
Personalized Adaptive Cruise Control via Gaussian Process Regression

Yanbing Wang∗† Ziran Wang† Kyungtae Han† Prashant Tiwari† Daniel B. Work∗

Abstract— Advanced driver assistance systems (ADAS) have
matured over the past few decades with the dedication to
enhance user experience and gain a wider market penetration.
However, personalization components, as a means to make the
current technologies more acceptable and trustworthy for users,
has only recently been gaining momentum. In this work we
develop an algorithm for learning personalized longitudinal
driving behaviors via a Gaussian Process (GP) model. The pro-
posed method learns from the individual driver’s naturalistic
car-following behaviors, and outputs a desired acceleration that
suits the user’s preference. The learned model can be used as a
personalized adaptive cruise control (GP-PACC). The proposed
GP-PACC is evaluated both with synthetic car-following data
as well as driving simulation data obtained from the Unity
game engine. Results show that the GP-PACC can accurately
reproduce the acceleration and space gap trajectories even with
reasonable measurement noises, and can capture the driving
styles of a human driver up to 80% more accurately than
baseline models such as an optimal velocity model and an
intelligent driver model.

I. INTRODUCTION

A. Motivation

Personalization has gained an increasing attention in the
automotive industry. However, the industry-level personal-
ized features are mostly at a complimentary level, such as
seat position, radio station tuning, etc. Personalization on
vehicle maneuvers such as path tracking, steering and car-
following is less developed, yet implicit driving preference
significantly impacts driver’s acceptance and trust towards
the existing ADAS [1].

As one of the most common ADAS functionalities, adap-
tive cruise control (ACC) automatically adjusts the longitudi-
nal speed to maintain a safe distance from the vehicle ahead.
ACC has been shown to enhance driving comfort, reduce
fuel consumption, and increase safety [2]–[5]. However, the
limited headway settings prevent the drivers to preserve their
own driving styles, resulting in lack of trust and usage of that
technology. In addition, a variety of usage conditions and the
changing of the drivers’ expectations persist in real-world
driving. Drivers differ in their preferences and skills, and
their styles may change depending on external factors such
as the road condition and weather, as well as internal factors
such as their mood. Therefore, personalization in ACC has

Corresponding author: Yanbing Wang, yanbing.wang@vanderbilt.edu
∗Department of Civil and Environmental Engineering, and the Institute

for Software Integrated Systems, Vanderbilt University, Nashville, TN
37240.
†InfoTech Labs, Toyota Motor North America R&D, Mountain View, CA

94043.

the potential to capture the adapting preference of the driver,
and adjust the settings to suit users’ needs.

B. Related Work

The most common longitudinal control laws are derived
from optimal control (e.g., optimal velocity relative veloc-
ity as a proportional-derivative (PD) controller, based on
constant time gap [6]). These physics-based control laws
can be expressed as an ordinary differential equation (ODE)
v̇ = f(s, v, u) that describes the car-following behaviors
given the space gap s, ego vehicle speed v and leader’s
speed u, such as the optimal velocity model (OVM) [7], the
intelligent driver model (IDM) [8], the Gipps model [9], and
the Gazis-Herman-Rothery (GHR) model [10]. The ODE-
based car-following models for describing driving behaviors
allow them to work in traffic microsimulation, as well as
providing provable and interpretable properties such as ra-
tional driving, stability [11] and identifiability [12]. However,
human-like driving does not strictly follow these pre-defined
rules, and contains subtleties that cannot be fully captured
by the analytical expressions. To this end, learning-based
approaches are becoming a popular modeling paradigm.

The question of learning individual driving styles naturally
motivates us to adopt a supervised-learning approach, where
a certain control action is learned from demonstration. A
popular approach to manipulate a system towards termi-
nal goal is through reinforcement learning (RL) [13], [14]
where a control policy is learned by maximizing a reward
function that describes the system evolution. Extensions of
RL include inverse reinforcement learning, which learns a
reward function through expert demonstration [15]. In more
complicated robotics where the system evolution is unknown,
the control tasks are often coupled with system identification
to achieve various goals such as navigation, path finding,
disturbance rejection, and etc. [16], [17]. A notion of un-
deractuation in control has recently been studied to design
controllers that take advantage of the natural dynamics of
the system [18]. Other data-driven system identification tools
such as SINDy [19], Gaussian Process (GP) [20] and Neuro-
fuzzy methods [21] are becoming popular to identify un-
known and complex systems. These tools are often coupled
with existing controllers such as Model Predictive Control
(MPC) to enhance control performance and to achieve robust
behaviors.

