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Abstract—DicroticNotch(DN)isadistinctiveandclinically
significantfeatureofthearterialbloodpressurecurve.Its
automaticidentificationhasbeenthefocusofmanykindsof
researchusingeithermodel-basedorrule-basedmethodologies.
However,since DN morphologyisquitevariantfollowing
thepatient-specificunderlyingphysiologicalandpathological
conditions,itsautomaticidentificationwiththese methodsis
challenging.Thisworkproposesahybridapproachthatem-
ploysbothmodel-basedandrule-basedapproachestoenhance
DNdetection’sgeneralizability.Wehavetestedourapproachon
ABPdatagatheredfrom14pigs.Ourresultstronglyindicates
36%overallmeanerrorimprovementwithmaximum52%and
11%accuracyenhancementanddegradationinextremecases.

I.INTRODUCTION

DN,thetransientincreaseinthearterialbloodpressure
curve,isaclinicallysignificantfeaturethatindicatesthe
completeclosureoftheleftventricleandtheendofthe
systolicduration[1].Theintervalbetweenend-diastoleand
DN(LeftVentricleEjectionTimeorLVET)isaprimary
indicativemeasureformanyconditionssuchasaorticvalve
disease,leftventricle musclefailure[2],ischemicheart
disease,heartfailure,hypertension,andaorticstenosis[3].
HencetheautomaticdetectionoftheDNonsetandcon-
tributingfactorsisofsignificanceinbloodpressurestudy
andmonitoring.
Thewide-rangevariabilityofDNmorphology,ranging

fromadistinctlocalminimumtoaslightchangeinthe
waveformslope,makesDNdetectionchallenging.Intheir
pioneeringworkonpulsewaveformanalysis,Dawberetal.
[4],[5],[6]definefourclassesforthecategorizationof
arterialpulsewaves.TheyareshowninFig.1.
Rule-basedandmodel-basedapproachesaretwogeneral

methodspreviouslydiscussedintheliteratureforautomatic
DNdetection.Rule-basedapproachesutilizeasetofexpert-
craftedrulestofindtheDNlocation[7],[8],[9],[10],
[11]. Model-basedapproaches,ontheotherhand,usethe
underlyingdifferentialequationsgoverningthephysiological
systemtoexplainthepressuresignalandspotthe DN
location[12],[13],[14].
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Fig.1. Variousmorphologiesofthedicroticnotch([4],[5],[6])

Rule-basedalgorithmsarethedominantapproachbecause
oftheirspeedandsimplicity.However,theirperformance
issensitivetobloodpressuredeformationsandlimitedby
theexpertknowledgeandtheircompetenceindesigningthe
rulesset.Thus,arule-basedalgorithmmayfailtogeneralize
invariantdeformationoccurrenceswheretheDNdetection
canbechallenging.

Ontheotherhand,themodel-basedapproachescangen-
eralizeundersuchunexpected morphologyvariationsas
theyanalyzetheunderlyingphysiologicalsystem. How-
ever,theiraddedcomplexityandnon-convexstructuremake
theoptimizationconvergencesensitivetotheoptimization
methodologyandparameterinitialization.Asaresult,their
applicationforDNdetectionhasbeenlimitedtonormal
blood-pressurecurveswhereconvergenceisachievable.

WeproposeageneralizablehybridDNdetectionapproach,
withbothmodel-basedandrule-basedsub-components,that
enhancestheperformanceincomplexdeformedcaseswhere
thepurerule-basedalgorithmsfail.Intheproposedapproach,
therule-basedsub-componentisentirelyseparatefromthe
model-basedlayerandcanbesubstitutedbypreviouslypro-
posedrule-basedapproachesinthefield. Wehaveselected
tworule-basedalgorithmsthatarehighlycitedandprovide
open-sourcedetectionlibrariesfortestingpurposes.These
aretheworkofPanetal.[15],andLietal.[16].

Wehaveevaluatedtheproposedhybridapproachusing
in-vivodatacollectedfrom14pigsundergoingsepsisand
hemorrhagestudiesandannotatedbyexpertphysicians.The
resultsshowupto36%percentoverallimprovementin
meanDNdetectionerror.Whenwefocusoneachgathered
datasetseparately,theapproachshowsupto52%accuracy
improvementinthebestcasewhilecausing−11%accuracy
declineintheworstcase.

