml-1m 2.07 2.22 2.36 2.98 9.76 26.35
am-b 2.22 2.27 2.45 4.80 27.33 50.26

HT@10(%) Attack Ratio (%)
0.1 0.3 0.5 1.0 3.0 5.0

ml-1m 1.45 1.86 1.90 2.35 6.74 20.30
am-b 1.37 1.55 1.58 1.76 19.25 43.27

am-b datasets and extract the movie and book genres, respectively,
as item features. DCF is employed as the underlying recommender
algorithm and the item features are incorporated to train the two
datasets for recommendations. The results of our availability attack
and target attack are presented in Table 15. We observe that when

injecting 5% fake users, our availability attack achieves the PRE@10
values of 26.35%, and 50.26%, and our target attack achieves the
HR@10 values of 20.30% and 43.27%, onml-1m and am-b, respec-
tively. This experiment demonstrates that our attack solutions can
retain e�ectiveness on attacking much complicate recommender
systems, due to strong reproductive capability of our developed
surrogate model.

A.10 Attack on Dynamic Recommender
Systems

We further evaluate our attack performance upon the dynamic
recommender systems in terms of the PRE@10 and the HT@10
measures. am-b dataset is taken for experiments, where the �rst
426, 006 ratings according to the chronological timestamp order are

Table 16: Attack on dynamic recommender system

PRE@10(%) test dataset order
1 2 3 4 5 6 7 8 9 10

Re�erseA 51.3 50.5 49.6 50.2 50.3 50.7 51.1 50.3 52.2 50.6

HT@10(%) test dataset order
1 2 3 4 5 6 7 8 9 10

Re�erseT 41.7 42.6 40.5 44.2 43.3 42.5 40.8 41.7 41.2 40.5

used as the original training dataset and the next 200, 000 ratings
are used as the test dataset. The test dataset is further divided
into 10 groups according to the chronological timestamp order. We

simulate a dynamic system resulting from adding those 10 test
data groups sequentially. NCF is employed to continuously train
the recommender system with the newly added data and make
recommendation for the next data group. We deploy availability
attack and target attack at each training phase, with the attack
ration set to 5%, to examine our attack performance. Table 16 shows
our attack results of the next data group. From the table, we can
see that the performance of our availability attack and target attack
�uctuate just slightly. That is, the PRE@10 and HT@10 values
�uctuate respectively from 49.6% to 52.2% and from 40.5% to 44.2%
only. This experiment demonstrates that our attack is e�ective to
dynamic recommender systems as well.

	Abstract
	1 Introduction
	2 Background Knowledge
	2.1 CF Recommender Systems
	2.2 Related Works

	3 Problem Statement
	3.1 Threat Model
	3.2 Sketch of Our Attack Strategy

	4 Constructing Surrogate Model
	4.1 Sampling Data Collection
	4.2 Generating Surrogate Model

	5 Crafting Attacking Strategy
	5.1 Attack Objective Functions
	5.2 Reference Matrix
	5.3 Complete Attack Solutions

	6 Experiment
	6.1 Experimental Setup
	6.2 Performance of Surrogate Model
	6.3 Attack Performance
	6.4 Practicality of Our Attacks

	7 Discussion
	8 Conclusion
	References
	A Appendix
	A.1 The Indicators of Different Social Websites
	A.2 Table 10: Statistics of each dataset
	A.3 Impacts of Various Parameters
	A.4 Table 11: Availability Attack on Matrix Factorization-based CF Algorithms
	A.5 Table 12: Availability Attack on Neural Network-based CF Algorithms
	A.6 Table 13: Target Attack on Neural Network-based CF Algorithms
	A.7 Table 14: Availability attack and target attack on NCF with `Crime/Documentary' and `Blues' subcategories
	A.8 Figure 11: Subcategory Size Distributions on eBay and Amazon
	A.9 Attack Complicated Recommender Systems
	A.10 Attack on Dynamic Recommender Systems