The learning-based control design benefits from the ex-
ploratory data-driven tools, as opposed to the model-based
system identification and control which are often based on a

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 1496

20
21

 IE
EE

 In
te

rn
at

io
na

l I
nt

el
lig

en
t T

ra
ns

po
rt

at
io

n
Sy

st
em

s C
on

fe
re

nc
e

(IT
SC

) |
 9

78
-1

-7
28

1-
91

42
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IT
SC

48
97

8.
20

21
.9

56
44

98

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 16,2021 at 20:08:26 UTC from IEEE Xplore. Restrictions apply.

fixed model structure. However, challenges still persist such
as the verification of safety, stability and rationality. Recent
developments such as the control Lyapunov and control
barrier functions have been applied to provide safe and stable
controlled systems [22], [23], as well as formal verification
tools to facilitate assured autonomy from learning [24]–[26].

Amongst all the control design approaches, we draw par-
ticular attention to GP regression, to design an ACC system
that mimics the individual’s driving behaviors. Instead of the
explicit personalization (i.e., offering drivers to choose from
a number of predefined system settings), we focus on implicit
personalization (estimating the drivers’ preferences based on
their past behaviors) [27]. GP regression can be utilized to
identify the relationship between input (driver’s perceived
information) and output (desired acceleration), which allows
it to provide personalized guidance towards driving.

C. Contribution

Compared to the existing literature that studied the person-
alized ACC design, we make the following contributions:
• We design a GP-based personalized adaptive cruise con-

troller (GP-PACC) that allows learning the implicit longi-
tudinal human driving styles without categorizing it based
on predefined rules. This approach is purely data-driven,
and allows each user to have a unique hyperparameter set
that characterize his/her driving profile.

• We validate the proposed GP-PACC on both the synthetic
car-following data and the naturalistic human-driving data
collected from a Unity game engine. Results show that
GP-PACC can almost exactly recovers the synthetic car-
following data even under reasonable measurement noises,
and can capture the driving styles of a real human driver
up to 80% more accurately than calibrated baseline car-
following models.
The remainder of this work is organized as follows:

Section II introduces the problem formulation of this study.
Section III outlines the fundamentals of GP regression used
to model car-following behaviors, and describes the training
and validation method for the GP model. In section IV we
conduct numerical experiments and human-driving experi-
ments on a game engine to test the validity of the model.
Finally, the study is concluded with some future directions
in section V.

II. PROBLEM FORMULATION

A. Notation

The state of the controlled car-following system at time k
is xk = [sk, vk]T , which is composed of the space gap sk and
ego vehicle’s speed vk. We denote uk as the lead vehicle’s
speed at time k, and yk is the ego vehicle acceleration
at time k. The uniform sampling timestep ∆t is used to
discretize the system, which runs in N timesteps in total.
The nonlinear mapping fCF : R3 → R1 represents the car-
following dynamics, and will be learned using the GP model.

Fig. 1: Block diagram of the proposed GP-PACC system.

B. Assumptions and Specifications

In this paper we focus on personalized ACC design, i.e.,
the longitudinal control of a vehicle based on the driver’s car-
following preference. The scope of this work is focused on
the upper-level controller, where the output is the command
acceleration that triggers the movement of the vehicle. We
assume that the low-level vehicle dynamics has no actuator
lags or delays for simplicity, and the personalized control
design problem is formulated as a system identification
problem. We design a data-driven GP-PACC such that
the controlled car-following dynamic matches the driver’s
naturalistic car-following styles.

C. The Car-Following Dynamics

The driver’s longitudinal acceleration depends on the ve-
hicle state in relation to the preceding vehicle, characterized
by a car-following model:

v̇(t) = fCF(s(t), v(t), u(t)). (1)

The ego vehicle’s dynamics will be updated in discrete-time:

xk+1 =

[
s
v

]
k+1

=

[
sk + (uk − vk)∆t

vk + fCF(sk, vk, uk)∆t

]
(2)

where fCF : R3 → R1 will be trained with a GP model.
For this work we assume that there is no actuator delay or
reaction delay. These assumptions can be relaxed if com-
mand acceleration data and full vehicle dynamics model are
available. The GP-PACC is trained to achieve personalized
car-following behavior by minimizing the difference between
the predicted acceleration and the recorded naturalistic driv-
ing acceleration.

