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EIGENVALUE BOUNDS FOR
NON-SELF-ADJOINT SCHRODINGER OPERATORS
WITH NONTRAPPING METRICS

COLIN GUILLARMOU, ANDREW HASSELL AND KATYA KRUPCHYK

We study eigenvalues of non-self-adjoint Schrédinger operators on nontrapping asymptotically conic
manifolds of dimension n > 3. Specifically, we are concerned with the following two types of estimates.
The first one deals with Keller-type bounds on individual eigenvalues of the Schrodinger operator with a
complex potential in terms of the L?-norm of the potential, while the second one is a Lieb—Thirring-type
bound controlling sums of powers of eigenvalues in terms of the L?-norm of the potential. We extend
the results of Frank (2011), Frank and Sabin (2017), and Frank and Simon (2017) on the Keller- and
Lieb—Thirring-type bounds from the case of Euclidean spaces to that of nontrapping asymptotically
conic manifolds. In particular, our results are valid for the operator Ag 4+ V' on R" with g being a
nontrapping compactly supported (or suitably short-range) perturbation of the Euclidean metric and
V € L? complex-valued.

1. Introduction and statement of results

The purpose of this paper is to establish bounds of Keller- and Lieb—Thirring-type for eigenvalues of
non-self-adjoint Schrodinger operators on nontrapping asymptotically conic manifolds. Before stating
our results, let us proceed to describe these two types of bounds in the more familiar Euclidean setting,
motivating the significance of extending them to the case of asymptotically conic manifolds.

1A. Keller- and Lieb-Thirring-type bounds in the Euclidean case. Recently there have been numerous
works devoted to the study of eigenvalues of the Schrodinger operator P = A + V in L2(R"), with A
being the nonnegative Laplace operator and V' being a complex-valued potential. Of particular interest
here is the problem of obtaining quantitative information concerning the localization and distribution of
the eigenvalues of P under the sole assumption that V' € L?(R") for some 1 < p < co. Here we may note
that the spectrum of P in C \ [0, 0o) consists then of isolated eigenvalues of finite algebraic multiplicity;
see [Frank 2018, Proposition B.2].

The following two types of results are of particular interest for this problem. The first one deals with
Keller-type bounds [1961] on the individual eigenvalues of P in terms of the L#-norm of the potential. If
V is real-valued, so that 7P admits a natural self-adjoint realization, then the eigenvalues of P in C\ [0, 00)

MSC2010: 35P15, 42B37, 58J40, 58J50.
Keywords: non-self-adjoint Schrédinger operators, eigenvalue bounds, asymptotically conic manifolds.

1633


http://msp.org/apde/
https://doi.org/10.2140/apde.2020.13-6
https://doi.org/10.2140/apde.2020.13.1633
http://msp.org

1634 COLIN GUILLARMOU, ANDREW HASSELL AND KATYA KRUPCHYK

are negative and by the variational principle and Sobolev’s inequalities, for any eigenvalue A < 0 of P,
we have the scale-invariant bounds

A < Cym / V) dx (1-1)
Rn

for every y > % if n =1 and every y > 0 if n > 2. Here the constant Cy, ,, > 0 depends on y and n only;
see [Frank and Simon 2017; Keller 1961; Lieb and Thirring 1976].

If the potential V' is complex-valued, the problem is more involved due to the lack of variational
techniques and the absence of a spectral resolution theorem. In dimension n = 1 the bound (1-1) with
y = % was proved by Abramov, Aslanyan, and Davies [Abramov et al. 2001]. In dimensions n > 2, Frank
[2011] established the bound (1-1) for all eigenvalues A € C\ [0, 00) and for all 0 < y < %; see also
[Frank and Simon 2017]. The work [Frank 2018] gives a replacement of the bound (1-1) for all y > %
We refer to [Cuenin 2017; Cuenin and Kenig 2017; Enblom 2016; Laptev and Safronov 2009; Mizutani
2016] for some other recent works on bounds on the individual eigenvalues for non-self-adjoint operators
of Schrodinger type.

The second type of result is concerned with bounds on sums of powers of absolute values of eigenvalues
of P, generalizing the classical Lieb—Thirring bounds [1976] to the non-self-adjoint case. If V is real-
valued then the Lieb—Thirring inequality has the form

Sl <Gy / V_(x)7*4 dx. (1-2)
Rﬂ

where V_ = max(—V,0), y > % ifn=1, y>0ifn=2,and y > 0if n > 3. The summation in the
left-hand side in (1-2) extends over all negative eigenvalues of P, counted with their multiplicities. The
situation in the non-self-adjoint case is less clear. In particular, Bogli [2017] established that for any
p > n, there exists a nonreal potential V' € L?(R") N L°(R™) such that the Schrodinger operator P
has infinitely many nonreal eigenvalues accumulating at every point of the essential spectrum [0, c0),
thus showing that inequalities like (1-2) cannot hold in the non-self-adjoint case for p > n. A possible
modification of the Lieb—Thirring inequality (1-2) to the non-self-adjoint case was suggested in [Demuth
et al. 2013b]:

v+3 n
Y <q,, / V()P dx, (1-3)
A% an
where
d(L) = dist(, [0, 00)). (1-4)

We refer to [Demuth et al. 2009; 2013a; Frank et al. 2006; Frank and Sabin 2017; Sambou 2014] for
some of the important contributions to generalizations of the Lieb—Thirring inequality (1-2) to the setting
of complex potentials.

A crucial idea of Frank [2011] in establishing bounds (1-1) on the individual eigenvalues of the
Schrodinger operator P with a complex-valued potential was to make use of the uniform L? resolvent
estimates for A of Kenig, Ruiz, and Sogge [Kenig et al. 1987]. Recently, this approach was extended
to the case of non-self-adjoint Schrédinger operators with inverse-square potentials in [Mizutani 2019],
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to the case of magnetic Schrodinger and Pauli operators with complex electromagnetic potentials in
[Cuenin and Kenig 2017], and to the case of the Dirac and fractional Schrédinger operators with complex
potentials in [Cuenin 2017].

Developing the idea of [Frank 2011] further, Frank and Sabin [2017] obtained some very interesting
uniform weighted bounds for the resolvent of A in suitable Schatten classes, and applied these bounds
to derive uniform estimates on the sums of eigenvalues of non-self-adjoint Schrodinger operators, thus
obtaining some results towards proving the conjectured Lieb—Thirring inequality (1-3) in the case of
complex potentials. Recently, this approach was extended in [Cuenin 2017] to the case of the Dirac and
fractional Schrodinger operators with complex potentials.

1B. Asymptotically conic manifolds. Notice that in all the works described above the principal part of
the operators considered has constant coefficients. It is nevertheless of significant interest to extend both
types of results to the case of complex potential perturbations of the Laplace-Beltrami operator Ag
considered on R” or more generally, on a class of complete noncompact Riemannian manifolds.

The class we consider here is the class of asymptotically conic manifolds, whose Riemannian metric
outside a compact set is asymptotic to the end of a metric cone. Metric cones are Riemannian manifolds
of the form N x (0, o), with metric dr? + r?G for some metric G on N. They were studied in [Cheeger
1983; Cheeger and Taylor 1982] but have a long history going back to [Sommerfeld 1896]. As defined
by Melrose [1994] (who used the term “scattering metric”), (M, g) is asymptotically conic if M is the
interior of a smooth compact manifold with boundary M and g is a smooth metric on M satisfying
the following property: there exists a smooth boundary-defining function! x on M such that (M, g) is
isometric outside a compact set to a collar (0, &), x M equipped with the metric of the form

dx?  h(x) dx®> Y jxhik(x,y)dyjdyg
s T2 ==+t 2
X X X X

(1-5)

for some smooth one-parameter family of metrics /2 on the boundary M. If y = (y1,..., yp—1) stands

for local coordinates on dM and (x, y) are the corresponding local coordinates on M near M, the
1
x
can be regarded as n — 1 “angular” variables. Rewriting (1-5) in the (r, y)-coordinates, we have

g=dr’+r*h(r Y =dr*+r? Zhjk(r_l,y) dy’ dy*, (1-6)

function » = < near x = 0 can be thought of as a “radial” variable near infinity and y = (y1, ..., Yn—1)

and we observe that the metric g is asymptotic to an exact conic metric dr2 + r2h(0) on (rg, 00), X IM
as r — o0o. The most important example of an asymptotically conic manifold is Euclidean space M = R”
equipped with a short-range perturbation of the Euclidean metric (;;), which is of the form
_ z 1
gij =8ij +1z| zkij(—, —) |z| = oo, (1-7)
2| |z

where k;; are smooth on S"1 x [0, 1); see [Melrose and Zworski 1996].

1 A boundary-defining function is a nonnegative smooth function x such that 3M = x~1({0}) and dx |34 does not vanish
on M.
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Let z = (z1,...,z) be local coordinates away from dM. We say that M is nontrapping if every
geodesic z(s) in M reaches M as s — +oo. This places restrictions on the compactification M. For
example, a compact perturbation of the Euclidean metric is nontrapping provided that it is sufficiently
small in C2; see [Hassell et al. 2006]. However, a nontrapping asymptotically conic metric g may be far
from asymptotically Euclidean. Indeed, there is such a nontrapping metric g on R” for every limiting
metric /(0) on the sphere S"~1, identified with M in this case.

In terms of the Weyl calculus, the symbol of the Laplacian for an asymptotically conic metric on R” is
in the calculus corresponding to the metric on 7 *R”

dz? dg?

— 4

()2 (§)?
This class of symbols was studied by Parenti [1972], Cordes [1976], Schrohe [1987], Hormander [1985,
Equation (19.3.11) and Theorem 19.3.1’] and others. Melrose [1994] adopted a different point of view,
working from the outset on the compactification M (which can be any manifold with boundary) and
introducing the scattering calculus as the natural class of pseudodifferential operators associated with the
scattering Lie algebra of vector fields on M. He seems to have been the first to exploit the fact that in
this calculus one has propagation of singularities at spatial infinity ar all finite frequencies. Using the
scattering calculus, the second author in collaboration with Vasy, Wunsch, the first author, and Sikora,
worked out detailed properties of the spectral measure; see [Guillarmou et al. 2013a; Hassell and Vasy
2001; Hassell and Wunsch 2008].

Let us remark on why we elect to work with the class of nontrapping asymptotically conic manifolds.
On the one hand, it is a sufficiently general class which includes compactly supported or suitable short-
range perturbations of Euclidean space as well as geometrically interesting examples such as metrics
with strictly negative curvature, which are not present in the class of asymptotically Euclidean manifolds.
On the other hand, it is sufficiently restricted to allow us to obtain detailed results on the resolvent and
spectral measure, analogous in some sense to that for flat Euclidean space.

1C. Main results. Throughout the paper, we let (M, g) be an asymptotically conic nontrapping manifold
of dimension n > 3. Since g is complete, the Laplacian Ag associated with the metric g is nonnegative
self-adjoint on L2(M) with domain H?(M ). The spectrum of A, is purely absolutely continuous and is
given by Spec(Ag) = [0, 00): the absence of singular continuous spectrum follows for example from
[Froese and Hislop 1989] using a Mourre estimate, and the absence of embedded L2-eigenvalues follows
from adapting [Hormander 1985, Theorem 17.2.8] as in [Melrose 1994, Section 10].

Our starting point is the following uniform L7 resolvent estimate of Kenig—Ruiz—Sogge-type for the
Laplace operator Ag on an asymptotically conic nontrapping manifold, established in [Guillarmou and
Hassell 2014].

