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INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC
OPERATORS IN TRANSVERSALLY ANISOTROPIC GEOMETRIES*

LILI YANT

Abstract. We study inverse boundary problems for first order perturbations of the biharmonic
operator on a conformally transversally anisotropic Riemannian manifold of dimension n > 3. We
show that a continuous first order perturbation can be determined uniquely from the knowledge
of the set of the Cauchy data on the boundary of the manifold provided that the geodesic X-ray
transform on the transversal manifold is injective.
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1. Introduction and statement of results. Let (M, g) be a smooth compact
oriented Riemannian manifold of dimension n > 3 with smooth boundary 0M. Let
—A, be the Laplace-Beltrami operator, and let (—A,)? be the biharmonic operator
on M. Let X € C(M,TM) be a complex vector field and let ¢ € C(M,C). In this
paper we shall be concerned with an inverse boundary problem for the first order
perturbation of the biharmonic operator,

Lxg=(-0g+X +q.

Let us now introduce some notation and state the main result of the paper. Let
u € H3(M™) be a solution to

(1.1) Lxqu=0 in M.

Here and in what follows H®(M™), s € R, is the standard Sobolev space on M™t,
and M™" = M \ OM stands for the interior of M. Let v be the unit outer normal
to M. We shall define the trace of the normal derivative 8, (A, u) € H=Y/2(OM) as
follows. Let ¢ € H'/2(OM). Then letting v € H'(M™) be a continuous extension of
©, we set

(1.2)
(Ou(—Agu), ‘P>H—1/2(6M)xH1/2(aM) = /M ((Vg(ngu), Vgv)g + X(u)v + quv)dVg,

where dV} is the Riemannian volume element on M. As u satisfies (1.1), the definition
of the trace d,(Agu) on OM is independent of the choice of an extension v of ¢.
Associated to (1.1), we define the set of the Cauchy data,

(1.3) .

CX,q = {(u|3M, (Agu”aM,ayub]u, 8V(Agu)|aM) RS H?’(Mmt), nyqu =0in M}
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Note that the first two elements in the set of the Cauchy data Cx 4 correspond to the
Navier boundary conditions for the first order perturbation of the biharmonic opera-
tor. Physically, such operators arise when considering the equilibrium configuration
of an elastic plate which is hinged along the boundary; see [18]. One can also define
the set of the Cauchy data for the first order perturbation of the biharmonic operator,
based on the Dirichlet boundary conditions (u|gas, O, ulanr), which corresponds to the
clamped plate equation,

Cx.q = {(ulorr, Duulonr, D ulons, B3ulons) - uw € H>(M™), Lx qu=0in M}.

The explicit description for the Laplacian in the boundary normal coordinates shows
that Cx ¢ = Cx,q; see [35], [30].

The inverse boundary problem that we are interested in is to determine the vector
field X and the potential ¢ from the knowledge of the set of the Cauchy data Cx 4.

This problem was studied extensively in the Euclidean setting, see [29], [30], [2],
[4], [24] [25] [8], [7], [19], [20], [44]. Specifically, it was shown in [29] that the set of the
Cauchy data Cx , determines the vector field X and the potential ¢ uniquely. Let us
note that the unique determination of a first order perturbation of the Laplacian is
not possible due to the gauge invariance of boundary measurements and in this case
the first order perturbation can be recovered only modulo a gauge transformation; see
[37], [42].

Going beyond the Euclidean setting, inverse boundary problems for lower order
perturbations of the Laplacian were only studied in the case when (M,g) is CTA
(conformally transversally anisotropic; see Definition 1.1 below) and under the as-
sumption that the geodesic X-ray transform on the transversal manifold is injective;
see the fundamental works [14] and [15] which initiated this study, and see also [12],
[13], [32], [33], [10].

DEFINITION 1.1. A compact Riemannian manifold (M,g) of dimension n > 3
with boundary OM is called conformally transversally anisotropic (CTA) if M CC
R x M where g = c(e ® go), (R, e) is the Buclidean real line, (My, go) is a smooth
compact (n — 1)-dimensional manifold with smooth boundary, called the transversal
manifold, and ¢ € C*(R x My) is a positive function.

The injectivity of the geodesic X-ray transform is known when the manifold
(Mo, go) is simple, in the sense that any two points in My are connected by a unique
geodesic depending smoothly on the endpoints and that OM, is strictly convex (see
[1], [36]), when My has strictly convex boundary and is foliated by strictly convex
hypersurfaces [41], [43], and also when Mj has a hyperbolic trapped set and no conju-
gate points [21], [22]. An example of the latter occurs when M is a negatively curved
manifold.

