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Alignment interactions drive structural transitions in biological tissues
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Experimental evidence shows that there is a feedback between cell shape and cell motion. How this feedback
impacts the collective behavior of dense cell monolayers remains an open question. We investigate the effect
of a feedback that tends to align the cell crawling direction with cell elongation in a biological tissue model.
We find that the alignment interaction promotes nematic patterns in the fluid phase that eventually undergo a
nonequilibrium phase transition into a quasihexagonal solid. Meanwhile, highly asymmetric cells do not undergo
the liquid-to-solid transition for any value of the alignment coupling. In this regime, the dynamics of cell centers
and shape fluctuation show features typical of glassy systems.
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I. INTRODUCTION

Eukaryotic cells at high packing fraction organize them-
selves into confluent monolayers, develop collective motion,
and trigger a variety of patterns that play a fundamental role
in complex biological processes ranging from wound healing
to metastasis invasion [1,2]. Pattern formation in biological
tissues involves length scales that are much bigger than the
typical cell length. This observation suggests that a coarse-
grained model of biological tissues needs to take into account
only a few key ingredients of the single-cell dynamics [3].
Different approaches have been developed during the past
few decades to capture the large-scale behavior of biological
tissues [3–6].

Experimental studies discovered that biological tissues
show glassy dynamics, support viscoelastic response, and be-
have as a disordered soft material in the vicinity of jamming or
glassy transition [7–16]. However, different from particulate
systems, cell shape anisotropy is the driver of the jamming
transition in confluent monolayers [17–19]. Thus, cell shape
and its fluctuations are important ingredients that have to be
taken into account in a mesoscopic description. Shape fluc-
tuations can be introduced in different ways [4,5,20]. Among
the other alternatives, Vertex and Voronoi models are success-
ful coarse-grained descriptions that have been tested against
different experiments in the past few years [17,19,21–29].

Because cells can move autonomously, biological tissue
can be seen as a soft and active material [30]. It has been
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shown that feedback mechanisms at the single-cell level can
trigger collective motion [21,31–33]. Besides promoting col-
lective migration, alignment interactions can also change the
structural properties of a biological tissue [21]. Structural
changes and morphological transitions play a fundamental
role in morphogenesis and organogenesis [34]; however, the
key ingredients responsible for self-organization and spatial
differentiation in organoids are still poorly understood. Con-
sequently, isolating the few fundamental ingredients that play
the role of control parameters for the emergent structural
organization allows us to gain insight into complex biological
processes.

Cells become elongated during motion and tend to move
along the direction of their long axis. As a consequence,
cell motility is correlated with cell anisotropy [35,36]. Recent
studies on phase-field models show that minimal dipolar inter-
actions in monolayers of isotropic cells promote spontaneous
symmetry breaking and nematic order [37].

In this paper, we introduce a generalization of the
Voronoi model of biological tissues where we consider a
minimal alignment interaction between cell shape and cell
displacement. We show that the feedback between shape
and displacement triggers morphological transitions in the
confluent monolayer. The alignment interaction acts as an
inverse effective temperature that cools down the system
as the intensity of the interaction increases. Starting from
fluid configurations, the liquid becomes weakly nematic as
the interaction is turned on. For higher values of the align-
ment interaction, the system falls into a hexagonal disordered
solid [38,39]. We observe that the alignment interaction pro-
motes the formation of cooperative clusters that tend to

2470-0045/2021/104(4)/044606(12) 044606-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3983-8161
https://orcid.org/0000-0001-5753-1126
https://orcid.org/0000-0002-8571-1404
https://orcid.org/0000-0002-6187-5025
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.044606&domain=pdf&date_stamp=2021-10-14
https://doi.org/10.1103/PhysRevE.104.044606


MATTEO PAOLUZZI et al. PHYSICAL REVIEW E 104, 044606 (2021)

slow down the dynamics and trigger the proliferation of
dynamical heterogeneities typical of glassy systems. Glassy
dynamics involve both the correlation of density fluctu-
ations, as in the case of supercooled liquid, and shape
fluctuations.

II. KINETIC MONTE CARLO VORONOI MODEL

We implement a kinetic Monte Carlo (KMC) dynamics
based on a Voronoi model of biological tissues [40]. The
confluent monolayer is represented through the Voronoi tes-
sellation of the N cell centers (labeled by i=1, . . . ,N , of
coordinates ri = (xi, yi ), in a two-dimensional square box
of side L=√

N with periodic boundary conditions). Let
r≡ (r1, . . . , rN ) be a configuration of the system. The dy-
namics is governed by the following configurational energy
[18,19,26,40–42]:

E [r] =
∑
i

[Ka(ai − a0)
2 + Kp(pi − p0)