Theorem 1. Let (M, g) be an asymptotically conic nontrapping manifold of dimension n > 3. Then for

all p € [%, 2(;':31) ] there is a constant C > 0 such that for all z € C and for all f € LP (M), we have

_ 1_1)_
1A =27 Fllpo ary < Cl2PG™D7Y £ llLo (1-8)

1 1 _
Here;—l-?—l.
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As explained in [Guillarmou and Hassell 2014], when z € (0, +00), the operator in (1-8) may be taken
to be either the outgoing or incoming resolvent (Ag — (z £i0))~!, defined by

(Ag —(z£i0)7 ! = 8£T+(Ag —(z£i8)!

as a map x/2 e L2(M) — x~1/2=¢2(M) for all £ > 0, where x is the boundary-defining function,
thanks to the limiting absorption principle; see [Hassell and Vasy 2001; Melrose 1994] for details.

The main technical contribution of the present paper is the following weighted uniform Schatten class
estimate for the resolvent of Ag, generalizing [Frank and Sabin 2017, Theorem 12], obtained in the
Euclidean setting. This result is the key ingredient which allows us to extend the Lieb—Thirring-type
bounds of [Frank and Sabin 2017; Frank 2018] to our setting. Below, C;(L?(M)) denotes the Schatten
space of order ¢ (see Section 2A for definition).

Theorem 2. Let (M, g) be an asymptotically conic nontrapping manifold of dimension n > 3. Let
pels. ”—;1] Then there exists C > 0 such that for all z € C\ {0} and all Wy, W5 € L?>P (M), we have
Wi(Ag —2) ' Wa €Cq(L2 (M), ¢ = 22D e [n—1.n+ 1], and

IW1(Ag —2) " Walle, cr2emy) < ClzI" 22 | Will 20 any | Wall 20 (a1 (1-9)

Remark 1.1. When z € (0, +00), the operator in (1-9) may be taken to be either the outgoing or incoming
resolvent (Ag — (z £i0))~L

In what follows we shall write E @(A) = 1(—00,1)(VAg), A >0, for the spectral projection of ~/Ag,
and remark that the spectral measures d(E @(A)u, u)r2(pr) are absolutely continuous with respect to
the Lebesgue measure for any u € L?(M). Let us write

dE 50 == 2 E ().
The proof of Theorem 2 is based on the following weighted Schatten norm estimates on the spectral measure
dE @(A) of v/Ag, which extend the corresponding estimates of [Frank and Sabin 2017, Theorem 2],
obtained in the Euclidean setting. We believe that these estimates may be of some independent interest.

Theorem 3. Let (M, g) be an asymptotically conic nontrapping manifold of dimension n > 3. Let
pE [1, ”;1] Then there exists C > 0 such that for all > > 0 and all Wy, W, € L*? (M), we have

WidE /5. (MW € Cg(LA(M)), ¢ = 2O=D e [1,n + 1], and

IWdE /5 (MWalle,w2my) = CA 2 Wil 20 any [ Wall 20 oy - (1-10)
Remark 1.2. If the nontrapping assumption is dropped, the estimates in Theorem 3, and therefore also

Theorem 2, may fail. Instead, the estimates will hold for all A < A for a constant C which depends
on Ag. A “metric bottle” example illustrating this, for which the best C(1¢) grows exponentially in Ag, is

given in [Guillarmou et al. 2013b, Remark 8.8].

Let us now consider the Schrodinger operator Ag + V' with a complex-valued potential V € L? (M),
% < p < 00. As explained in Section 6, this operator has a natural m-sectorial realization on LZ(M ), and
the spectrum of Ag 4+ V in C\ [0, 0o) consists of isolated eigenvalues of finite algebraic multiplicity.
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As an application of Theorem 1, we have the following generalization of the results of [Frank 2011;
2018; Frank and Simon 2017] concerning Keller-type bounds on the individual eigenvalues of non-self-
adjoint Schrodinger operators in the Euclidean setting to that of an asymptotically conic nontrapping
manifold; see also [Fanelli et al. 2018].

Theorem 4. Let (M, g) be an asymptotically conic nontrapping manifold of dimension n > 3:
() Let V € LYt"2(M) for some 0 < y < % Then any eigenvalue A € C of the operator Ag +V
satisfies .,
A < CrnllV I3 22y (1-11)
where the constant Cy,, > 0 depends on y and n only.

(i) If V € L"2(M) is such that || ViLnr2(ary is sufficiently small, then the operator Ag + V' has no

eigenvalues.
(iii) Let V € LY1"2(M) for some y > % Then any eigenvalue A € C of the operator Ag + V satisfies
_L .1 +4
AW 72IA1Z = CrallVIl 2z gay (1-12)

where d (M) is given by (1-4) and the constant Cy , > 0 depends on y and n only.

Remark 1.3. Parts (i) and (ii) of Theorem 4 have been established in [Guillarmou and Hassell 2014,
Proposition 7.2] without specifying the radius of the disk containing the eigenvalues of Ag + V' in part (i).

As a consequence of Theorem 2, we obtain the following analogue of [Frank and Sabin 2017, Theo-
rem 16], concerning Lieb—Thirring-type inequalities for the sums of eigenvalues of Ag + V' in the case
of a short-range potential V' € L?(M), p =75 +y, where 0 <y < %

Theorem 5. Let (M, g) be an asymptotically conic nontrapping manifold of dimension n > 3, and let
V e LP(M) with p such that

n+1
<p=<"

NS

Let us denote by A; the eigenvalues of Ag + V in C\ [0, 00), repeated according to their algebraic
multiplicities. The following estimates then hold.:

() If p = 5, we have

Z M < 00, (1-13)

144,

where the branch of the square root is chosen to have positive imaginary part.

(i) If 2 < p < 2%, then

d(Aj) Ate)p
2 e = ConnlVILZGy (1-14)
J J
for all ¢ satisfying ,
e20, 3<p<
@n=—1)-n? +1
o> BT 20, sy spstt
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Remark 1.4. If 5 < p < ”'H , then by Theorem 4 we know that the eigenvalues of Ag + V' are confined
to an open disk centered at the origin. Furthermore, it follows from (1-14) that if a sequence of eigenvalues
Aj, € C\ [0, 00) converges to E > 0 then ImAj, € £1. In the case p = % the bound (1-13) controls a
possible accumulation rate of eigenvalues in C \ [0, co) at infinity, and it implies in particular, with the

help of
[Tm A|

V2(A[+Red)’

that if a sequence of eigenvalues A, € C\ [0, co) converges to £ > 0 then Im 1, € £L.

Im(+v/A) =

As another application of the Schatten class estimates for the resolvent of Ag given in Theorem 2, we
get the following generalization of [Frank 2018, Theorem 1.2], concerning Lieb—Thirring-type inequalities
for the sums of eigenvalues Ag + V' in the case of a long-range potential V € LP(M), p=y+75, y > %

Theorem 6. Let (M, g) be an asymptotically conic nontrapping manifold of dimension n > 3, and let
VeLP(M)withp=y+7%5,y > . Then the eigenvalues A; € C\ [0, 00) of Ag 4V, repeated according
to their algebraic multiplicities, sansfy the following bounds: for any ¢ > 0,

Y
2y—+e¢ n
( E d()tj)zers) ’ fLe,y,nf |V|y+§ dx,
M

[Aj 1Y <Cyn [pg IVIVH1/2 dx

/
>
and forany e >0, 0 <¢&' < y+n/2,andp, 1,
y(r4n/2)
d()tj)zy"'g y—e/(v+n/2) __dy+n/2) Ln
E < Leg ynp v=Fn/2 [V|" T2 dx.
|A’_|2y—y+):1/2+8+8/ - [ M
|Aj 1Y =1 Cym [pg VIV T1/2dx 17

Remark 1.5. As observed in [Frank 2018], Theorem 6 has the following consequence: let y > l and
Ve LYtr2(p). 1f (Aj )°° | is a sequence of eigenvalues of Ag + V with A; — 49 € [0, oo) then
ImA; €[? for any p > 2)/

Remark 1.6. Let us emphasize once more that all our results, Theorems 2—6, are valid for the metric
Schrodinger operator in the Euclidean space R”, with a metric that is a nontrapping short-range perturbation
of the Euclidean one, in the sense of (1-7). In particular, the results hold true for the metric Schrodinger
operator in the Euclidean space R”, with a metric that is a sufficiently small compactly supported
perturbation of the Euclidean one.

1D. Outline of the paper. The plan of the paper is as follows. In Section 2 we present our strategy for
proving Theorem 2, which is the main result of the paper. Section 3 is devoted to the proof of Theorem 3,
giving Schatten norm estimates on the spectral measure. In Section 4 we derive some Schatten norm
estimates on the resolvent of the Laplacian, as a direct consequence of the Schatten norm estimates on the
spectral measure, and give their analogues at the endpoint case p = 7, needed in the proof of Theorem 2.
The principal step in the proof of Theorem 2, corresponding to the estlmates on the spectrum, is carried
out in Section 5. Section 6 contains the proof of Theorem 4, which follows the arguments of [Frank 2018;
Frank and Simon 2017] closely, relying on Theorem 1, with some small adjustments due to the fact that
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we are no longer in the Euclidean setting. Finally, we observe in Section 7 that Theorems 5 and 6 are
direct consequences of Theorem 2 combined with the arguments of [Frank and Sabin 2017, Theorem 16]
and [Frank 2018, Theorem 1.2]. Appendix A contains the proof of Lemma 5.5, needed in the main text.
Appendix B is concerned with the analysis of the microlocal structure of the spectrally localized outgoing
and incoming resolvent, used in the proof of Theorem 2.

2. Strategy of the proof of Theorem 2

2A. Schatten norm estimates. We first recall the definition of the Schatten spaces of operators on L?(M);
see [Simon 1979]. Let A be a compact operator on L?(M), and let i ;(A) be the singular values of A,
given by p;(A4) = A; ((A*A)'/2). Here A 7 (B) denotes the eigenvalues of a positive self-adjoint compact
operator B, arranged in decreasing order. The Schatten norm of A of order 1 < g < oo is defined as

o0
q
1ANZ, L2y = D i (DT = (A% 4)2).
=1

The basic mechanism for proving the Schatten norm estimates of Theorems 2 and 3 comes from the
fact that the Schatten spaces are complex interpolation spaces, see [Simon 1979, Theorem 2.9; 2015,
p. 154], and from [Frank and Sabin 2017, Proposition 1].

Proposition 2.1. Let T be an analytic family of operators, defined on the strip {s € C| —Lo <Res <0}
for some Ao > 1, acting on functions on M. Assume that we have operator norm bounds

alr|
9

I TirllL2(ay—L2(0r) < Moe T ro+irlLt Ay Looary < M1e®" forallr e R,

for some a > 0 and My, My > 0. Then for any Wy, W, € L2*o (M), the operator W1 T—1 W5 belongs to
the Schatten class Cyj,, (L?(M)) and we have the estimate

1—-L 1
IWAT-1Wallessy < My "0 MY Wil 220 (ag) | Wall L2230 1)

Let us recall briefly the proof of Proposition 2.1. The result is established by considering the analytic
family of operators Ss = | W |~ 1S W1 Ts Wa|Wa| 175, This family has the property that S_y = W1 T_1 W>
and it satisfies the following estimates on the boundary of the strip. For s = ir, r real, we have

ISir |20y 200y < W Tirliz2ary > 22ary < Moe"!,
and for s = —A¢ + ir, we note that Ty has its Schwartz kernel bounded pointwise by M le"" | (due to the
L' — L bound on Ty) and |W; |, [W,|™* are L? functions; hence S; is a Hilbert—-Schmidt operator
with the Hilbert-Schmidt norm bounded by M;e4!"!||W; ||23 Ao () W2l i‘; Ao (M) Interpolating between
the operator norm and the Hilbert—Schmidt norm gives us a bound on the Schatten norms, in particular at
s = —1, where we obtain the Schatten norm at exponent 2.