The block diagram of the proposed GP-PACC system is
shown in Figure 1. We consider the ACC algorithm as the
high-level controller, which takes the input of the ego vehicle
speed, preceding vehicle speed, and space gap information,
and outputs an acceleration command. The low-level vehicle
dynamics will then output the corresponding speed and space
gap.

III. METHODOLOGY

In this section, we briefly introduce the GP regression both
as a modeling tool and as a controller that will be used to
model the driving behaviors. The GP regression has been
discussed in many standard textbooks such as [28]–[30].
Here we only outline it briefly in section III-A. Next we
describe the specific training and validation procedures of
GP-PACC in section III-B and III-C, respectively.

2

1497

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 16,2021 at 20:08:26 UTC from IEEE Xplore. Restrictions apply.

A. GP Regression to Model Car-Following Dynamics

In this paper, we use the GP regression to model the
personalized longitudinal acceleration. We focus on the high-
level driving behavior modeling without considering the low-
level vehicle dynamics, i.e., the GP models the mapping from
the driver’s perceived states (e.g., space gap and the relative
speed) to the actual acceleration of the vehicle.

GPs extend multivariate Gaussian distributions to infinite
dimensionality. They are a form of supervised learning and
the training result represents a nonlinear mapping fGP(z) :
Rdim(z) → R, such as (1). The mapping between the input
vector z and the function value fGP(z) is accomplished by the
assumption that fGP(z)′s are random variables and they are
jointly Gaussian distributed with z′s, which are also assumed
to be random variables [28].

a) Setup: The GP model setup includes selecting the
model regressors, the mean function and the covariance
function. In the following discussion, we focus on the
commonly used zero-mean and the squared-exponential co-
variance function that relates two sample input vectors zi
and zj :

c(zi, zj) = σ2
fexp(−1

2
(zi − zj)

T
P−1(zi−zj))+σ2

nδij , (3)

where δij = 1 if and only if i = j and 0 otherwise, and P =
diag[l21, ..., l

2
dim(z)] contains the characteristic length scale for

each dimension of the input vector. The hyperparameters of
the covariance function θ = [σf , σn, l1...ldim(z)]

T include the
measurement noise σn, the process standard deviation σf ,
and the characteristic length scales, which are learned by
maximizing the likelihood of the observation.

b) Bayesian model inference: The inference of a
Bayesian model is a process where the prior knowledge
of the hyperparameter vector θ is updated to a posterior
distribution through the identification (training) data.

We specify the training input Z and target y for a total of
N samples:

Z = [z1, z2, ..., zN]T (4)

y = [y1, y2, ..., yN]T , (5)

where the subscript denotes the sample index.
The corresponding GP model can be used for predicting

the function value y∗ given a new input z∗ based on a set
of past observations D = {Z, y}. The key assumption is that
the data can be represented as a sample from a multivariate
Gaussian distribution:[

y
y∗

]
∼ N

(
0,
[
K KT

∗
K∗ K∗∗

])
, (6)

where 0 ∈ RN is a vector of zeros, and K is the covariance
matrix

K =

c(z1, z1), c(z1, z2)...c(z1, zN)
c(z2, z1), c(z2, z2)...c(z2, zN)

..., ...
c(zN , z1), c(zN , z2)...c(zN , zN)

 (7)

K∗ = [c(z∗, z1), c(z∗, z2)...c(z∗, zN)] K∗∗ = c(z∗, z∗).
(8)

We want to infer θ by computing the posterior distribution
of the hyperparameters:

p(θ|Z, y) =
p(y|Z, θ)p(θ)

p(y|Z)
. (9)

If assuming unknown prior p(θ) (uniform distributed p(θ)),
the posterior distribution is proportional to the marginal
likelihood, i.e.,

p(θ|Z, y) ∝ p(y|Z, θ). (10)

Maximizing the posterior is equivalent to minimizing the
negative log likelihood:

l(θ) := ln p(y|Z, θ) = −1

2
ln|K| − 1

2
yTK−1y− N

2
ln(2π).

(11)
Once the best-fit θ is obtained, we can compute the

covariance matrix (7) and the output distribution y∗ (in terms
of the prediction mean and variance) given a new input vector
z∗:

ŷ∗ = K∗K
−1y

var(y∗) = K∗∗ −K∗K−1KT
∗ .

(12)

For the simplicity of notation, we denote the output predic-
tion as:

y∗ = fGP (z∗, θ) +N (0, σ2
n). (13)

Since regressing on the acceleration data tends to lead to
higher error in speed and space gap, we adopt a nonlinear
output-error (NOE) approach to improve the training accu-
racy. The training process is described next.