2], (1)

where the function ai and pi return the value of the area and
the perimeter of the ith polygon of the Voronoi tessellation.
Cell area and cell perimeter fluctuate around the preferred (or
target) values a0 and p0, their fluctuations are regulated by the
stiffnesses Ka and Kp. The square deviation from a0 enforces
the constraint of incompressibility in three dimensions. The
square deviation from p0 encodes the competition between
cell-cell adhesion and active contractility in the actomyosin
cortex [19]. In the following, we set a0=1, Kp=Ka=1,
and we express Eq. (1) in terms of the target shape index
s0= p0/

√
a0 [42]. We sample stationary configurations of the

energy functional Eq. (1) numerically using a Monte Carlo
algorithm in which we propose time-correlated trial moves for
the cell centers. This algorithm is general enough to capture
two key features of the real cell movement dynamics: (i) Cells
usually move at a velocity that can fluctuate in magnitude
[43], this is ensured by the noise parameter T that enters in
the Monte Carlo algorithm, and (ii) Cells displace positively
correlated steps on a microscopic timescale τ [43,44], which
is the second parameter of the algorithm. Voronoi and Ver-
tex models develop a rough energy landscape where energy
barriers separate local minima [18,19,42]. MC algorithms are
particularly suitable for reaching steady-state configurations
in these situations [45,46].

Here the persistent motion typical of active systems is
modeled using time-correlated trial displacements. We also
consider an alignment interaction acting between the direc-
tion where the cell is elongated and the crawling direction.
Indicating with δi,t the displacement performed by the cell
i at the time step t , and adopting polar coordinates, we can
write δi,t = δi,t (cosφi,t , cosφi,t ), with δi,t = |δi,t |. The angle
φi,t determines the direction of the displacement. The shape

tensor Qi = (
∑Ni

v

l=1 �rl,i ⊗ �rl,i )/Ni
v encodes information on

cell shape, where Ni
v is the number of cell i vertices, �rl,i =

rl,i − rCM,i is cell i’s lth vertex position, rCM,i indicates the
center of mass, and the symbol⊗indicates the standard diadic
product. In our case, Qi is a 2×2 symmetric matrix. The
eigenvector corresponding to the largest eigenvalue defines
the direction of maximum cell elongation. We explore the ef-
fect of a nematic alignment interaction between the principal

FIG. 1. Pictorial representation of the model. The blue line repre-
sents the direction n̂i of the largest eigenvalue of the shape tensor (the
direction in the laboratory frame is parametrized by the angle αi). The
red arrow is the self-propulsion direction êi (that is parametrized by
the angle φi). The alignment interaction tends to reduce the distance
αi − φi.

axis of elongated cell shape (parametrized through the angle
αi) and the crawling direction (parametrized by the angle φi).
The alignment interaction is sketched in Fig. 1. For enforcing
the alignment interaction, at each MC step, we update the new
direction φi using the following rule:

φi,t+1 = φi,t − J sin 2(φi,t − αi,t ). (2)

At the beginning of the time step t+1, the alignment in-
teraction in Eq. (2) tends to align the (trial) displacement
performed during the previous time step δi,t . Once updated
the displacement direction, we propose the trial move

ri,t+1=ri,t +δi,t , (3)

and then we evolve the displacement

δi,t =δi,t−1+δ1ηi (4)

with the condition δi,0=δ0ηi [47], i.e., in this way, the trial
moves are correlated on a timescale τ = (δ0/δ1)2τMC [47,48]
(the Monte Carlo time step τMC is defined as the succession
of N elementary moves [46]). The components of the random
vector ηi are extracted from a uniform distribution indepen-
dently at each time step. The distribution is centered around
zero and has unit variance. Moreover, following Refs. [47,49],
the displacements are constrained to be |δi,t |�δ0 and δ0�δ1
(in our simulations δ0 = 0.25).

The time evolution of the displacement δi,t introduces a
correlation on the timescale τ so that 〈δi,tδ j,s〉 ∼ δi, je−|t−s|/τ
[47,48], as well as in the case of active Ornstein-Uhlenbeck
particles [50–54]. The model interpolates between an equi-
librium relaxation dynamics for τ = 0, representing cells
that perform a random crawling, to a persistent nonequilib-
rium dynamics characterized by a ballistic regime on short
timescales, which is the hallmark of self-propelled motion at
low Reynolds numbers. It is important to stress that, although
the time evolution of φi given by Eq. (2) is deterministic, once
we evolve δi,t with Eq. (4), the stochastic term δ1ηi introduces
a rotational noise on φi that makes it to diffuse with a ro-
tational diffusion constant Dr ∝ τ−1. The trial move is thus
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FIG. 2. Representative snapshots of steady-state configurations
taken in the weakly nematic liquid phase (a), disordered solid phase
(b), and in the glassy regime (c). The color indicates the modulus of
the velocity in the laboratory frame from zero (dark) to its maximum
value (yellow). The alignment interaction acts as an inverse effective
temperature: As the strength of the interaction increases, velocity
fluctuations become strongly inhibited promoting solidification. In
the glassy regime, we observe the formation of dynamically hetero-
geneous regions (highlighted by the dashed white circles).

accepted with probability Pacc∝exp (−�E/T ), with �E ≡
E [rt+1] − E [rt ]. We perform simulations of a tissue com-
posed of N=100, 400, 1600, 6400 cells with T =0.002, 0.05
and τ =200 (in Monte Carlo unit τMC).

