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Abstract. In this paper, we conduct a systematic study for the very first
time on the poisoning attack to neural collaborative filtering-based rec-
ommender systems, exploring both availability and target attacks with
their respective goals of distorting recommended results and promoting
specific targets. The key challenge arises on how to perform e↵ective
poisoning attacks by an attacker with limited manipulations to reduce
expense, while achieving the maximum attack objectives. With an ex-
tensive study for exploring the characteristics of neural collaborative fil-
terings, we develop a rigorous model for specifying the constraints of
attacks, and then define di↵erent objective functions to capture the es-
sential goals for availability attack and target attack. Formulated into
optimization problems which are in the complex forms of non-convex
programming, these attack models are e↵ectively solved by our delicately
designed algorithms. Our proposed poisoning attack solutions are eval-
uated on datasets from di↵erent web platforms, e.g., Amazon, Twitter,
and MovieLens. Experimental results have demonstrated that both of
them are e↵ective, soundly outperforming the baseline methods.

1 Introduction

The recommender systems become prevalent in various E-commerce systems, so-
cial networks, and others, for promoting products or services to users of interest.
The objective of a recommender system is to mine the intrinsic correlations of
users’ behavioral data so as to predict the relevant objects that may attract users’
interest for promotion. Many traditional solutions leveraging the matrix factor-
ization [16], association rule [8, 22, 6], and graph structure [10] techniques have
been proposed by exploring such correlations to implement the recommender
systems. Recently, the rapid advances in neural network (NN) techniques and
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their successful applications to diverse fields have inspired service providers to
leverage such emerging solutions to deeply learn the intrinsic correlations of
historical data for far more e↵ective prediction, i.e., recommendation, to im-
prove users’ experiences in using their web services [27, 5, 7, 14, 23]. A survey
in [25] has summarized a series of NN-based recommender systems for objects
recommendation. The neural collaborative filtering-based recommender system
is among these emerging systems that have been proposed or envisioned for use
in Youtube [7], Netflix [20], MovieLen [4], Airbnb [12], Amazon [18], and others.

However, existing studies have demonstrated that the traditional recom-
mender systems are vulnerable to the poisoning attack [19, 9]. That is, an at-
tacker can inject some fake users and operations on the network objects to dis-
rupt the correlation relationships among objects. Such disrupted correlations can
lead the recommender system to make wrong recommendation or promote at-
tacker’s specified objects, instead of original recommendation results that achieve
its goal. For example, the poisoning attack solutions proposed in [19], [24], and [9]
have been demonstrated with high e�ciency in the matrix factorization-based,
association rule-based, and graph-based recommender systems, respectively. To
date, the poisoning attacks on the NN-based recommender systems have yet to
be explored. It is still unsettled if this attack is e↵ective to NN-based recom-
mender systems.

Typically, such a recommender system takes all users’ M latest operations
to form a historical training dataset, which is used to train the weight matrices
existing between two adjacent layers in neural networks. With the well trained
weight matrices, the NN can recommend a set of objects that have the high cor-
relations (similarity probabilities) within historical data. The goal of this paper
is to perform poisoning attacks in neural collaborative filtering-based recom-
mender systems and verify its e↵ectiveness. The general idea of our poisoning
attack approach is to inject a set of specified fake users and data. Once the rec-
ommender system takes the latest historical data for training, the injected data
can be selected and act e↵ectively to change the trained weight matrices, thus
leading to wrong recommendation results. Specifically, two categories of attacks
are studied, i.e., availability attacks and target attacks. The first one aims to
demote the recommended results by injecting poisoned data into the NN so as to
change its output, i.e., each object’s recommendation probability. This category
of attack refers to the scenario that some malicious users or service providers
target to destroy the performance of other web applications’ recommender sys-
tems. The second one aims to not only distort the recommended results but
also promote a target set of objects to users. This category of attack connotes
the application scenario that some users or business operators aim at promoting
their target products, against the web servers’ original recommendation.

In both attacks, we assume an attacker will inject as few operations as pos-
sible to minimize the expense of an attack while yielding the maximum attack
outcomes. This objective is due to the fact that an attack’s available resource may
be limited and its detection should be avoided as best as possible. By defining
the e↵ective objective functions and modeling the resource constraints for each
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attack, we formulate each corresponding scenario into an optimization problem.
Even though the formulated problems are in the complex form of non-linear and
non-convex programming, we design e↵ective algorithms based on the gradient
descent technique to solve them e�ciently. To validate the e↵ectiveness of our
proposed two attack mechanisms, we take the real-world datasets from Amazon,
Twitter, and MovieLens as the application inputs for evaluation. Experimental
results show that our availability and target attacks both substantially outper-
form their baseline counterparts. Specifically, our availability attack mechanism
lowers the accuracy by at least 60%, 17.7%, and 58%, in Amazon, Twitter, and
MovieLens, respectively, given the malicious actions of only 5% users. Main con-
tributions of this work are summarized as follows:

– We are the first to propose poisoning attack frameworks on the NN-based
recommender systems. Through experiments, we have successfully demon-
strated that the neural collaborative filtering-based recommender systems
are also vulnerable to the poisoning attacks. This calls for the service providers
to take into account the potential impact of poisoning attacks in the design
of their NN-based recommender systems.