SectionsIIandIIIexplainthedetailsoftheproposed
methodologyandtheresultsoftheapproachonthepig
dataset.ThelastsectionIVisdedicatedtotheoverall
conclusionofthispaper.



II. METHODOLOGY

Inthissection,weexplaintheproposedhybridapproach
forDNdetection.Inwhatfollows,weexplainthedetailsof
thephysiologicalmodel,theproposedoptimizationmethod-
ology,thehybridstructure,andtheevaluationmetrics.

A.CardiovascularModel

Oursimplifiedcardiovascular modeliscomposedof
threesingle-inputsingle-outputcompartmentsconnectedin
aclosed-loop.Thesecompartments,theleftpulsatingheart
(LPH),arterialsystemiccompartment(ASC),andpost-
arterialsystemiccompartment(PASC),areillustratedinFig.
2.Theycontainthesimplifiedhydraulicdifferentialequa-
tionsgoverningbloodcirculationthroughthecardiovascular
system.ThedetailsoftheLPHareexplainedinthebaseline
model[17].
Inthebaseline model,theheart’spumpingpulsesare

modeledasanoutputflowsourcewithasinglesquared
sinusoidalpulseduringtheLVET. Wehaveextendedthe
ventricularoutputflowsource,Fo,l,toincludethe DN
activationfunction.
TheDNiswidelyknowntobecausedbyabriefaortic

back-flowattheendofejectiondurationthatfullycloses
theleftventricle[1].Theeffectofaorticback-flow,Fbf,is
modeledin(1)asaflowsourceparalleltotheFo,l.Vlvand
Fi,lareleftventricle’sBloodVolumeandinputbloodflow,
respectively(detailsexplainedinthebaselinemodel).

dVlv
dt
=Fi,l−(Fo,l+Fbf) (1)

Fbfineachheartbeatdurationisthenmodeledwitha
Sine-squaredfunctionwithmagnitude,A,duration,Td,and
unsettime,Tu,asshownon(2).

Fbf(t)=
Asin2(π(t Tu)Td

) fort∈[Tu,Tu+Td]

0 O.W.
(2)

Equations(3)to(6)describethefunctionofASCand
PASC.IntheseequationsVtisthetotalbloodVolume.
Subscriptsex,sa,pa,andladenoteleftventricleexitregion,
systemicarteries,post-arterialregion,andleftatrium.

dPex
dt
=
1

Csa
.(Fo,l+Fbf−Fsa) (3)

dFsa
dt
=
1

Lsa
.(Pex−Psa−Rsa.Fsa) (4)

dPsa
dt
=
1

Cpa
(Fsa−

Psa−Pla
Rpa

) (5)

Fig.2. Three-compartmentcardiovascularmodel.
P:pressures,R:hydraulicresistances,C:compliances,L:inertances

Pla=
1

Cla
(Vt−CsaPex−CpaPsa−Vlv) (6)

B.OptimizationMethodology

Parameterestimationofthecardiovascularphysiological
modelisanon-convexproblemwithnoconvergenceguaran-
tee.Theoptimizerperformanceissensitivetotheoptimizer
settingsandtheinitializationoftheparameters.
Tomitigatetheproblem,weguidetheparameteresti-

mationusingtheoptimizercostfunctionandtwostages
ofautomaticandcase-sensitiveparameterinitialization.Our
proposedapproachconsistsoftwoconsecutiverunsofthe
gradient-basedparameterestimationwithonestageofpa-
rameterinitializationatthebeginningofeachoptimizerrun.
Thecostfunctionisdesignedtousethepriorliterature-

drivenknowledgeonphysiologicalparametersvaluestolimit
thesearchspaceoftheparameterestimationandimprovethe
convergence.
Theinitializationstagesarealsopurposefullydesignedto

helptheoptimizerto,first,findthegeneralplacementofthe
simulatedarterialpressuresignalatthefirststageand,then,
fine-tunetheback-flowparametersforDNidentificationat
thesecondstage.
Inthissection,wedetailtheparameterestimationmethod-

ology(similarinbothstages)andexplaintheinitialization
oftheparametersofeachstage.
1)ParameterEstimator:Theproposedparameterestima-
torcalculatesthegradientofitscostfunctionH foreach
parametervalueusingalocalsensitivityanalysisalgorithm.
Theproposedcostfunction(7)minimizedthesumoftwo
separate weightedterms.Theyarethesquarederrorof
theestimatedpressureandsquaredparametersdisplacement
ateachiterationstepj.Thedisplacementtermlimitsthe
parameterssearchspacebyincreasingthecostwithsquared
distancefromtheaveragevalueandimprovingtheconver-
gence.

