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Poisson-bracket formulation of the dynamics of fluids of deformable particles
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Using the Poisson-bracket method, we derive continuum equations for a fluid of deformable particles in two
dimensions. Particle shape is quantified in terms of two continuum fields: an anisotropy density field that captures
the deformations of individual particles from regular shapes and a shape tensor density field that quantifies
both particle elongation and nematic alignment of elongated shapes. We explicitly consider the example of
a dense biological tissue as described by the Vertex model energy, where cell shape has been proposed as a
structural order parameter for a liquid-solid transition. The hydrodynamic model of biological tissue proposed
here captures the coupling of cell shape to flow and provides a starting point for modeling the rheology of dense
tissue.
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I. INTRODUCTION

Many extended systems, such as biological tissue [1],
foams [2,3], emulsions [4,5], and colloidal suspensions [4],
can be described as collections of deformable particles. A va-
riety of mesoscopic models have been developed to examine
the role of particle shape on the structure and rheology of these
soft materials.

Cellular Potts models [6,7] and Vertex and Voronoi models
[8–10] have been successfully used to describe dry foams and
confluent layers of biological tissue, where cells completely
cover the plane with no gaps, with extensions to three di-
mensions [11,12]. These models describe cells in confluent
tissues as tightly packed irregular polygons covering the plane
and predict a jamming-unjamming transition tuned by a target
cell shape that captures the interplay of cortex contractility
and cell-cell adhesion, with the mean cell shape serving as a
metric for tissue fluidity [13–15]. Vertex and Voronoi models
do not, however, have a natural extension to situations where
the cell packing fraction is below one, although gaps between
cells have been incorporated in recent work [16,17]. In con-
trast, both particle deformability and density variations can
be incorporated in multiphase field models and in models of
deformable particles [18], which have been used to examine
solid-liquid transitions as a function of both particle shape and
density.

Less well developed are continuum descriptions of the
rheology of materials where the constituents can change
their shape. An important example is the classic work by
Doi and Ohta that describes the dynamics of the interface
between two immiscible fluids under shear, incorporating
formation, rupture and deformation of droplets [19]. Con-
tinuum mechanics of confluent tissue have been constructed
phenomenologically and employed to connect structure and
mechanics in Drosophila development [20,21]. Ishihara and
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collaborators formulated a continuum model that couples
cell shape to mechanical deformations at the tissue scale
[22]. Their work, however, captures only simultaneous cell
anisotropy and alignment of elongated cell shapes, without
distinguishing between a tissue where cell shapes are on aver-
age isotropic and one where cells are on average anisotropic,
but not aligned, as observed in simulations of Vertex and
Voronoi models [15,23]. It is in fact the single-cell anisotropy
that provides an order parameter for cell jamming in Vertex
and Voronoi models [13–15], where fluid states of elongated
cells are obtained without nematic order of elongated cells.
The importance of this distinction in a continuum theory of
tissue mechanics was highlighted recently in work by one of
us and collaborators [24].

In this paper we adopt the Poisson-bracket (PB) formu-
lation [25] to obtain continuum equations for a fluid of
deformable particles in two dimensions. This method has
the advantage of providing a systematic derivation of the
reversible part of the hydrodynamic equations once the con-
tinuum fields have been identified. Our approach is inspired
by work by Stark and Lubensky [26,27] who used the PB
approach to derive the hydrodynamics of a nematic liquid
crystal. As in liquid crystals, we identify both a continuum
scalar field that quantifies fluctuations of individual cell shape
and a cell shape tensor field that captures both cell elonga-
tion and alignment. An important difference is that, while in
passive liquid crystals molecular shape fluctuations decay on
fast (nonhydrodynamic) timescales, numerical studies of both
Vertex and Voronoi models of 2D confluent epithelial tissues
[13–15] have shown that mean cell shape, as measured by
the cell perimeter normalized by cell area, provides an order
parameter for a transition between solid and liquid states. In
the solid state cells are isotropic and encounter finite energy
barriers for neighbor exchange. These barriers vanish in the
liquid state, where cells acquire anisotropic shapes with large
perimeters. The role of mean cell shape as a direct metric
for tissue fluidity has been confirmed by experiments in var-
ious cell types [28,29]. Thus shape-anisotropy fluctuations
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FIG. 1. A deformable particle (referred to as a “cell”) is de-
scribed as an n-sided irregular polygon defined by the positions
rαμ of its vertices, for μ = 1, . . . , n, relative to the location of the
centroid rα of the polygon.

are long-lived near the transition, justifying the inclusion of
this field in a hydrodynamic model. The equations derived
here provide a continuum model for collections of interacting
deformable “particles” and can be adapted to describe both
confluent and nonconfluent systems.

The paper is organized as follows. In Sec. II we provide
the microscopic definition of the continuum fields used in the
hydrodynamic model. In Sec. III we briefly summarize the PB
method and the calculation of the various PBs (with details
given in Appendix C), and discuss the reactive and dissipa-
tive contributions to the coarse-grained dynamics. The final
continuum equations are displayed in Sec. IV. In Sec. V we
discuss the form of the continuum equations for the specific
case of a cellular tissue, and conclude with a brief discussion
in Sec. VI. Details of the derivation of the PBs and of the
mean-field free energy of the Vertex model are given in Ap-
pendixes.

