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Abstract

Mutualistic symbioses are common, especially in nutrient-poor environments where an
association between hosts and symbionts can allow the symbiotic partners to persist and
collectively out-compete non-symbiotic species. Usually these mutualisms are built on an
intimate transfer of energy and nutrients (e.g., carbon and nitrogen) between host and symbiont.
However, resource availability is not consistent, and the benefit of the symbiotic association can
depend on the availability of resources to mutualists. We manipulated the diets of two temperate
sea anemone species in the genus Anthopleura in the field and recorded the responses of sea
anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont
density, symbiont volume, and photosynthetic efficiency of symbionts responded to changes in
sea anemone diet, but the responses depended on the species of sea anemone. We suggest that
temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying
the balance between heterotrophy and autotrophy in the symbiosis. Our data support the
hypothesis that symbionts are upregulated or downregulated based on food availability, allowing

for a flexible nutritional strategy based on external resources.

Key words: Anthopleura, context-dependent, eco-physiology, mutualistic symbiosis, sea

anemone, Symbiodiniaceae

1. Introduction
In nutrient-poor environments, mutualistic symbioses are common [1-3]. In these symbioses a
diverse set of nutrients are exchanged between partners, but the unifying theme is an exchange of

carbon and nitrogen. For example, in relatively nutrient-poor environments, partnerships form
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between legumes and rhizobia [4], fungi and algae (i.e., lichens) [5], and corals and algal
endosymbionts [6]. However, these environments are not static, and as resources for hosts and
symbionts fluctuate [7,8], the benefit to each partner may change, potentially disrupting the
symbiosis. Legumes in nitrogen-enriched soil no longer benefit from their symbiotic rhizobia [8],
lichens are impacted by nitrogen deposition [7], and coral-algal symbioses may break down as a
result of human-induced nutrient fluctuations [9]. Most previous studies have focused on
anthropogenic changes in nutrient availability; we know less about how natural fluctuations in
resources affect mutualistic symbioses in situ. A species that can obtain external resources when
they are plentiful and simultaneously maintain its association with symbionts could employ a
flexible nutritional strategy that depends on resource availability.

Scleractinian coral and their algal endosymbionts have been described using an
ecophysiological framework based on nutrient and energy exchange since these relationships
were first described [10,11]. Studies of coral-algal symbioses have informed our understanding
of metabolic exchange between symbiotic partners including autotrophic products from the algae
and heterotrophic nutrients from zooplankton captured by the coral [12—14]. In recent years, a
large body of research has focused on the breakdown between corals and their algal symbionts,
highlighting the importance of symbionts in coral metabolism [15,16]. However, symbiotic coral
species are obligate mutualists (with the exception of Astrangia poculata) where symbiont and
host derived nutrition are balanced and critical for survival; flexibility between autotrophic and
heterotrophic nutritional pathways is limited (but see [16—18]).

Some tropical and temperate sea anemone species are similar to corals in obligately
associating with algal endosymbionts [19], but many symbiotic sea anemones, especially

temperate species, are facultative mutualists [20]. In contrast to the nutrient-poor environments
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where corals and some tropical sea anemones live, temperate anemones often benefit from
nutrient-rich environments where prey are abundant [19,21], enhancing the potential for
nutritional flexibility in these symbioses. Symbiont densities in natural populations can vary
substantially, and these densities are affected by light intensity and temperature [22,23] [S.
Bedgood, unpubl. data]. At the same time, sea anemones are opportunistic passive suspension
feeders that rely on water currents, tides, waves, and chance to deliver potential prey, so food
availability can be unpredictable and can vary among individuals and across time [24-26].
Whereas several studies have addressed how starvation affects the relationship between
anemones and algal symbionts in lab manipulations of tropical [27-29] and temperate [30]
species, the applicability of these studies to field conditions remains unknown, as little is known
about how variation in food availability affects algal symbionts and their contribution to the host
sea anemones in the field. If the relationship between the sea anemone and its algal symbionts is
driven by the requirements of the anemone host, then symbionts would be downregulated when
prey are readily available and upregulated when prey are scarce. Here we investigate if realistic,
in situ changes in the food available to sea anemone hosts, based on naturally occurring
fluctuations observed in previous studies [24] [S. Bedgood, unpubl. data], affect the abundance,
photophysiology, and interactions between algal symbionts and their host sea anemone.