B. GP-NOE Training

We adopt a training process similar to calibrating an
ODE-based car-following model [31]–[35]. The process is
to find the parameters of which the simulated output is
closest to the recorded measurement. The simulated state
{x̂k = [ŝ, v̂]k}Nk=1 given the initial state x0 = [s0, v0], the
external input signal u0:N−1 and a GP model (13) will be
used as part of the pseudo training input of the GP-NOE
model. The simulated state can be obtained via:

x̂k+1 =

[
ŝ
v̂

]
k+1

=

[
ŝk + (uk − v̂k)∆t
v̂k + fGP (ẑk, θ)∆t

]
x̂0 = x0 = [s0, v0], k = 0 : N − 1

(14)

where ẑk = [ŝk, v̂k, uk] is the kth sample of the pseudo
training input, which contains the simulated state and the
measured external input at time k, as opposed to the recorded
data zk = [sk, vk, uk]. The simulation also requires having an
initial guess of the hyperparameters θ. The mean prediction
is stated as fGP (ẑk, θ) according to (12). The training target
is the acceleration data at the same timestep y1:N .

The algorithm for GP-NOE training is the following: Let
us denote Ẑ1:N = [ẑ1, ẑ2, ..., ẑN]T . The training of the GP
model with NOE structure is an iterative process:

3

1498

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 16,2021 at 20:08:26 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 GP-NOE training

1: set input data, target data, covariance function, initial
hyperparameters

2: while l(θ) (11) differs from the previous evaluation do
3: obtain the simulated (pseudo) regression vectors

Ẑ1:N with the initial state x0 = [s0, v0] and the current
hyperparameters θ, according to (14).

4: update θ by minimizing the negative log likelihood
l(θ).

5: end while

The implementation is based on the GP-Model-based
System-Identification Toolbox for Matlab [36].

C. GP Model Validation

Training a GP-NOE model is very much similar to cali-
brating a car-following model, which is conducted by finding
the model parameters that minimize the error between the
simulated vehicle trajectories and the experimental data.
We validate the GP model in simulation, i.e., obtaining
a closed-loop simulated trajectory according to (14), and
compare the acceleration and space-gap trajectories with the
recorded data, similar to evaluating a car-following model
from calibration (e.g., [31]–[35], [37]).

Two performance metrics are measured, the mean squared
error (MSE) and the log predictive-density error (LPD) [30],
[38] between the GP simulated acceleration and the recorded
acceleration of a validation data set:

MSE =
1

N

N∑
k=1

(yk − ŷk)2

LPD =
1

2
ln(2π) +

1

2N

N∑
k=1

(
ln(σ2

k) +
(yk − ŷk)2

σ2
k

)
,

(15)
where yk is the acceleration data at timestep k, ŷk is the
mean prediction of GP at timestep k, and σ2

k is the prediction
variance. MSE measures the error only on the mean predicted
acceleration, whereas LPD takes into account the entire
distribution of the prediction by penalizing the overconfident
prediction (smaller variance) more than the acknowledged
bad predicting values (higher variance). In addition, the MSE
on the space gap (MSE-s) will also be calculated, since small
and biased acceleration prediction might lead to a larger
space gap error. The simulated space gap can be obtained
from the GP output using (14). The lower these measures
the better GP model performs in terms of recovering the
original driving data.

IV. EXPERIMENTS AND RESULTS

In this section, we provide the validation of GP-PACC on
two data sets. The first one is the synthetically generated
data from a car-following model, with various additive
noise levels on the acceleration to emulate realistic sensor

GP model simulation

200 400 600 800
Timestep

-0.4

-0.2

0

0.2

Fig. 2: Compare GP acceleration prediction to the synthetic
data.

errors. The second one is the human-driving simulation data
generated using the Unity game engine driving platform for
a more naturalistic driving scenario.

A. Numerical Experiments

A set of car-following data is synthetically generated using
an IDM [8]. It has been used throughout the literature
to model a realistic driver behavior, such as asymmetric
accelerations and decelerations. The acceleration is expressed
as:

v̇(t) = fCF(s(t), v(t), u(t))

= a

[
1−

(
v(t)

vf

)δ
−
(
s∗(v(t), u(t))

s(t)

)2
]

(16)

where the desired space gap s∗ is defined as:

s∗(v(t), u(t)) = sj + v(t)T +
v(t)(v(t)− u(t))

2
√
ab

. (17)

The parameters of the model are the acceleration exponent δ,
freeflow speed vf , the desired time gap T , the jam distance
sj , the maximum acceleration a and the desired deceleration
b. We fixed the parameters to simulate human-driving data
using θ = [sj , vf , T, a, b, δ] = [2, 33.3, 1.6, 0.73, 1.67, 4]
based on empirical investigations [8].