II. CONTINUUM FIELDS

We consider a fluid whose constituents are N extended
particles of arbitrary shape. The contour of each particle,
referred to below as a “cell,” is described by a polygonal shape
joining n vertices located at rα

μ, where μ = 1, 2, . . . , n labels
the vertices and α = 1, 2, . . . ,N labels the cells, as shown
in Fig. 1. Each cell has a total mass mc, which we assume
equally distributed among the n vertices. Note that (hence
mass) proteins can often be anisotropically distributed in the
interior of cells, resulting in important properties at the scale
of the whole cell, such as planar cell polarity [21,30]. The
assumption of uniform mass distribution hence amounts to
neglecting cell polarization. Including the dynamics of cell
polarization is of course important in a number of biological
situations and will be considered in future work.

Cell shape is described by a shape tensor defined as

Gα
i j = 1

n

n∑
μ=1

�xαμ
i �xαμ

j , (1)

where �rαμ = rαμ − rα , with rα = 1
n

∑
μ rαμ, and Latin in-

dices i, j denote components. The shape tensor has been used
to describe polymer conformation [31] and the structure of
foams [32], as well cellular shape in epithelia [22,24]. It quan-

tifies area, perimeter, and elongations of convex polygonal
shapes composed of n vertices connected by rigid edges. The
limit n → ∞ corresponds to an ellipse. We define micro-
scopic mass, momentum, and cell shape density fields as

ρ̂(r, t ) =
∑
αμ

m δ(r − rαμ(t )), (2)

ĝ(r, t ) =
∑
αμ

pαμ δ(r − rαμ(t )), (3)

Ĝi j (r, t ) =
∑

α

Gα
i j δ(r − rα (t )), (4)

with m = mc/n, and pαμ = mṙαμ is the conjugate momen-
tum. Coarse-grained quantities are then defined as ρ(r, t ) =
[ρ̂(r, t )]c, g(r, t ) = [ĝ(r, t )]c, and Gi j (r, t ) = [Ĝi j (r, t )]c and
correspond to macroscopic continuum fields describing the
system on length scales large compared to both the size of the
particles and their mean separation. Note that since the micro-
scopic single-cell shape tensor Gα has dimensions of length
squared, the density of cellular shape tensor Gi j is dimen-
sionless. As we will see below, the trace of the shape tensor
density provides a measure of the density of cell perimeter,
while its traceless part, G̃i j = Gi j − 1

2δi jTr[G], captures both
cell anisotropy and local alignment of elongated cells.

The cellular shape tensor can be written in terms of its
eigenvalues as

Gα
i j = 1

2

(
λα
1 + λα

2

)
δi j + (

λα
1 − λα

2

)(
ν̂α
i ν̂α

j − 1
2δi j

)
, (5)

where λα
1 > λα

2 and ν̂α is the eigenvector of the largest
eigenvalue. Its traceless part can be written in terms of the
local molecular alignment tensor, G̃α

i j = (λα
1 − λα

2 )Q
α
i j , where

Qα
i j = (ν̂α

i ν̂α
j − 1

2δi j ).
For regular n-sided polygons, the shape tensor is diagonal

with λα
1 = λα

2 . In this case the cell area A
(n)
α and perimeter P(n)

α

can be expressed in terms of the invariants of the tensor Gα as

A(n)
α = n

2
sin

(
2π

n

)√
det[Gα], (6)

P(n)
α =

√
2n sin

(π

n

)√
Tr[Gα]. (7)

The derivation of Eqs. (6) and (7) is given in Appendix E.
Single-cell anisotropy is measured by Mα = λα

1 − λα
2 which

vanishes for regular polygons. To quantify single-cell elonga-
tion independently of alignment of elongated cells, we follow
Ref. [24], albeit with a slightly different definition of the shape
tensor, and introduce an anisotropy density field defined as

M̂(r, t ) =
∑

α

Mαδ(r − rα (t )) (8)

and the associated coarse grained field M(r, t ) = [M̂(r, t )]c.
Work on Vertex and Voronoi models of confluent biological
tissue, as well as multiphase fields models, has demonstrated
the correlation between tissue fluidity and anisotropy of
single-cell shape, as quantified here by M. In Vertex models,
this anisotropy provides an order parameter for the solid-
liquid transition [14,15].

In the following, we construct hydrodynamic equations for
a fluid of deformable particles that couple structural changes
encoded in cell shape and alignment of elongated cells to flow.
The dynamics of the fluid on scales large compared to the cell
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size and mean cell separation is described in terms of a few
continuum fields: the mass density ρ, the momentum density
g, the single-cell anisotropy density M, and the cell-shape
tensor density Gi j .