– We present two types of poisoning attacks, i.e., availability attack and tar-
get attack, with the aim to demote recommendation results and promote
the target objects, respectively. Through rigorous modeling and objective
function creation, both types of attacks are formulated as the optimization
problems with the goal of maximizing an attacker’s profits while minimizing
its involved operational cost (i.e., the amount of injected data). Two e↵ective
algorithms are designed respectively to solve the two optimization problems.

– We implement our attack mechanisms in various real-world scenarios. Ex-
perimental results demonstrate that our poisoning attack mechanisms are
e↵ective in demoting recommended results and promoting target objects in
the neural collaborative filtering-based recommender system.

2 Problem Statement

In this paper, we aim to design e↵ective strategies for poisoning attacks on
a general category of recommender systems based on neural collaborative fil-
tering. Specifically, our goal is to achieve twofold distortions — demoting the
recommended results and promoting the target objects — through availability

attack and target attack, respectively.

2.1 Problem Setting

Given N users in the set N and D objects in the set D, a recommender system
is designed to recommend a small subset of objects to each user based on an esti-
mate of the user’s interest. In a neural collaborative-based recommender system,
an NN is trained via historical data from each user to learn the probabilities of
recommending objects to a given user, based on which the top-K objects will be
selected for recommendation.
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The historical operation behaviors (explicit [3] or implicit [15]) of a user
can be learnt by a neural collaborative-based recommender system, such as
marking, reviewing, clicking, watching, or purchasing. In practice, it typically
truncates the M latest objects operated from each user n in the historical
data, denoted as un = (u1

n, u
2
n, ..., u

M
n ), for learning. Let U denotes the en-

tire dataset from all users, i.e., U = {un|n 2 N}. The neural collaborative
filtering model can be modeled as a function of C

K(F (N , D)) = PK , which
takes N and D as the input, and outputs the recommendation probability of
each object j, i.e., pn = {pn(j)|j 2 D}, for each user n. Here, F represents
the neural collaborative filtering model and pn(j) satisfies 0  pn(j)  1 and
pn(1) + pn(2) + ... + pn(D) = 1 for n 2 N . C

K(·) function indicates the top-K
objects selected according to the recommendation probabilities. For each user
n, top-K recommended objects are denoted as r

K
n = (r1

n, r
2
n, ..., r

K
n ), and their

corresponding scores (i.e., probabilities) are represented as p
K
n . The recommen-

dation results of all users are denoted by R = {rK
n |n 2 N}.

We perform poisoning attacks by injecting fake users into the network and en-
abling them to perform certain operations to distort the recommendation results
for normal users. Assume there are N̂ injected fake users with each performing
at most M operations. Denote ûn = (û1

n, û
2
n, ..., û

M
n ) as the objects operated by

a fake user n and Û = {ûn|n 2 N̂ } as the complete set of objects of N̂ fake users.
As the fake users disguise themselves over the normal users, the recommender
system takes both normal users and fake users operations as the historical data
for training, denoted by Ũ = U [ Û , which naturally impacts the recommenda-
tion results. We denote r̃

K
n = (r̃1

n, r̃
2
n, ..., r̃

K
n ) as the top-K recommended objects

for a normal user n after poisoning attacks and denote R̃ = {r̃K
n |n 2 N} as

the recommended results for all users. The attacker will control the amount of
poisoned data operations (i.e., fake users and their operations) to achieve its
goal of demoting originally recommended objects or promoting target objects.

2.2 Attacks as Optimization Problems

We consider two types of poisoning attacks, i.e., availability attack and target
attack, with di↵erent profit requirements. In what follows, we will formulate
them as optimization problems with the objective of optimizing their respective
profits constrained by the available resources.
Availability Attack. The goal of availability attack is to demote the original
recommendation results by poisoning data into the training dataset to change
the NN output for the objects having top K highest probabilities. The profit of
an attacker depends on the degree of distortion of the recommendation results.
For its profit maximization, the attacker tries to achieve the largest discrepancy
between recommendation results before and after the attack. We formulate an
optimization problem in the following general form:

OPT-A: min S(R, R̃)
s.t. kÛk0  B, û

m
n 2 {c1, ..., cd} ,

(1)
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where S(R, R̃) represents the accuracy metric of the recommendation results
(R̃) after the attack, as compared with those before the attack (R). B rep-
resents the maximum limit of the poisoned data. With the L0-norm [21], the
resource constraints address both limited fake users and their operations. The
set of {c1, ..., cd} represents a fake user’s available operations. For example, in
Ebay, this set is {0, 1}, representing whether a user clicks one product or not; In
MovieLens, this set is {0, 1, 2, 3, 4, 5}, representing the rating score of one movie.
Target Attack. The goal of target attack is to not only distort the originally
recommended results but also promote the target objects to users. Let T =
{t

1
, t

2
, ..., t

K} denote the K target objects that an attacker wishes to promote.
We define a metric named the successful score, expressed as HT (·), to measure
the fraction of normal users whose top-K recommendation results include the
target objects after the attack. To maximize the successful score, an attacker
not only promotes target objects to as many users as possible but also promote
as many target objects as possible for each user. This two-faceted consideration
will be incorporated in the mathematical expression of HT (·), to be discussed
later. Such a problem is formulated in the following general form:

OPT-T: max HT (R̃)
s.t. kÛk0  B, û

m
n 2 {c1, ..., cd} .

(2)

The di↵erence between the problem formulations of the availability attack and
the target attack (i.e., OPT-A and OPT-T) lies in their objective functions.
We hope to design a general attack strategy, which can flexibly achieve di↵erent
goals by switching the objective function in a lightweight manner.

3 Availability Attack in Recommender System

In this section, we present our strategy for performing the availability attack
in neural collaborative filtering-based recommender systems. Assume that an
attacker can create or operate a set of fake users and inject bogus data into
the recommender system and distort the recommended results. The structure of
our attack model is illustrated in Fig. 1, where the flow with solid arrow lines
illustrates the general framework of a neural collaborative filtering model and
the flow with the dashed arrow lines represents our attack framework. The NN
model takes a user vector xn and an object vector x̄j as inputs to calculate
the score pn(j), denoting the probability of recommending object j 2 D to user
n 2 U . To perform the attack, an attacker collects a set of recommended results
and train an attack table A, used to serve as the guideline for the attacker to
determine the number of fake users and their operations. Details of the attack
process are elaborated in the sequence text.

3.1 Attack Model Design

In Fig. 1, xn and x̄j indicates one-hot encoding vectors that keep 1 in their
corresponding categorical entries and leave all other entries as 0. W1 and W2 are
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Fig. 1. Our attack framework.

two weight matrices that encode user vectors and object vectors into respective
dense vectors, as follows:

vn = W1xn , v̄j = W2x̄j , (3)

where vn and v̄j indicate the user n’s encoding vector and the object j’s encoding
vector, respectively. Here, both user and object encoding vectors are set to the
same size. We assume the attacker knows the neural collaborative filtering-based
recommender system used, but its detailed design is in black-box. According to
characteristic of this system, we calculate the similarity of two encoding vectors
from a user n and an object j by taking their dot product as follows: yn(j) =
v̄j · vT

n . Then, a Softmax layer is leveraged to calculate the probability of the
object j by considering all the objects in the dataset:

pn(j) =
e
v̄jv

T
n

P|D|
i=1 ev̄ivT

n

. (4)

To train this model to get W1 and W2, we employ the binary log likelihood [26]
as follows:

G(vn, v̄j) = Ljn log(�(v̄jv
T
n )) + (1� Ljn) log(�(�v̄jv

T
n )) , (5)

where Ljn = 1 when a user n has operated on an object j in the training
dataset (positive sample) and Ljn = 0, otherwise (negative sample) [11]. Sigmoid
function � [13] is leveraged to calculate the similarity of two encoded vectors and
Log likelihood is employed here for easy gradient calculation.

Given the historical data U , we can express the total likelihood function as:

G(U) =
X

n2N

X

v̄j2V̄n

⇥
Ljn log(�(v̄jv

T
n )) + (1� Ljn) log �(�v̄jv

T
n ))

⇤
, (6)
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where V̄n indicates the union of the positive and negative samples of a user n,
which is sampled for e�ciency consideration. To maximize G(U), the stochastic
gradient decent method is leveraged to solve it iteratively.

Based on our notations in Section 2, the number of normal users is N before
the attack and the historical data of user operations is U = {un|1  n  N}.
Assume the attacker injects a total of N̂ users, with the whole set of operations
being Û = {un|1  n  N̂}. With both historical and newly injected datasets, a
recommender system will maximize the following objective in the training phase:

G̃(Ũ) =
X

n2N

X

v̄j2V̄n

⇥
Ljn log(�(v̄jv

T
n )) + (1� Ljn) log �(�v̄jv

T
n ))

⇤

+
X

n2N̂

X

v̄j2V̄n

⇥
Ljn log(�(v̄jv

T
n )) + (1� Ljn) log �(�v̄jv

T
n ))

⇤
,

(7)

where the first summation term deals with the historical data of normal users
while the second summation term is for the injected bogus data.