Turning our attention to the inverse boundary problem of determining the first
order perturbation of the biharmonic operator, this problem was solved in [5] in the
case when (M, g) is CTA and the transversal manifold (M, go) is simple, extending
the result of [14] to the case of biharmonic operators. To be on par with the best
results available for the perturbations of the Laplacian in the context of Riemannian
manifolds, the goal of this paper is to solve the inverse problem for the first order
perturbation of the biharmonic operator in the case when (M, g) is CTA and the ge-
odesic X-ray transform is injective on the transversal manifold (My, go), generalizing
the result of [15] to the case of biharmonic operators.

Let us recall some definitions related to the geodesic X-ray transform following
[21], [14]. The geodesics on My can be parametrized by points on the unit sphere
bundle SMy = {(z,£) € TMy : || = 1}. Let
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0+ SMy = {(z,€) € SMy : x € OIMy, (&, v(z)) > 0}

be the incoming (—) and outgoing (4) boundaries of SMy. Here v is the unit outer
normal vector field to 9Mp. Here and in what follows (-, -) is the duality between
T*Mo and TMO

Let (z,£) € 0_SMy and v = v, ¢(t) be the geodesic on My such that v(0) = =
and 4(0) = £. Let us denote by 7(z,¢) the first time when the geodesic v exits M
with the convention that 7(x,&) = 400 if the geodesic does not exit My. We define
the incoming tail by

I_ = {(z,6) € 9_SMp : 7(x,€) = +oo}.

When f € C(My,C) and a € C(My, T*My) is a complex valued 1-form, we define the
geodesic X-ray transform on (My, go) as follows:

7(2,£)
I(f,a)(x, ) =/0 [f (Ve (1) + {a(Yag (), Fa e (1))]dt,  (2,8) € O_SM \T—.

A unit speed geodesic segment v = v, ¢ : [0,7(z,&)] = My, 7(x,&) > 0, is called
nontangential if v(0),~v(7(x,&)) € OMy, ¥(0),¥(7(z,£)) are nontangential vectors on
OMy, and (t) € M for all 0 < t < 7(z,€).

Assumption 1. We assume that the geodesic X-ray transform on (Mg, go) is in-
jective in the sense that if I(f, a)(x,§) = 0 for all (x,&) € 0_SMy \I'_ such that v, ¢
is a nontangential geodesic, then f = 0 and o = dp in M, for some p € C'(M,,C)
with p|aM0 =0.

The main result of the paper is as follows.

THEOREM 1.2. Let (M,g) be a CTA manifold of dimension n > 3 such that
Assumption 1 holds for the transversal manifold. Let XV, X2 ¢ C(M, TM) be
complex vector fields, and let ¢V, ¢® € C(M,C). If Cxw g0 = Cx@ g, then
XM = X@ 4n M. Assuming furthermore that

(1.4) aVlon = ¢ |onr,

we have ¢V = ¢ in M.

Remark 1.3. Examples of nonsimple manifolds M, satisfying Assumption 1 in-
clude in particular manifolds with a strictly convex boundary which are foliated by
strictly convex hypersurfaces [41], [43], and manifolds with a hyperbolic trapped set
and no conjugate points [21], [22].

Remark 1.4. To the best of our knowledge, Theorem 1.2 seems to be the first
result where one recovers a vector field uniquely on general CTA manifolds.

Remark 1.5. The assumption (1.4) is made for simplicity only and can be removed
by performing the boundary determination as done in Appendix A for the vector fields
XM and X This can be done by using the approach of [23] combined with its
extensions in [34] and [17].

Let us proceed to describe the main ideas in the proof of Theorem 1.2. The key
step in the proof is a construction of complex geometric optics solutions for the equa-
tions Lxqu = 0 and L_x _ 4, (x)4q% = 0 in M. Here the operator L_x _ 4;,(%)+q
represents the formal L? adjoint of the operator Lx 4. In contrast to the work [5],
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where one deals with the same inverse problem in the case of a simple transversal man-
ifold, here without a simplicity assumption, complex geometric optics solutions cannot
be easily constructed by means of a global WKB method, and following [15], we shall
construct complex geometric optics solutions based on Gaussian beam quasimodes for
the biharmonic operator (—A,)? conjugated by an exponential weight corresponding
to the limiting Carleman weight ¢(z) = £ for —h%?A, on the CTA manifold (M, g);
see [14]. To convert the Gaussian beam quasimodes to exact solutions, we shall rely
on the corresponding Carleman estimate with a gain of two derivatives established in
[32]; see also [14].