III. POISSON-BRACKET FORMULATION
OF CONTINUUM DYNAMICS

Here we briefly summarize the Poisson-bracket (PB) for-
malism. Consider a system whose microscopic dynamics
is determined by canonically conjugate positions rα and
momenta pα . We describe the dynamics in terms of a few mi-
croscopic density fields 	̂a(r, t ; {rα}, {pα}), for a = 1, 2, . . . .
These fields are chosen to be either hydrodynamic fields as-
sociated with conserved quantities, broken symmetry fields,
or quasihydrodynamic fields that decay on timescales large
compared to microscopic ones. In the specific case of interest
here {	̂a} = (ρ̂, ĝ, Ĝi j, M̂ ). The dynamics of the correspond-
ing coarse-grained fields 	a(r, t ) = [	̂a(r, t ; {rα}, {pα})]c is
governed by the equations

∂t	
a(r, t ) = V a(r, t ) + Da(r, t ), (9)

where V a and Da represent the nondissipative and dissipative
parts of the dynamics, respectively. The reactive term V a is
given by

V a(r) = −
∫
r′
{	a(r), 	b(r′)} δF

δ	b(r′)
, (10)

where F[{	a}] is the free energy,
{	a(r), 	b(r′)} = [{	̂a(r), 	̂b(r′)}]c, (11)

and

{	̂a(r), 	̂b(r′)} =
∑
αi

[
∂	̂a(r)

∂ pα
i

∂	̂b(r′)
∂rα

i

− ∂	̂a(r)
∂rα

i

∂	̂b(r′)
∂ pα

i

]
. (12)

Finally, the dissipative term in the kinetic equation is con-
trolled by all the neglected microscopic degrees of freedom
and can be written as

Da(r) = −�ab δF
δ	b(r)

. (13)

The dissipation tensor �ab is in general a functional of the
{	a} and their gradients. It is a phenomenological quantity
controlled by the requirement that ∂t	

a can couple only to
driving forces δF

δ	b(r) that have different sign under time rever-
sal, to guarantee that such terms describe dissipation. Close
to equilibrium it is a symmetric tensor, and it must obey
Onsager’s principle [33].

A. Poisson brackets

The calculation of the PB of mass and momentum density
is straightforward and can be found in the literature [26], with

the result

{ρ(r), gi(r′)} = ρ(r′)∂iδ(r − r′),

{gi(r), g j (r′)} = −∂ ′
i [δ(r − r′)g j (r′)] + ∂ jδ(r − r′)gi(r′).

(14)

The main PBs to be calculated here are those involving the
fields describing cellular shape. The details of the derivation
are shown in Appendix C, with the result

{Gi j (r), gk (r′)} = ∂k[Gi j (r′)δ(r − r′)]

− [Gil (r)δ jk + Gjl (r)δik]∂lδ(r − r′),

(15)

{M(r), gi(r′)} = [∂iM(r)]δ(r − r′) − 2R(r)
M(r)

× G̃i j (r)∂ jδ(r − r′), (16)

where we have defined R(r, t ) = [Tr[Ĝ(r, t )]]c.
To calculate {M(r), gi(r′)} we have used the identity

G̃α
ikG̃

α
k j = M2

α

4 δi j . where the tilde denotes the traceless part of a

rank-2 tensor, G̃i j = Gi j − 1
2δi jTr[G]. This allows us to write

Mα{Mαδ(r − rα ), gi(r′)} = 2G̃α
kl

{
G̃α

klδ(r − rα ), gi(r′)
}
.

(17)

Finally, the other PBs can be obtained using the identity

{	n(r), 	m(r′)} = −{	m(r′), 	n(r)}. (18)

B. Reactive terms

To evaluate the various contributions to the continuum
dynamics, we need to specify the free energy of the system.
In general, this has the form

F = FK + FV

=
∫
r

[
g2

2ρ
+ f (ρ,M,∇M,Gi j,∇Gi j )

]
, (19)

where the first term is the kinetic part and the free energy
density f depends on the fields and their gradients.

Using the expressions for the PBs we can then evaluate the
reactive terms V a, with the result

V ρ = −∇ · (ρv), (20)

V g
i = −∂ j (ρviv j ) − ρ∂i

δFV

δρ
+ (∂iM )

δFV

δM
+ (∂iGkl )

δFV

δGkl

+ ∂ j

(
2Gjk

δFV

δGik
− δi jGkl

δFV

δGkl

)
+ 2∂ j

(
R

M
G̃i j

δFV

δM

)
,

(21)

VG
i j = −∇ · (Gi jv) + Gik∂kv j + Gjk∂kvi, (22)

VM = −v · ∇M + 2R

M
G̃i j∂iv j . (23)

The elastic and density couplings in Eq. (21) can be rewrit-
ten in a more familiar form as gradients of pressure and of an
elastic stress. The details can be found in Appendix B, where

032612-3



ARTHUR HERNANDEZ AND M. CRISTINA MARCHETTI PHYSICAL REVIEW E 103, 032612 (2021)

it is shown that we can write

−ρ∂i
δFV

δρ
+ (∂iM )

δFV

δM
+ (∂iGkl )

δFV

δGkl
= −∂i p+ ∂ jσ

E
i j ,

(24)

where the pressure p and the elastic stress σ E
i j , that plays

the role of the Ericksen stress of nematic liquid crystals, are
given by

p = ρ
δFV

δρ
− f , (25)

σ E
i j = − ∂ f

∂∇ jM
∇iM − ∂ f

∂∇ jGkl
∇iGkl . (26)

The last two terms in Eq.(21) correspond to gradients of a
reactive elastic stress σG

i j , given by

σG
i j = 2

R

M
G̃i j

δFV

δM
+ 2Gjk

δFV

δGik
− δi jGkl

δFV

δGkl
. (27)

The reactive term for the momentum density equation can
then be written as

V g
i = −∂ j (ρviv j ) − ∂i p+ ∂ j

(
σG
i j + σ E

i j

)
. (28)