2B. Strategy. The principal idea of the proof of the Euclidean analogue of Theorem 2, which is due to
Frank and Sabin [2017, Theorem 12], is to establish the following pointwise bound for the Schwartz
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kernel of the powers of the resolvent (A —z)™%:

n—1 _ Re()

(A —2)"%(x. )| < CeCOmEN? |7 T =552 | _ yRe@="5% 1y e g, 2-1)

Here z € C\ [0, 00), @ € C, Re(x) € [%, ”erl ]. The desired Schatten bound (1-9) in the Euclidean case
is therefore a consequence of (2-1) combined with the Holder and Hardy-Littlewood—Sobolev inequalities
as well as an interpolation argument.

Unfortunately, the natural analogue of the pointwise bound (2-1) does not hold in general, for z close
to the spectrum of Ag, for asymptotically conic manifolds, essentially because there can be conjugate
points for the geodesic flow, and to prove the bound (1-9) we have to proceed differently.

Our strategy of the proof of Theorem 2 is to establish the Schatten norm estimate (1-9) for
Wi(Ag — z)~'W, for z on the negative real axis, and for z just above and below the spectrum, that is,
for W1(Ag — (z £i0)) "W, for z > 0. We then use the Phragmén-Lindelsf theorem to obtain the result
on the whole of the complex plane, excluding the origin.

Let us give the proof of Theorem 2, assuming that it has been established for z < 0 and for z +i0,
z>0. Let Wy, W5 € L2P(M ) with p € ['5' %] and let us consider the following bilinear form for
z e C\ [0, 00):

B, (Wi, Wa) := Wi (Ag —2) ' W), (2-2)

When z € (0, 00), we extend the definition of B; by taking the outgoing resolvent (Ag — (z +i0))~! in
(2-2). Thus, we know that for z € R\ {0}, B; is a bounded bilinear form

B : L2P(M)x L (M) — Cg(L*(M)). pe[2.2£1]. ¢=2020,
such that

1B (W1, Wa)lle, < ClzI" 22 (Wil 2o any | Wall 20 (ar) - (2-3)

We now complete the proof of Theorem 2 by a Phragmén-Lindel6f argument. In doing so, let Wy, W5 €
Cy°(M). We claim that the function H(z) := B; (W1, W>) is holomorphic in Imz > 0 with values in
Cq (L%(M)) such that

_1 1
I1H(2)lle, = C(lz]72 +2]2).

Indeed, for Imz > 0, the operator Wi (Ag —z) 1 W, : L2(M) — H?(M) N &'(K) is bounded, where
K is a compact set containing the support of W;. Furthermore, it depends holomorphically on z with
Im z > 0 and satisfies the bound

_ 1 1
IW1(Ag —2) " Wallp2ny. 2y < CU2172 +12]2), Imz >0, z #0;

see [Melrose 1994] for intermediate values of z, [Vasy and Zworski 2000] for |z| — oo and [Rodnianski
and Tao 2015, Proposition 1.26] for |z| — 0. Now the embedding H2(M) N &' (K) — L?*(M) is an
operator in Cp /54 for all € > 0 in view of the Weyl law for the Laplacian on a compact manifold. Since
q > %, we deduce the claim.
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The function H(z) is continuous for Imz > 0, z # 0, with values in C, (L?(M)), and to avoid the
problem at z = 0, we consider the map

F(z) = (H(e), T)e1=35)?

for a fixed T € Cg(L?(M)) with norm || T llc,, = 1. Here % + é = 1 and the product is the duality pairing
between the Banach space C; and its dual Cyr. Then F(z) is holomorphic in Im z € (0, ), continuous on
the closure, and enjoys the bounds

|F(z)] < Ce€l?l for0<Imz <,

|[F)| = ClWillLze oy IWallp2pary  for Imz € {0, 7}
in view of (2-3). Applying the Phragmén-Lindel6f principle, we deduce that
|F(2)| = ClIWhllpze oy IW2l 22 (ar
for all z € C such that 0 < Imz < &, and therefore
IH(2)lle, < Clzl™* 37 [ Will 2o [Wall 2oy, Tmz >0, 2 #0.

By a density argument, we obtain the bound (1-9) for Imz > 0, z % 0. By considering the adjoint of the
operator B, we complete the proof of Theorem 2.

This argument reduces the problem to proving estimate (1-9) for z € R\ {0}. We find it convenient
to first prove the corresponding estimate for the spectral measure given in Theorem 3. The proof of
Theorem 3 relies crucially on the 7'T* structure of the spectral measure.

When z € (—o00,0) and p € (%, %], the Schatten norm estimate (1-9) is a direct consequence of
Theorem 3, and at the endpoint case p = 7, the Schatten norm estimate (1-9) follows from the heat kernel
estimates due to [Grigoryan 1997; Varopoulos 1985].

Establishing the Schatten norm estimate (1-9) for W1(Ag — (z £ i0)) "' W, with z > 0 represents the
main difficulty in the proof of Theorem 2. When doing so, following [Guillarmou and Hassell 2014;
Guillarmou et al. 2013b; Hassell and Zhang 2016], we use a microlocal partition of the identity

N
> 0i(n) =1d,
i=1
where Q;(n)are pseudodifferential operators depending on the energy parameter 0 < 1 ~ |Z|1/ 2, con-
structed in [Guillarmou et al. 2013b]. Splitting up the operator W1 (Ag — (z £i0)) "1 W by means of the
partition of the identity, we are led to estimate the individual terms W1 Q; (7)*(Ag —(z£i0)) "1 Q; (n)Wa,
and here the most interesting contributions arise when i = j. When handling those, we proceed by

establishing pointwise bounds for the Schwartz kernel of the operator

A
Qi(n)*d)(?g)mg—(ziiO))‘SQJ(n), Rese[5 551],

analogous to the Euclidean estimates (2-1). Here ¢ is a cut-off near 1.
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3. Schatten norm estimates on the spectral measure: proof of Theorem 3

Our starting point for the proof is the operator partition of unity, Id = ZIN=1 Qi (n), depending on
n > 0, constructed in [Guillarmou et al. 2013b]. This partition of unity enjoys the following estimates in
particular: there exists § > 0 sufficiently small but fixed such that, for all k =0, 1,2, ..., there is C; >0
such that, for all m, m’ € M, we have

|95 (Qi (0)* dE /(1) Qi () (m, m")]
<Ck

with d(-,-) being the Riemannian distance on M. We say more about this partition of the identity in
Section 5A below; here, we can use results of [Chen 2018; Guillarmou et al. 2013b] as a “black box”.
Then for all A € [(1—2)n, (14 2)n], we use the partition of unity to decompose the spectral measure
sandwiched between two L2” functions:

N
WidE jx (MWa = Z WlQi(U)*dEJKg(A)Qj(n)WZ- (3-2)

i,j=1

Let p € [ , "erl] and g = p’(lnf_pl) € [1,n + 1]. In the first step, we shall prove microlocalized estimates

of the form
W1 Qi (M*dE /5. (2) Qi (M W2lle, = CA"r wy 20 ) [ W2ll 22 (ary (3-3)
for the diagonal (i =) terms of the decomposition (3-2). In doing so, we shall follow [Frank and Sabin
2017, proof of Theorem 2] and start by showing (3-3) at the endpoints p = ”'H and p = 1; i.e,
W1 Qi ()™ dE /5 (1) Qi (MWallc, 4, < CARFE|W, I Ln+1any W2l Lo+ 1 () (3-4)
W1 Qi () dE /5. (2) Qi (NWalle, = CA" Wil L2an W2l L2y (3-5)

respectively. Once the estimates (3-4) and (3-5) have been established, the bound (3-3) follows by a
complex interpolation argument applied to the analytic family of operators

é— Wn+1+§n+1Q (n) dEF(A)Q (’,’)Wn+l+§n+l

in the strip 0 <Re ¢ < 1, with W; > 0 being simple functions such that [|Wj | .2ar) = 1, j = 1,2; see
[Simon 1979, Theorem 2.9].
Now to prove the estimate (3-4), we shall consider the family of operators

VAg
A

T = Qi(’])*¢( )Xi(k— VAg)Qi(). —FY <Res <o,

introduced in [Chen 2018; Guillarmou et al. 2013b, Definition 3.2]. Here ¢ € C§°((1 — %, 1+ %)) is
such that ¢(¢) = 1 in a neighborhood of 7 = 1, and x?_ is the family of distributions on R, entire analytic

in s € C and such that s

AL

——, Res>—1,
Tet1) o0

)=
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where A4 = max(A, 0); see [Hormander 1990, Section 3.2]. Note that, at least formally, we have

k—1
10—V Ag) = E /(). X;k(/\—\/A_g)z(j—A) dE/z(0). k=12.....

Recall from [Guillarmou et al. 2013b, Definition 3.2] that T is the operator whose Schwartz kernel is
given by

(Qi(m*qs(“?)xi(x—@)Qi(m)(m,m/)
= [ - u)a"(Q ) ¢( )dEr(u)Q (n))(mm)du, (3-6)

: ) )
where k € N is such that Res + k > —1. As € [n(1 —=8),n(1 + 8)] for A € [(1—5)n, (1 + 5)n] and
% € supp(¢), thanks to the estimates (3-1) the integral in (3-6) is well-defined.
As explained in [Guillarmou et al. 2013b], the family of operators T is analytic in the sense of Stein
in the strip —w < Res < 0. When Res = 0 we have

mls|
||Ts||L2(M)—>L2(M) <Ce 2,

and relying on the estimates (3-1) it was shown in [Chen 2018; Guillarmou et al. 2013b] that when
Res = —w we have

n=1 n+1 .
I Tsll L ary—>pooary S C(L+ e 2 =) )L s=—( 2 )+zr, reR.

Applying Proposition 2.1, we get, for any two complex-valued functions Wy, W, € L"T1(M),
VA _

WiT_1Wr =Wy Qi(TI)*¢( 1 g))(Jrl()L —VAg)Qi(mW>

= W1 Qi(N*dE /5 (1) Qi(mW>

is in the Schatten C,, 11 class and (3-4) holds.
To show (3-5), we recall from [Guillarmou et al. 2013b] that we have a pointwise kernel bound on the

(microlocalized) spectral measure,

1Q: () *dE /- (M) Qi L1 a1y Looay < CA" (3-7)
Also, we have
dE /5-(A) = Qr) PV P*(L), (3-8)

where P(1): L2(0M)— L™ (M), r € [2("+1) oo], is the Poisson operator; see [Guillarmou et al. 2013b].
Using the T*T trick, it follows from (3-7) and (3-8) that

1Q: (M)* P(ML29nr)—Loo(ar) <
The Schwartz kernel Q;(n)* P(A)(m,m’) of the operator Q;(n)* P(A) satisfies therefore

IIQi(n)*P(X)(m, ')”LZ(BM) < Cl%
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for almost all m € M. Thus, for any W, € L?(M), the operator W; Q; (n)* P(A) : L>(0M) — L*(M)
is Hilbert-Schmidt with the norm bounded by CA®=D/2||w; || r2(m)- Taking adjoints, we find that
P(X)*Q; ()W, is a Hilbert—Schmidt operator with norm bounded by CA®=D/2| ;| L2(M)- Therefore,
(27)~! times the composition of these two operators, which is precisely Wy Q; (n)*dE ﬂ(k) Qi(mWa,
is of trace class and (3-5) follows.

In the second step, we shall bound the Schatten norm of the off-diagonal (i # j ) terms in the decompo-
sition (3-2); i.e., we shall prove the estimate

W1 Qi (™ dE /5. (X)Qj (MWalle, < CA e Wy 27 () W2l 20 (01 (3-9)

As above, we shall exploit the T*T structure of the spectral measure.