Remark 1.6. We would like to note that one can obtain Gaussian beam quasi-
modes for the biharmonic operator (—Ag)2 conjugated by an exponential weight as
the Gaussian beam quasimodes for the Laplacian conjugated by an exponential weight.
However, such quasimodes are not enough to prove Theorem 1.2 as in order to recover
the vector field uniquely, one has to exploit a richer set of amplitudes which are not
available for the Gaussian beam quasimodes for the Laplacian.

Remark 1.7. When constructing Gaussian beam quasimodes for the Laplacian
conjugated by an exponential weight, one first reduces to the setting when the con-
formal factor ¢ = 1 by using the following transformation:

nt2 _(n=2)

¢t o(=Ag)oc T =-Aj+q,

where

~ ~ n+2 _(n—-2)

g=e@go, q=—c 7 (=Qy)(c T );
see [15]. However, it seems that no such useful reduction is available for the bi-
harmonic operator and therefore, when constructing Gaussian beam quasimodes for
the biharmonic operator (ng)2 conjugated by an exponential weight, we shall pro-
ceed directly accommodating the conformal factor in the construction which makes it
somewhat more complicated.

Once complex geometric optics solutions are constructed, the next step is to sub-
stitute them into a suitable integral identity which is obtained as a consequence of
the equality CX(])’q(l) = CX@)’q(z) for the Cauchy data sets. Exploiting the concentra-
tion properties of the corresponding Gaussian beam together with Assumption 1, we
first show that there exists ¢ € C1(R x M) with compact support in x; such that
(21, )|om, = 0 and XM — X2 =V 1p. To show that ¢ = 0, i.e.,, X1 = X@) we
use the concentration properties of the Gaussian beam for the biharmonic operator
with a richer set of amplitudes which are not available for the Laplacian, combining
with Assumption 1. Finally, we show that ¢() = ¢(® by using the concentration
properties of the Gaussian beam together with Assumption 1 once again.

The plan of the paper is as follows. In section 2 we construct Gaussian beam
quasimodes for the biharmonic operator conjugated by an exponential weight corre-
sponding to the limiting Carleman weight ¢ and establish some concentration prop-
erties of them. In section 3 we convert the Gaussian beam quasimodes to the exact
complex geometric optics solutions. Section 4 is devoted to the proof of Theorem 1.2.
Finally, in Appendix A the boundary determination of a continuous vector field on a
compact manifold with boundary, from the set of the Cauchy data, is presented.

2. Gaussian beam quasimodes for biharmonic operators on conformally
anisotropic manifolds. Let (M,g) be a CTA manifold so that (M,g) CC (R x
M c(e ® go)). Here (R, e) is the Euclidean real line, (Mo, go) is a smooth compact
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(n — 1)-dimensional manifold with smooth boundary, and ¢ € C*(R x M) is a
positive function. Let us write = (x1,2') for local coordinates in R x M. Note that
#(z) = £1 is a limiting Carleman weight for —h2A; see Definition 3.1 in section 3,
and see also [14].

In this section we shall construct Gaussian beam quasimodes for the biharmonic
operator (—A,)? conjugated by an exponential weight corresponding to the limiting
Carleman weight ¢ = £z, i.e., suitable approximate solutions concentrated on a
single curve; see [38], [39]. Due to the presence of the conformal factor ¢, our quasi-
modes will be constructed on the manifold M and will be localized to nontangential
geodesics on the transversal manifold M.

The first main result of this section is as follows. In this result H'(M™) stands
for the standard Sobolev space, equipped with the semiclassical norm,

alBys cagimy = NulZaqar + 1AV g3 o

PROPOSITION 2.1. Let s = p+ X with 1 < u=1/h and X € R being fized, and
let v : [0, L] — My be a unit speed nontangential geodesic on My. Then there exist
families of Gaussian beam quasimodes vs, ws € C°(M) such that

(2.1) [vsllzr armey = O(1), [l (=h*Ag)?e™*" 04| L2(ar) = O(RP?),
and
(22) sl aim = O), €7 (=R2A,2e w, [ 1aany = O(F2)

as h — 0. Moreover, in a sufficiently small neighborhood U of a point p € ([0, L]),
the quasimode vy is a finite sum,

USlU = Ugl) + . +'U£P),
where t, < --- < tp are the times in [0, L] where y(t;) = p. Each v has the form