We generate 200 seconds of data at 10Hz given a pre-
recorded, freeway high-speed preceding vehicle speed profile
ranging between 25m/s to 35m/s. The simulated data is also
manually polluted with added Gaussian white noise ranging
from 0.01 to 0.1 standard deviation onto the acceleration
signal, in order to emulate the realistic sensor errors. We
train the GP model on the first 100 seconds and use the
second half as the validation set.

Figure 2 visualizes the GP simulated acceleration (red
solid line) and the benchmark data (black dashed line), as
well as the prediction uncertainty (grey area). The data is
synthetically generated using an IDM and manually polluted
with 0.03m/s2 standard deviation of Gaussian white noise.
One can see that the uncertainty band well captures the
deviation of the data set, and the mean prediction traces the
mean of the data accurately.

4

1499

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 16,2021 at 20:08:26 UTC from IEEE Xplore. Restrictions apply.

0 0.05 0.1
0

1

2

3
10-4

0 0.05 0.1
0

2

4

0 0.02 0.04 0.06 0.08 0.1
-3

-2

-1

0

L
PD

Fig. 3: Performance of GP-PACC compared with synethetic
data. Upper left: MSE on the acceleration prediction; upper
right: MSE on the space gap prediction; bottom: LPD on the
acceleration prediction.

More quantitatively, Figure 3 shows the MSE of the GP
simulation on the acceleration and the space gap, as well
as the LPD on the acceleration, respectively. When various
levels of sensor noises are present, the GP results show
that the MSE of acceleration prediction is overall very low
(under 3.5×10−4), and so does the corresponding space
gap prediction MSE (under 4.5m2). It indicates that the GP
model can very accurately reproduce the driving profile and
is robust under noisy measurements.

A counter intuitive discovery from Figure 3 is that, as the
standard deviation of the added noise increases (emulating
the real-life acceleration measurement has higher noise), the
MSE’s for both the acceleration and the space gap prediction
appear to be lower. This could be due to two reasons:
(a) inverting the covariance matrix K during the parameter
inference step (11) suffers from numerical issues when the
variance of y is too low, and (b) the training may not
converge to a global minimal due to the non-convex and
non-smooth objective function (11), albeit the warm start.

Lastly, the LPD (bottom of Figure 3) on the acceleration
prediction indicates that the new observations (from the
validating set) are well-accounted by the posterior predictive
distribution, even with higher sensor errors.

Overall, the numerical experiments suggest that GP can
accurately reproduce the driving data even with reasonable
measurement noise. The posterior distribution can also ac-
curately characterise the uncertainty of the data set. These
results further indicate that the proposed GP model can
capture the implicit driving styles without any pre-defined
rules such as the time-headway, following distances, or
acceleration/breaking dynamics. In other words, the GP-
PACC almost exactly mimics the driver in a purely data-
driven way, and hence improves the personalization in ADAS
by adapting the longitudinal driving assistance to the driver’s

Fig. 4: Naturalistic driving in a car-following scenario with
Unity game engine and Logitech racing wheel.

preferences and needs.
In this section we demonstrate the possibility of the GP to

learn the IDM dynamic as a numerical test. Next we learn
real driving behavior by using the Unity game platform to
generate the true data rather than the IDM.

B. Human-Driving Experiments on Unity Game Engine

a) Modeling and simulation environment in Unity game
engine: Game engines are conceptually the core software
necessary for a game program to properly run. They gener-
ally consist of a rendering engine for graphics, a physics
engine for collision detection and response, and a scene
graph for the management of elements like models, sound,
scripting, threading, etc. Along with the rapid development
of game engines in recent years, they become popular
options in the development of intelligent vehicle technology
[39], with studies conducted for driver behavior modeling
[40], connected vehicle systems prototyping [41], [42], and
autonomous driving simulation [43], [44].

