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Abstract— Dicrotic Notch (DN) is a distinctive and clinically
significant feature of the arterial blood pressure curve. Its
automatic identification has been the focus of many kinds of
research using either model-based or rule-based methodologies.
However, since DN morphology is quite variant following
the patient-specific underlying physiological and pathological
conditions, its automatic identification with these methods is
challenging. This work proposes a hybrid approach that em-
ploys both model-based and rule-based approaches to enhance
DN detection’s generalizability. We have tested our approach on
ABP data gathered from 14 pigs. Our result strongly indicates
36% overall mean error improvement with maximum 52% and

11% accuracy enhancement and degradation in extreme cases.

I. INTRODUCTION

DN, the transient increase in the arterial blood pressure
curve, is a clinically significant feature that indicates the
complete closure of the left ventricle and the end of the
systolic duration [1]. The interval between end-diastole and
DN (Left Ventricle Ejection Time or LVET) is a primary
indicative measure for many conditions such as aortic valve
disease, left ventricle muscle failure [2], ischemic heart
disease, heart failure, hypertension, and aortic stenosis [3].
Hence the automatic detection of the DN onset and con-
tributing factors is of significance in blood pressure study
and monitoring.

The wide-range variability of DN morphology, ranging
from a distinct local minimum to a slight change in the
waveform slope, makes DN detection challenging. In their
pioneering work on pulse waveform analysis, Dawber et al.
[4], [5], [6] define four classes for the categorization of
arterial pulse waves. They are shown in Fig. 1.

Rule-based and model-based approaches are two general
methods previously discussed in the literature for automatic
DN detection. Rule-based approaches utilize a set of expert-
crafted rules to find the DN location [7], [8], [9], [10],
[11]. Model-based approaches, on the other hand, use the
underlying differential equations governing the physiological
system to explain the pressure signal and spot the DN
location [12], [13], [14].
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Fig. 1. Various morphologies of the dicrotic notch ([4], [5], [6])

Rule-based algorithms are the dominant approach because
of their speed and simplicity. However, their performance
is sensitive to blood pressure deformations and limited by
the expert knowledge and their competence in designing the
rules set. Thus, a rule-based algorithm may fail to generalize
in variant deformation occurrences where the DN detection
can be challenging.

On the other hand, the model-based approaches can gen-
eralize under such unexpected morphology variations as
they analyze the underlying physiological system. How-
ever, their added complexity and non-convex structure make
the optimization convergence sensitive to the optimization
methodology and parameter initialization. As a result, their
application for DN detection has been limited to normal
blood-pressure curves where convergence is achievable.

We propose a generalizable hybrid DN detection approach,
with both model-based and rule-based sub-components, that
enhances the performance in complex deformed cases where
the pure rule-based algorithms fail. In the proposed approach,
the rule-based sub-component is entirely separate from the
model-based layer and can be substituted by previously pro-
posed rule-based approaches in the field. We have selected
two rule-based algorithms that are highly cited and provide
open-source detection libraries for testing purposes. These
are the work of Pan et al. [15], and Li et al. [16].

We have evaluated the proposed hybrid approach using
in-vivo data collected from 14 pigs undergoing sepsis and
hemorrhage studies and annotated by expert physicians. The
results show up to 36% percent overall improvement in
mean DN detection error. When we focus on each gathered
dataset separately, the approach shows up to 52% accuracy
improvement in the best case while causing —11% accuracy
decline in the worst case.

Sections II and III explain the details of the proposed
methodology and the results of the approach on the pig
dataset. The last section IV is dedicated to the overall
conclusion of this paper.



II. METHODOLOGY

In this section, we explain the proposed hybrid approach
for DN detection. In what follows, we explain the details of
the physiological model, the proposed optimization method-
ology, the hybrid structure, and the evaluation metrics.

A. Cardiovascular Model

Our simplified cardiovascular model is composed of
three single-input single-output compartments connected in
a closed-loop. These compartments, the left pulsating heart
(LPH), arterial systemic compartment (ASC), and post-
arterial systemic compartment (PASC), are illustrated in Fig.
2. They contain the simplified hydraulic differential equa-
tions governing blood circulation through the cardiovascular
system. The details of the LPH are explained in the baseline
model [17].

In the baseline model, the heart’s pumping pulses are
modeled as an output flow source with a single squared
sinusoidal pulse during the LVET. We have extended the
ventricular output flow source, F,;, to include the DN
activation function.