III. PHASE DIAGRAM

We study the phase diagram of the tissue using as control
parameters s0 and J . The target shape index s0 tunes the
typical cell asphericity, i.e., the larger is s0 the more elongated
is the cell [19]. We anticipate that the system shows a liquid-
solid transition that is driven by the alignment coupling J .
We perform numerical simulations in a region of the phase
diagram where the system at finite temperature T behaves as
a fluid for any values of τ at J=0 (the phase diagram in the T
versus τ plane for J=0 is shown in Appendix B).

In Fig. 2 we report three representative snapshots taken in
the liquid, solid, and glassy regime. We observe an increase
in velocity fluctuations as s0 increases (see the Appendix C).
However, J triggers the formation of islands of slow-moving
cells, as shown in Fig. 2. For J 	=0, the system develops
nematic patterns as signaled by a nonvanishing value of
the nematic order parameter S. We monitored the average

cell anisotropy via the parameter � = 〈 (λi
1−λi

2 )
2

(λi
1+λi

2 )
2 〉, where the

eigenvalues of the shape tensor λi
1,2 are sorted in a way so

that λi
1 > λi

2. Our analysis reveals a jump to lower values
of � crossing the liquid-to-solid transition. We anticipate
that, in the solid phase, the system arranges into hexagonal
patches with� 	= 0 but small. Moreover, from the study of the
relaxation dynamics of the principal axis, we obtain that axis
fluctuations decorrelate on a finite timescale and no flipping
dynamics between the two principal directions occurs (see
the Appendix F). These findings show that the alignment
interaction is always well defined.

IV. STRUCTURAL PROPERTIES

We start our quantitative discussion from the phase dia-
gram which is shown in Fig. 3(a). The phase diagram has
been obtained considering the long time behavior of the mean-
squared displacement �r2 (defined in the Appendix A) as

a dynamic order parameter [19], i.e., looking at the effec-
tive diffusion constant Deff≡ limt→∞ �r2/(4t ) [19,21]. The
typical behavior of �r2 is shown in Figs. 3(b) and 3(c) for
s0=3.0, 3.8. As one can see, �r2 undergoes a crossover from
a ballistic regime on short timescales, i.e., �r2∼ t2, to a diffu-
sive regime, i.e.,�r2∼4Defft , for longer times. As J increases
in intensity, we observe two different behaviors in �r2. For
small s0 values [Fig. 3(b)], �r2 discontinuously develops a
plateau right after the ballistic regime. This fact signals a
liquid-solid transition. For larger s0 values [Fig. 3(c)], the
plateau is replaced by a subdiffusive regime. Figure 3(d)
shows Deff as a function of J . Through this analysis, we
identify three regimes in the phase diagram [see Fig. 3(a)]:
a liquid phase for small J values, a solid-state, at larger J
values and small s0, and a glassy regime, where �r2 develops
a subdiffusive behavior at intermediate times.

To gain insight into the structural properties of the system,
we take a look at the positional and orientational order. We
start our discussion with the order parameter ψ6 (see the
Appendix A for its definition) for revealing the presence of
sixfold order. ψ6 leads to the phase diagram that is shown in
Fig. 3(e), where the color map indicates the magnitude of the
order parameter. The behavior of ψ6 indicates that the solid
phase is characterized by hexagonal order [see Fig. 3(f)]. In
agreement with early studies on Vertex models [26,28], for
higher J values, the transition between a glassy fluid and
a disordered hexatic solid phase matches the critical value
of a regular hexagon s0=shex0 ∼3.722. Complementary infor-
mation about the positional order is provided by the static
structure factor S(qx, qy) which allows us allows to visualize
the emerging ordered patches. In Figs. 3(g) and 3(h) we report
S(qx, qy) in the glassy [Fig. 3(g)] and in the solid [Fig. 3(h)]
phase. The solid phase shows hexatic patches that are com-
patible with a disordered hexagonal solid. The increase in
positional order in the solid regime is signaled by marked
damped oscillations in the g(r) that imply the lack of a true
crystalline structure [g(r) is reported in the Appendix D].
The order parameter ψ6 jumps almost discontinuously at the
transition [see Fig. 3(f)] providing evidence for an increase
of hexatic order in the solid phase rather than in the liquid
[38,39].