To distort the recommended results through polluting NN training in Eqn. (7),
we first expand on the objective function of an availability attack presented in
Section 2.2 and then model the constraints of injected fake users and their opera-
tions. With mathematical expressions of the goal and constraints, our availability
attack is formulated and solved as an optimization problem, elaborated next.

3.2 Attack Objective Function

To distort the recommender system, the objective function of availability attack
should be able to measure the discrepancy of recommended results before and af-
ter attack, i.e., S(R, R̃). As the recommender system typically recommends the
top-K objects to a user, it is su�cient to consider only the top-K recommenda-
tions. Given the probabilities of all objects generated by the neural network, the
recommended results R and R̃ will store the objects that have the top K highest
probabilities for each user before and after the attack, respectively. Before the
attack, each object in the top-K recommendation list has a higher probability
than any object after the K-th one. After the attack, if successful, at least one
of the originally recommended objects, assuming object r

k
n 2 R for a user n, will

have a lower probability than the K-th object r̃
K
n 2 R̃ in the new ranking list, so

that the object r
k
n will have a low chance to be recommended to the user. Thus,

for each user n, we can define the following function to model the discrepancy
of recommended results before and after attack:

sgn[(pn(rk
n)� pn(rK

n )) · (p̃n(r̃K
n )� p̃n(rk

n))] =

8
<

:

1, p̃n(rk
n) < p̃n(r̃K

n );
0, p̃n(rk

n) = p̃n(r̃K
n );

�1, p̃n(rk
n) > p̃n(r̃K

n ).

where pn(rk
n) and pn(rK

n ) represent the probabilities of object r
k
n and the K-

th object, respectively, in the recommendation list R, while p̃n(rk
n) and p̃n(r̃K

n )
stand for the probabilities of an object r

k
n and the Kth object in the recommen-

dation results R̃ after the attack. Note that pn(rk
n) and pn(rK

n ) are known (i.e.,
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constant) while p̃n(rk
n) and p̃n(r̃K

n ) are variables, resulted from the poisoning at-
tack. The intuition of this equation is explained as follows. After the attack, if an
object r

k
n that is previously in the recommendation list R has a lower probability

than the K-th object r̃
K
n 2 R̃, r

k
n will not appear in the top-K recommenda-

tion list, and thus the function sgn(·) returns 1, indicating a successful attack.
Otherwise, sgn(·) returns 0 or �1, meaning an unsuccessful attack.

Furthermore, considering all the users, the discrepancy of recommended re-
sults, i.e., S(R, R̃) , is expressed as follows:

S(R, R̃) =
NX

n=1

KX

k=1

1

2
{1� sgn[(pn(rk

n)� pn(rK
n )) · (p̃n(r̃K

n )� p̃n(rk
n))]}, (8)

where 1
2 (1 � sgn(·)) is used to map the inner part over a value between 0 and

1. Minimizing S(R, R̃) implies minimizing the recommendation accuracy after
poisoning attack, and it is equivalent to maximizing the discrepancy of recom-
mended results before and after the attack. However, Eqn. (8) is not continuous,
unable to be solved directly. Based on the characteristics of 1

2 (1�sgn(x)), we use
1� 1

exp(�✓x) to approximate it by setting ✓ to an approximate value. After refor-

mulating Eqn. (8), we obtain the following objective function for min S(R, R̃):

min
NX

n=1

KX

k=1

{1� 1

1 + exp[�✓1(pn(rk
n)� pn(rK

n )) · (p̃n(r̃K
n )� p̃n(rk

n))]
}, (9)

where ✓1 is a positive parameter with its value adjusted into a suitable range.

3.3 Attack Constraints

We present the resource constraints for the injected fake users and operations.
Budget Constraints. To meet the resource limitation, the amount of injected
fake users and operations is constrained by a budget B, expressed as follows:

kÛk0  B , (10)

where Û denotes the set of fake users and their operations while kÛk0 represents
the L0-norm of their operations.
Operation Constraints. The operations of fake users are reflected in the attack
table A as shown in Fig. 1, which is used by an attacker to determine the
operations of each fake user on each object. Attack table A is defined with the
dimensions of N̂⇥D, with rows and columns representing fake users and objects.
Each entry �nj is a weight value in the range of [0, 1], indicating the likelihood
that a fake user n interacts with object j. By adjusting the weight values, the
attacker can change the strategies of operating its fake users, thus bending the
recommendation results. Each entry can be approximated as follows:

�nj =
1

2
(tanh(anj) + 1) , (11)
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where tanh(·) represents the hyperbolic tangent function.
We let each fake user n operate on at most M objects, i.e., ûn = (û1

n, û
2
n, ..., û

M
n ).