C. Dissipative terms

There is no dissipative term for the mass density ρ if it is
conserved. Dissipative terms in the momentum equation must
be odd under time reversal and hence must couple to gradients
of velocity. In general, shape anisotropy and alignment of
elongated cells will entail anisotropic viscosity coefficients, as
in liquid crystals. For simplicity, here we only introduce two
viscosities to account for shear (η) and bulk (ηb) deformations,
and write

Dg
i = ∂ jσ

D
i j , (29)

with

σD
i j = 2ηDi j + ηbδi j∇ · v, (30)

where Di j is the symmetrized and traceless rate of strain
tensor,

Di j = 1
2 (∂iv j + ∂ jvi − δi j∇ · v). (31)

Dissipative couplings in the equations for the shape density
tensor Gi j and the shape anisotropy field M must be even
under time reversal and hence can couple to M, Gi j , and
their gradients. Dissipation will arise from topological rear-
rangements, as well as from birth/death events when density
conservation is broken. In general we can write

DG
i j = −�GG

i jkl

δFV

δGkl
− �GM

i j

δFV

δM
, (32)

DM = −�MM δFV

δM
− �MG

i j

δFV

δGi j
. (33)

The kinetic coefficients �ab can generally depend on the shape
tensor and anisotropy density field. To linear order in these

fields, a general form is given by

�GG
i jkl = M

2γG
(δikδ jl + δ jkδil )

+ 1

γ1
(δikG jl + δ jkGil + δilG jk + δ jlGik ), (34)

�GM
i j = �MG

i j = Gi j

γ2
, (35)

�MM = 1

γM
+ M

γ3
, (36)

where the kinetic coefficients γi, for i = G,M, 1, 2, 3,
encode the characteristic timescales of dissipative processes.
For simplicity we have assumed �GM

i j = �MG
i j although in gen-

eral the parameters controlling the relaxation in these terms
could differ. Note that the second term in Eq. (34) has the form
introduced in Ref. [34] for the kinetic coefficient describing
the relaxation of the conformation tensor in a polymer sus-
pension.

IV. FINAL EQUATIONS

Putting it all together, we now write the final form of the
equations we have obtained. It is convenient to write

∂iv j = Di j + ωi j + 1
2δi j∇ · v, (37)

where Di j is the rate of strain tensor given in Eq. (31) and ωi j

is the vorticity,

ωi j = 1
2 (∂iv j − ∂ jvi ). (38)

The set of continuum equations for our fluid of deformable
cells is then given by

∂tρ = −∇ · ρv, (39)

ρ(∂t + v · ∇)vi = −∂i p+ ∂ j
(
σG
i j + σ E

i j + σD
i j

)
, (40)

d

dt
M = 2R

M
G̃i jDi j − �MM δFV

δM
− �MG

i j

δFV

δGi j
, (41)

D

Dt
Gi j = GikDk j + DikGk j − �GG

i jkl

δFV

δGkl
− �GM

i j

δFV

δM
. (42)

We have defined

d

dt
= ∂t + v · ∇,

D

Dt
= d

dt
−[ω, ·],

(43)

where d
dt is the convective derivative and [ω, ·] is the corota-

tional derivative.1

The equation for the shape tensor Gi j contains couplings to
flow vorticity and strain rate which control the tendency of ex-
tended and deformable particles to rotate with flow and align
with streamlines. The shape tensor Gi j plays a role similar to
that of the conformation tensor in a polymer suspension [31].
In fact, if we ignore the additional anisotropy density fieldM,

1For tensors ωi j and Di j , the communtator is defined as [ω,D]i j =
ωikDk j − Dikωk j
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the equations derived here for a fluid of deformable particles
have the same structure as a one-fluid model of viscoelastic
polymer solutions [34]. Unlike in models of polymer suspen-
sions, however, the coefficient of the coupling to strain rate,
known in that context as the slip parameter [31], is found to
be simply equal to 1 in our PB formulation.

It is also convenient to separate the dynamics of Gi j in that
of its trace and deviatoric part. The corresponding equations
are given by

d

dt
R = 2G̃i jD ji − �GG

iikl

δFV

δGkl
− �GM

ii

δFV

δM
, (44)

D

Dt
G̃i j = RDi j + G̃ikDk j + DikG̃k j − δi j G̃klDkl

−
[
�GG :

δFV

δG

]ST

i j

− [�GM]STi j
δFV

δM
,

(45)

where [·]ST denotes the symmetrized and traceless part of the
tensor. These equations need to be completed by an expres-
sion for the free energy FV in terms of the shape tensor and
anisotropy density field. Such an expression of course depends
on the system of interest. In the next section we consider the
specific case of a model of dense biological tissues.