(2.3) o =i =1, P

yeeey 5

where o = 1) € C°(U;C) satisfies fort close to 1,
() =t, Ve(r(t) =4(t), Im(VZp(y(1) 20, Im(VZp)|se >0,

and a® € C®(R x U) is of the form

_(n-2)
a(l)(x17t7y) =h 4 aél)(xlvt)X((g)a
where for alll =1,..., P, either a(()l) s given by
(2.4) a) = e ¢V,

defining an amplitude of the first type, or a(()l) satisfies the equation

1

. ) (g !
c(x1,t,0) (O, — Zat)(e¢ ( l’t)a(())) =1,

(2.5)
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defining an amplitude of the second type. Here
n_1 1
(26)  ¢U(un,t) =loge(w,t,0)472 + GO(1), GV (1) = S(Ag00")(1,0),

(t,y) are the Fermi coordinates for v for t close to t;, x € C§°(R"2) is such that
0<x<1,x=1for|y| <1/4 and x =0 for |y| > 1/2, and &' > 0 is a fized number
that can be taken arbitrarily small.
In a sufficiently small neighborhood U of a point p € ([0, L]), the quasimode ws
is a finite sum,
waly = wD 4o 4w,

where t; < --- < tp are the times in [0, L] where v(¢;) = p. Each wgl) has the form

P

)

(2.7) w® ==y =1

geeey

where ) is the same as in (2.3), and b € C°(R x U) is of the form

_(n—2)
b(l)(x17t7y) = h’ 4 b(()l)(l'lvt)x<(:;/,)7

where
(2.8) b = =9 @),
Here

~ n_1 1
(29)  ¢V(z1, 1) =loge(ar, 1,002 + FO(1), 9,FV(1) = §(Ago<ﬂ(l))(t,0)~

Remark 2.2. Note that the first type of the amplitudes, i.e., a(()l) given by (2.4),
will be used to recover the potential ¢ as well as the vector field X up to a suitable
gauge transformation, while to recover X uniquely, we shall have to work with the

@
0

second type of amplitudes, i.e., aj’ solving (2.5).

Proof. To construct Gaussian beam quasimodes, we shall follow the standard
approach; see [15], [32]. The novelty here is that when working with the biharmonic
operator we have to accommodate the presence of the conformal factor ¢ throughout
the construction. We are also led to consider a richer class of amplitudes for the
Gaussian beam quasimodes.

Step 1. Preparation. Let us isometrically embed the manifold (M, go) into a
larger closed manifold (]\/4\07 go) of the same dimension. This is possible as we can
form the manifold ]\/4\0 = MoUpar, Mo, which is the disjoint union of two copies of
My, glued along the boundary; see [15, Proof of Proposition 3.1]. We extend ~ as a
unit speed geodesic in My. Let € > 0 be such that ~(t) € M, \ My and «(t) has no
self-intersection for t € [—2¢,0) U (L, L + 2¢]. This choice of ¢ is possible since 7 is
nontangential.

Our aim is to construct Gaussian beam quasimodes near v([—¢, L +¢]). We shall
start by carrying out the quasimode construction locally near a given point pg = y(to)
on y([—e, L+¢]). Let (t,y) € U = {(t,y) E RxR" 2 : |t —to| < 6, |y| < &'}, 5,8 >0,
be Fermi coordinates near pg; see [27]. We may assume that the coordinates (¢,y)
extend smoothly to a neighborhood of U. The geodesic v near py is then given by
I'={(t,y) : y = 0}, and

g (t,0) = 6%, 9,,q0"(t,0) = 0.
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Hence, near the geodesic
(2.10) 90" (t.y) = 8 + O(lyl?).

Let us first construct the quasimode v in (2.1) for the operator €51 (—h?A,)2e =571,
In doing so, we consider the following Gaussian beam ansatz:

(2.11) vs(w1,t,y) = eV a(wy, 1, y; 5).
Here ¢ € C*°(U, C) is such that
(2.12) Ime >0, Imelp =0, Imp(ty)~[yl> = dist((y,1),T)*,

and a € C®°(R x U, C) is an amplitude such that supp(a(z1,-)) is close to I'; see [39],
[26]. Notice that here we choose ¢ to depend on the transversal variables (¢,y) only
while a is a function of all the variables.