For a given fake user’s dense vector vn and an object’s vector v̄j , we can define
our expected output of object j for a fake user n as a reference function ỹn(j):

ỹn(j) = �nj · �(✓pv̄jv
T
n ) + (1� �nj) · �(�✓nv̄jv

T
n ), (12)

where ✓p and ✓n are shape parameters which adjust the sensitivity of user-
object relationship, with the value of 0.5 as a threshold. If �nj is larger than this
threshold, the attacker activates the operation. Since no attacker can manipulate
normal users, �nj is a variable only related to fake users. For normal users, �nj

is set to 1 if user i has relationship with object j, or set to 0, otherwise.

3.4 Solving the Optimization Problem

Based on our discussion, the availability attack can be reformulated as follows:

min S(R, R̃)

s.t.{W1,W2} argmax G̃(Ũ)

kÛk0  B, û
m
n 2 {c1, ..., cd}, û

m
n 2 Û .

(13)

We first solve the outer objective of min S(R, R̃) and then solve the inner ob-
jective of argmax G̃(Ũ).

We use Ea(vn, v̄k) to represent the inner part of Eqn. (9), i.e.,

Ea(vn, v̄k) = 1� 1

1 + exp[�✓1(pn(rk
n)� pn(rK

n )) · (p̃n(r̃K
n )� p̃n(rk

n))]
. (14)

Here, pn(rk
n) and pn(rK

n ) are constants and can be obtained from Eqn. (12) by
setting �nj to 0 or 1. p̃n(rk

n) and p̃n(r̃K
n ) are variables, derived via Eqn. (12) by

updating matrix A. To reduce the computation cost, p̃n(r̃K
n ) will be updated

only after we have finished one round of calculation on all objects and users. If
our attack is successful, E will be close to 0.

To model the goal of taking as few operations as possible, the L1 norm
is added to the inner part of objective function Eqn. (14), resulting in a new
function, denoted as lossa(vn, v̄k):

lossa(vn, v̄k) = Ea(vn, v̄k) + c|�nk|, (15)

where c is a constant that adjusts the importance of two objective terms. Now,
we use two phases to solve Eqn. (15).
Phase I: This phase aims to update � values in A, by minimizing the loss
function lossa, with a two-step iterative procedure stated as follows:

Step 1: We initialize the random value for each a in Eqn. (11) and employ
the gradient descent method to update a iteratively, as follows:

aik := aik � ⌘aralossa(vn,vk) , (16)
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where ⌘a is the step size of updating a.
Step 2: We fix the attack table A and update the ranking of reference recom-

mendation scores of all objects using Eqn. (12). According to the new ranking,
we can find the object r̃

K⇤
n .

The two steps repeat until the convergence criterion is satisfied, i.e., the
gradient di↵erence between two consecutive iterations is less than a threshold.
Phase II: This phase is to add the fake users and update the vector represen-
tation of injected objects. Again, a two-step iterative procedure is used:

Step 3: Assume the attacker will control one fake user n and select S objects
to perform the fake operations, we have: S = min{ B

N 0 , M}, where N
0 is the total

number of fake users.
Step 4: After adding a fake user and its operations to the training dataset, we

train new W1 and W2 by solving the inner optimization problem. Let vn and v̄j

denote the user vector and object vector, respectively. For an easy expression,
we denote the terms inside the summation in Eqn. (7) as L(vn, v̄j) and then
calculate the derivative of L(vn, v̄j) with respect to vn and v̄j , i.e.,

rjL(vn, v̄j) =
@L(vn, v̄j)

@v̄j
= (Ljn � �(v̄jv

T
n ))vT

n . (17)

Then, we update vj as follows: v̄j := v̄j + ⌘j · rjL(vn, v̄j), where ⌘j is the

update step. With respect to vn, we have: rnL(vn, v̄j) = @L(vn,v̄j)
@v̄j

= (Ljn �
�(v̄jv

T
n ))v̄j . Then, for each vi employed to aggregate vn, we have:

v
T
n := v

T
n + ⌘n ·

X

j

rnL(vn, v̄j)/(M � 1) , (18)

where ⌘n is the step size to update vn. Step 4 repeats until the convergence
criterion is satisfied, i.e., the object vector expression result changes negligibly.

Phase 1 and Phase 2 will repeat until the budget constraints are met or
the attack purpose is achieved.