The control parameter that triggers the transition between
liquid and solid is the alignment coupling J which plays the
role of an (inverse) effective temperature. For rationalizing
this effect, we consider the simplest case where each cell is
represented by a self-propelled spheroid undergoing an active
Brownian dynamics with self-propulsion velocity v0, and rota-
tional diffusion τ−1. During the dynamics, each particle tends
to (i) minimize the mechanical energy, and (ii) align toward
the direction given by αi. We indicate with r0 = (r1, . . . , rN )
the inherent state configuration that minimizes E [r], i.e.,
∇E |r=r0 = 0, and we linearize the dynamics around those
minima [19,55]. The equations of motion for the fluctuations
are ˙δri =v0ei − μMi jδr j , with δri =ri − r0i , μ the mobility,
andMi j a 2×2 block of the dynamical matrix [56]. The orien-
tation ei = (cos θi, sin θi ) follows the linearized equation θ̇i =
−J (θi − αi )+ηi, with 〈ηi〉=0 and 〈ηi(t )η j (s)〉=2τ−1δi jδ(t −
s). Performing the replacement θi → θi−αi and projecting the
equations for δri onto the normal modes (see Refs. [19,20] and
the Appendix (E) for details), we obtain that the mean energy
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FIG. 3. Structural properties. (a) Phase diagram of the model using Deff as a dynamical order parameter. The dashed black line indicates
the solid-liquid transition. Crossing the liquid-solid transition the mean-squared displacement changes discontinuously, as shown in panel
(b) (J ∈ [0, 4] from violet to green, and s0 = 3.0). Approaching the glassy region, the mean-squared displacement shows a subdiffusive regime
on intermediate times, as shown in panel (c) for s0 = 3.8 [same values of J shown in panel (b)]. The dashed red line is the diffusive scaling
�r2 ∼ t , dashed blue line the ballistic scaling �r2 ∼ t2. (d) Deff as a function of the nematic coupling J ∈ [0, 4] for different values of
s0 ∈ [3.0, 3.9], increasing values from violet to yellow. (e) Phase diagram using ψ6 as a structural order parameter (increasing values of ψ6

from blue to green). The dashed black line represents the transition line to the hexagonal solid. The dotted white line corresponds to the value
s0 = shex0 ∼ 3.722. (f) Order parameterψ6 as a function of J for different values of s0 ∈ [3.0, 3.9], increasing values from violet to yellow. Static
structure factor S(qx, qy ) for s0 = 3.0 (g) and s0 = 3.6 (h). (i) Nematic order parameter S as a function of J (increasing values of s0 ∈ [3.0, 3.9]
from violet to yellow). (j)–(l) Radial distribution function g‖,⊥(r) evaluated along g‖(r) = g(r‖, 0) and perpendicular g⊥(r) = g(0, r⊥) the
nematic director n ((j) liquid, (k) solid, and (l) glassy).

per mode can be written as eν = 1
2T

0
effI (τ, J ) with T

0
eff=v2

0τ/2.
For J=0 and τ 	=0, it follows a generalization of the equipar-
tition theorem [57]. Using the expression of the energy per
mode, we can thus define Teff(τ, J )=T 0

effI (τ, J ). In general, it
is not possible to compute analytically Teff(τ, J ); however, it
turns out that it is a decreasing function of J bounded above
by T 0

eff and below by T 0
eff/λντ .

We conclude our analysis of the structural properties of the
tissue by studying the features of the liquid state. As shown
in Fig. 3(i), where we report the nematic order parameter S
(defined in Appendix A), in the liquid phase the system de-
velops weak nematic order. We can thus define two preferred
global directions that are individuated by the average direction
of the director fields n= 1

N

∑
i(cos 2αi, sin 2αi ) computed at a

given time step. We indicate with x‖ and x⊥, respectively, the
directions parallel and orthogonal to n. In the nematic phase,
the positional order of the cell centers is different along these
two directions, as it is shown in Fig. 3(j) where we report
the radial distribution functions g‖(r) and g⊥(r). The space
isotropy is restored in the glassy regime [see Fig. 3(l)]. The
sixfold orientational order replaces the twofold orientational
order in the solid phase [see Figs. 3(k) and 3(h)].