Let us first compute e**! (—h%A,)%e™**1v,. To that end, letting
(213) @(xlv L, y) =1 = i@(tv y)a 9/0\ = Sh@a
we first get

(214) 6%(_h2Ag)6_% = _hQAg + h(2<vg$7 vg'>g + Ag‘ﬁ) - <V9$7 vg@g'

Here and in what follows we write (-, )4 to denote the Riemannian scalar product on
tangent and cotangent spaces. In view of (2.14), we see that

S~ —S~ ~ ~ ~ —~ 2
e S”(—h2Ag)26 Y = h4( — Ay +5(2(Vgp,Vg)g + Agp) — SZ(Vng, Vg<P>g) )

and therefore,

(2.15)
e (—h2Ag) 2 uy = e P (= Ay + 5(2(V3, Vo )y + Ay @) — 52 (Vo 3, V@) g) a

Step 2. Solving an eikonal equation to determine the phase function o(t,y). Fol-
lowing the WKB method, we start by considering the eikonal equation

(Vgp,Vgp)g =0,

and we would like to find ¢ = ¢(t,y) € C*(U, C) such that

(2'16) <Vg@, Vg‘z>g = O(|y|3), y— 0,
and
(2.17) Imy > djy|?,

with some d > 0. Using that g = c¢(e ® go) and (2.13), we see that

<Vg@7 vg¢>g = 671(1 - <Vgo<)07 vgo(p>go)a

and therefore, in view of (2.16), we have to find ¢ satisfying the standard eikonal
equation,
1- <v9090a vgo@>go = O(|y|3)v y— 0.
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As in [15], [38], and [39], we can choose,

(218) plty) =+ SH(By v

where H (t) is a unique smooth complex symmetric solution of the initial value problem
for the matrix Riccati equation,

(2.19) H(t)+ H(t)?> = F(t), H(to) = Ho,

with Hy being a complex symmetric matrix with Im (Hp) positive definite and F'(¢)
being a suitable symmetric matrix, determined by the metric tensor; see [15, Proof
of Proposition 3.1]. Hence, as explained in [15], [38], and [39], Im (H(t)) is positive
definite for all ¢.

Step 3. Solving a transport equation to find an amplitude a. We look for a smooth
amplitude a = a(x1,2’) satisfying the transport equation,

(2.20) L*a = O(ly]),
as y — 0. Here
(2.21) L:=2(Vy0,Vy)g+ A0

To proceed let us first simplify the operator L. To that end, in view of (2.13), a direct
computation shows that

~ 1 .
(222) <v9907 v9'>9 = E(aﬁn — 19 1(I/)§0lz’ : az’)ﬂ
(2.23) Ayp = Agzy —iAgp(a'),
where
n 1
(224) Agxl = <2 - ].) 07281107
and
1 n 1
(2.25) Agp = EAgotp + 5 1 6—2<Vgoc, V 50%) go-

In view of (2.22), (2.23), (2.24), (2.25), the operator L given by (2.21) becomes
(2.26)
2 D1, N n 1 7 n 7
L= E(awl — %90 1(5” )P+ Onr) + (5 - 1) 0*28110_ EAQOW - (5 - 1) ?<vgoc7 Vo) g0-

Let us proceed to simplify the operator L further. Using (2.10) and (2.18), we see
that

(2.27) 9o (@)@l - Oy = Oy + O(|y)0r + H(t)y - 0y + O(|y|?) - 9.
Using (2.10) and (2.18), we also have

(Do) (t,0) = lgo| =200 (190128 By, 0) [y=0 = 070 By Ply=0
= 6" Hyy, = tr H(t),
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and therefore

(2.28) (Agyp)(t,y) = (Bgo ) (£,0) + O(lyl) = tr H(t) + O(|yl).
Finally, using (2.10) and (2.18), we get
(2.29) (Va0 Vo) go = 0rc + O(Jy]).-

Using (2.27), (2.28), (2.29), the operator L in (2.26) becomes

1 .
n_ ) (0z, —10¢) log e — %trH(t)

2 . .
L:C[axl—zﬁt—zH(t)y~8y+<4 5

+om>+ww%@+omm%}

(2.30) 5
= m {83,1 — 10y —tH(t)y - Oy + (0p, — 10¢) log c(x1,t,0)1

Nl

= 5 H + O + Ou(01. 9 + O3,

Let x € C§°(R"2) be such that x =1 for |[y| < 1/4 and x = 0 for |y| > 1/2. We
look for the amplitude a in the form

_(n72)
(231) a(x17t7y) =h 4 ao(mht)X(g,)?

where ag(+,-) € C®(R x {t: |t — to| < §}) is independent of y. In view of (2.20), ag
should satisfy the equation

(2.32) L%ag = O(ly)),

as y — 0. In view of (2.30), we write

(2.33) L= m(% +R),

where

(2.34) Lo = (85, — i00) + (9, — i) log c(a1,1,0) 5 — %trH(t)
and

(2.35) R=—iH(t)y - 9y + O(lyl) + O(|y])(Dr,, 0r) + O(|yl|*)dy-

To solve our inverse problem, we need two types of amplitudes. Let us proceed to
construct the first type of amplitudes. In doing so, first note that as ag is independent
of y, if ag solves the equation

(236) Loag = 0,

then ag satisfies (2.32). Let us proceed to find a solution to (2.36). To that end,
letting

(2.37) (o1 t) = logc(a1, 1,033 + G(1),  9,G(t) = %trH(t),
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we see that
(2.38) Lo = =0 (9, — i8,)e?E 0.