We studied Anthopleura sola and Anthopleura xanthogrammica, two sea anemone
species that host algal symbionts. Both species coexist on California rocky shores [31,32] [S.
Bedgood, unpubl. data], where light is abundant for photosynthesizing symbionts, and food is
washed in from adjacent intertidal habitats and the ocean. Both species are similar in size,
consume the same prey, and use similar habitat in the mid-intertidal zone [S. Bedgood, unpub.

data; this study].
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The algal symbionts within 4. sola and A. xanthogrammica at our study location are in
the family Symbiodiniaceae, the same group that includes symbionts in tropical corals [33].
These symbionts are in the genus Breviolum (previously Clade B) [34-36] and provide a
substantial portion of the anemones’ dietary carbon as demonstrated by stable isotope analyses
[37,38]. Genetic differences between symbionts in A. sola and 4. xanthogrammica at the same
site and tidal height are minimal in this region; genetically identical symbionts are found in both
sea anemone species [36]. Therefore, differences in the responses of symbionts are likely due to
differences between sea anemone species, not differences in symbiont identity.

The growth rate potential of symbiont cells is likely always higher than that of host cells
in cnidarian-algal symbioses, so it is crucial that the host has some control of symbiont density
[39]. Algal symbionts reproduce asexually within their anemone hosts resulting in higher
densities [37] and can vary in volume likely based on productivity [37,40]. Anthopleura
elegantissima (a congeneric co-occurring species) can exocytose and egest algal cells to control
their densities [41,42]. There are costs to maintaining high symbiont densities in this species,
most notably the production of oxygen radicals (H202) by photosynthesizing symbionts under
intense light that damage host cells [43,44]. While the mechanisms underlying control of
symbiont densities in Anthopleura spp. are not fully understood, symbiont densities are known to
be maintained by nitrogen availability within the host anemone [45,46], by coregulation of host
and symbiont cell cycles [47], and by symbiont degradation within the host in tropical cnidarian-
algal symbioses [39]. While the algal symbionts may increase their densities by reproducing
within the host, the anemone likely has substantial control of symbiont density.

If symbionts function as a partial substitute for captured prey, and there is a cost to the

host of maintaining high densities of symbionts within the tissue, then we would expect to



118

119

120

121

122

123

124

125

126

127

128

129

Page 6

observe reduced symbiont abundances when prey are abundant and/or higher abundances when
prey are scarce (Fig. 1). We hypothesize that this symbiotic partnership is nutritionally flexible
and therefore predict that realistic changes in host diet will influence three measures of symbiont
productivity (see Fig. 1). (1) Symbiont density — which we hypothesize is controlled by the host -
will increase when prey are removed and decrease when prey are added. (2) Individual symbiont
cell volume will decrease when prey are removed (i.e., more photosynthetic products are given
to the host and less is stored in the symbiont cell) and increase when prey are added (i.e.,
symbionts store photosynthetic products that are not translocated to the host, increasing cell
volume). (3) Photosynthetic efficiency will be affected by nitrogen availability within the host
(i.e., hosts with added prey may translocate more nitrogen to their symbionts). However, we do
not predict any change in photosynthetic efficiency when prey are removed, as hosts in nutrient-

rich environments are likely to retain nitrogen when prey are scarce.
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Figure 1. Predictions of algal symbiont contributions based on prey availability. Arrows represent the
flow of carbon and nitrogen from one source to another. The thickness of each arrow represents the
relative contribution and dashed lines represent a reduction in contribution. Predictions of algal
symbiont responses to sea anemone dietary changes (increase, decrease, or no effect) are listed under
each scenario.

2. Methods
(a) Site description and experimental treatments

Individuals of both sea anemone species (4. sola and 4. xanthogrammica; n = 28 each)
were located in the intertidal zone at Kenneth S. Norris Rancho Marino Reserve (35°32'24.32"N,
121° 5'34.12"W). Sea anemones were excluded if their largest closed crown diameter was less
than 40 mm because anemones smaller than this had distinctly different diets [i.e. no mussels or
sea urchins, S. Bedgood, pers. obs.]. We used the length and width of the closed crown to
calculate the area (using an ellipse shape) as a measure of anemone size at the beginning and end
of the experiment. All sea anemones were located between +0.4 m and +1.1 m above mean

lower-low water. Each 4. sola was paired with a nearby 4. xanthogrammica within the same

habitat. We used a blocked design consisting of 8 sea anemones (4 A. sola and 4 A.
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xanthogrammica) in close proximity (e.g., within the same tide pool) that matched all four
feeding and species treatments (n = 7 blocks).