V. RELAXATION DYNAMICS

We now probe the region of the phase diagram where the
tissue develops a subdiffusive regime. Figure 4(a) shows the
behavior of the intermediate scattering function Fs(q, t ) for
s0=3.73, T = 0.002, and q=qpeak [with qpeak the position of
the first peak of the static structure factor S(q)]. We have also
measured the time correlation function Cψ (t ) of the hexatic
order parameter ψ6 [58,59] (see the Appendix A for the defi-
nition). The behavior of Cψ is shown in Fig. 4(b) of the same
figure. As one can see, Cψ undergoes a dynamical slowing
down as J increases similar to that observed in Fs(q, t ). Since
ψ6(t ) reflects the local structure that is determined by the
number of cell sides at time t , a nonvanishing correlation
Cψ (t ) signals a dynamical slowing down of shape fluctuations.
The dynamical slowing down is usually due to the presence
of relaxation dynamics on different timescales. The emerging
of complex and heterogeneous relaxation dynamics becomes
more evident probing the dynamical susceptibility χ4(q, t ) de-
fined as the sample-to-sample fluctuations of Fs(q, t ), shown
in Fig. 4(c) [49]. χ4(q, t ) shows a broad peak, due to the
presence of dynamical heterogeneity [see the displacement
field, inset in Fig. 4(c)], that grows in height and shifts toward
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FIG. 4. Dynamical slowing down. (a) The self-part of the intermediate scattering function F (q, t ) (J ∈ [2.3, 3.2], increasing values from
violet to yellow) and corresponding four-point susceptibility χ4(q, t ) (c). The shape parameters is s0 =3.73 and T = 0.002. (b) The correlation
function Cψ (t ). Inset in panel (c): Map of displacements for J=3.1 and t ∼102. (d) Structural relaxation time as a function of the nematic
coupling J , the dashed black curve is a fit to Vogel-Fulcher-Tammann law with T → J−1.

longer times as J increases, the typical feature of glassy sys-
tems approaching the glass transition [49,60]. We can provide
a quantitative measure of the dynamical slowing down using a
characteristic relaxation time τα defined as C(τα )=e−1, with
C(t ) a time-correlation function. In Fig. 4(d) we show the
behavior of the relaxation time for Fs(qpeak, t ), and Cψ (t ).
Another estimate of τα is provided by the position of the peak
of χ4 [shown in Fig. 4(d)]. As it has been observed in the case
of flocking transition in biological tissues [21], the behavior
of τα as a function of J proves that the alignment interaction
acts as an inverse temperature, causing a cooling down of
the system as J increases. This is confirmed by the fact that
a Vogel-Fulcher-Tamman formula τα ∝ exp[B/(J−1 − J−1

c )]
(with T → J−1 and Jc ∼ 2.9) well captures the behavior of
the relaxation time.

VI. DISCUSSION AND CONCLUSIONS

The collective behavior of biological tissues shows features
remarkably similar to those of active nematics, disordered
solids, and supercooled liquids. Some of these facts can be
rationalized in the framework of dense active matter [55].
However, to capture the collective properties of biological
tissues in an opportune coarse-grained description one needs
to take into account all the relevant ingredients of single-cell
dynamics. Since moving cells assume an asymmetric configu-
ration that spontaneously breaks spatial symmetries, we have
studied numerically how feedback between cell shape and
displacement changes the structural properties of the tissue.
We performed our study within the framework of the Voronoi
models. We focused our attention on alignment interactions
tending to couple the direction of cell motion with its elonga-

tion. Besides the experimental evidence at the single-cell level
that highlights the importance of feedback in cell locomotion
[61], the impact of these interactions on the large-scale behav-
ior of confluent monolayers remains poorly understood.

We have explored the phase diagram of the tissue using
as a control parameter the target shape index s0, which is
experimentally accessible [17,62]. The second control param-
eter is the strength of the alignment interaction J > 0. We
documented that the interplay of these control parameters
triggers structural changes giving rise to a rich phase diagram
characterized by liquid-to-solid transitions and glassy dynam-
ics. For large enough J values, the tissue undergoes a phase
transition between a disordered state and a quasihexagonal
lattice at s0 ∼ shex0 [26].

For larger s0, the system remains in a disordered liq-
uid state, showing typical features of glassy dynamics as
the strength of the alignment force increases [7,19,63,64].
In particular, we observed the proliferation of dynamical
heterogeneities, subdiffusive dynamics, broad peaks in the
dynamical susceptibilities, and dynamical slowing down of
density and shape fluctuations. We showed that the solidifica-
tion of the system for increasing values of J can be generally
understood in terms of an effective temperature Teff that scales
with the inverse of J , similarly to what has been observed
in the case of the self-propelled Voronoi model with polar
interactions [21].