4 Target Attack

The goal of target attack is to promote specific objects to the normal users.
The key challenge lies in designing an expression to measure the successful score

of a targeted object. Denote T = {t
1
, t

2
, ..., t

K} as the target objects that an
attacker wishes to promote to normal users. An attacker aims to promote the
target objects in T to the top-K recommendation list by making them ranked
higher than the highest recommended item r

1
n, formulated as follows:

sgn[(pn(rt
n)� pn(r1

n)) · (p̃n(r̂t
n)� p̃n(r1

n))] =

8
<

:

�1, p̃n(rt
n) > p̃n(r1

n);
0, p̃n(rt

n) = p̃n(r1
n);

1, p̃n(rt
n) < p̃n(r1

n).
(19)

In this function, r
t
n and r

1
n are constant, which are known for a recommender

system before attack. After performing poisoning attack, a success results in r̃
t
n
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ranked higher than r̃
1
n and sgn(x) returning �1; otherwise, the sgn(x) returns 1

or 0. Its corresponding successful score can be expressed by:

HT (R̃) =
NX

n=1

KX

t=1

1

2
{1� sgn[(pn(rt

n)� pn(r1
n)) · (p̃n(r̂t

n)� p̃n(r1
n))]}. (20)

To make this problem solvable, the successful score is approximated as follows:

max
NX

n=1

KX

t=1

{1� 1

1 + exp[�✓1(pn(rt
n)� pn(r1

n)) · (p̃n(r̂t
n)� p̃n(r1

n))]
}. (21)

The attack constraints illustrated in Section 3.3, i.e., budget and operation
constraints, can also apply to the target attack. Thus, target attack can be
formulated as follows:

max HT (R̃)

s.t. {W1,W2} = argmax G̃(Ũ)

kÛk0  B, û
m
n 2 {c1, ..., cd}, û

m
n 2 Û .

(22)

Like Eqn. (14), we have:

losst(vn, v̄t) = Et(vn, v̄t) + c|�nt|, (23)

where Et(vn, v̄t) is the inner part of Eqn. (21).
We can follow the similar procedure as in Phases 1 and 2 of Section 3.4 to

solve this problem iteratively.

5 Experiments

We implement the proposed attack frameworks and evaluate them by using three
real-world datasets from Amazon, Twitter and MoiveLens, as outlined next.

5.1 Datasets

Amazon [2]. This dataset contains the item-to-item relationships, e.g., a cus-
tomer who bought one product X also purchased another product Y . The his-
torical purchasing records are used by a recommender system to recommend
product to a user. In our experiments, we take the data in the Beauty category
as our dataset, which includes 1000 users and 5100 items.
Twitter [17]. The social closeness of users, represented by friend or follower
relationships, is provided in this dataset. Specifically, we use 1000 users and 3457
friendships in our evaluation.
MoiveLens [1]. This dataset is from a non-commercial and personalized movie
recommender system collected by GroupLens, consisting of 1000 users’ ratings
on 1700 movies. The rating scores range from 0 to 5, indicating the preference
of users for movies.
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5.2 Comparison

The state-of-the-art poisoning attacks target specific categories of recommender
systems: [19], [24], [9] aiming to the matrix factorization based, association rule
based, and graph based recommender systems, respectively. There is no straight-
forward method to apply them to the neural network-based recommender sys-
tems, making it infeasible to compare our solution with them. As far as we know,
there is no existing poisoning attack solution for neural collaborative filtering-
based recommender systems. Therefore, we propose to compare our solutions
with the baseline methods, as described next, to show their performance gains.
Baseline Availability Attack. An attacker randomly selects M objects, with
the number of injected fake users ranging from 1% to 30% of the users in the
historical dataset. Each fake user operates on these M objects to poison the
historical dataset. To be specific, in Amazon, each fake user purchases M selected
products; in Twitter, each fake user follows M other users; in MovieLens, each
user chooses M movies and rates them with random scores.
Baseline Target Attack. An attacker has a set of target objects T . Each fake
user randomly selects a target object from T and then selects another M � 1
popular objects in the network to operate on. The purpose of such a selection is
to build close correlation of the target object and the popular objects so as to
have the chance of being recommended. With respect to the selection of target
objects in this attack, we consider two strategies: 1) selecting objects randomly
and 2) selecting unpopular objects.

5.3 Performance of Availability Attack

We implement the neural collaborative filtering-based recommender systems for
the Amazon, Twitter and MovieLens datasets and then perform both our poi-
soning attack solutions and the baseline availability attack to distort the recom-
mended results. We set K = 30, i.e., recommending the top 30 objects.
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Fig. 2. Comparison of recommendation
accuracy of our availability attack and
the baseline method in Amazon with fake
users portions varying from 0 to 30%.
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Amazon. There are 1000 users selected, each with the latest M = 8 purchased
products as the historical dataset U . The neural collaborative filtering-based
recommender system takes the historical dataset for training and then makes
recommendations. We first randomly select 10 users for testing. Fig. 2 shows the
recommendation accuracy after performing our availability attack and baseline
attack with the portion (the percentage of inject fake users over the total normal
users in the historical data) of injected fake users increasing from 1% to 30%,
i.e., from 10 to 100 users. From this figure, it is obvious that our availability
attack significantly outperforms the baseline method in terms of reducing the
recommendation accuracy. Especially, the accuracy of recommendation drops
by 60%, 80% and 90% when the percentages of fake users are 5%, 15% and 30%,
respectively, in our availability attack. However, the recommendation accuracy
drops only by 0.1%, 2% and 9%, respectively, in the baseline attack.