Let T : L?>(M) — L?(dM) be a compact operator and ¢ > 1. Then T*T € C4(L?*(M)) if and only if
T € Caq(L*(M), L*>(0M)), and moreover, ||T*T ||c, = ||T||(232q. This is a consequence of the following
equality for the singular values:

i (T*T) = e (T)>. (3-10)
Moreover, if 71, T, are in Co4(L2(M), L2(dM)), then T}*T5 is in Cq(L?(M)), and
1T TalE, < ITE TG, + TS T2, ; (3-11)
see for example [McCarthy 1967]. Using (3-8), we write
W1Qi(n)*dE ;5 (M) Q; ()W = 2m) "' T{ T, (3-12)

where 71 = P(A)*Qi(n)W1, and T» = P(A1)*Q;(n)Wa. Now it follows from (3-3) that )T, €
Cq(L2(M)), TS T € Cq(L*(M)), and we have

1T Tille, < CATY P IWi2p gy 1T Tlle, < CATTF 2 1IWRI1G 20 gy

By the discussion above, this is equivalent to the fact that Ty € Cpq(L*(M), L?>(0M)) and T» €
C24(L*(M), L?(0M)). It follows from (3-12) and discussion above that W1 Q; (n)*dE@(/\) QimMW,e
Cq (L?(M)), and using (3-11), we get that

n

IW2 Qi ()" dE 5= (1)Q; (M Walle, < CAT 5 (W22, (agy + 1Wal22, gy
Thus, (3-9) follows by bilinearity in Wy, W,. This completes the proof of Theorem 3.

4. Consequences of the spectral measure estimates for p € (%, #]

. . —_ n
and their analogues at the endpoint p = 5

4A. Consequences of the spectral measure Schatten norm estimate. Using Theorem 3 and Minkowski’s
integral inequality, we can deduce some Schatten estimates on the resolvent. In this subsection, we only
treat the case p > 7.

The first result applies for z in any sector excluding the positive real axis.
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Proposition 4.1. Let p € (5, ”H] and suppose Wy, W € L?P(M). Let ¢ > 0 be arbitrary. Then for
z € Csuchthat z # 0, arg z € [g, 27w — €], we have the sandwiched resolvent Wy (Ag —z) "\ Wy is in the
Schatten class Cq(L*(M)) with ¢ = p(" 1) em—1,n+1]and

Wi (Ag —2) " Walle, < ClzI™* 27 [ Wil L2p ) | Wall 2o ary.
where C depends on p, ¢ and (M, g), but not z.
Proof. We express the operator Wy (Ag —z) "1 W; as
oo
Wl(Ag—Z)_1W2=/ (AZ—Z)_IWldEJIg(A)WQ dr.
0
The result follows by estimating the Schatten norm of W1 dE @(A)Wz using Theorem 3 and noting that,

provided p > %, we have

o0
/ A2 —z|7IAT B dA < Clz| 7,
0

where C depends on p and ¢ but does not depend on z in the given sector. O

In a similar manner we obtain “elliptic” estimates on the resolvent, where we remove the singularity in
the spectral multiplier. In this way we can obtain estimates on the positive real axis. To state these, we fix
a function ¢ : [0, c0) — [0, 1] such that ¢(¢) = 1 for ¢ in a neighborhood of = 1 and has support in a
slightly bigger neighborhood of ¢ = 1.

Proposition 4.2. Let p € (5, ”'H] and suppose Wy, Wp € L?P(M). Then for z € C\ {0}, the operator
Wi(1—¢)(Ag/|z)(Ag —2) " Wy is in the Schatten class Cg(L*(M)) with g = l’flnT;D em—1,n+1],
and we have

a2

)(Ag—z)- Wa| < Cll™ 4 Wil 2 ony | Wall 2o o).

||
where C depends on p and on (M, g), but not z.

Cq

Proof. Again we express the operator using an integral over the spectral measure, and estimate the
Schatten norm of the spectral measure using Theorem 3 and Minkowski’s integral inequality. This time

/°°| o 1(1—¢>>( )r”pdx
A 2]

and it is straightforward to check that this is bounded by C|z|~1*7*/(2P) uniformly in z. |

we obtain the integral

4B. Analogues at the endpoint p = % In the case p = 7, the arguments used in the proofs of Proposi-

tions 4.1 and 4.2 are no longer valid and need to be replaced. In view of the Phragmén-Lindelof argument,
explained in Section 2B, we only need to do this for z negative in the case of Proposition 4.1 and z
positive in the case of Proposition 4.2. To this end we prove the following two results.
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Proposition 4.3. Let p = 5. There is C > 0 such that for all z < 0 and for all Wy, W, € L" (M), the
operator Wi(Ag —z) " Wa is in Cy—1 (L2(M)) and we have

IW1(Ag —2)" Walle,—y < ClIWAllLrany W2l L o) (4-1)

Proof. Here we use a slight variation of Proposition 2.1. Let W;, W, be nonnegative simple functions and
consider the analytic family of operators

SS - Wl_s(Ag _Z)SWZ_S, —@ S Res S 0

Clearly, when Re s = 0, we have

ISsllz2ay—> L2y = C- (4-2)

Next, we will show that, when Re s = —@, then S§ is Hilbert—Schmidt and we have

Clims| = =
”SS”Cz <Ce ”Wl ||L”(M)||W2||L"(M)' 4-3)
This allows us to run the interpolation argument in the proof of Proposition 2.1.
To prove (4-3), on the line Res = —@, we express (Ag —z)* in terms of the heat kernel:
o0
C(—s)(Ag —2)°(m,m’) = / 175 Vet 2 e B (m, m') dt. (4-4)
0

We now use heat kernel estimates. Due to [Varopoulos 1985], we have the estimate ||e™*2¢ | [lsfoo <
Ct™/2 and by a result of [Grigoryan 1997], this implies a pointwise upper Gaussian estimate on the
heat kernel

_ _n _cdmm’)?
e B (m,m)| < Ct™3e™ 1, 10, (4-5)

for some ¢ > 0. The integral in (4-4) is convergent for all m # m’ due to (4-5). We thus get for all m # m’

and z € (—o0, 0), and uniformly for all s such that Re s = —@

_ S ’ *© 3 _cdm.m"? |
ID(=s)(Ag —z)"(m,m)| < C 1 2e i dt
0

—_ o0 _3 _ N2
< Cd(m,m) 1/ 127 Tzdmm) gy
0

<Cd(m,m"™ L. (4-6)
Using Holder’s inequality, the generalized Hardy—Littlewood—Sobolev inequality of [Garcia-Cuerva and
Gatto 2004] and (4-6), we obtain for Re s = —@,

IW* (Ag =2 W |12, (apy < CIT (=) 7! /M " Wi (m)" L d(m,m") 2 Wa(m')" "V d Vg (m)d Vg (m')
X

<CILE)II oo an W3 ia-van
< CeClims] ||W1||2;(1M)||W2I|ZZ(IM),

where the factor ¢€ M5! is contributed by the Gamma function. This shows (4-3).
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We now interpolate using the family S between (4-2) and (4-3), as in the proof of Proposition 2.1,
and we obtain at s = —1

IWi(Ag —2)" " Walle,—, < CIIWillLaany W2l ary 4-7)

which completes the proof for W; and W, nonnegative and simple. The extension to general Wy, W, €
L™ (M) is standard. |

We now prove an analogue of Proposition 4.2.

Proposition 4.4. Let p = 5 and suppose Wy, W € L (M), and let ¢ be as in Proposition 4.2. Then for
z > 0, the operator Wi (1 — ¢)(Ag/z)(Ag —2)"'W, is in the Schatten class Cp—1(L*(M)) and

< CIWillLaany W21l L (ar)
Cn—l

le(l—qs)( )(A o

uniformly in z.

Proof. We first note that for z > 0, the operator
W1¢( )(A +2)7' W,
is in the Schatten class C,—1(L2(M)), and

”Wwﬁ( )(A Lo < Wl an [ Wallron

Cn—1

uniformly in z. This follows from the spectral measure estimate (1-10), since

e’} /\2
/ Agb(—)(AZ +z)"tdA
0 Z

is bounded uniformly in z. Combining this with Proposition 4.3, we see that Wy (1—¢)(Ag/z)(Ag+2z) " W2
is in C,—1(L?(M)) and we have

< C|WillLr ) W2l Ln ar) (4-8)
Cnfl

HWI(l—d))( )(A +z2)" ',

uniformly in z.
Now we write

W1(1—¢>( )(A . Wz—W1(1—¢)( )(A Loy
+zzW1<1—¢)( )(Ag+z>—1mg—z)— Wa. (49)

The first term in the right-hand side of (4-9) has already been shown to lie in C,—1 with the bound (4-8).
We write the second term on the right-hand side of (4-9) in terms of the spectral measure and apply
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Minkowski’s integral inequality together with the spectral measure estimate (1-10), and find that the norm
in C,—1 is bounded by

od] A2
C(= [T a=a (% )02 #2716 =2 dd WAL W2 lnan

and a change of variable shows that this integral is convergent and independent of z, completing the
proof. O

5. Resolvent estimates on the spectrum: completion of the proof of Theorem 2

The key difficulty in proving Theorem 2 is to obtain estimates on the limiting resolvent at the spectrum
(Ag —(z+1 0))~! for z > 0. Given Propositions 4.2 and 4.4, we only need to do this localized near the
singularity at z of the spectral multiplier (A> — z)~!. In doing so, following [Guillarmou and Hassell
2014; Guillarmou et al. 2013b; Hassell and Zhang 2016], we shall use a microlocal partition of unity.

S5A. Operator partition of unity. We begin by recalling some results of [Guillarmou and Hassell 2014;
Hassell and Zhang 2016] on high- and low-frequency microlocal estimates on the spectral measure and
resolvents of Ag.

Proposition 5.1. High-frequency microlocal estimates. For all high energies 1> %, there exists a family

of bounded operators Q;(n) : L>(M) — L*>(M), i =1, ..., Ny, with Ny, independent of 1 and with the
norm satisfying

10i M L2(m)—120a) < C  for some C independent of 1, (5-1)
so that the following properties hold:

(1) The operators Q;(n) form an operator partition of unity:
Np

> 0i(n) =1d. (5-2)

i=1

(2) Let n > % and (i, j) € {1,..., Ny}2. There exists § > 0 small such that for all z > 0 such that
Jz € [(1=8)n, (1 + 8)n], one of the following three alternatives holds:

(2.1) One has for the outgoing resolvent
(Qi)* (Ag —(z4+i0)7' Qi () (m,m') € x(m)*x (M) z7°C®(M x M) (5-3)

for allm,m’ € M, where the C*®°(M x M)-part depends also on z and is uniformly bounded in z in the
smooth topology.

(2.i1) One has for the incoming resolvent
(Qi()*(Ag —(z=i0) "' Q; () (m,m') € x(m)®x(m")*z=°C®(M x M) (5-4)

forallm,m’ € M.
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(2.iii) The spectral measure satisfies, for A = /z € [(1 —=8)n, (1 + 8)n], the following bounds: for all
k=0,1,2,...,there is Cy > 0 such that for allm,m’ € M

|95(Qs (D*dE /5-(0) Qj () (m.m")| < CeA * (1 4 2d(m.m')) =2+, (5-5)

(Qi(M*dE /5-(2)Q; () (m,m') = A"~ (Z eEiAmm) g (A ,m,m') +b(A,m, m’)), (5-6)
+

with a+, b satisfying the estimates, forallk =0,1,2,...,

(n—1
b

105ar (A, m,m")| < AR+ Ad(m,m’))™ 2 (5-7)
105b (A, m,m")| < CuA™* (1 + Ad(m,m")) ™% forall K > 1. (5-8)
Moreover the alternative (2.iii) always holds if i = j.