We solve (2.36) by taking

Nl

n 1
(2.39) ap = e ? =c(x1,t,0)2 1 CW 5,G(t) = 3 tr H(t).

Now we proceed to find the second type of amplitudes, which is given by more
general solutions to (2.32). As ag is independent of y, using (2.33), (2.34), and (2.35),
equation (2.32) becomes

2

i) Luta(an,t) + () ) = Oy,

[Lo + R] (c(xft())

or simply

(2.40) Lo( —— Lo Vao(a1,t) = 0
. 0 C(l?l,t,o) 0 0\+1, — Y

Using (2.38), we see that (2.40) becomes

1

(2.41) (Dn, — i0y) (M

(0, — i@t)(e‘t(xl’t)ao)) =0.

To solve (2.41), we choose ag(z1,t) to be a solution to

1

(2.42) 70(901,1?,0)

(0, —i01)(e” ™ Pag) = 1.

Note that (2.42) can be solved as it is a standard inhomogeneous 0 equation in the
complex plane z = x1 — it,

(2.43) A(e? @1V q0) = ¢/2.

Step 4. FEstablishing the estimates (2.1) locally near the point py. First it follows
from (2.11) and (2.31) that

(2.44) vs(1,1,y) = PV T ao(m,t)X(:;/’).

Using (2.17), we have

(n—2)
£

(2.45) lvs(z1,t,9)] < O(1)h~ eidygx<§/), (z1,t,y) € J x U,

and therefore,

(n

_ —2) _ 1 2
(2.46) |vsll 2wy < OWh™ T e 7| 2y <52 = O1),  h — 0,

where J C R is a large fixed bounded open interval. Similarly, it follows from (2.44)
that

(2.47) Vsl z2(rxoy = O(h™H).
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Let us next estimate [|e*** (—h?Ag)?e™ 5" v, || 2(sxr). To that end, letting

(2.48) f=(Vy8, Vg = O(lyl*)

(cf. (2.16)), we obtain from (2.15) with the help of (2.21) that

(2.49) S (—h2A ) ey, = e“‘ph‘l(( Ay)’a—sA,(La) + s*Ay(fa)
. + sL(—Agya) + s°L*a — s L(fa) + s* f(Aga) — s° fLa + s* f?a).

We shall proceed to bound each term in (2.49) in L?(J x U). First using (2.31) and
(2.17), we get

is s —n=2)
[e"*?h* (—Ag)allr2(yxry = B[ ¥R 3 (—Ag)2(a0X)||L2 (JxU)

(2.50)
= O™ e H | L2y <50 /2) = O(B),
and similarly,
(2.51) ||eiS‘Ph43Ag(La)HLz(JxU) = O(h3)
and
(2.52) PR L(Aga) 12y = O(H?).

Now to bound e**?h*s?A,(fa) in L?(J x U) we note that the worst case occurs when
Ay falls on f, and in this case we have, using (2.48) and (2.31),

[e?hts* Ay (fall L2 (rxv) < O(R?)] itlyl® L2 (y1<s72) = O(h®/?),

and therefore,
(2.53) \|ei‘9“’h4s2Ag(fa)HLz(JxU) = O(h°?).

Here we have used the following bound:

(n 2)

(2.54) |5 R e oy i<ar ) = O(BF?), k=1,2,....
Similarly, using (2.32) and (2.54), we get

(2.55) [l h*s* L2l p2(sxur) < O

TR Ly 252 = OB2).
Using (2.48), (2.54), and the fact that L(O(|y|*)) = O(|y|®), we obtain that
(2.56)
le**h*s* L(fa) L2 (<) < O(h)
le*¢n*s* f(Aga)llzrxvy < O(h2)||h_
le*?hs® fLal 12 (yxvy < O(R)]|

e"*?h*s* f2al|p2(yx0y < O(1)]

2
e W a1y <5 j2) = O(BP/2),
_dy,2
lyPe 19| 21y <o s2) = O(RT/?),
e~ il L2 (y1<sr/2) = O(R*/?),

(n 2)

e H | Ly <o 2 = O(BP).
Combining (2.49), (2.50), (2.51), (2.52), (2.53), (2.55), (2.56), we get
(2.57) €1 (=h?Ag)2e ™ v | L2 (sx 1y = O(RP/?).