In conclusion, the intensity of the shape-displacement
feedback at the single-cell level can trigger structural tran-
sitions in confluent monolayers that impact dramatically the
collective behavior of the biological tissue. Our results suggest
that, if the coupling between cell elongation and displace-
ment is small, and thus J assumes small values, cells tend to
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rearrange as in a weakly nematic fluid rather than form a con-
fluent monolayer. In other words, biochemical mechanisms
that tend to alter cell polarization might impact the collective
properties of the biological tissue. There are biological impli-
cations for a weak coupling between shape and locomotion.
For instance, the interplay between these two properties might
become weak for cells that suddenly lose a polarized shape,
as in the case of metastasis invasion, where the metastatic cell
does not show epithelial polarity [65]. Our analysis suggests
that, in such a condition, the tissue tends to melt into a fluid
phase. More in general and in agreement with recent studies
that revealed the crucial role of cell symmetry [66], our results
show that alignment interactions might provide an additional
control parameter for the epithelial-mesenchymal transition.
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APPENDIX A: OBSERVABLES

We indicate with ri(t ) the position of the ith cell center
in the laboratory reference frame and with r′

i(t ) the position
in the center-of-mass reference frame. In the following, we
indicate with 〈O〉s the average of the observable O with
respect to independent runs, i.e., the subscript s indicates
sample averages. We indicate with 〈O〉t time-averaging in the
stationary state.

For studying the single-cell diffusion and the solid-to-
liquid transition, we compute the mean-squared displacement
�r2 that is

�r2 = 1

N

〈∑
i

[r′
i(t ) − r′

i(0)]
2

〉
s

. (A1)

We quantify the emerging of hexatic order through the com-
plex field 
i(t ) defined for each cell


i(t ) = 1

n

n∑
j∈n.n.

ei6θi j (t ), (A2)

with n the number of Voronoi neighbors to the cell i. The angle
θi j is individuated by the two cell centers i and j. The hexatic
order parameter at the time step t reads

ψ6(t ) = 1

N

∣∣∣∣∣
∑
i


i(t )

∣∣∣∣∣, (A3)

and we indicate withψ6 its time average. We obtain additional
and complementary information on the positional order by

measuring the static structure factor S̃(qx, qy) that is

S̃(qx, qy) = 1

N

〈∑
j,k

eiq·(r′
j−r′

k )

〉
t,s

, (A4)

where the wave vector q = (qx, qy) satisfies the periodic con-
ditions imposed to the dynamics, i.e., qx,y = 2π

L (nx, ny), with
nx,y = 0,±1,±2, . . . (and avoiding the combination nx =
ny = 0).

We detect the presence of nematic order measuring the
order parameter

S = 2

〈
1

N

∑
i

cos2 αi

〉
− 1. (A5)

We obtain additional information on the nematic phase mea-
suring the pair distribution function

g(r) = 1

N

〈∑
i, j 	=i

δ(r − r j + ri )

〉
t,s

. (A6)

In particular, we compute g‖,⊥(r), where the subscription
indicates that the observable is computed along the principal
directions of the nematic director, i.e., g⊥(r) ≡ g(0, r⊥) and
g‖(r) ≡ g(r‖, 0).

As dynamical observables, we measure the self-part of
the intermediate scattering function Fs(q, t ) and the time-
correlation function of the hexatic order parameter Cψ (t )
[49,58,59,67]. The intermediate scattering function is

Fs(q, t ) = 1

N

〈∑
i

e−iq·(r′
i (t )−r′

i (0))

〉
s

, (A7)

where q follows the same prescription used to compute
S(qx, qy). The sample-to-sample fluctuations of Fs(q, t ) pro-
vides a measure of dynamical heterogeneity through the
four-point dynamical susceptibility χ4(q, t ). The position
of the peak χ4(q, t ), i.e., t = τ4, individuates the typical
timescale of dynamical heterogeneity. We thus compute the
displacement field�r(x, y, τ4) [49]. Furthermore, we measure
the relaxation time of shape fluctuations using Cψ (t ) defined
through the correlation function

Cψ (t ) = 1

Cψ (0)

〈∑
i


i(t )

∗
i (0)

〉
s

. (A8)

APPENDIX B: PHASE DIAGRAM FOR J = 0

In the main text, we have used as control parameters s0 and
J . For J = 0, the model reduces to a self-propelled Voronoi
model where the self-propulsion is due to correlated noise.
We have thus probed different regions of the phase diagram
for J = 0 using as control parameters the strength of the noise
T and the shape index s0. The resulting phase diagrams for
τ = 20, 200, 2000 and N = 256 are shown in Fig. 5. As a
structural parameter for discriminating the solid from the fluid
phase, we adopt the shape parameter q defined as

q =
〈∑

i

pi√
ai

〉
. (B1)
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FIG. 5. Phase diagram of the model for J = 0 and τ = 20, 200, 2000, panels (a), (b), and (c), respectively. The dashed black line indicates
the transition between solid and fluid using the shape parameter q as a structural order parameter. The dashed green line in panel (b) is the
region explored in the main text for J 	= 0.