Low-frequency microlocal estimates. Similarly, for all low energies n < 2, there exists a family of
bounded operators Q;(n) : L>(M) — L*(M), i =0, *,1,..., N;, with N; independent of n satisfying
(5-1) and (5-2) (with the sum in this case ranging overi =0, x, 1,..., Nj), satisfying the following:

(3) Let 0 < n <2andi, j range independently in {0, %, 1, ..., N;}. There exists § > 0 small such that,
for all z > 0 satisfying A := /z € [(1=38)n, (1 + 8)n], one of the following three alternatives holds:

(3.1) One has the pointwise kernel bound for the outgoing resolvent (for all N € N)

x/ )N )2 (x(H)+x(%))
x'+A xX+x'+A

N
(@i @s=+ion o e < (5 ) ( 59

where x = x(m), x' = x(m'), and x € C§°((—¢,¢€),[0,00)) is such that y = 1 in [—%5, 5] Here ¢ > 0 is
small enough.
(3.i1) One has the pointwise kernel bound for the incoming resolvent (for all N € N)

x )N( X! )N(xx’)'T(x(%)ﬂ("r'))

[(Qi ()™ (Ag—(z=i0)) " Q; () (m.m")| < C (x+/\ XA X+x/+A

(3.ii) Forallk =0,1,2,..., there is Cy > 0 such that (5-5), (5-6), (5-7) and (5-8) hold.

. (5-10)

Moreover if i = j, the alternative (3.iii) holds.

Remark 5.2. The two partitions of the identity do not quite match up in the intermediate energy regime,
% < n < 2. Because of this, it would be more notationally accurate to label the partitions Q?igh and Q}Ow;
to avoid cumbersome notation, we do not do this. We emphasize that in this intermediate regime either
partition can be used.

Remark 5.3. In the low-energy case, n < 2, let us first point out the meaning of the right-hand side of
(5-9) and (5-10). In [Guillarmou et al. 2013a] it was shown that the Schwartz kernel of the resolvent
(Ag — (A2 £i0))~! for A € [0, Xo] has some polyhomogeneous structure on the “low-energy space”,
which is a blowup of M x M x [0, A¢]. Ignoring the artificial boundary at A = A, this blown-up space
has seven boundary hypersurfaces corresponding to seven different types of asymptotics displayed by the
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resolvent kernel. These are the left boundary Ib, the right boundary rb, which arise from dM x M x [0, o]
and M x dM x [0, Ag]; the b-face bf, which arises from blowing up dM x dM x [0, A¢]; the “zero face” zf,
arising from M x M x {0}; and three faces at A = 0 produced by blowing up. These are bfy, arising from
blowing up dM x M x {0}; the face Ibg, arising from blowing up dM x M x {0}; and lastly rby, arising
from blowing up M x M x {0}. See Figure 1 of [Guillarmou et al. 2013a].

The resolvent (microlocally away from the conormal bundle of the diagonal) was shown in [Guillarmou
et al. 2013a] to be polyhomogeneous and vanish to order n —2 at the boundary hypersurfaces lbg, rbg, bfp,

% at Ib and rb. Cases (3.i) and (3.ii) apply when the microlocalizing operators

and to vanish to order
Q; and Q; remove the wavefront set at Ib, tb and bf, meaning there is infinite-order vanishing there.
Moreover, the cutoff factor y () + X(’%) vanishes in a neighborhood of zf. Now notice that x vanishes
to first order at Ib, Ibg and bfy, while x’ vanishes to first order at rb, rbg and bfy and x + x’ + A vanishes
to first order at bfp. So the product on the right-hand side of (5-9) and (5-10) precisely encodes the order

of vanishing at these remaining boundary hypersurfaces.

Proof. This is a combination of several results from [Guillarmou and Hassell 2014; Guillarmou et al.
2013b]. In the high-energy case, > 3, Lemma 5.3 of [Guillarmou and Hassell 2014] tells us that the
pairs (i, j) split into four cases. In the first two cases, Q;(n)* is either not-incoming or not-outgoing
related to Q,(n), and then Proposition 6.7 of [Guillarmou and Hassell 2014] applies; note that the
estimates in (2.1) and (2.ii) above appear in the proof, rather than the statement, of Proposition 6.7. In
the third and fourth cases, Theorem 1.12 of [Guillarmou et al. 2013b] applies and shows that estimates
(5-5) hold; see also Proposition 6.4 of [Guillarmou and Hassell 2014]. Also in the third and fourth
cases, Proposition 1.5 of [Hassell and Zhang 2016] holds and gives the estimates (5-6), (5-7) and (5-8).
Note that [Hassell and Zhang 2016, Proposition 1.5] is written in the case when i = j but the proof
of that proposition shows that it remains valid more generally when i # j but the microsupports are
close enough.

In the low-energy case, as shown in Section 6 of [Guillarmou and Hassell 2014], case (3.ii1) applies to
the pairs (0,0), (x, %), and (i, j) where i, j > 1 and |i — j| < 1. Moreover, case (3.iii) also applies to
any pair where either i = * or j = *. That is because in these cases, the operator Q«(7) annihilates the
wavefront set of the spectral measure at bf, with the consequence that the spectral measure estimates

[95(Qi (" dE /- () Q; () (m.m")| < GA"™ 17K (14 Ad(m.m") =2+ (5-11)

hold if either i = * or j = %, and this leads to estimates (5-5) as in the high-energy case. For (3.iii) with
i, j > 1, the estimates (5-6), (5-7) and (5-8) are proven in [Hassell and Zhang 2016, Proposition 1.5]
in the case when i = j but the proof shows that it remains valid more generally when i # j but the
microsupports are close enough. The case i, j € {0, *} in (3.iii) is also shown in [Hassell and Zhang
2016, Proposition 1.5].

The casesi =0and j > 1,andi > 1 and j =0, fit any one of the cases (3.1), (3.ii), (3.iii) above. This
is because here the wavefront set at bf is wiped out by Q¢(n), while the wavefront set at fiber-infinity is
wiped out by Q;(n) for j > 1.
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The final case remaining, where i, j > 1 and |i — j| > 2, fits into cases (3.i) or (3.ii) according to
whether Q; ()* is not incoming-related or not outgoing-related to Q (), as shown in Proposition 6.9 of
[Guillarmou and Hassell 2014]. O

Cases (3.1) and (3.ii) will be treated using the following lemma.

Lemma 5.4. Let (M, g) be an asymptotically conic manifold of dimension n > 3. Then if an integral
operator K has kernel K(m,m') bounded pointwise by

-7 () +2(3)

, 0<A<3,
x+x'+A

then for Wy, W, € L3P M), pe [% l] the operator W1 K W, is Hilbert—Schmidt and we have

IWLK Walie, < CA™2F 2 Wil 2oy I W2 ll 20 r) - (5-12)

Proof. Using Holder’s inequality w1th + +=1land p’ € ["fl 2], we get
W1 K Walle,

< W W- 7
< Wbzl ([ o Tx o T

We use the coordinates m = (x,y), m’ = (x’, y") near the boundary, where the measure d Vg (m) is

comparable to dx dy/x"t1. Let us introduce the polar coordinates (x, x’) = (R sin(6), R cos(#)) with
06[ ] near x = x’ =0. Using that (n — 1)p’ — (n + 1) > 0 and x + x’ ~ R, we get

nn—1)p’ s
/‘ (xx") X( ) AV, dVy 2p
Mxym (x+Xx’ +)L)2p

Nn—1)p'—(n+1) 5L
<C ([ (xx') — dx dx/)2p
0<x<2A ()C +x'+ A)Zp
o0 R2(n—1)p'—2n—1 T
C([ f T dR d@)
0 0<sin0<@ (R + /\) p

1 2 L 4 ’ %P/
< C—(/ R2(n 1)p’—2n—1 dR) +C (/ / B R2(n—1)p —2p’'—2n—1 dR d@)
A\Jo 2 <<

_1
7

o0
<CAP 24 AT (/ R2(=2)p'=2n=2 dR)2 <CAP 2,
21

(e m)x (m') (=0 (3 (210 4y (2G12)) 27 dVg(m)dVyg (m/))ZIp/.

A

Here we used that (n —1)p’ > n and 2(n —2) p’ —2n — 1 < 0. The same argument works with the term
involving )(( ) and the estimate (5-12) follows. O

5B. Analytic family of operators. In this section we closely follow Section 4 of [Guillarmou and Hassell
2014], especially Remark 4.2 (which is essentially due to Adam Sikora). Let ¢ € C° (((1 - %)2, (1 + %)2))
be such that ¢(¢) = 1 in a neighborhood of # = 1, where § > 0 is small, and consider the analytic family
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of operators in Re(s) <0

H ;o (Ag) = ¢(%) (Ag—(z+ie))*, z>0,e>0.

By the spectral theorem, we have

Hs ze(Ag) —5+2 /Ooo(/\ (1+1—)) f(—j_)dEr(zz)tz)d)L (5-13)

Let 1) > 0 be such that z1/2 € [(1 = 2)n, (1 + 2)n] and let Q; (1) and Q; (1) be such that the condition
(2.ii1) or (3.iii) of Proposition 5.1 holds, in the high-energy, respectively, low-energy case. Then using
(5-13), we have on the level of Schwartz kernels, for m, m’ € M,

(00" Huz b0 m)omn) =24 [“(a= (1425 ) yyan.

¢(A)
2V

; 8 8
Here, as § > 0 is small, we have z'/211/2 € [(1 —8)n, (1 + )] when z1/2 € [(1 - E)r), (1 + i)n] and
A € supp(¢), and therefore, in view of (5-5), we have ¥ (1) € C§°(R).
Letting ¢ — 0 in (5-14), we define Q;(n)* Hs,z,0(Ag)Q;(n) when 12 ¢ [(l—%)n,(l—i—%)n] as
operators whose Schwartz kernels are given by

(Qi (N* Hy2.0(Ag)Qj () (m. m') = z5F3 /0 (A—(14i0)°y (1) dA
= 5T (A —i0)° x Y (W)(1). (5-15)

We are interested in pointwise estimates for the kernel of Q;(7)* Hy,z,0(Ag) Q;(n) and to this end we

where

() = Qi(m)* dEf(Z”Z)QJ(n)(m m’).

shall need the following result of [Guillarmou and Hassell 2014, Remark 4.2]. Even though the proof is
almost the same as that of [Guillarmou et al. 2013b, Lemma 3.3], for completeness we provide a proof in
Appendix A.

Lemma 5.5. Leta <b < c¢ <0and let us write b = 0a + (1 —0)c, 0 < 60 < 1. Then there is C > 0 such
that, forall [ € C(§’°(R), allt e R, and all 0 < ¢ K 1, we have

) . 3mlt] _
I £ie)"H 0 fllpge < CA+1ehe™> 0% * flI7eellnG * flI7:2. (5-16)
We have the following result.

Proposition 5.6. Suppose that (i, j) are such that the condition (2.iii) or (3.iii) holds in the high-
energy, respectively, low-energy case. Then there is C > 0 such that the kernel of the operator
Qi(m)*Hy,z,0(Ag)Q;(n) withz>0 and zV/2 ¢ [(1—%)17, (l—i—%)n] has the following pointwise estimates,

(1) ForRe(s) = —(n’;l), we have

10i (N* Hy,2.0(Ag) Q; () (m, m')| < CeClm) =3 (5-17)

forallm,m’ € M, uniformly in z and 1.
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.. _ (l’l— 1)
(i) For Re(s) = —"=—, we have

10 (0)* H 2,0(Ag) Qj () (m,m")| < CeCI™MO g, m’)~! (5-18)

forallm,m’ € M, uniformly in z and 1.