This completes verification of (2.1) locally.
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For later purposes we need estimates for [|vs(21, )| £2(ans,)- If U contains a bound-
ary point zg = (to,0) € My, then 0|y, is transversal to OMy. Let p be a boundary
defining function for My so that OM, is given by the zero set p(t,y) = 0 near zo.
Then Vp(x) is normal to dMy, and hence, O;p(xo) # 0. By the implicit function
theorem, there is a smooth function y — #(y) near 0 such that My near xz is given
by {(t(y),y) : |y| < ro} for some ry > 0 small; see also [27]. Then using (2.45), we get

a1, )2 onmne) = / fva (1, £(y), 1) PdS(y)
(2.58) Jul<ro

<0() /R o

Step 5. Establishing estimates (2.1) globally. Now let us construct the quasimode
vs in M by gluing together quasimodes defined along small pieces of the geodesic. As
v :(=2¢,L + 2¢) — My is a unit speed nontangential geodesic, an application of [27,
Lemma 7.2] shows that v|[_., 14 self-intersects only at finitely many times ¢; with

(n—2)

672%|y|2dy = O(1).

0<t1<--- <ty < L.

We let tg = — and ty+1 = L+ e. By [15, Lemma 3.5], there exists an open cover
{(U;, k) ;Vjol of v([—¢,L + ¢€]) consisting of coordinate neighborhoods having the
following properties:

(i) k;(U;) = I; x B, where I; are open intervals and B = B(0,¢’) is an open ball

in R"~2. Here & > 0 can be taken arbitrarily small and the same for each
Uj

(i) K;(y(t)) = (¢,0) for each t € I},

(iii) ¢; only belongs to I; and I; N I}, = 0 unless |j — k| < 1,

(iv) k; = Kk on Iij_l(([j NI;) x B).

To construct the quasimode v, globally, we first find a function v\ = i q(0),
al® = h_@#aéo)x, in Uy as above. Choose some t, with y(t;) € Uy N U;. To
construct the phase ¢ in Uj, we solve the Riccati equation (2.19) with the ini-
tial condition H™M(¢)) = H©)(t,). Continuing in this way, we obtain the phases
e oM pNHD guch that ) = oUFY on U; N Uj1q. In a similar way, by
solving ODE in (2.37) with prescribed initial conditions we get ¢, ... ¢®N+1) and
therefore, in view of (2.39) we obtain aéo), aél), cee a(()NH)
the amplitude of the first type globally.

To construct the amplitude of the second type, we need to solve the inhomoge-
neous J-type equations (2.43). To that end, we first find a[()o) 81)
solutions of (2.43) on J x I and on J x I, respectively. Here J C R is a bounded
) is holomorphic on J x (IoN ).
By [6, Example 3.25], there are holomorphic functions gi, go on J x I and J x I,

, and hence, we construct

and ay’ which are

open interval. Then we see that e¢(1)a(()l) - e¢(0)a(()0

respectively, such that e‘z’(l)aél) - e¢<0)a60) =go— g1 on J x (IoN1;). Thus, modifying

a((JO) and aél), we can always arrange so that aéo) = a(()l) on J x (Ip N I1). Proceeding

in the same way, we can find aé2), ey aéNH) so that a((]j) = aé‘”l) on J x (I; N 1jy1),
and hence, we construct the amplitude of the second type globally.

Thus, we obtain the quasimodes vgo), ... mﬁNH) such that

(2.59) v (z1,) =00+ (zy,-) in U;NU;4

S S
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for all 1. Let x; = x;(t) € Cg°(I;) be such that Z;V:ng X; = 1 near [—¢, L +¢], and
define our quasimode v globally by

N+1

Vs = Z vagj)'
=0

Let us next give a local description of the quasimode vy near self-intersecting
points of the geodesic v and near the other points of «v. To that end, let p1,...,pr €
My be the distinct points where the geodesic self-intersects, and let 0 <#; < -+ < tps

be the times of self-intersections. Let Vi, ..., Vg be small neighborhoods in My around
pj, j =1,...,R. Then choosing ¢’ small enough we obtain an open cover in My,
(2.60) supp (vs(z1,-)) N Mo C (UJL, Vi) U (UZZ Wh),

where in each Vj, the quasimode is a finite sum,

(2.61) va(z )y, = Y vP(zr,0),

Ly (t)=p;

and in each W}, (where there are no self-intersecting points), in view of (2.59), there
is some [(k) so that the quasimode is given by

(2.62) vs(z1, ) |w, = vi®) (21, ).