V. CELLULAR TISSUE

Confluent biological tissue, where cells are tightly packed,
with no intervening gaps, has been modeled extensively using
Vertex or Voronoi models that describe cells as irregular poly-
gons tesselating the plane [8–10]. The behavior of the tissue
is controlled by an energy that describes the tendency of each
cell to adjust its area Aα and perimeter Pα to target values A0

and P0, given by

EV =
∑

α

[κA

2
(Aα − A0)

2 + κP

2
(Pα − P0)

2
]
, (46)

with κA and κP stiffness parameters. The first term arises
from tissue incompressibility in three dimensions, and the
second captures the interplay of cell-cell adhesion and cortical
contractility. By scaling lengths with

√
A0 and energies with

κAA2
0, the scaled energy of each cell is given by

εα = 1

2
(aα − 1)2 + r

2
(pα − p0)

2, (47)

with p0 = P0/
√
A0 the target shape parameter and r =

κP/(κAA0).
Numerical studies of this energy have identified a rigidity

transition at a critical value p∗
0 of the target shape parameter

between a rigid, solid-like state for p0 < p∗
0 to a fluid state

for p0 > p∗
0. Single-cell anisotropy as quantified by the mean

cell-shape index q = 〈Pα/
√
Aα〉, with the brackets denoting

an average over all cells, provides an order parameter for the
transition. Czajkowski et al. [24] derived a mean-field model
of this rigidity transition, albeit using a different definition of
the cell shape tensor Gα

i j as compared to the one used here.
The derivation carried out with our definition is outlined in
Appendix D. The result is a quartic Landau-type free energy
density fM where the the cell shape anisotropy density M

plays the role of an order parameter, given by

fM = α(p0)

2
M2 + β

4
M4, (48)

where α(p0) vanishes at p0 = p∗
0 and β > 0. The definition

of the shape tensor of individual cells affects only the precise
values of these parameters that also depend on the reference
polygonal shape, but does not change the form of the free
energy density nor the value of p∗

0. The free energy given in
Eq. (48) is obtained by assuming small deformations from
regular polygons and constant cell perimeter. It predicts a
mean-field transition at α = 0 from a state where cells are
isotropic (M = 0) α > 0 or p0 < p∗

0 (the solid state) to a
state where cells are anisotropic (M = √−α/β) for α < 0 or
p0 > p∗

0 (the liquid state).
This work suggests a phenomenological free energy for

a confluent tissue that captures both fluctuations in the cell
anisotropy densityM that quantifies the liquid-solid transition
and the shape tensor density G̃i j that quantifies alignment of
elongated cell as

Fc =
∫
r

[
α(p0)

2
M2 + β

4
M4 + K

2
(∇M )2

+ χ

2
Tr[G̃2] + KG

2
(∂ j G̃ik )

2

]
. (49)

We do not include terms of order Tr[G̃2]2 as we do not
expect any nematic order of cellular shapes in the absence
of externally applied or actively generated internal stresses.
Also, we have assumed constant cell perimeter, corresponding
to R = Tr[G] = const. In general, the various parameters in
Fc will depend on R.

It is important to stress that G̃i j andM are not independent.
The traceless tensor G̃i j can be written as

G̃i j = SG
(
nin j − 1

2δi j
)
, (50)

which defines the director field n(r, t ) associated with align-
ment of elongated cells and the magnitude SG of orientational
order. Cell alignment can occur only if cells are elongated
(M 
= 0), hence SG(M ) must vanish whenM = 0. We assume
SG = MS, where S plays the role of a nematic order parameter
for orientational order of elongated cells. Clearly, S is defined
only in states where M is finite.

Cell sheets commonly interact with a frictional substrate
that eliminates momentum conservation. Frictional drag with
the substrate generally exceeds inertial forces, and the Navier-
Stokes equation for the momentum is replaced by a Stokes
equation quantifying force balance on each fluid element.
Within this overdamped limit, and considering a minimal
form for the various dissipative kinetic coefficients, the tissue
dynamics is governed by2

∂tρ = −∇ · (ρv), (51)

ξvi = −∂i p+ ∂ j
(
σG
i j + σ E

i j + σD
i j

)
, (52)

d

dt
M = 2

R

M
G̃i jDi j − 1

γM

δFc

δM
− G̃i j

γ2

δFc

δG̃i j
, (53)

2We consider here uniaxial systems.
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D

Dt
G̃i j = RDi j + G̃ikDk j + DikG̃k j − δi j G̃klDkl

− M

γG

δFc

δG̃i j
− G̃i j

γ2

δFc

δM
, (54)

where ξ is the frictional drag and

δFc

δM
= (α + βM2)M − K∇2M, (55)

δFc

δG̃i j
= χG̃i j − KG∇2G̃i j . (56)

It is useful to consider a simplified form of the equations
obtained by retaining only lowest order terms in fields and
gradients. In this case the Stokes equation and the equations
for the shape fields can be written in the explicit form

�v = −∇p+ η∇2v + ηb∇∇ · v + ∇ · σG, (57)

d

dt
M = 2

R

M
G̃i jDi j − 1

γM
(α + βM2)M + D∇2M, (58)

D

Dt
G̃i j = RDi j + G̃ikDk j + DikG̃k j − δi j G̃klDkl

− rMG̃i j + DG∇2G̃i j, (59)

where D = �MK , DG = �KG, r = χ/γG + α/γ2, and

σG
i j = 2R(α + βM2)G̃i j + 1

2δi jχS
2
G. (60)

The single-cell anisotropy fieldM here plays the role of tissue
fluidity. The first term on the RHS of Eq. (58) captures the
fact that shear deformations, coupled to local cell alignment,
can increase cell anisotropy, driving fluidification. The sec-
ond term describes relaxation to the ground state controlled
by the tissue free energy, with a cost for spatial variations
in local fluidity controlled by the stiffness D. The reactive
terms in Eq. (59) describe flow alignment of elongated cell
shape. The term proportional to r describes changes of cell
shape tensor due to dissipative processes, such as topological
rearrangements, at a rate proportional to the tissue fluidity
M. The last term in Eq. (59) describes the stiffness against
deformations of local cell alignment. The prefactor to G̃i j in
Eq. (60) represents the zero-frequency tissue shear modulus
and vanishes at the transition, corresponding to fluidization of
the tissue.