Proof. Estimate (5-17) is proved in [Guillarmou and Hassell 2014, Remark 4.2]. Estimate (5-18) is proved
in the same way, except for the case n = 3, relying on the estimates (5-5) only. Indeed, in the case n > 5

_(n+1) (n 3) .
2

is odd, we take a = and ¢ = in Lemma 5.5 and using that

A =6%V k=12,
we get

\Im(S)\

Qi (0)* Hy,2.0(Ag) Q5 () (m.m')| < C2°Z" (1 + | Im(s) e’
(45(?&)
NG

9,7 (‘Wf)Q ()*dE /5-(z425)0, (n)om. m))

xak

04 (1)*dE,f-(=223) 0, (n)m, m))

oo

’
OO

and therefore, using (5-5), we obtain

Qi (1) Hi2,0(Ag) Q; () (m, m)| < CeCI™ON25 (1 4 22d(m, m')) ™!
< CeC1MOlgim, m"H~1, (5-19)
For n > 4 even, taking a = -5, ¢ = ("22)
therefore established (5-18) for all n > 4.
When n = 3, using Lemma 5.5 with a = —2 and ¢ = 0, and the fact that )(1 (A) = H(A) is the Heaviside
function, we obtain

in Lemma 5.5 and using (5-5), we also get (5-19). We have

|01 (1)) Hy 2 0(Ag) Q; (m)m.m')]| < €22 (1+]Im(s) e ™ 5

A
x“ (‘“ 24 . dE g5 (32505 (om, m))

2/ Loo
3 1
| ( LR o ae s o muman) | 520
By (5-5), we get

H (¢f/—)Q () dE 5-(z222)Q;(n)(m.m )) L sCe (5-21)

Now if we show that

(PN -

\/—Q i(m* Ef(zzlz)Qj(n)(m m') . = Cd(m,m’)"~, (5-22)
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then the estimate (5-18) will follow from (5-20), (5-21) and (5-22). To prove (5-22), using (5-6), we write

(2 07 d 5 2 0 )

11/2
=, P> Qi () dEr(ZZM)QJ(n)(m m')dp

Al/2
= [ s [Zei’z”z“d(’”m)ai(zm,m m')+b(z3pm, m)] di. (5-23)
0

The terms involving a+ in (5-23) can be treated similarly and in what follows we shall only consider the
term involving a4 and drop the sign +. To estimate this term, we integrate by parts and get
A 1/2
§(u2)zule! = 1AM (22 ') dp

1 1/2 —A1/2
= f[‘ﬁ(/’vz)zﬂz 2P (22 e m) 1
iz2d(m,m’") 172
i 1/2

[ 0u@udaa i m )

Estimating the terms in the left-hand side of (5-24) with the help of (5-7), we obtain that

pud(m,m’) d,u}. (5-24)

AI/Z

1 ,
/ $(u2)zp2et > 1AM g (25 1 m m'y dp| < CAZd(m,m') 2, (5-25)
0

uniformly in z. To estimate the term involving the remainder b in (5-23), we use (5-8) with K = 2 and
get
/’{1/2 AI/Z
¢(u2)zp?|b(z 2w, m,m')| dp < C ¢(u?)zp? (1 + 22 pd(m,m')) "2 dp.

< Cd(m, m')"2. (5-26)
Now (5-22) follows from (5-23), (5-25) and (5-26). This completes the proof of estimate (5-18). O

When proving the Schatten bound on the resolvent on the spectrum in Section 5C below, the cases
(2.ii1) and (3.iii) of Proposition 5.1 will be treated using the following result.

Proposition 5.7. Suppose that (i, j) are such that the condition (2.iii) or (3.iii) holds in the high-energy,
respectively low- energy case. Let p € |7, ”'H] Then there is C > 0 such that, for all z € (0, 00),
212 e [(1=3)n, (14 3)n] and all Wi, Wy € L2P(M), we have W1 Q; (0)* H-1,2,0(Ag) Q; (nWs €

Cy(L2(M)), g= Pf,”‘p”, and

IW1Qi ()* H-1,2,0(Ag) Q5 M Walle, < Cz7 22 [ Will 20 any I Wl 220 (a1 (5-27)

Proof. First thanks to Proposition 5.6, case (i), we know that for Re s = —@,

_1
”Qi(n)*Hs,z,O(Ag)Qj(U)”LI(M)_,LOO(M) < Cec|lm(5)|z >
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By the spectral theorem, we also know that for Res =0

10i (0* Hs 2,0(0g) @ (Dl L2y 12(ar) < Ce™ ™.

Hence, Proposition 2.1 implies that W1 Q; ()* H—1,z,0(Ag)Q; (W2 € Cpy1 (L?(M)) and, moreover,

L
IW1Qi(m)* H-1,2,0(A) QM W2lle, 1 < Cz7 T [ Will w1 (an W2l Lnt 1 ary- (5-28)

Now whenRe s = — (”;1) , thanks to Proposition 5.6(ii), the kernel of the operator Q; (1)*Hj,z,0(Ag) Q; (1)
has the bound (5-18), which is the same as the bound (4-6) in the proof of Proposition 4.3. Proceeding
exactly as in the proof of Proposition 4.3, we get

IW1Qi(n)* H-1,2,0(88) Q; M W2llc,—y < CIWillLnany IW2llLn (ar)- (5-29)
In view of (5-28) and (5-29), the bound (5-27) follows by a complex interpolation argument applied to

the analytic family of operators

s
é- — W] +1

n(n2+l) £ nil+§/1(n2+l)
Qi(n) H—l,z,O(Ag)Qj (m) Wz

in the strip 0 < Re ¢ < 1, with W; > 0 being simple functions such that |W |l 2(a) =1, j = 1,2; see
[Simon 2015, p. 154]. O

S5C. Resolvent estimates on the spectrum. The final ingredient in the proof of Theorem 2 is the following
result.

Proposition 5.8. Let ¢ € C(‘)X’(((l — %) (1 + %)2)) be such that ¢(t) = 1 in a neighborhood of t = 1,
where § > 0 is small, and let p € [% ] Then there is C > 0 such that for all z € (0, 00) and all
Wi, Wa € L2 (M), for g = 220 yye have Wig(Ag/z)(Ag — (z +i0)) " Ws € Cy(LA(M)) and

< Cz T2 Will2oan IWallLzoany- - (5-30)
Cq

Hw( )(A i),

Proof. Let us first take the high-energy case z > 1 and let > 1 be such that 4/Z € [(1 - %)n, (1 + %)r}]
We decompose the spectrally localized outgoing resolvent ¢ (Ag /z)(Ag —(z +i0))~! into microlocalized
pieces

Wl¢>( )(A iy = S W ¢( )(A )T O (.
i,j=1
The bound (5-30) will follow if we show that for all (i, j) we have

< Cz7 B Wil 2san IWall2ean.  (5-31)
C(I

‘W1Q () ¢( )(A —(z+i0)7'Q; (W2

To that end, the pairs (i, j) will be divided into three cases as in Proposition 5.1.
In the first case, (2.1), in view of (5-3) and Corollary B.5, we know that the Schwartz kernel of the
operator Q; (N)*¢(Ag/2)(Ag —z—i0)"1Q;(n) is O(z7V) in L2P"(M x M) with % + % = 1. Using
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this together with the fact that ¢ > 2 and Holder’s inequality, we get

Ag

A
10,00 (2 ) 0500 0 £

101065 ) =400 0, e

=
Cq

<O NIWillL20 ) IWall 20 ar)

C2

for any N € N, showing (5-31).
In the second case, (2.ii), using Stone’s formula, we write

A
1006 (52) 8 = 2 10071 0, W2
A
3 WlQi(n)*qs(?g) (Ag = (z=i0) 7' Q; (W2
+EW0i () AE 5 (MO, (DWa. A= VE. (532)

Then the estimate for the term involving the incoming resolvent in (5-32) follows exactly as in case (2.i).
On the other hand, we have already proved the corresponding estimate (3-9) for the spectral measure,
which leads to the estimate (5-31) in this case.

In the third case, (2.iii), we get

A
016 (55) (B = 10071 Q0002 = WA 01" ot 0B 0 0V (533

where the operator Q; (n)*H_1,z,0(Ag)Q;(n) is defined in (5-15). The required estimate for this term
therefore is a consequence of Proposition 5.7.

In the low-energy case, 0 < z < 1, the argument is similar. In cases (3.i) and (3.ii) we use Corollary B.5
together with Lemma 5.4 and the bound (3-9) for the spectral measure to deduce the Schatten norm
estimate. In case (3.iii), the argument is the same as for case (2.iii). This concludes the proof of the
proposition. O

6. Bounds on individual eigenvalues: proof of Theorem 4

In this section we shall follow some of the arguments of [Frank 2018; Frank and Simon 2017], making
some necessary changes due to the fact that we are no longer in the Euclidean setting.

Let us recall that n = dim(M ) > 3. We have the following result which is a generalization of [Frank
2018, Lemma 4.2] to the case of the Laplace operator on asymptotically conic manifolds.

Proposition 6.1. Let V € L? (M) with 5 < p <oc. The operator \/|V |(Ag +1)7Y2 is compact on L2(M).
Proof. We follow [Frank 2018, Lemma 4.2]. First we shall show that
_1
IW(Ag + D72 || c2any.r2omy) < CIIW lp20ary. - W € L2P(M). (6-1)

Indeed, we have
(Ag +1)72: L2(M) - H (M) (6-2)
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is bounded, and therefore, by Sobolev’s embedding H (M) c L2/ =2 (M), which is valid on an
asymptotically conic manifold of dimension n > 3, see [Guillarmou and Hassell 2014, Proposition 2.1],
we get

(Ag + 1) : L2(M) — L=z (M) (6-3)

is also bounded. Using Holder’s inequality, the logarithmic convexity of L# norms, and (6-2), (6-3), we
obtain

_1 _1
IW(Ag + 172 fllL2any = IWllLzean(Ag + D72 fll 20— a1y
1 . 1-35 _1 .35
< W lz2ran 1B + D73 £l 1(Bg + D72 F 12502
< ClWlLze )l f L2y
showing (6-1).
Let W; € C§°(M) be such that W; — /|V| in L?P(M). By Rellich’s compactness theorem, the

operator W (Ag + 1)71/2 is compact on L2(M), and it follows from (6-1) that Wi(Ag + H~Y2
VIVI(Ag +1)™Y2in £(L2(M), L>(M)). O

Setting

VY0 = K(x)/VIV(x)|, V(x) #0,

V(x) =0,

and combining Proposition 6.1 with [Frank 2018, Lemma B.1], we get that the quadratic form

1
1(Ae) 3122000y + VYVt VIV 200,

equipped with the domain H (M), is closed and sectorial. Associated to the quadratic form is an
m—sectorial operator with domain C H!(M), which we shall denote by Ag + V. The spectrum of
Ag +V in C\ [0, 00) consists of isolated eigenvalues of finite algebraic multiplicity; see [Frank 2018,
Proposition B.2].

Now interpolating between the estimate, valid for z € C \ [0, 00),

_ 1
I(Ag =2 2y L2000y = ok

2(n+1)

wi3 o e obtain the following result.

and the uniform estimate (1-8), with p =

Corollary 6.2. Let (M, g) be an asymptotically conic nontrapping manifold of dimension n > 3. Then
forall p € [251'1—_:_31), 2] there is a constant C > 0 such that for all z € C\ [0, 00),
— 1_1y_q, ,1_1
[(Ag —2) 1||LP(M)_>LP’(M) = Cd(Z)(n+1)(" 2) 1|Z|2 7. (6-4)
We shall now proceed to prove Theorem 4. In doing so we shall follow [Frank and Simon 2017,
Theorem 3.2]. Let A € C be an eigenvalue and v € H ! (M) be the corresponding eigenfunction of A gtV

(Ag + V)Y = Ay
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(1) LetO<y < % Assume first that A € C\ [0, 00). Let us choose p > 1 such that

y 1 =52, (6-5)
and notice that then ;2% < p < 2(n"f31) and 2(:_+11) <p <.