The DN is widely known to be caused by a brief aortic
back-flow at the end of ejection duration that fully closes
the left ventricle [1]. The effect of aortic back-flow, Fjy, is
modeled in (1) as a flow source parallel to the F, ;. V;, and
F;; are left ventricle’s Blood Volume and input blood flow,
respectively (details explained in the baseline model).

d;v =F,1 — (Fou+ Fey) (1)

Fy; in each heart beat duration is then modeled with a
Sine-squared function with magnitude, A, duration, T, and
unset time, 7}, as shown on (2).
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Equations (3) to (6) describe the function of ASC and
PASC. In these equations V; is the total blood Volume.
Subscripts ex, sa, pa, and la denote left ventricle exit region,
systemic arteries, post-arterial region, and left atrium.
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Fig. 2. Three-compartment cardiovascular model.
P: pressures, R: hydraulic resistances, C: compliances, L: inertances
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B. Optimization Methodology
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Parameter estimation of the cardiovascular physiological
model is a non-convex problem with no convergence guaran-
tee. The optimizer performance is sensitive to the optimizer
settings and the initialization of the parameters.

To mitigate the problem, we guide the parameter esti-
mation using the optimizer cost function and two stages
of automatic and case-sensitive parameter initialization. Our
proposed approach consists of two consecutive runs of the
gradient-based parameter estimation with one stage of pa-
rameter initialization at the beginning of each optimizer run.

The cost function is designed to use the prior literature-
driven knowledge on physiological parameters values to limit
the search space of the parameter estimation and improve the
convergence.

The initialization stages are also purposefully designed to
help the optimizer to, first, find the general placement of the
simulated arterial pressure signal at the first stage and, then,
fine-tune the back-flow parameters for DN identification at
the second stage.

In this section, we detail the parameter estimation method-
ology (similar in both stages) and explain the initialization
of the parameters of each stage.

1) Parameter Estimator: The proposed parameter estima-
tor calculates the gradient of its cost function H for each
parameter value using a local sensitivity analysis algorithm.
The proposed cost function (7) minimized the sum of two
separate weighted terms. They are the squared error of
the estimated pressure and squared parameters displacement
at each iteration step j. The displacement term limits the
parameters search space by increasing the cost with squared
distance from the average value and improving the conver-
gence.
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where P., Fp, Y., and Y, are estimated parameters vector,
parameters average value vector, estimated arterial pressure,
and measured arterial pressure respectively. Wy and W, are
the weight vectors of the displacement and error terms.

In order to magnify the systolic and diastolic blood pres-
sures in the cost function, W is increased during systolic and
diastolic peaks. These peaks are pinpointed on the measure-
ment curve, and their indices are fed into the cost function’s
weight generator ahead of the optimization initiation.

For the cost function’s gradient calculation, we have se-
lected the continuous local sensitivity analysis (CSA) method
[18] considering the relatively small number of parameters
under optimization (less than 100) and its timing benefits.

The forward-mode of CSA calculates the model sensitivi-
ties by extending the ODE system to include (8); where %&
is the Jacobian of the derivative function f with respect to
the current state variable, u, and 5‘3}_ is the gradient of the
derivative function concerning the i-th parameter.
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TABLE I
STAGE I: PARAMETERS INITIALIZATION

Initial values driven from [17]
Compliance, | Hydraulic Resistance, | Inertance, Volume
(ml/mmHg) | (mmHg.s.ml 1y (mmHg.ml.s 2y | (ml)
Csq = 0.52 Rsq = 0.529 Lsa =0.22.10 3 [V; = 5300
Cpa = 0.52 | Rpa = 0.529

Problem-specific initial values
Pressure, Flow, Volume, Time, Amplitude
(mmHg) | (mls 1) | (mD) (s)
Pea0 =60 | Feao=5 | Vipo =225 | Ta=002 | A=10
Pez,[] =30 Ty, =0.1

2) First Stage Initialization: As mentioned before, the
first stage optimization imitates the general positioning and
morphology of the blood pressure curve. At the same time,
the cost function displacement term keeps the parameters in
the expected physiological range.

Therefore, at the beginning of the first stage, the param-
eters are initialized to their average values (Pp), derived
from clinical literature [17]. For parameters with no prior
expected values, we have picked the initial values based on
the optimizer’s stability through several algorithm runs.

Table I lists the initialization of the parameters for the first
stage.

3) Second Stage Initialization: During the second stage
initialization, the estimated parameters from the first stage
optimization are altered to magnify the DN peak in the
estimated waveform. This way, a high DN peak is imposed
on the previously estimated arterial pressure in stage one.
The optimizer is guided out of the local minima to focus on
DN shape and location during the second stage parameter
estimation.

The case-sensitive parameter alteration (9) is applied to the
backflow parameters to affect the DN shape and location.