Following Refs. [19,27], we use the criterium q > 3.81
for defining the fluid regime and q < 3.81 for the solid
regime. We explored noise values T ∈ [10−4, 10−1] and s0 ∈
[3.0, 3.7]. As one can see, for τ = 200 the system is always
in the fluid state. The region of parameters explored in the
main text is highlighted in Fig. 5(b). The phase diagram shows
the same qualitative features as for the self-propelled Voronoi
model [19].

APPENDIX C: COLLECTIVE MOTION

The presence of migratory patterns has been evaluated
using global quantities as the Vicsek order parameter � [68]
and the nematic order parameter � of the displacements. The
order parameter � captures collective cell migration and it is
defined as follows:

� =
〈
1

N

∣∣∣∣∣
∑
k

eiφk (t )

∣∣∣∣∣
〉
t

. (C1)

The order parameter� captures the emerging of nematic order
in the cell displacements. It is defined as follows:

� =
〈
1

N

∣∣∣∣∣
∑
k

ei2φk (t )

∣∣∣∣∣
〉
t

. (C2)

The resulting phase diagrams are shown in Fig. 6. The
system develops a weak nematic phase in the velocity field
in the liquid phase for 0 < J < 3, as shown in Fig. 6(a). It
is worth noting that the order parameter does not overcome
the value of � ∼ 0.3, indicating that only in a small system
fraction nematic order is appreciable. In Fig. 6(b) we report
the behavior of �. Around the liquid-solid transition, the
system develops weak flocking patterns for J ∼ 3. In this case,
the Vicsek order parameter does not overcome � ∼ 0.4.

The behavior of � and � as a function of J for different
values of s0 is shown in Fig. 7. The parameter � turns out to
be different from zero in the liquid state, almost independently
by s0 [Fig. 7(a)]. The presence of migratory patterns character-
ized by polar order (� 	= 0), is more evident for small values
of s0 [Fig. 7(b)].

The snapshots of steady-state configurations for s0 = 3.2
are shown in Fig. 8. In the first row, cells are colored accord-
ing to their velocity. In the second row, the color indicates
the angle of the nematic and polar order, respectively. These
parameters have been obtained considering the velocity vi of
the cell i that can be written as vi = vi(cos θi, sin θi ). Region
of the same color indicates local nematic and polar order. In
the fourth row, we report the probability distribution function
of the velocity P (v). P (v) turns out to be strongly peaked
around zero in the solid phase and develops a long tile toward
higher values in the liquid state.

FIG. 6. Collective motion. Global nematic order (a) and polar order (b) in the velocity field. The dashed black line indicates the transition
to solid.
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FIG. 7. Order parameters � and � as a function of J for increasing values of s0 (from violet to yellow).

FIG. 8. Representative snapshots for p0 = 3.2 for different values of J . In the first row (a)–(g), the color indicates the modulus of the ve-
locity of each cell. In the second (h)–(n) and in the third (o)–(u) row the color indicates nematic and polar angle, respectively, obtained from the
velocity of the cell and calculated with respect to the x axis. The fourth row (1–2) shows the distribution of the velocity for J = 0.0 [panel (1)]
and J = 3.6 [panel (2)].
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FIG. 9. Static Structure factor S(qx, qy ) for s0 = 3.0 (a), (b), (c) and s0 = 3.8 (d), (e), (f).

APPENDIX D: STATIC STRUCTURE FACTOR S(qx, qy)
AND RADIAL DISTRIBUTION FUNCTION g(r)

In Fig. 9, we show the static structure factor S(qx, qy).
Figures 9(a)–9(c) report results for s0 = 3.0 as the inten-
sity of the alignment interaction grows. Crossing the critical
value J ∼ 3, the heat map develops patterns peculiar to the
hexatic phase. For a larger value of s0 = 3.8, the system
does not undergo a liquid-solid transition anymore. In this
situation, the structure factor does not develop regular peaks
[Figs. 9(d)–9(f)].

FIG. 10. Radial distribution function g(r) for s0 = 3.0 (a) and
s0 = 3.7 (b). Increasing values of J = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 5.0 from violet to yellow, respectively. For clarity curves
have been shifted vertically. The gray area in panel (a) indicates
configurations in the solid phase.

In Fig. 10 we report the radial distribution function g(r)
for s0 = 3.0 and s0 = 3.7. In both cases, g(r) becomes more
structured as the nematic coupling increases. However, while
at high s0 values the liquid becomes progressively more
structured, at low s0 values when the system crosses from a
liquid-like to a solid-like phase, g(r) changes suddenly. The
presence of damped oscillations indicates a disordered rather
than a crystalline structure.