Hj=||Wd(Pej−Pp) P
1

p ||
2+||We(Yej−Ym)||

2 (7)

wherePe,Pp,Ye,andYmareestimatedparametersvector,
parametersaveragevaluevector,estimatedarterialpressure,
andmeasuredarterialpressurerespectively.WdandWeare
theweightvectorsofthedisplacementanderrorterms.
Inordertomagnifythesystolicanddiastolicbloodpres-
suresinthecostfunction,Weisincreasedduringsystolicand
diastolicpeaks.Thesepeaksarepinpointedonthemeasure-
mentcurve,andtheirindicesarefedintothecostfunction’s
weightgeneratoraheadoftheoptimizationinitiation.
Forthecostfunction’sgradientcalculation,wehavese-

lectedthecontinuouslocalsensitivityanalysis(CSA)method
[18]consideringtherelativelysmallnumberofparameters
underoptimization(lessthan100)anditstimingbenefits.
Theforward-modeofCSAcalculatesthemodelsensitivi-

tiesbyextendingtheODEsystemtoinclude(8);where∂f∂u
istheJacobianofthederivativefunctionfwithrespectto
thecurrentstatevariable,u,and∂f∂pi isthegradientofthe
derivativefunctionconcerningthei-thparameter.

d

dt
(
∂u

∂pi
)=
∂f

∂u

∂u

∂pi
+
∂f

∂pi
(8)



TABLEI

STAGEI:PARAMETERSINITIALIZATION

Initialvaluesdrivenfrom[17]
Compliance, HydraulicResistance, Inertance, Volume
(ml/mmHg)(mmHg.s.ml 1) (mmHg.ml.s 2)(ml)
Csa=0.52 Rsa=0.529 Lsa=0.22.10 3 Vt=5300
Cpa=0.52 Rpa=0.529

Problem-specificinitialvalues
Pressure, Flow, Volume, Time, Amplitude
(mmHg) (ml.s 1) (ml) (s)
Psa,0=60 Fsa,0=5 Vlv,0=225 Td=0.02 A=10
Pex,0=30 Tu=0.1

2)FirstStageInitialization:Asmentionedbefore,the
firststageoptimizationimitatesthegeneralpositioningand
morphologyofthebloodpressurecurve.Atthesametime,
thecostfunctiondisplacementtermkeepstheparametersin
theexpectedphysiologicalrange.
Therefore,atthebeginningofthefirststage,theparam-

etersareinitializedtotheiraveragevalues(Pp),derived
fromclinicalliterature[17].Forparameterswithnoprior
expectedvalues,wehavepickedtheinitialvaluesbasedon
theoptimizer’sstabilitythroughseveralalgorithmruns.
TableIliststheinitializationoftheparametersforthefirst

stage.
3)SecondStageInitialization:Duringthesecondstage
initialization,theestimatedparametersfromthefirststage
optimizationarealteredto magnifytheDNpeakinthe
estimatedwaveform.Thisway,ahighDNpeakisimposed
onthepreviouslyestimatedarterialpressureinstageone.
Theoptimizerisguidedoutofthelocalminimatofocuson
DNshapeandlocationduringthesecondstageparameter
estimation.
Thecase-sensitiveparameteralteration(9)isappliedtothe

backflowparameterstoaffecttheDNshapeandlocation.

Tu=
2

3
Thb, A=50 (9)

whereThbistheheart-beattimeperiod.

C.HybridApproach

Thehybridapproachcombinestheproposedmodel-based
methodwiththeexistingrule-basedmethodologiestoim-
provetheDNdetectionunderbloodpressuredeformations.
Ourproposedmodel-basedapproachisfirstappliedto

thedatatoestimateanapproximateversionoftheblood
pressurecurve withreduceddeformation.Theestimated
bloodpressureisthenpassedthroughthepre-existingrule-
basedalgorithmstoidentifytheDNplacement.
Toimprovetheperformance,wehavealsodesigneda

votingmethod.Ifbothrule-basedandhybridalgorithmshave
placedaDNlocationforaheartbeat,theaverageposition
isidentifiedasthevotingresult.Otherwise,ifonefailedto
findaDNlocationinaheartbeatunderstudy,theresultof
theremainingalgorithmdecidestheDNposition.