Tu= ;Th.b: A =50 (9)

where T} is the heart-beat time period.
C. Hybrid Approach

The hybrid approach combines the proposed model-based
method with the existing rule-based methodologies to im-
prove the DN detection under blood pressure deformations.

Our proposed model-based approach is first applied to
the data to estimate an approximate version of the blood
pressure curve with reduced deformation. The estimated
blood pressure is then passed through the pre-existing rule-
based algorithms to identify the DN placement.

To improve the performance, we have also designed a
voting method. If both rule-based and hybrid algorithms have
placed a DN location for a heartbeat, the average position
is identified as the voting result. Otherwise, if one failed to
find a DN location in a heartbeat under study, the result of
the remaining algorithm decides the DN position.

D. Evaluation Metrics

We define error of DN detection in each heartbeat time-
series, b, to be the absolute time difference between the gold-
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Fig. 3. Different methods applied to detect DN in two examples of swine
ABP waveform

standard and detected DN location in each heart beat (10).

ET'—‘"b = |Tdetected - Tgo!dl (10)

Using the aforementioned heartbeat-level definition of
Err, (11) presents the defined DN detection accuracy per-
centage, Accp,%, in a dataset, D;, containing a vector of
hearbeats, B;, under a maximum permitted error, E .

100 x card({b; ; € D;|Erry, ; < En}) (11
card(D;)

Acep,% =

where card(D;) stands for the cardinality of set D;.

ITI. RESULTS

We have implemented the cardiovascular model, and the
parameter estimator using the Julia Language and special
libraries [19], [20], [21], [22]. The estimator uses the ADAM
optimizer [23] with a learning rate equal 0.01 and first and
second decay of momentums equal 0.9 and 0.999 consecu-
tively.

We have analyzed ABP signals for 24 datasets randomly
selected from 4 and 10 pigs undergoing sepsis and hemor-
rhage studies, respectively, for our experimental demonstra-
tion. Each dataset contains 27 heartbeats and 648 heartbeats
in total. All the DNs are manually annotated by an expert
physician. These annotations are the gold standard against
which the performance will be compared. The dataset sam-
pling frequency is 100 Hz.

We went through the rigorous preprocessing method to
remove noise and other artifacts from the signal using
Savitzky-Golay (S-G) filters [24]. The S-G filter is a moving
average filter to smooth the arterial blood pressure signal. It
was selected due to the advantage of sharp edge preservation
[25]. We present our results on two datasets in Fig. 3 as
example plots.

Table II provides statistics of DN detection quality under
different methods. The results show that the hybrid approach
with voting can improve the mean error by 36% while
reducing its standard deviation by 41%. It also gains up to
52% accuracy improvement in the best case with only —11%
decline in the worst case.



TABLE I
DN DETECTION STATISTICS UNDER DIFFERENT METHODS

Overall Err Acc%,
statistics En = 50ms

Method Mean, SD, Total Best Dset Worst Dset

(ms) (ms) improv. improv.
Li’s RB [16] 49 37 63% — —
Hybrid: M+Li’s 49 30 60% 93% -74%
Voting: Hyb.+Li’s 42 31 70% 93% -70%
Pan’s RB [15] 42 61 86% — —
Hybrid: M+Pan’s 29 39 90% 89% -22%
Voting: Hyb.+Pan’s 27 36 91% 52% -11%

Hybrid method — — — Voting method = Rule based method‘
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Fig. 4. Accuracy of the proposed DN detection approaches applied to 27
heartbeat datasets that are hard cases for each baseline rule based method

In this paper, we consider hard datasets for a specific rule-
based algorithm to be the ones with an Acc% < 50% under
FE\yr = 50ms. In other words, a dataset is hard for a rule-
based algorithm if the algorithm cannot find the DN location
of more than 50% of its heartbeats with Err, < 50ms.

The DN detection evaluation of 24 datasets finds 10 and 3
hard cases for Li’s [16] and Pan’s [15]. We then select three
hard cases for each rule-based algorithm, dataset 1-3 for Li’s
and 4-6 for Pan’s algorithm, and apply our proposed DN
detection approaches to test the accuracy level for a varying
Eyr. As shown in Fig. 4, the hybrid and voting methods are
strong candidates to deal with real-world ABP signals prone
to noise and artifacts.

IV. CONCLUSION

In this work, we have proposed a hybrid methodology with
a generalizable DN detection capability in the presence of
many typical blood pressure curve deformations. The method
has shown 36% mean error improvement on real-world
expert-annotated pig data undergoing sepsis and hemorrhage
study.
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