In this study, the realistic human-driving experiments are
conducted on a customized driving simulator platform, which
is built with a Windows gaming laptop (processor Intel Core
i7-9750 @2.60 GHz, 32.0 GB memory, NVIDIA Quadro
RTX 5000 Max-Q graphics card), a Logitech G29 Driving
Force racing wheel, and Unity game engine 2019.2.11f1. A
three-lane highway scene is built in the simulation environ-
ment, where human drivers are able to manually drive the
ego vehicle to follow the target vehicle, shown as Figure 4.

b) Data preparation: The experiment trip resembles
a freeway high-speed scenario, and has a total period of
200 seconds, where the first 80 seconds is designed as a
warm-up phase for drivers to familiarize with the engine
and get to a comfortable car-following setting. The next 60
seconds is for training and the 60 seconds after is used for
validation. The preceding vehicle drives at a time-varying
speed within the range 25-35m/s that captures a naturalistic
freeway acceleration and deceleration scenario. The data is
recorded in 1Hz. The training input and target are organized

5

1500

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 16,2021 at 20:08:26 UTC from IEEE Xplore. Restrictions apply.

GP model simulation

0 10 20 30 40 50
Timestep

-1.5

-1

-0.5

0

0.5

1

Fig. 5: Compare the GP-PACC guided acceleration (red) with
the actual acceleration recorded by Unity (dotted).

according to (4) and (5), where Z = {zk = [s, v, u]k}Nk=1,
and y = {yk}Nk=1.

c) Training result: The parameter inference takes about
10 seconds to complete, with the best-estimated parameters
θ = [l1, l2, l3, σf , σn] = [14.4, 1.4, 5.9, 0.56, 0.11], where
l1, l2, l3 correspond to the characteristic length scales of
s, v, u, respectively.

To visualize the training result, Figure 5 shows the GP
simulated acceleration and Unity recorded acceleration. The
mean prediction (red line) generally aligns well with the
recorded data (dashed line), and the uncertainty captures
the variation of the recorded data, with a few exceptions
at around timestep 40.

In addition, we train three analytical car-following models
with the same training data, and calculated the MSE on the
acceleration and space gap using the same validation data.
First model is the constant-time headway relative-velocity
(CTH-RV) model [35], [45]–[49], the second one is the
OVM [7], [50], and the last is IDM [8]. As shown in Ta-
ble I, GP significantly outperforms other three car-following
models with low MSE errors on both acceleration and space
gap (up to 80% improvement on acceleration prediction).
CTH-RV, OVM and IDM fail to accurately reproduce the
space-gap trajectories. In addition, we see that the training on
naturalistic driving data does not provide satisfactory results
as compared to training with synthetic data. One immediate
reason is that synthetic data generated using ODE-based
models have a cleaner relationship between the input variable
(s, v, u) and the output (acceleration), that can be captured
by the squared-exponential covariance function (3); On the
other hand, naturalistic human driving data contains more
randomness and inconsistent patterns even during the same
trip. GP modeling of human-driving shows promising results,
even with no assumptions on the individual’s driving styles.

V. CONCLUSION AND FUTURE WORK

In this article we propose GP-PACC that mimics individ-
ual’s car-following behavior. The learning is achieved using
a Gaussian Process regression on the car-following data. We
explore this purely data-driven controller design to capture

Model GP CTH-RV OVM IDM

MSE - acceleration 0.0553 0.2831 0.0933 0.1171
MSE - space gap 81.6 5216 365.3 1220
LPD - acceleration -0.0023 N/A N/A N/A

TABLE I: GP vs. other analytical car-following-model-based
controllers

individual’s driving styles, which sometimes cannot be cap-
tured by an explicit car-following model. The GP regression
learns the driving behavior without making assumptions such
as time-headway or preferred following distance.

The training result shows that GP has the potential to
provide realistic acceleration guidance that closely resembles
individual’s acceleration profile. Specifically, GP almost ex-
actly recovers the car-following profiles of an IDM driver
(data generated using an IDM), and reproduces the natural-
istic human-driving data up to 80% more accurately than
some well-known car-following models. More experiments
need to be conducted with a diverse collection of drivers,
road conditions and weather conditions. With integrating
the proposed GP-PACC into the Unity simulation platform,
human-in-the-loop testing on the acceptance of the proposed
controller can also be achieved.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1837652,
and it is sponsored by the “Digital Twin” project of InfoTech
Labs, Toyota Motor North America.

The contents of this study only reflect the views of the
authors, who are responsible for the facts and the accuracy
of the data presented herein. The contents do not necessarily
reflect the official views of Toyota Motor North America.

REFERENCES

[1] M. Hasenjäger, M. Heckmann, and H. Wersing, “A survey of person-
alization for advanced driver assistance systems,” IEEE Transactions
on Intelligent Vehicles, vol. 5, no. 2, pp. 335–344, 2019.