We now exam our solutions on various amounts of testing users, including 10,
100 and 1000. Fig. 3 illustrates the recommendation accuracy outcomes, given
di↵erent amounts of testing users when injecting the fake user count ranging
from 1% to 30% in our attack. Intuitively, to achieve the same attack goal (in
terms of the accuracy drop rate), more fake users need to be injected to change
the correlation relationships of more testing users. However, our result is seen to
be highly e↵ective, i.e., recommendation accuracy drops less when the amount of
testing users rises. Specifically, to achieve a 60% accuracy decrease, our solution
only needs to inject 8% and 10% fake users respectively under 100 and 1000 users
in the test set. This demonstrates that an attacker can achieve an excellent attack
goal by resorting to only a small number of fake users.

Twitter. We select 1000 users and their corresponding relationships with other
users sampled from [17] as the training dataset, while another 1000 users and
their relationships are selected for testing. As it is hard to identify the latest
friends in Twitter, we let each user randomly select 8 friends. 10 users are ran-
domly selected from the test dataset as the targets to perform our proposed
attack and the baseline availability attack. Fig. 4 demonstrates the recommen-
dation accuracy after injecting the fake user count in the range of 1% to 30%
into the Twitter dataset. From this figure, the recommendation accuracy from
our attack is found to drop by 17.7%, 45.2% and 61.8%, when the portions of
fake users are 5%, 15% and 30%, respectively. Compared to the accuracy results
attained by the baseline availability attack, which drops by only 0.07%, 1.5%
and 5.7%, respectively, we conclude that our attack is starkly more e↵ective.

To show the e↵ectiveness of our attack on di↵erent types of users, we select
100 popular users that are followed by most users and 100 unpopular users
that do not have any follower. Besides, we randomly select another 100 users
as the third group of target users. Fig. 5 shows the results after our attack
on the three groups of users: the recommendation accuracy drops slower from
the popular dataset than from both random and unpopular datasets, with the
accuracy from the unpopular dataset dropping fastest. The reason is that the
popular users have more knitted relationships with other users, thus requiring
an attacker to invoke more operations to change such correlated friendships.
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However, for an unpopular dataset, the friendships relationship is much lighter,
thus making it far easier for our attack to change its correlation with others.
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Fig. 4. Comparison of recommendation
accuracy of our availability attack and
the baseline method in Twitter under a
range of fake users portions.
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MovieLens. We select 1000 users and their rating scores in a total of 1700
movies sampled from [1] as the historical data and use other 10 users as the test-
ing data. The portion of fake users increases from 0% to 5%, 10% and 30% when
conducting our attack while K value increases from 1 to 30. Figure 6 depicts the
recommendation accuracy of our attack with an increase in the K value under
various portions of fake users. In this figure, we can see the recommendation
accuracy drops less when K increases. The reason is that with a higher K value
(more recommendation results), the fake users need to change more correlations
among movies, thus lowering the successful rate. But with the portion of fake
users rising, the recommendation accuracy can drop more as the attacker in-
vokes more e↵orts to change the correlations among movies. Specifically, with
5% injected fake users, the recommendation accuracy drops by more than 50%.
This demonstrates the superior e↵ectiveness of our attack on the MovieLens.

Figure 7 shows the recommendation accuracy of baseline availability attack.
It is seen the recommendation accuracy drops less than that from our attack
(Figure 6). Even when the portion of fake users rises to 30%, it drops less than
14%, which is still worse than our attack with only 1% fake users injected. Thus,
the baseline solution is clearly outperformed by our attack.

5.4 Performance of Target attack

We define a metric hit ratio to indicate the fraction of normal users whose top
K recommendations contain the target items, after the attack.
Amazon. We use the same historical data in Amazon as in Section 5.3 and
select 1000 other users for testing. 30 products outside the original top 30 rec-
ommendation list are randomly selected as our targets. Figure 8 compares hit
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ratios of our target attack and those of the baseline method for various amounts
of injected fake users, ranging from 1% to 30%. It is seen that our target at-
tack significantly outperforms the baseline approach. Specifically, our attack can
achieve the hit ratios of 4.83%, 18.00% and 40.20%, respectively, under the in-
jected fake user count of 5%, 15% and 30%. However, the baseline method can
only attain the hit ratios of 0.00%, 0.7% and 5.36%, respectively.
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Fig. 8. Comparison of our target attack and the baseline method in Amazon under a
range of fake users portions in the dataset.