2 . - 2
By Sobolev’s embedding, we hetve Y € L2"/=D (M), and thus, ¥ € L" (M) for r € [2, 2% ], by
interpolation. In particular, v € L? (M), and by Holder’s inequality, we get

Vlieeany < IVIiLere-man VLo ary = 1V IiLy+nr2an ¥ e ar)-
We have
V=8 =) (Ag =Y =—(Ag =) (VY).
Hence, using (1-8), we get

1Vl ary = (Ag _A)_l||Lp(M)_>Lp’(M)||VW||LP(R”)

1(2-1)—1 (6-6)
=CJA|]2tr IVILr+nr2any 1V Lo ary

which implies (1-11) in view of
14

y+5

2
B(2-1)-1=-
Assume now that A € (0, 00). Then for £ > 0, we set

Ve =(Ag—A—ie) H(Ag — VY = fo(Ag)VY,

where

t—A
= R.
foly=—7"m 1€

By the spectral theorem, we have

e =~V 122y = 1oAY = V122 gy = / o0 = 1P d(En, (V- V) 12a1)-

where dEp () is the spectral measure of Ag. Using the dominated convergence theorem together with
the fact that f¢(r) — 1 as e — O for all # # A, and that E; = 0 as A is not an eigenvalue of Ag, we
conclude that ¥, — ¥ in L2(M).

On the other hand, we have

Ye=—(Ag—A—ie) ' (VY).
Choosing p > 1 satisfying (6-5) and using (1-8), we obtain
n(2_1)—
1Well Lo any < CIAE GV Ltz 1Vl Lo ary. (6-7)

i.e., Y, is uniformly bounded in L? /(M ). Passing to a subsequence, we may assume that there exists
W € LP' (M) such that ¥, — v in the weak-* topology of L?' (M). It follows that = ¢ € L? (M).
By the lower semicontinuity of the norm and (6-7), we get

.. n(2_1)—
1l agy < Eminf Vsl ary < CAEG™D T WV Ipsnnan Wl g, 68)
which shows (1-11) when A € (0, c0).
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(i) Let V € L™2(M). Setting p = n+2, and arguing as in the case (i) above, for A € C\ {0}, we obtain

Wl ary < CIV w2y 191 ary-
The case A = 0 is handled similarly using that

[(Ag — ie)_l ||LP(M)—>LP’(M) <0(),
in view of (1-8). The claim (ii) follows.

(iii) Lety > %, and let A € C\ [0, 00) be an eigenvalue of Ag + V, and v € H!(M) be the corresponding

eigenfunction. Choosing p > 1 satisfying (6-5), we have 2(”+1) <p<2and2<p < 2("“) . Using

that ¥ € L? (M) and (6-4), similarly to above, we obtain

||W||Lp’(M) =< ||(Ag _A)_l||Lp(M)_>Lp’(M)”VW”L"(M)
1_1)_ 1_1
< C8) VGRSV Lyt 1V L ary.

which implies (1-12) in view of the fact that

This completes the proof of Theorem 4.

7. Bounds on sums of eigenvalues for Schrodinger operators with complex potentials

7A. Short-range potentials: proof of Theorem 5. LetV € LP(M), 5 <p < %, and let ¢ = %"T_pl).
Then Theorem 2 implies that for z € C\ [0, 00), we have \/V(Ag —2)7Y/|V] € C4(L?*(M)) and

INV(Ag =2 VWV lle, 2y < Clzl ™ 22 1V Loy (7-1)

We claim that the map

C\[0,00) 3z > VV (A, —2) 'V |V]| (7-2)

is holomorphic with values in C;(L?(M)). First let us check that (7-2) is holomorphic with values in
L(L?*(M), L?>(M)). Indeed, letting zo € C \ [0, 00), we write

5
VV(Ag =)WV =VV D (z—20) (Mg —2z0) /Y] (7-3)
and notice that =
INV(Ag —20) VIVl ez any.2 oy <INV (Ag = 20) oz .2y
1= =z0) ' VIVIleean.20m 1 (Be =20 2y L2y < €

for some C > 0. Here we have used that the operators /V (—A —z¢) ™}, (Ag —z0)~1/|V| are bounded
on L2(M), as seen by arguing as in the proof of (6-1). This shows that the series (7-3) converges
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in L(L?>(M), L>(M)) for |z — zo| small, and therefore, the map (7-2) is holomorphic with values in
L(L?>(M), L?>(M)). In particular, if T € C1(L?(M)), i.e., of trace class, the map

C\[0,00) 3z > (VV(Ag —2) |V, T) (7-4)

is holomorphic. Using the density of C1(L?(M)) in Cq (L?(M)), the bound (7-1), and Holder’s inequality
in Schatten classes, we conclude that the map (7-4) is holomorphic for all 7" € Cq/(Lz(M )), establishing
the claim.

Consider the holomorphic function

h(z) = c{le}t(l +VV(Ag —2)"H/V]), zeC\[0,00),
q

where [q] is the smallest integer > ¢, and detf, is the regularized determinant; see [Simon 1979,
Chapter 9]. As explained in [Frank and Sabin 2017, proof of Theorem 16], using (7-1), we get

log |h(2)] < C[VV (A —2) ' VIVIIE, < Clzl T3 v )4, 0. (7-5)

uniformly in z € C\ [0, c0).
Combining Proposition 6.1 and Lemma B.1 of [Frank 2018], we conclude that the following version
of the Birman—Schwinger principle holds: z € C\ [0, oo) is an eigenvalue of Ay 4 V' if and only if

Ker(1+ vV (Ag —2)7'VIV]) #1{0}. (7-6)

An application of Lemma 3.2 of [Frank 2018] gives that (7-6) is equivalent to the fact that 4(z) = 0 and
that the order of vanishing of / at z agrees with the algebraic multiplicity of z as an eigenvalue of Ag + V.

At this point we are exactly in the same situation as in [Frank and Sabin 2017, Theorem 16]. Here we
may remark that the proof of that result is based on a result of Borichev, Golinskii and Kupin [Borichev
et al. 2009] concerning the distribution of zeros of a holomorphic function in the unit disc growing rapidly
at a boundary point. The proof of Theorem 5 is therefore complete.

7B. Long-range potentials: proof of Theorem 6. First we have the following result: Let y > % Then
there exists a constant C > 0 such that for all W € L2 +%/2)(Mf) and all z € C \ [0, 00),

_1 4 ontl 1 5
[W(Ag —2)" Wlcayansn < Cd(2) 2T || T 2D ||W||L2<y+n/2>(M)- (7-7)

Indeed this follows as in [Frank 2018, Proposition 2.1] by interpolation between (1-9) with p = %+L and

1
2
the standard bound
IW(Ae =2 WilL2any 22 <A@ W R oo ary-

Now an application of [Frank 2018, Theorem 3.1] to the holomorphic family K(z) = vV (A e—2) LIV
completes the proof of Theorem 6 exactly in the same way as in [Frank 2018, Theorem 1.2].
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Appendix A: Proof of Lemma 5.5

We shall follow the proof of Lemma 3.3 in [Guillarmou et al. 2013b] closely. Let a < b < ¢ <0 and let
a:=a—c—1<—1and B:=b—c—1<—1. We shall show the estimate (5-16) for ||(A —ig)bT? *f||L§°’
as the bound (5-16) for ||(A +ig)?Tt x [ Lo can be proved similarly.

To that end, let yZ be the family of distributions on R holomorphic in z € C given by

AZ

z
X_(A)_F(z+1)’ Re z > —1,
where )
3z — 0 it A >0,
B [AlZ if A <O.

We have yZ(—A) = x% (). Recall from [Hérmander 1990, Section 3.2] that when Re z > —1, we have

(A—i0)7 = A% 4 ¢i72)7 (A-1)
and from [Hormander 1990, Example 7.1.17] that for ¢ > 0 and z € C, we have
F((—ie)5)(§) = 2me T e 2715, (A-2)
and
F()E) =e GV —io)7* (A-3)

Consider the family of operators A; for r € R given by

At . COOO(R) —> D/(R), Atf =N % ﬁ (A—4)
where [(—B—it) T —im(c+1) pe€ e—B—1—i
. el (=B—it Z—in(c e g-h- —it
nt(S) = . —i(e+1Z C ANy — (A_S)
T(—b—it)(o +e@tDF (g _j0)—a-1)
when ¢ < 0, and
. 2ne—i(b—l+it)%esfg_-:b—it
n:(§) = (A-6)

T(—b—it)(o — e~ 5" (£ —i0)a)
whenc¢ =0,and o € C, |o| =1 and o ¢ {ie 19"/2 —jelan/2 oian/2y Ty view of (A-1), we see that
e € S'(R).

We notice that for all t € R, 7); € LIIOC(IR). Furthermore, using that
1

Fep=in| = 7"
we have, for |§| > 1,
1967, (6)] < Ce ™2 (1 + e[ AHe T, (A-7)
and for |§] <1 we get
1967 ()] < Ce ™2 (14 [t ])]E[ P2, (A-8)

and therefore,
defir € LP(R)N LY (R, (£)3dg)  for some p € (1,2), § > 0.
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By the Hausdorff—Young inequality, we see that u(1) := Ans (1) € L? (R) with p’ € (2,00) being the
dual exponent to p. We also have

) —u)| < 2r)~! / eiE4 — 8 |a(8)] dE < C / £ A — 2P la)| d
<CIA=NPlall L1 g gy5as): (A-9)

showing that u = An; € C¥(R). Thus, by the Holder inequality, we get

1

[ 1naz < c( [ vl dx)” Himles [ T ar <o (A-10)
R IA|>1 IAl<1

It follows from (A-10) combined with the Hausdorff—Young inequality, (A-7), (A-8) and (A-9) that

3mle]
[nellpi ) < CA+ e 27,

and therefore, A; extends as a bounded operator on L°° with norm

3t
| Azl Loo®)y—Loo@) < C(1+t)e 2,

where the constant C > 0 is independent of ¢ and ¢.
Next let B be the operator

B:C°(R) - C®(R), Bf:=(ox5+x%)* f
which is also equal to
B=F'uF, (A-11)
with
p(§) = 0e D (E 10T 4@V E i), (A-12)
in view of (A-3).
If c <0then e L. (R)yNC®(R\ {0}). Using also the fact that the distribution (§ —i0)? is of

loc

polynomial growth when Re z > —1, we have u f € LY(R) for any f € C{°(R). Thus, the operator
B : C§°(R) — L°°(R) is bounded.

Now if ¢ =0 then Bf :=oH * f + x4 * f, where H is the Heaviside function. The fact that the
convolution with the Heaviside function maps C5® functions into L functions implies that the operator
B : C§°(R) — L*°(R) is bounded also in the case ¢ = 0.

Thus, the composition A; B : C§°(R) — L°°(R) is bounded in all cases ¢ < 0. We claim that

ABf =(A—ie?ti s £ feCPMR). (A-13)
Indeed, (A-13) follows from (A-4), (A-11), and the equality
fep = F((A—ie)"*)
obtained from (A-5), (A-6) (A-12), and (A-2). In the case ¢ = 0, we also use that
ghitE 0yl = g1t p <o,
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We thus get forall e >0 and r € R

IA—ie)**"  fllree < CA+the™2 (12 * fllzes + 4% * fllzes). (A-14)

Now a scaling argument as in the proof of Lemma 3.3 of [Guillarmou et al. 2013b] finishes the proof.
Indeed, letting f; (A) = f(tA), we have

ox frQ) =177 0« L), A—ie) x fr() =17 H((A—ite)” % f)(zh)  (A-15)
for all T > 0 and z € C. It follows from (A-14) and (A-14) that for each 7 > 0

_ . i 3zlel —
t (A —ite)’ 'k fllpee < CO+[the > (¢ 2% % fllzoe + 7 Nx% * fllzeo)
and choosing 7 := || x4 * f ||i/o(oa_c) xS * f ”Ijio/ (@=€) \ye obtain the desired estimate (5-16). The proof

of Lemma 5.5 is complete.

Appendix B: Microlocal structure of the spectrally localized resolvent

We now analyze the microlocal structure of the spectrally localized resolvent ¢(Ag/z)(Ag — (z £i0)) 71,
where z > 0 and ¢ € COOO(((I — %)2, (1 + %)2)) is such that ¢(¢) = 1 for ¢ € ((1 — %)2, (1 + %)2), for
8 > 0 small. In doing so, we use the notation and results established in [Guillarmou et al. 2013a; 2013b;
Hassell and Wunsch 2008].