[2] S. E. Shladover, C. A. Desoer, J. K. Hedrick, M. Tomizuka, J. Walrand,
W.-B. Zhang, D. H. McMahon, H. Peng, S. Sheikholeslam, and
N. McKeown, “Automated vehicle control developments in the path
program,” IEEE Transactions on vehicular technology, vol. 40, no. 1,
pp. 114–130, 1991.

[3] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[4] R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting,
M. Churchill, N. Hamilton, H. Pohlmann, F. Wu, B. Piccoli, et al.,
“Dissipation of stop-and-go waves via control of autonomous vehi-
cles: Field experiments,” Transportation Research Part C: Emerging
Technologies, vol. 89, pp. 205–221, 2018.

[5] Z. Wang, K. Han, B. Kim, G. Wu, and M. J. Barth, “Lookup table-
based consensus algorithm for real-time longitudinal motion control
of connected and automated vehicles,” in 2019 American Control
Conference (ACC), pp. 5298–5303, 2019.

[6] G. Burnham, Jinbom Seo, and G. Bekey, “Identification of human
driver models in car following,” IEEE Transactions on Automatic
Control, vol. 19, no. 6, pp. 911–915, 1974.

[7] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Dynamical model of traffic congestion and numerical simulation,”
Phys. Rev. E, vol. 51, pp. 1035–1042, Feb 1995.

6

1501

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 16,2021 at 20:08:26 UTC from IEEE Xplore. Restrictions apply.

[8] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev. E,
vol. 62, pp. 1805–1824, Aug 2000.

[9] P. Gipps, “A behavioural car-following model for computer simula-
tion,” Transportation Research Part B: Methodological, vol. 15, no. 2,
pp. 105–111, 1981.

[10] R. E. Chandler, R. Herman, and E. W. Montroll, “Traffic dynamics:
Studies in car following,” Operations Research, vol. 6, no. 2, pp. 165–
184, 1958.

[11] R. Wilson and J. Ward, “Car-following models: fifty years of linear
stability analysis – a mathematical perspective,” Transportation Plan-
ning and Technology, vol. 34, no. 1, pp. 3–18, 2011.

[12] Y. Wang, M. L. D. Monache, and D. B. Work, “Identifiability of car-
following dynamic,” 2021.

[13] M. Wiering and M. Van Otterlo, Reinforcement Learning: State of the
Art. Springer, 2012.

[14] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduc-
tion,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054–
1054, 1998.

[15] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2641–2646,
2015.

[16] S. A. Billings, Nonlinear system identification: NARMAX methods in
the time, frequency, and spatio-temporal domains. John Wiley & Sons,
2013.

[17] G. B. Giannakis and E. Serpedin, “A bibliography on nonlinear system
identification,” Signal Processing, vol. 81, no. 3, pp. 533–580, 2001.

[18] R. Tedrake, “Underactuated robotics: Learning, planning, and control
for efficient and agile machines course notes for mit 6.832,” Working
draft edition, vol. 3, 2009.

[19] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the national academy of sciences, vol. 113,
no. 15, pp. 3932–3937, 2016.

[20] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process
dynamical models for human motion,” IEEE transactions on pattern
analysis and machine intelligence, vol. 30, no. 2, pp. 283–298, 2007.

[21] R. Babuška, “Neuro-fuzzy methods for modeling and identification,”
in Recent advances in intelligent paradigms and applications, pp. 161–
186, Springer, 2003.

[22] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[23] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European Control Conference (ECC), pp. 3420–3431,
IEEE, 2019.

[24] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set
estimation and verification for multilayer neural networks,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 11,
pp. 5777–5783, 2018.

[25] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in 2018 IEEE Conference on
Decision and Control (CDC), pp. 7130–7135, IEEE, 2018.

[26] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N.
Zeilinger, and C. J. Tomlin, “Reachability-based safe learning with
gaussian processes,” in 53rd IEEE Conference on Decision and
Control, pp. 1424–1431, IEEE, 2014.

[27] H. Fan and M. S. Poole, “What is personalization? perspectives on the
design and implementation of personalization in information systems,”
Journal of Organizational Computing and Electronic Commerce,
vol. 16, no. 3-4, pp. 179–202, 2006.

[28] C. E. Rasmussen, Gaussian Processes in Machine Learning, pp. 63–
71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[29] M. P. Deisenroth, Efficient Reinforcement Learning using Gaussian
Processes. PhD thesis, 2010.

[30] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, “Dynamic
systems identification with gaussian processes,” Mathematical and
Computer Modelling of Dynamical Systems, vol. 11, no. 4, pp. 411–
424, 2005.