Four treatments were maintained for three weeks in both species, beginning in June 2018.
Treatments included supplement, control, reduction, and probe. “Supplement” anemones were
fed either squid or mussel tissue once daily during the daytime low tide. These are representative
of the types of food items that Anthopleura spp. consume at this site [S. Bedgood, unpub. data].
The size of the prey items offered to each anemone was proportional to the anemone’s size and
ranged between 3 and 4 g wet mass. “Supplement” anemones likely captured additional prey, so
the added food supplemented their natural diet. We did not manipulate the anemones in the
control treatments, allowing them to capture prey as usual. We touched the tentacles of
“reduction” anemones, waited for their mouths to open, and reached in with a probe or fingers to
remove any prey that we found in the gastrovascular cavity. If possible, the prey items were
identified prior to being disposed of. We did this once daily during low tide. Since anemones
may digest prey within a few hours [20], this treatment likely represented a reduction in food
availability instead of complete removal. We treated the “probe” anemones the same way as the
“removal” individuals but did not remove any prey.

(b) Symbiont density and cell volume

We collected 2-3 tentacles with dissecting scissors from each sea anemone one week
before treatments began, one week after treatments were initiated, and three weeks after
treatments began. We immediately placed samples on ice and transported them to a -25 °C
freezer for storage within 24 hours of collection. Samples were thawed in the lab, and we then
separated the gastrodermal tissue layer from the epidermal layer by squashing samples between

two microscope slides until the clear, tough epidermal layer was devoid of any algal symbionts
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or gastrodermal anemone cells. We removed the epidermal tissue, added the remaining tissue to
1.5 mL of deionized water, and homogenized the tissue and water at 30 beats/sec for 5 min. This
method produced well-homogenized samples without breaking algal cells.

An aliquot of the homogenate was placed on a Brightline hemocytometer (Hausser
Scientific, Horsham, Pennsylvania, USA), and photos of each sample were taken on a
microscope at 200X magnification. To count the number of symbionts in each square (1 mm?, n
= 10), we loaded photos into F1JI [48], where we batch processed images with a custom macro
using the particle analysis function (see supplemental). To standardize the symbiont density, we
measured animal protein from the same homogenate using the Lowry Method [49] for protein
estimation with Bovine Serum as a standard [20,37].

We calculated symbiont volume using the same photos taken for symbiont density. We
batch-processed photos with the particle analysis function (see supplemental) using an ellipse-
shape fit of particles. Using the length and width output, we calculated the volume based on

Hillebrand et al [50], assuming a prolate spheroid shape as described for Symbiodiniaceae.
(c) Chlorophyll a

We took a 1 mL aliquot from the homogenate for chlorophyll a (Chl a) analysis. The
homogenate was centrifuged at 2000g for 5 minutes to create an algal pellet. The supernatant
was discarded, and we added 5 mL 90% acetone to each sample. Samples were stored at -25°C

overnight before being read on a Turner Design Trilogy Fluorometer.
(d) Photosynthetic efficiency

We quantified the symbionts’ photosynthetic efficiency (Fv/Fm of dark-adapted

Photosystem II) using a Pulse Amplitude Modulation (PAM) fluorometer (Heinz Walz GmbH,
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Efteltrich, Germany) to determine the effect of host feeding on photosynthetic electron transport.
Chlorophyll a concentrations give an estimate of photosynthetic activity potential, but combining
those data with measurements of the photosynthetic efficiency of chlorophyll provides further
insights into photosynthetic productivity responses. PAM measurements of sea anemones were
taken in the dark, between 04:00 and 05:00, on the same days we collected tissue samples. Most
anemones were closed when measurements were taken, so the sensor was placed at the top of the
anemone column, where symbionts are present but at a lower density than in the tentacle tissue
[51] (and see supplemental). If the anemone was open, we disturbed it and waited for it to close.

We took the average of three measurements of each anemone.
(e) 813C analysis

We collected a 1 cm? piece of tissue that included both tentacles and column from 4
random sea anemones in the control, supplement, and reduction treatments to estimate the
contribution of symbiont photosynthate and prey to the anemone’s dietary carbon budget.
Because this sampling method harms (but does not kill) the animals and could compromise
further measurements, these samples were collected at the end of the experiment. Samples were
homogenized as described previously. The homogenate was then centrifuged at 2000g for 5 min
to separate the anemone cells from the algal symbiont cells. The top layer of anemone cells was
then agitated, and the supernatant with suspended anemone cells was removed. Both the algae
portion and anemone portion (supernatant) were re-homogenized and centrifuged 2-3 more times
to remove any non-target cells. Both the symbiont and anemone portions were placed on separate
microscope slides and dried (60 °C for > 48 hr) before analysis at the UCI Stable Isotope Ratio

Mass Spectrometry Facility.