Finally, in a confluent tissue the cell number density n =
ρ/mc is slaved to the mean cell area 〈Aα〉with n = 1/〈Aα〉. For
cells that are only slightly deformed from regular polygons,
〈Aα〉 � √

det[G] ≈ Tr[G], where we have used Eq. (A4).
The density equation, Eq (51), can therefore equivalently be
written as an equation for the cell area or for |G| ≡ det[G],
given by

(∂t + v · ∇)|G| = |G|∇ · v. (61)

VI. CONCLUSION

Using the Poisson-bracket formalism, we have derived hy-
drodynamic equations for a fluid of deformable particles in
two dimensions. Shape fluctuations are described by two con-
tinuum fields: (1) a coarse-grained scalar field that captures
single-particle anisotropy, and (2) a shape tensor field that

quantifies both particle elongation and nematic alignment of
elongated particles.

We have specifically applied the model to sheets of dense
biological tissue, where single-cell anisotropy was recently
identified as the order parameter for a solid-liquid transition
driven by the interplay of cortex contractility and cell-cell ad-
hesion [14,15]. In other words, in confluent tissue single-cell
anisotropy is effectively an experimentally accessible measure
of the rheological properties of the tissue, with isotropic cell
shapes identifying the solid or jammed state and anisotropic
shapes corresponding to a liquid. Previous work has examined
the dynamics of a coarse-grained cell shape tensor and its cou-
pling to mechanical stresses [22]. This work did not, however,
distinguish between a tissue of elongated, but isotropically
oriented cells and one where the cells are elongated and also
aligned in a state with nematic liquid crystalline order. The
distinguishing ingredient of our work is to distinguish the
dynamics of tissue fluidity, as quantified by the single-cell
anisotropy field, from that of cell alignment, and examine the
interplay between flow, which can be either externally applied
or induced by internal active processes, fluidity, and nematic
order of cell shapes. Our equations hence provide a starting
point for quantifying the rheology of biological tissue. Future
extensions needed to develop a complete framework of tissue
rheology include the coupling to the dynamics of polarized
cell motility and the inclusion of structural rearrangements
arising from cell division and death.

Finally, the equations developed here provide a hydrody-
namic model for fluids of deformable particles, capable of
accounting for both the dynamics of small shape deformations
and density changes.
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APPENDIX A: USEFUL IDENTITIES

The eigenvalues of a 2 × 2 symmetric matrix Gi j are given
by

λ1,2 = 1
2 (Gxx + Gyy) ± 1

2

√
(Gxx − Gyy)2 + 4G2

xy (A1)

and

λ1 − λ2 =
√
(Gxx − Gyy)2 + 4G2

xy, (A2)

λ1λ2 = GxxGyy − G2
xy. (A3)

We can then show that the following identities apply

(λ1 − λ2)
2 = [TrG]2 − 4 detG, (A4)

(λ1 − λ2)
2 = 2Tr[G2] − [TrG]2 = 2Tr[G̃2]. (A5)

Finally, for a regular polygon, Gi j is always diagonal and
λ1 = λ2 = λ. In this case Eq. (A4) gives TrG = 2

√
detG. For

small deformations from a regular polygon TrG ∼ 2
√
detG,
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which implies that we can think of TrG as either a measure of
square of cell perimeter or a measure of cell area.

APPENDIX B: ELASTIC STRESS AND PRESSURE

It is convenient to rewrite some of the term in the reactive
part Vg of the momentum density equation given in Eq. (21)
to express them as gradients of pressure and an elastic stress.
The goal is to rewrite the following terms:

δV g
i ≡ −ρ∂i

δFV

δρ
+ (∂iM )

δFV

δM
+ (∂iGkl )

δFV

δGkl
. (B1)

By relating functional derivatives of FV to derivatives of the
free energy density f , which is a function of the hydrody-
namic fields and their gradients, we can write

−ρ∇i
δFV

δρ
= −∇i

(
ρ

∂ f

∂ρ

)
+ ∂ f

∂ρ
∇iρ, (B2)

(∇iM )
δFV

δM
= (∇iM )

(
∂ f

∂M
− ∇ j

∂ f

∂∇ jM

)

= ∂ f

∂M
∇iM − ∇ j

[
(∇iM )

∂ f

∂∇ jM

]

+ ∂ f

∂∇ jM
∇i(∇ jM ), (B3)

(∇iGkl )
δFV

δGkl
= (∇iGkl

)( ∂ f

∂Gkl
− ∇ j

∂ f

∂∇ jGkl

)

= ∂ f

∂Gkl
∇iGkl − ∇ j

[
(∇iGkl )

∂ f

∂∇ jGkl

]

+ ∂ f

∂∇ jGkl
∇i(∇ jGkl ). (B4)

Combining these three terms, and using

∇i f = ∂ f

∂ρ
∇iρ + ∂ f

∂M
∇iM + ∂ f

∂∇ jM
∇i(∇ jM )

+ ∂ f

∂Gkl
∇iGkl + ∂ f

∂∇ jGkl
∇i(∇ jGkl ), (B5)

we can write

δV g
i = −∇i p+ ∇ jσ

E
i j (B6)

in terms of the pressure p and an elastic stress σ E
i j , given by

p = ρ
∂ f

∂ρ
− f , (B7)

σ E
i j = − ∂ f

∂∇ jM
∇iM − ∂ f

∂∇ jGkl
∇iGkl . (B8)

The stress σ E
i j plays the role of the Ericksen stress of nematic

liquid crystals.