APPENDIX E: EFFECTIVE TEMPERATURE
WITH ALIGNMENT INTERACTIONS

We consider a system composed of N self-propelled parti-
cles where each of them tends to align toward a given direction
defined by the angle αi. The self-propulsion of magnitude
v0 acts along ei = (cos θi, sin θi ) and changes direction with
a rate τ−1. We indicate with r0i the inherent state configura-
tion that minimizes the mechanical energy of the system. We
indicate with δri = ri − r0i a small displacement around the
equilibrium configuration. Linearizing the potential around
the minimum of the mechanical energy we obtain the follow-
ing equations of motion:

δṙi = v0ei + μMi jδri, (E1)

θ̇i = −J (θi + αi ) + ηi, (E2)

where the random force satisfies 〈ηi〉 = 0 and 〈ηi(t )η j (s)〉 =
2τ−1δi jδ(t − s). Mi j is the 2×2 block of the dynamical ma-
trix (hereafter we adopt the Einstein summation convention).
Expanding the perturbation in terms of the normal modes uλ

i
of the dynamical matrix, one has

δri = aν (t ) uν
i , (E3)
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FIG. 11. Asphericity � for s0 = 3.0 as a function of J .

and the amplitude aν follows the equation of motion

ȧν = −μλνaν + η̃ν . (E4)

The noise η̃ν satisfies

〈η̃ν (t )〉 = M(t ), (E5)

〈η̃ν (t )η̃μ(s)〉 = δμ,νC(t − s), (E6)

C(t − s) ≡ v2
0

2
〈cos[θ (t ) − θ (s)]〉. (E7)

In terms of the probability density function ρ(θ, t ), the solu-
tion of the Fokker-Planck equation generated by Eq. (E2) with
the initial condition ρ(θ, t = 0) = δ(θ − θ0) reads

ρ(θ, t ) = 1√
2πσ 2(t )

e− (θ−M(t ))2

2σ (t )2 , (E8)

σ 2(t ) ≡ 1

τJ
(1 − e−2Jt ), (E9)

M(t ) ≡ θ0e
−Jt , (E10)

and thus we can write

〈cos�θ〉 = cosM(t )e− 1
2 σ 2(t ), (E11)

where we have defined �θ ≡ θ (t ) − θ (0) and, without loss
of generality we have set s = 0 and θ0 = 0. Through Eq. (E4)
we can compute the average potential energy stored in each
mode,

eν =
〈
1

2
λνa

2
ν

〉
= 1

2
TeffI (τ, J ), (E12)

T 0
eff ≡ v2

0τ

2μ
, (E13)

I (τ, J ) ≡
∫ ∞

0

dt

τ
e− 1

2 σ 2(t )−μλν t , (E14)

where we have introduced the effective temperature T 0
eff that is

one of the control parameters of the KMC algorithm. In this
way, the equilibrium equipartition theorem is recovered in the
limit τ = 0. For τ 	= 0 and J = 0, we recover a generalization

FIG. 12. Relaxation time of the direction of maximum elonga-
tion for s0 = 1 as a function of J .

of the equipartition theorem, as shown in Ref. [57],

eν (J = 0) = 1

2

T 0
eff

1 + μλντ
. (E15)

Another limiting case is obtained for J → ∞ (and equiva-
lently τ → ∞), for which

eν (J → ∞) = 1

2

T 0
eff

λντ
. (E16)

As a consequence, the effective temperature Teff(τ, J ) turns
out to be bounded above by T 0

eff and decreases toward T
0
eff/λντ

as J increases.

APPENDIX F: CELL ANISOTROPY

Indicating with λi
1,2 the eigenvalues of the shape tensor of

the cell i and using the convention λi
1 > λi

2, we define the cell
asphericity �i as

�i =
(
λi
1 − λi

2

)2
(
λi
1 + λi

2

)2 . (F1)

FIG. 13. Asphericity � for J = 1 as a function of s0.
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The asphericity provides a quantitative measure of cell
anisotropy, in the case of highly symmetric cells one has λi

1 �
λi
2 and thus �i � 0. Contrarily, for rodlike cells, �i → 1,

i.e., cells strongly elongated toward a given direction. As
shown in Fig. 11, the parameter � = 〈�i〉, where the angular
parentheses indicate both averages, over cells and steady-state
configurations, jumps from higher to lower values crossing
the liquid-to-solid transition. We notice that even in the solid
phase, where the system arranges in hexagonal patterns,�	=0,
indicating that cells are not displaced in a perfectly regular
hexagonal lattice. Moreover, shape fluctuations do not flip

the principal axes, making the alignment interaction always
well defined. For proving this, we measure the relaxation
time ταi of the eigenvector corresponding to λi

1. As shown in
Fig. 12 the relaxation time is of the order of hundreds of τMC

in the liquid phase, and it becomes larger in the solid state,
indicating that, although the asphericity is small, the direction
corresponding to the larger eigenvalue decays on longer times.
Finally, in Fig. 13 we report the behavior of � for J = 1 as a
function of s0. As one can see, although the system does not
undergo to structural changes, cells become more elongated
making the system more fluid.
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