[31] T. Ma and B. Abdulhai, “Genetic algorithm-based optimization ap-
proach and generic tool for calibrating traffic microscopic simulation
parameters,” Transportation Research Record, vol. 1800, no. 1, pp. 6–
15, 2002.

[32] H. Wang, W. Wang, J. Chen, and M. Jing, “Using trajectory data
to analyze intradriver heterogeneity in car-following,” Transportation
Research Record, vol. 2188, no. 1, pp. 85–95, 2010.

[33] B. Ciuffo and V. Punzo, ““no free lunch” theorems applied to
the calibration of traffic simulation models,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 2, pp. 553–562, 2014.

[34] V. Papathanasopoulou and C. Antoniou, “Towards data-driven car-
following models,” Transportation Research Part C: Emerging Tech-
nologies, vol. 55, pp. 496 – 509, 2015. Engineering and Applied
Sciences Optimization (OPT-i) - Professor Matthew G. Karlaftis
Memorial Issue.

[35] G. Gunter, R. Stern, and D. B. Work, “Modeling adaptive cruise
control vehicles from experimental data: model comparison,” in 2019
IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3049–
3054, 2019.

[36] M. Stepančič and J. Kocijan, “Gaussian process model-based system
identification toolbox for matlab,” 2017.

[37] F. de Souza and R. Stern, “Calibrating microscopic car following mod-
els for adaptive cruise control vehicles: a multi-objective approach,”
2020.

[38] A. Girard, Approximate methods for propagation of uncertainty with
Gaussian process models. PhD thesis, Citeseer, 2004.

[39] J. Ma, C. Schwarz, Z. Wang, M. Elli, G. Ros, and Y. Feng, “New
simulation tools for training and testing automated vehicles,” in Road
Vehicle Automation 7 (G. Meyer and S. Beiker, eds.), (Cham), pp. 111–
119, Springer International Publishing, 2020.

[40] Z. Wang, X. Liao, C. Wang, D. Oswald, G. Wu, K. Boriboonsomsin,
M. Barth, K. Han, B. Kim, and P. Tiwari, “Driver behavior modeling
using game engine and real vehicle: A learning-based approach,” IEEE
Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 738–749, 2020.

[41] Z. Wang, G. Wu, K. Boriboonsomsin, M. Barth, et al., “Cooperative
ramp merging system: Agent-based modeling and simulation using
game engine,” SAE International Journal of Connected and Automated
Vehicles, vol. 2, no. 2, 2019.

[42] Y. Liu, Z. Wang, K. Han, Z. Shou, P. Tiwari, and J. H. L. Hansen,
“Sensor fusion of camera and cloud digital twin information for
intelligent vehicles,” in IEEE Intelligent Vehicles Symposium (IV), Jun.
2020.

[43] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” arXiv preprint
arXiv:1711.03938, 2017.

[44] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta, et al., “LGSVL simulator:
A high fidelity simulator for autonomous driving,” in 2020 IEEE
23rd International Conference on Intelligent Transportation Systems
(ITSC), pp. 1–6, IEEE, 2020.

[45] V. Milanés and S. E. Shladover, “Modeling cooperative and au-
tonomous adaptive cruise control dynamic responses using experimen-
tal data,” Transportation Research Part C: Emerging Technologies,
vol. 48, pp. 285–300, 2014.

[46] V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe,
and M. Nakamura, “Cooperative adaptive cruise control in real traffic
situations,” IEEE Transactions on Intelligent Transportation Systems,
vol. 15, no. 1, pp. 296–305, 2014.

[47] Y. Wang, G. Gunter, M. Nice, M. L. D. Monache, and D. B. Work,
“Online parameter estimation methods for adaptive cruise control
systems,” IEEE Transactions on Intelligent Vehicles, 2020.

[48] Z. Bareket, P. S. Fancher, Huei Peng, Kangwon Lee, and C. A.
Assaf, “Methodology for assessing adaptive cruise control behavior,”
IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 3,
pp. 123–131, 2003.

[49] C.-Y. Liang and H. Peng, “Optimal adaptive cruise control with
guaranteed string stability,” Vehicle System Dynamics, vol. 32, no. 4-5,
pp. 313–330, 1999.

[50] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Structure stability of congestion in traffic dynamics,” Japan Journal
of Industrial and Applied Mathematics, vol. 11, pp. 203–223, 1994.

7

1502

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 16,2021 at 20:08:26 UTC from IEEE Xplore. Restrictions apply.