APPENDIX C: EVALUATION OF POISSON BRACKETS

First, we show the details of the calculation of the funda-
mental PB {Gα

i jδ(r − rα ), gk (r′)}. To evaluate the PB we use
the following:

∂�xαν
i

∂xβμ
j

= δαβδi j

(
δμν − 1

n

)
, (C1)

∂

∂xβμ
j

δ(r − rα ) = −δαβ

n
∂ jδ(r − rα ), (C2)

δ(r − rα ) = δ(r − rαμ − �rαμ)

= δ(r − rα ) − �xαμ
i ∂iδ(r − rαμ) + O(�x2∇2).

(C3)

We write

{
Gα

i jδ(r − rα ), gk (r′)
} = −

∑
β,ν

∂Gα
i jδ(r − rα )

∂xβν

k

δ(r′ − rβν ).

(C4)
Then

∂Gα
i jδ(r − rα )

∂xβν

k

= −1

n
δαβGα

i j∂kδ(r − rα )

+ 1

n
δαβδ(r − rα )

(
δik�xαν

j + δ jk�xαν
i

)
.

(C5)

Inserting Eq. (C5) into Eq. (C4) and using that
∑

μ �rαμ = 0,
we obtain

{
Gα

i jδ(r − rα ), gk (r′)
} = Gα

i j[∂kδ(r − rα )]
1

n

∑
ν

δ(r′ − rαν ) − δ(r − rα )
1

n

∑
ν

(
δik�xαν

j + δ jk�xαν
i

)
δ(r′ − rαν ). (C6)

Finally, using

δ(r − rαν ) = δ(r − rα − �rαν )

≈ δ(r − rα ) − �xαν
k ∂kδ(r − rα ), (C7)

we obtain{
Gα

i jδ(r − rα ), gk (r′)
}

= Gα
i jδ(r

′ − rα )∂kδ(r − rα ) + δ(r − rα )

× (
δikG

α
jl + δ jkG

α
il

)
∂ ′
lδ(r

′ − rα ). (C8)

From this one can immediately obtain Eq. (15).
To evaluate the PB {M(r), gk (r′)} we let Gα

i j = Iα
2 δi j +

G̃α
i j , with Iα = Ĝα

kk and G̃α
i j = Mα (να

i να
j − 1

2δi j ) and use the
following identities:

G̃α
ikG̃

α
k j = M2

α

4
δi j, (C9)

G̃α
ikG̃

α
ki = M2

α

2
. (C10)
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We can then write

Mα{Mαδ(r − rα ), gk (r′)} = 2G̃α
i j

{
G̃α

i jδ(r − rα ), gk (r′)
}
.

(C11)

Using Eq. (C8), we find3{
G̃α

i jδ(r − rα ), gk (r′)
}

= G̃α
i jδ(r

′ − rα )∂kδ(r − rα ) + δ(r − rα )

× (
δikG̃

α
jl + δ jkG̃

α
il − δi j G̃

α
kl

)
∂ ′
lδ(r

′ − rα )

+ Iα
2
(δikδ jl + δ jkδil − δi jδkl )δ(r − rα )∂ ′

lδ(r
′ − rα ).

(C12)

and

{Mαδ(r − rα ), gk (r′)}
= Mαδ(r′ − rα )∂kδ(r − rα ) + Mαδ(r − rα )∂ ′

kδ(r
′ − rα )

+ 2IαG̃α
kl

Mα

δ(r − rα )∂ ′
lδ(r

′ − rα ). (C13)

The PB {M(r), gk (r′)} is then given by

{M(r), gk (r′)} = δ(r − r′)∂kM(r)

− 2

[∑
α

IαG̃α
kl

Mα

δ(r − rα )

]
∂lδ(r − r′)

(C14)

and involves a new field

∑
α

IαG̃α
kl

Mα

δ(r − rα ) =
∑

α

Iα

(
να
i να

j − 1

2
δi j

)
δ(r − rα ).

(C15)
We will need to make approximations to close the equations.
We will approximate as follows:

∑
α

IαG̃α
kl

Mα

δ(r − rα ) ≈ R(r)G̃i j (r)
M(r)

. (C16)

APPENDIX D: MEAN-FIELD THEORY
OF VERTEX MODEL

Following Ref. [24], we construct a mean-field free energy
by rewriting the single-cell Vertex model energy in terms of
the cell anisotropy parameter Mα . Let us define

Mα = λα
1 − λα

2 , (D1)

Rα = λα
1 + λα

2 , (D2)

which gives λα
1,2 = (Rα ± Mα )/2. Equations (6) and (7) are

exact for regular polygons, but also hold approximately true
for slightly deformed polygons where the shape tensor re-

3Note that the PB of G̃i j given below is the same as the PB of the
quantity Ri j of Ref. [26], albeit in two dimensions.

mains diagonal and Mα/Rα � 1. We can then write

Pα ≈
√
2n sin

(π

n

)(√
λα
1 + λα

2

) ≡ ν(n)
√
Rα, (D3)