(f) Statistical analyses



210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Page 11

We conducted all analyses in R 3.6.2 and RStudio 1.2.5003 [52] using the packages Ime4
to create general linear mixed models (GLMMs) and emmeans for post hoc analyses. We
checked the diet composition data for normality with a Shapiro-Wilk Test, and then used a paired
t-test to compare anemone diets. We used GLMMs paired with ANOV A and Tukey post hoc
analyses to analyze §'3C, symbiont density, symbiont cell volume, and photosynthetic efficiency.
Data from the two anemone species were typically analyzed separately. §'3C values were
analyzed using GLMMs with the main effects of treatment and tissue type (anemone and
symbiont) and a random effect of anemone. Symbiont density, symbiont cell volume, and
photosynthetic efficiency were measured over time with two control groups, so we compared
treatment groups in pairs through time: control/supplement and probe/reduction. These data were

analyzed with GLMMs with main effects of treatment and time and a random effect of anemone.

(3) Results
(a) Composition of diets

Prey were found in the gastrovascular cavity of A. xanthogrammica almost twice as
frequently as in 4. sola (paired t-test: t = -3.56, p = 0.003). Prey were found within A. sola during
12.92 + 2.31% (mean + SE) of daily checks, while prey were found within A. xanthogrammica
during 23.47 + 3.18% of checks. The greatest proportion of both species’ diets (40% of
observations) was composed of the California sandcastle worm, Phragmatopoma californica.
Other prey items included limpets, hermit crabs, and sea urchins, but each of these comprised
less than 10% of diets. There was no apparent difference in the diet composition of the two
anemone species. The frequency of prey was 0.90 + 0.22 items per week for 4. sola and 1.64 +
0.15 items per week for A. xanthogrammica. We removed an average of 2-6 items from each

anemone in the “reduction” treatment over the course of the experiment. The diet supplement
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treatments received an additional prey item daily, which represented a substantial increase from
ambient prey capture rates. However, this frequency of food availability is not uncommon during
periods of high wave exposure, when all anemones surveyed had at least one prey item on
consecutive days.

(b) Stable isotope analysis

Anemone diet affected §'3C values (GLMM ANOVA: 4. 5. = 4. sola treat*portion - F =5.73, p
=0.025; A. x. = A. xanthogrammica treat - F'=9.74, p = 0.007), but this result was largely
associated with the algal symbiont portion for both species (Fig. 2). Symbionts from
“supplemented” anemones had §'°C signatures that were 2-5%o lower than the controls (GLMM
Tukey HSD: 4. 5. - t=-4.89, p=0.001; 4. x. - t=-4.1, p =0.004), but reduction of diet had no
effect (4. 5. - t=1.96, p=0.165; 4. x. - t =-0.84, p = 0.684). §'3C values did not differ between
anemones and their algae within a treatment, except in the supplement treatment where the

symbionts had a lower 8!°C (4. 5. - t=3.0, p=0.015; A. x. - t=2.57, p = 0.033).
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A. sola Supplement prey A. xanthogrammica

-151 Treat*Portion p = 0.025 1 . Treat p = 0.007
a Treat p = 0.011
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Tissue: = Anemone ®E Symbiont

Figure 2. Boxplots with overlaid data points (n = 3 or 4) showing 813C (%) values for A. sola, A.
xanthogrammica, and supplemented prey items. Tissue samples from anemones were separated into anemone and
algal symbiont portions before analysis. Comparisons are made among the control, reduction, and supplement
treatments. Significant main effects and interactions from GLMMs are listed in the upper right-hand corner of
each graph with p-values. Asterisks above the x-axis signify significant differences between portions within a
treatment from a Tukey post hoc analysis. Lowercase letters represent significant differences among treatment
groups within the algal symbiont portion.