D.EvaluationMetrics

WedefineerrorofDNdetectionineachheartbeattime-
series,b,tobetheabsolutetimedifferencebetweenthegold-

Fig.3. DifferentmethodsappliedtodetectDNintwoexamplesofswine
ABPwaveform

standardanddetectedDNlocationineachheartbeat(10).

Errb=|Tdetected−Tgold| (10)

Usingtheaforementionedheartbeat-leveldefinitionof
Err,(11)presentsthedefinedDNdetectionaccuracyper-
centage,AccDi%,inadataset,Di,containingavectorof
hearbeats,Bi,underamaximumpermittederror,EM.

AccDi%=
100×card({bi,j∈Di|Errbi,j≤EM})

card(Di)
(11)

wherecard(Di)standsforthecardinalityofsetDi.

III.RESULTS

Wehaveimplementedthecardiovascularmodel,andthe
parameterestimatorusingtheJuliaLanguageandspecial
libraries[19],[20],[21],[22].TheestimatorusestheADAM
optimizer[23]withalearningrateequal0.01andfirstand
seconddecayofmomentumsequal0.9and0.999consecu-
tively.
WehaveanalyzedABPsignalsfor24datasetsrandomly

selectedfrom4and10pigsundergoingsepsisandhemor-
rhagestudies,respectively,forourexperimentaldemonstra-
tion.Eachdatasetcontains27heartbeatsand648heartbeats
intotal.AlltheDNsaremanuallyannotatedbyanexpert
physician.Theseannotationsarethegoldstandardagainst
whichtheperformancewillbecompared.Thedatasetsam-
plingfrequencyis100Hz.
Wewentthroughtherigorouspreprocessingmethodto

removenoiseandotherartifactsfromthesignalusing
Savitzky-Golay(S-G)filters[24].TheS-Gfilterisamoving
averagefiltertosmooththearterialbloodpressuresignal.It
wasselectedduetotheadvantageofsharpedgepreservation
[25]. WepresentourresultsontwodatasetsinFig.3as
exampleplots.
TableIIprovidesstatisticsofDNdetectionqualityunder

differentmethods.Theresultsshowthatthehybridapproach
withvotingcanimprovethe meanerrorby 36%while
reducingitsstandarddeviationby41%.Italsogainsupto
52%accuracyimprovementinthebestcasewithonly−11%
declineintheworstcase.



TABLE II
DN DETECTION STATISTICS UNDER DIFFERENT METHODS

Overall Err Acc%,
statistics EM = 50ms

Method Mean, SD, Total Best Dset Worst Dset
(ms) (ms) improv. improv.

Li’s RB [16] 49 37 63% — —
Hybrid: M+Li’s 49 30 60% 93% -74%
Voting: Hyb.+Li’s 42 31 70% 93% -70%
Pan’s RB [15] 42 61 86% — —
Hybrid: M+Pan’s 29 39 90% 89% -22%
Voting: Hyb.+Pan’s 27 36 91% 52% -11%

Fig. 4. Accuracy of the proposed DN detection approaches applied to 27
heartbeat datasets that are hard cases for each baseline rule based method

In this paper, we consider hard datasets for a specific rule-
based algorithm to be the ones with an Acc% ≤ 50% under
EM = 50ms. In other words, a dataset is hard for a rule-
based algorithm if the algorithm cannot find the DN location
of more than 50% of its heartbeats with Errs ≤ 50ms.

The DN detection evaluation of 24 datasets finds 10 and 3
hard cases for Li’s [16] and Pan’s [15]. We then select three
hard cases for each rule-based algorithm, dataset 1-3 for Li’s
and 4-6 for Pan’s algorithm, and apply our proposed DN
detection approaches to test the accuracy level for a varying
EM . As shown in Fig. 4, the hybrid and voting methods are
strong candidates to deal with real-world ABP signals prone
to noise and artifacts.

IV. CONCLUSION

In this work, we have proposed a hybrid methodology with
a generalizable DN detection capability in the presence of
many typical blood pressure curve deformations. The method
has shown 36% mean error improvement on real-world
expert-annotated pig data undergoing sepsis and hemorrhage
study.
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