Aα = n

2
sin

(
2π

n

)√
λα
1λ

α
2 ≡ μ(n)

2

√
R2

α − M2
α. (D4)

The single-cell energy can then be written in terms of Rα

and Mα as

Eα = KA

2

(μ

2

√
R2

α − M2
α − A0

)2

+ KP

2
(Pα − P0)

2. (D5)

Following Ref. [24], we restrict ourselves to small deforma-
tions from a regular polygon and expand Mα/Rα � 1, with
the result

Eα = KA

2

{(μRα

2
− A0

)2

+ 1

2
Rμ

(
A0 − Rμ

2

)(
Mα

Rα

)2

+ Rμ

8
A0

(
Mα

Rα

)4

+ O

[(
Mα

Rα

)6]}

+ KP

2
(ν

√
Rα − P0)

2. (D6)

We further assume that the cell perimeter is constant, or
Pα = P0, hence Rα = P2

0 /ν2. Substituting into Eq. (D6), we
can rewrite the single-cell energy density eα = Eα/A0 as

eα = e0 + 1

2
α(n, p0)

(Mα

A0

)2

+ 1

4
β(n, p0)

(Mα

A0

)4

, (D7)

where e0 is a constant and

α(n, p0) = κAA2
0μ

2

4p20

(
p∗
0
2 − p20

)
, (D8)

β(n, p0) = κaA4
0μν6

4p60
, (D9)

with p0 = P0/
√
A0 the shape index, our tuning parameter.

Also, α(n, p0) has been written in terms of the critical shape
index,

p∗
0 = ν

√
2

μ
=

√
4n tan(π/n). (D10)

The limits of these approximations were tested numerically in
Ref. [24], where it was shown that Eq. (D7) provides a good
description of the model near the transition, where cells are
only minimally deformed.

More familiar particulate systems can be tuned between
solid and liquid states by changing the density or packing
fraction. Confluent tissues have a packing fraction of 1 but
can be tuned between liquid and solid states by changing the
parameter p0 that measures the target cell perimeter in units
of the target cell area. For p0 < p∗

0 the system is frustrated
as cells cannot reach both their target area and perimeter,
resulting in finite energy barriers for cellular rearrangements,
and the tissue is a solid [13,14]. For p0 > p∗

0 such energy
barriers vanish and cells easily exchange neighbors, resulting
in a liquid-like state.

The value of critical target shape parameter p∗
0 depends

on the specific undeformed polygonal shape, with p∗
0 = 4 for
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FIG. 2. Regular polygon of side � circumscribed inside a circle
of radius R.

squares and p∗
0 = 2

√
2
√
3 ≈ 3.722 for hexagons. Equation

(D8) shows explicitly that α changes sign at p0 = p∗
0, while

β > 0. For α > 0 the stable ground state has M = 0 and
corresponds to a solid-like state of isotropic cells. For α < 0
the stable ground state is a fluid of anisotropic cells, with
M/A0 = ±√−α/β. At α = 0 the system undergoes spon-
taneous symmetry breaking and fluidizes, choosing one of
two equivalent axial direction along which to elongate. Here
we have defined M as positive by assuming λ1 > λ2, hence
breaking from the outset the Ising symmetry of the model.

The nature of this solid-liquid transition has been discussed
in the context of Voronoi and Vertex model simulation, where
a continuous transition results in fluidization at constant den-
sity, as quantified through measurements of energy barriers
and mean-square displacement. [14,15].

Finally, it was shown in Ref. [24] that the quartic form
given in Eq. (D7) is also obtained by assuming constant cell
area, albeit with different expressions for the coefficients α

and β. In both cases the coefficient α changes sign at p0 = p∗
0

and the behavior near the transition is unaffected by the ap-
proximation used.

APPENDIX E: DERIVATION OF EQS. (6) AND (7)

The shape tensor approximates a polygonal cell, labeled by
α, as an ellipse defined by(

rα − rα
C

) · (Gα )−1
(
rα − rα

C

)T = 1, (E1)

where rα
C is the center of the cell. In a coordinate basis where

the tensor is diagonal the equation for the cell boundary is
given by

(x − x0)2

λ1
+ (y − y0)2

λ2
= 1, (E2)

where 1/λ2
1,2 are the eigenvalues of Gα−1

and determine the
major and minor semiaxes of the ellipse. For a regular polygon
we have λ1 = λ2 = R2, and Eq. (E2) reduces to the equations
for a circle of radius R.

Consider a regular n-sided polygon with edges � circum-
scribed in a circle of radius R, as illustrated in Fig. 2. The
polygon has a total interior angle of (n − 2)π . The angle
between any two neighboring edges is ϕ = (n−2)π

n and the
central angle is given by θ = 2π

n . Elementary trigonometry
then yields the following relationships:

P = n� = 2nR sin
(π

n

)
, (E3)

A = n

2
sin

(
2π

n

)
R2. (E4)

For regular polygons the eigenvalues of the shape tensor are
equal, with λ1 = λ2 = R2, and Eqs. (E4) and (E3) can be
recast in the forms given in Eqs. (6) and (7) for the area
and perimeter of regular polygons. Although Eq. (7) does
not hold for general deformed ellipses, it is the first-order
approximation of the exact expression given by a hypergeo-
metric function and has been validated numerically for small
deformations [22,35].
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