(c) Symbiont density and chlorophyll a

The symbiont density was affected by treatment (GLMM ANOVA: 4. 5. - F=5.06, p = 0.044)
and the effect of treatment changed over time (4. x. - F'=7.69, p = 0.003), but the effect was
observed in different treatment groups in each anemone species. In 4. sola, supplementing food
resulted in decreased symbiont densities after one week of treatment (GLMM Tukey HSD: ¢ =
2.74, p = 0.01), but symbiont density did not increase when food was reduced (t =1.39, p =
0.173). In A. xanthogrammica, supplementing food did not affect symbiont density (t =-0.17, p
=0.869), but reducing food increased symbiont density after one week of treatment (t = -4.23, p
<0.001). All symbiont density measurements changed over time (Figs. 3, 4) due to an increase in
symbiont density after one week. Chl a per symbiont was not affected by treatment (GLMM

ANOVA: 4. s. reduction - F=0.83, p =0.378; 4. 5. supplement - F'=0.63, p = 0.444; A. x.
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reduction - F=0.17, p = 0.684; A. x. supplement - F'=1.37, p =0.264), so Chl a concentrations
tracked symbiont density measurements closely throughout the experiment (Figs. 3 and 4).
However, while there was no effect of supplementation on symbiont density in 4.
xanthogrammica, the Chl a concentration in the supplement treatment was lower than the control
at week three (Fig. 4; GLMM Tukey HSD: = 2.55, p = 0.017). Anemone growth (final size —
initial size / initial size) was not different among treatment groups at the final time point
(ANOVA: 4. s. reduction - F=0.28, p =0.607; A. 5. supplement - F'=0.29, p = 0.603; 4. x.
reduction - F'=1.97, p = 0.186; 4. x. supplement - F'=2.95, p =0.112), so anemone growth did
not affect symbiont density measurements asymmetrically among groups.

(d) Symbiont cell volume

Both sea anemone species had larger symbionts in the supplement treatment (GLMM Tukey
HSD: 4. 5. - t=-4.69, p <0.001; 4. x. - t =-2.26, p = 0.033; Figs. 3, 4) and symbionts were
marginally smaller in A. xanthogrammica where food was reduced (t = 2.05, p = 0.051). There
was a main effect of time in both species and treatment comparisons where symbiont volume
generally decreased over the course of the experiment (4. s. reduction - F'=25.1, p <0.001; 4. s.
supplement - F=17.2, p <0.001; 4. x. reduction - F=11.5, p <0.001; 4. x. supplement - F' =
4.20, p = 0.028).

(e) Photosynthetic efficiency

The photosynthetic efficiency of algal symbionts was higher in 4. sola than in A4.
xanthogrammica at the start of the experiment (paired t-test: = 5.72, p <0.001). This difference
persisted throughout the experiment, except when food was supplemented. Then, photosynthetic
efficiency in 4. xanthogrammica increased from 0.56 =+ 0.05 (mean + SE) to 0.71 + 0.01 Fy/Fi

(GLMM Tukey HSD: ¢ =-2.91, p = 0.006) and did not differ from the mean photosynthetic
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281  efficiency of the control treatment 4. sola symbionts (0.67 £ 0.01 F\/Fn) by the end of the
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283  through time for all groups (Figs. 3,4; GLMM ANOVA: 4. s. supplement - F'=5.61, p=0.01; A.
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285  reduction pairing (F'=1.74, p = 0.198).
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Figure 4. Boxplots showing symbiont density, chlorophyll concentration,
symbiont cell volume, and photosynthetic efficiency of symbionts within A.
xanthogrammica throughout the experiment. Comparisons are made between the
supplement and reduction treatments and their respective control treatments. The
vertical dashed line represents the start of treatments. Significant main effects and
interactions from GLMMs are listed in the upper right-hand corner of each graph
with p-values. Asterisks above the x-axis signify significant differences between
controls and treatments at a given time-point from a Tukey post hoc analysis. n =
7 for each treatment at each time point.
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(4) Discussion

Algal symbionts within two species of sea anemone responded to changes in anemone
diet, but the responses differed between the anemone species and changed over the course of the
experiment. Our framework for dietary carbon-source switching (Fig. 1) was supported by our
results, but support for our predictions depended on the anemone species. Symbionts within A.
sola responded to diet supplementation, and symbionts within 4. xanthogrammica responded to
both reduction and supplementation. This may be associated with the fact that 4.
xanthogrammica captured twice as many prey items as 4. sola, so the reduction treatment had a
larger impact on 4. xanthogrammica than on A. sola. Supplementation affected both species,
resulting in reduced §'°C values in symbionts. Furthermore, §'°C did not differ between
anemones and their symbionts, except where food was added. Lower §'*C values have
previously been associated with an increase in heterotrophy in corals [53] and in Anthopleura
anemones [37,38]. A lower §'3C signature (supplement treatment) occurs when algae selectively
incorporate the lighter carbon isotope (12C) over the heavier isotope (°C). Highly productive
algal symbionts at high densities cannot choose the lighter carbon isotope because CO; is limited
within the host tissue, resulting in a heavier carbon isotope signature (reduction and control
treatments) [54].