Proposition B.1. Let ¢ be as above. For all 1 > 0, the operator ¢(Ag/p?) is a pseudodifferential
operator in the following senses:

(i) High-energy case. For h = ! <2, the operator ¢ (h*> Ag) is a semiclassical scattering pseudodiffer-
ential operator with microsupport in {(Z, 0) ‘ IC]g € ((1 — %)2, (1 + %)2)}, where { is the semiclassically
rescaled cotangent variable; i.e., {; is the symbol of —ihd;,.

(ii) Low-energy case. For i € (0,2), the operator ¢(Ag/1u?) is a pseudodifferential operator in the class
\112 (M, Q,lc/g) + A (Mkz,b’ Qllc/lf) where &£ is an index family for the boundary hypersurfaces of M]ib,
satisfying vty = 0, Ex = n, Epg = Evy = % S = Ew = & = 00. That is, it is the sum of a
pseudodifferential operator in the class defined in [Guillarmou et al. 2013a, Section 5] and a conormal

function which is smooth across the diagonal, but has nontrivial behavior at the boundary hypersurfaces
lb() and I‘b().

Proof. (i) This follows by expressing the operator ¢ (h%A ¢) using the Helffer—Sjostrand formula for the
self-adjoint functional calculus,

$(h2Ag) = ﬁ /«: 3¢ (2)(h?Dg —2)"dZ A dz,

where ¢ is an almost holomorphic extension of ¢; see [Dimassi and Sjostrand 1999, Theorem 8.1]. In
terms of the notation for the spaces of semiclassical scattering pseudodifferential operators used in [Vasy

and Zworski 2000], we have ¢ (h2Ag) € W50 (M).
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(ii) The same argument applies to show that the operator ¢(Ag/ p?) is pseudodifferential in a neigh-
borhood of the diagonal on the space M kz,sc' We also need to understand the behavior of the kernel of
this operator away from the diagonal. Here, we recall from [Guillarmou et al. 2013a] that the spectral
measure is conormal and vanishes to order n — 1 at zf, order g —1 at Ibg and rbgy and order —1 at bfy as a
b-half-density on M ,3 p» While it is Legendrian (oscillatory) at Ib, rb and bf. As a result, the integral

is conormal on M ]f b and vanishes to order n at zf, order % at Ibg and rbg, order O at bfy and order oo at
Ib, rb and bf. O

Remark B.2. The pseudodifferential nature of ¢ (h%A ¢) can also be proved via the spectral measure
using the results of [Guillarmou et al. 2013a]. Recall from this article that the spectral measure d E @(k)
for A > 1 is a Legendre distribution associated to a pair of Legendre submanifolds (L, Lg), where L is
the flowout by (left) bicharacteristic flow starting from N *Diag, N ¥;, where N *Diag,, is the conormal
bundle to the diagonal in M bz' Here ¥; denotes the “left” characteristic variety of the operator h>Ag — 1,
that is, the set {(z, ¢, z’,¢) | |¢|g = 1} where the semiclassical symbol of /2Ag — 1, acting in the left
variable z, vanishes. Being a Legendre distribution, the spectral measure may be expressed (up to a trivial
kernel, that is, one that is smooth and rapidly vanishing both as # — 0 and as one approaches the boundary
of M bz) as a finite sum of oscillatory integrals associated to neighborhoods of the submanifold L. The
phase function for this oscillatory integral takes the form A®, where ® is independent of A. If we then

integrate in the A-variable as in (B-1) (with 7 = p !

in the high-energy case), then it is straightforward
to check that the phase function A® parametrizes the conormal bundle to the diagonal, and the result is a

semiclassical scattering pseudodifferential operator of order 0.

Remark B.3. It is not hard to see that the operator ¢(Ag/ w?) is microlocally equal to the identity for
1¢lg € ((1— %)2, (1+ %)2), where ¢ is the rescaled cotangent variable. First, the operator ¢(Ag/u?) is
elliptic in this region. Next, choose a function ¢; supported in the interior of the region where ¢ = 1.
Then by functional calculus, ¢1(Ag/1u?) = ¢(Ag/u?)p1(A/1u?), from which it follows that ¢ (Ag /1?)
is microlocally equal to the identity on the elliptic set of ¢1(Ag/ w?), which is an arbitrary subset of
{0 lee e (1=5)% 1+ §))}-

We next consider the microlocal structure of the spectrally localized resolvent.

Proposition B.4. The microlocal structure of the operator ¢(Ag/z)(Ag — (z £i0))71, z > 0, is as
follows:

(i) High-energy case. Here we use semiclassical notation and we write z = h=2. The operator
d(h>A g)(th g—(1Ei 0))~L, acting on half-densities, lies in the same microlocal space as the semiclas-
sical resolvent (as detailed in [Hassell and Wunsch 2008, Theorem 1.1]), indeed in a “better” space as
the differential order is —oo rather than —2. That is, the spectrally localized resolvent is a sum of three
terms S1 + S» + S3, where

e S1 is a semiclassical pseudodifferential operator of differential order —oo and semiclassical order 0O,
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Sy is an intersecting Legendre distribution associated to the conormal bundle N *Diagy, and to the
propagating Legendrian L, and

* S3 is a conic Legendre pair associated to L and to the outgoing Legendrian Lg.

Moreover, S + S3 are microlocally identical to the full resolvent in a neighborhood of the characteristic
variety Xj of h*Ag — 1.

(ii) Low-energy case. Let z € (0,2). The operator $(Ag/z)(Ag —(z = i0))~L, acting on half-densities,
lies in the same microlocal space as the resolvent (as detailed in [Guillarmou et al. 2013a, Theorem 3.9]),
indeed in a better space as the differential order is —oo rather than —2. In detail, the operator
d(Ag/2)(Ag — (z £ i0))~! can be decomposed as S1 + Sy + S3 + S4 (with \/z playing the role
of the spectral parameter on M kz p)» Where

e §1 € V™M, Qllc/lf) is a pseudodifferential operator of order —oo in the calculus of operators
defined in [Guillarmou et al. 2013b],

e S, € I—I/Z,B(MkZb’(scN*

Diag, L'_’f); Q}c/ bz ) is an intersecting Legendre distribution on M I? p» micro-

supported close to SCNS‘iagb,

e S3 € 1_1/2’(”_2)/2;(”_1)/2’(”_1)/2;B(Mkzb, (LY, Li); Qllc/bz) is a Legendre distribution on Mkzb
associated to the intersecting pair of Legendre submanifolds with conic points (L'_’f, Lﬁ_), microsup-
ported away from N, agy,”

e Sy is supported away from bf and is such that eTIAT oEIA R i polyhomogeneous conormal

2
on M kb
Here B = (Byfy, Biby, Biby» Bzt) is an index family with minimal exponents (i.e., order of vanishing)
min Byg, = —2, min Bjp, = min By, = % —2, min B, = 0. In addition S4 vanishes to order oo at 1b and

bf and to order % at rb.

Corollary B.5. The estimates (5-3), (5-4), (5-9) and (5-10) hold if the resolvent (Ag — (z + i0))~Lis
replaced by the spectrally localized resolvent p(Ag /z)(Ag —(z £ i 0))~L

Proof of Corollary B.5. The proofs of these estimates only used the location of the wavefront set of the
resolvent kernel, together with the vanishing orders of the resolvent on the boundary hypersurfaces of
M ]f p at z = 0. In view of Proposition B.4, the same proof applies verbatim to the spectrally localized
resolvent. O

Proof of Proposition B.4. (i) We study the composition of the operator ¢ (h%A4) with the incoming or
outgoing resolvent, (h>Ag — (1 £i0))~!. We know from [Hassell and Wunsch 2008, Theorem 1.1] that
the actual resolvent can be decomposed into a sum of three terms R; + R, + R3 as in the proposition
(except that Ry will have differential order —2). We may assume that R, and R3 are microsupported
in the region where [¢|g € ((1— %)2, (1+ %)2), and R; is microsupported in the region where |{|g ¢
((1 — %)2, (1 + 18—6)2). The composition Sy := ¢ (h?Ag) Ry is another semiclassical pseudodifferential
operator, of semiclassical order 0 and differential order —oo. On the other hand, the operator ¢ (h%A g)1s
microlocally equal to the identity on the microsupport of R, and R3, so using [Guillarmou et al. 2013b,
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Section 7], we find that the composition of qb(th ¢) With Ry 4+ R3 is equal to R, + R3 up to an operator
that is residual in all senses, that is, a smooth kernel that vanishes rapidly as # — 0 or upon approach to
the boundary of M b2 So we can take S, = R, and S3 = R3 up to a residual kernel.

(i1) Similarly, in the low-energy case the actual resolvent has a decomposition into Ry + Ry + R3 + R4
having properties as in the proposition (with R; of differential order —2). We also need to decompose
the operator ¢(Ag/z) = By + B3 into two parts, where Bj is supported close to the diagonal on the
space M l? p- and By has empty wavefront set. This second piece B, can be taken to vanish to infinite
order at bf, Ib and rb, and to be polyhomogeneous conormal to bfy, Ibg, rbg and zf vanishing to order 0
at bfy, order % at Ibg and rbgy and order n at zf. When we apply B to the resolvent, the argument is just
as in the high-energy case, using [Guillarmou et al. 2013b, Section 5] instead of Section 7 of that work.

To understand what happens when we apply B> to the resolvent, we view the composition of operators as
the pushforward of the product of the Schwartz kernels on a “triple space” M ,3 p downto M kz 5> as was done
in the appendix of [Guillarmou and Hassell 2008]. As a multiple of a nonvanishing b-half-density on M kz b
we find that B, (multiplied by |% ‘ Y 2, k = /z, which is a purely formal factor) is polyhomogeneous
conormal, with no log terms at leading order, and vanishes to order 7 at zf, 0 at bfp and 5 at Ibg and rby.
On the other hand, we can decompose the resolvent kernel as the sum of R + R», supported near the
diagonal, and R3 4 R4, which is microsupported in the set where |{|g € ((1 — %)2, (1 + %)2), where ¢ is
the cotangent variable rescaled by a factor /z.

The composition of B, with R+ R, can be treated by lifting both kernels to the space M ,3 b and pushing
forward. Since B; has no wavefront set, the composition has no wavefront set, so it is polyhomogeneous
conormal, and the order of vanishing can be read off as n at zf, % at lbg, % —2 at rbg, —2 at bfy, and oo
at Ib, rb and bf. This lies in a better space than claimed in the proposition.

The composition of B, with R3 + R4 can also be analyzed by lifting both kernels to M ,3 p and then
pushing forward. Although R3 + R4 is not polyhomogeneous conormal at the boundary hypersurfaces
bf, Ib and rb, when lifted to M 13 , and multiplied by the lift of B>, the rapid vanishing of B; at bf and rb
means that the product of the two kernels is rapidly decreasing as the “middle variable” (the right variable
of B, and the left variable of R3 + R4) tends to the boundary. As for the right variable of R3 + Ry,
after multiplying the kernel of R3 + R4 by e ™' A’ (where 1’ = % is the right radial variable) it becomes
polyhomogeneous conormal also at rb. So the product of the kernels B (in the left and middle variables)
and (R3 4+ R4)eT*"’ (in the middle and right variables) on M k3 p is polyhomogeneous conormal. After
pushing forward to M ,f , & calculation similar to that done in [Guillarmou and Hassell 2008, Appendix]
shows that the result is eT/4"" times a polyhomogeneous kernel which vanishes to order n — 2 at zf,
—2 at bfy, min(%, n —2) at Ibg, %—2 atrbyg, % atrb and oo at Ib and bf, with no log terms to leading order
except possibly at Ibg in the case n = 4. Again this is in a better space than is claimed in the proposition. [
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