We then fix the amount of fake users to 5% of all normal users in historical
data (i.e., 50 users) and change the amounts of both desired recommended results
and target products. We randomly select the amount of target products from 1,
5, 10, to 30, while varying K from 1 to 5, 10 and 30. Table 1 lists the hit ratios
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from our attack and the baseline method. The hit ratios of both our attack
and the baseline method are found to increase with a larger K or more target
products. However, our attack always achieves a much higher hit ratio than the
baseline counterpart. For example, when the amount of target products is 10,
the hit ratios increase from 0.06% to 1.85% in our attack and from 0 to 0.09%
in the baseline method, respectively, when K varies from 1 to 30.

Table 1. Hit ratios of our target attack and the baseline method in the Amazon dataset

under a range of K values for a range of target products

hit ratio (%)
K

1 5 10 30

# of target products (Our attack)

1 0.01 0.03 0.08 0.31
5 0.03 0.10 0.54 1.02
10 0.06 0.15 1.17 1.85
30 0.08 0.27 1.32 2.17

# of target products (Baseline)

1 0.00 0.00 0.01 0.03
5 0.00 0.01 0.02 0.04
10 0.00 0.02 0.04 0.09
30 0.00 0.03 0.05 0.11

Twitter. We use the same sampled training and test datasets from Section 5.3
to perform the target attack. The portion of fake users is fixed to 10%, i.e.,
100 users, and K ranges from 1 to 5, 10 and 30. The target users are randomly
selected, with the user number varying from 1 to 5, 10 and 30. Table 2 provides
the hit ratios of our attack and the baseline method. It is seen that the hit
ratios increase with a larger K or more target users in both our attack and
the baseline counterpart. But our attack significantly outperforms the baseline
method. Especially, when K = 30, our attack can achieve the hit ratios of
0.39%, 1.02%, 2.21% and 4.62% with the number of target users varying from 1
to 5, 10 and 30, respectively, while the baseline method reaches the respective
hit ratios of 0.05%, 0.08%, 0.09 and 0.18%.

MovieLens. We use the same training dataset from Section 5.3 and sample
three categories of test dataset: random, unpopular, and low-ranking movies. For
each category, we randomly select 10 movies as the target set. For recommen-
dation, we consider the top 30 ones. Fig. 9(a) shows the hit ratios of our attack
under the three categories of target movie set. From this figure, we can see the
hit ratios of the unpopular and low ranking movie sets are lower than those from
the random set. The reason is that the unpopular and low ranking targets have
fewer correlations with others, thus making it much harder to promote them for
recommendations when compared with the random target set. Still, our attack
achieves 23% and 31% hit ratios by injecting 30% fake users. This demonstrates
the advantages of our proposed attack on promoting products.
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Table 2. Hit ratios of our target attack and the baseline method in Twitter dataset

under a range of K values for a range of target products

hit ratio (%)
K

1 5 10 30

# of target users (Our attack)

1 0.02 0.03 0.011 0.39
5 0.04 0.12 0.66 1.02
10 0.07 0.20 1.72 2.21
30 0.11 0.49 2.01 4.62

# of target users (Baseline)

1 0.01 0.01 0.03 0.05
5 0.01 0.01 0.04 0.08
10 0.01 0.02 0.05 0.09
30 0.02 0.04 0.07 0.18

Fig. 9(b) depicts the hit ratios of baseline target attack. Compared to Fig. 9(a),
the hit ratios under baseline attack are much lower than those from our attack.
Even in the random target movie set, the baseline has its hit ratio of only 0.048%
with the injection of 30% fake users.
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Fig. 9. Comparisons of hit ratios of baseline and our target attack in MovieLens on
the random, unpopular, low-ranking target sets for a range of fake users portions.

6 Conclusion

This paper proposes the first poisoning attack framework targeting the neural
collaborative filtering-based recommender system. We have studied two types of
poisoning attacks: the availability attack and the target attack, with the goals
of demoting recommendation results and promoting specific target objects, re-
spectively. By developing the mathematical models based on the resource con-
straints and establishing objective functions according to attacker’s goals, we
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formulated these two types of attacks into optimization problems. Through al-
gorithm designs, we solved the proposed optimization problems e↵ectively. We
have implemented the proposed solutions and conducted our attacks on the real-
world datasets from Amazon, Twitter and MovieLens. Experimental results have
demonstrated that the proposed availability attack and target attack are highly
e↵ective in demoting recommendation results and promoting specific targets,
respectively, in the neural collaborative filtering-based recommender systems.
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