Symbiont densities were affected by host dietary changes, but underlying mechanisms are
not well-understood. It is likely that the sea anemone host benefits from a reduction in symbiont
density when they are unnecessary (supplement treatment) as they can cause damage to tissue via
oxygen radicals [43,44]. The host would also benefit from an increase in symbiont density or

chlorophyll when heterotrophic diet decreases (reduction treatment) to compensate for lost
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dietary carbon as an increase in either would allow for increased translocation of photosynthetic
products from the symbionts to the host (Fig. 1).

The anemone-algae holobiont responded to supplementation of the host diet largely by
decreasing symbiont density and/or chlorophyll while increasing symbiont cell volume. This
could have resulted from egestion of symbionts or by the slowing of symbiont reproduction
within the host. The remaining symbionts may have been larger because they were able to store
resources rather than translocate them to the host or because they did not asexually reproduce.
More research is needed to fully understand the mechanism(s) driving symbiont volume changes
in these anemones. Regardless of the mechanisms, those anemones that received more external
resources (prey) had lower autotrophic potential (fewer symbionts and/or lower chlorophyll).
However, symbionts within 4. xanthogrammica may have compensated for the decrease in
chlorophyll by increasing photosynthetic efficiency.

Reduction of host diet had an effect on A. xanthogrammica and its symbionts but not on
A. sola. Symbiont density increased and symbiont volume decreased when food was reduced in
A. xanthogrammica, suggesting that the anemone host maintained a higher symbiont density to
compensate for the loss of dietary carbon by either retaining symbionts that would otherwise be
egested or by increasing the reproduction of symbionts. A. xanthogrammica anemones that
received fewer external resources had higher autotrophic potential (symbiont density and
chlorophyll), but the effect was short-lived and disappeared after three weeks of treatment.

Our results suggest there is a trade-off between sources of nutrition — external and symbiont-
mediated — in this mutualism. Similar previous work that involved starving sea anemones under

laboratory conditions provided conflicting perspectives on the effect of host diet on symbiont
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density [29,55,56], but we show here that realistic, in situ changes in sea anemone diet reveal
ecologically relevant trade-offs in symbiont-host nutrition that were previously unexplored.

Not all algae-hosting cnidarians can switch carbon sources. Tropical corals tend to lose
symbionts when starved [57,58], suggesting that symbionts do not serve as a comparable
nutritional pathway in the absence of heterotrophy (but see [59]). This is likely because most
tropical corals are obligate mutualists, whereas Anthopleura anemones are facultative. A better
comparison may be to a freshwater hydra where algal symbiont density decreases immediately
after predatory feeding [60] and increases with starvation [61].

Analogous partner interactions exist in terrestrial mutualisms where legumes host fewer
rhizobium (via nodules) when external sources of nitrogen are available in the soil [62,63] and
the benefit and cost of arbuscular mycorrhizal fungi to plants is dependent on environmental
resources [64]. Holobionts with flexible nutritional strategies — like the ones we describe here —
may be able to withstand periods of resource limitation, allowing species to persist in an
otherwise inhospitable environment. Interactions between hosts and symbionts are dependent on
external resource availability in normally nutrient-poor environments. Some mutualisms may
break down as a result of perturbations [8,65], but others are flexible, requiring more from
symbionts when nutrients are scarce or less from them when nutrients are abundant [60,61,66].
Future research on flexible mutualisms should focus on how realistic fluctuations of external
resources affect the production and storage of resources by symbiotic partners.

Our results suggest that even modest changes in resource availability have the potential to
alter the interaction between partners in a mutualistic symbiosis, but those changes are species-
specific even in congeneric species sharing the same symbiont. We found evidence for a trade-

off between autotrophic and heterotrophic nutritional pathways within an algal-symbiont hosting
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sea anemone, but these pathways are not equal. We propose that autotrophy allows for
persistence, but growth likely requires heterotrophy as evidenced in this and other studies on
cnidarians [61,67]. Anemone hosts and algal symbionts respond to changes in heterotrophic diet
by altering their interactions with each other, compensating for externally derived nutrition. The
potential for flexible nutritional strategy in other mutualistic symbioses is largely unexplored,
especially in systems where environmental resources are naturally stochastic.
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