We also have _ _
supp (vs) "M C (UleJ x Vi) U (Ug_1J x Wy),

where J C R is a bounded open interval.

Finally, the bounds in (2.1) follow from the bounds (2.46), (2.47), (2.57), and the
representations (2.61) and (2.62) of v.

Step 6. Construction of the Gaussian beam quasimodes wg. Now look for a
Gaussian beam quasimode for the operator e=*¥1(—h2?A,)?e**! in the form

(263) ws(xl,t,y) = eiSW(t’y)b('xhtay; 8)7

where ¢ € C°(U) is the phase function given by (2.18), and b € C*°(R x U) is an
amplitude, which we shall proceed to determine. To that end, first, similarly to (2.15),
we get

(2.64)

e (=h?Ag) e W, = eiwhél( — Ay - 5(2<V99%7 Vg)g+ Agé) - 52<vg$7 Vg$>g)2b7
where

(2.65) P(a1,t,y) = 21 +ip(t,y).

With ¢ given by (2.18), we have

(V4?,Vg@hg = Oly),

as y — 0. We thus look for the smooth amplitude b = b(x1, z') satisfying the transport
equation,

(2.66) Lh = O(|y)),
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where
(2.67) L=2(V,0,Vg)g+ Ay

Let us simplify the operator L. First using (2.65), we get

~ 1 .
(2'68) <Vg<p? vg'>9 = E(aam + 99 1(3:/)(‘0;/ : aﬂc’)a

(2.69) Ayo = Agxy +iAgpo(2).
Hence, using (2.68), (2.69), (2.24), and (2.25), the operator L given by (2.67) becomes
(2.70)
L= 200, + g0 (@)ehs 0+ (% - 1) SOt At (g - 1) Va0 Vo Phao:
Using (2.27), (2.28), (2.29), the operator L in (2.70) becomes

~ 2 . . . n_
L == m |:83;1 + 'Lat + ZH(t)y : ay + (82?1 + lat) IOg C(‘Tla t7 O)

Nl

(2.71) Z_
+ 5w H(O+ O] + O} (01,00 + 0110, |

We look for the amplitude b in the form
_(n-2) Y
(272) b(xlatay) =h 4 bO(xlat)X y )

where by(-,-) € C®(R x {t : |t — to| < §}) is independent of y, and in view of (2.66),
by should satisfy

(2.73) L%y = O(jyl), y— 0.

It follows from (2.70) that

(2.74) L= ﬁ(fo +R),

where

2.75) Lo = (0s, +i00) + (Be, + i0) log c(w1,1,0) 3 F + %trH(t),
and

(2.76) R=iH(t)y - 9y + O(|yl) + O(|y|)(0z,,8:) + O|y[*)d,.

In contrast to the construction of the Gaussian beam quasimodes v, we shall only
need amplitudes of the first type. To construct such amplitudes, we note that as by
is independent of y, if by solves the equation

(2.77) Lobo = 0,
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then by satisfies (2.73). To find a solution to (2.77), we note that

(2.78) Lo = e~ @0, 4 i8,)e? D)
where %(xl,t) is given by
-~ n 1
(2.79) d(x1,t) =logc(wy,£,0)5 72 + F(t), 0,F(t) = 5 rH(1).

We solve (2.77) by taking
(2.80) by = e ? = c(xq,t, 0)%_%6_}?(75).
Proceeding further as in the construction of the quasimode vs above, we obtain
the quasimode wy € C*° (M) such that (2.2) holds. d
We shall need the following result.

PROPOSITION 2.3. Let X € C(M,TM) be a complez vector field, let v € C(My),
and let 24 € R. Then there exist the Gaussian beam quasimodes vs and ws given by
Proposition 2.1 such that vs is obtained using amplidutes of the first type and we have

L
(2.81)  lim vy TV, — / =M (g, (1) B (v (1))t
h=0 J a1 3 x Mo 0
and
(2.82)
L n
lim X (0,) w0V, = i / X, (21 (8))e P e, A (1) iy (1)) .
h=0 J{atyx My 0

Here Xt(x/la ’V(t)) = <X($/1”Y(t))a (O”Y(t)»g

Proof. Step 1. Proof of (2.81). Let ¢ € C(My), zj € R. Using a partition of
unity, in view of (2.60), it suffices to establish (2.81) for ¢ having compact support
in one of the sets V; or Wj,. First, assume that ¢ € Cy(My), supp (¢)) C Wj. Thus,

in view of (2.62), (2.44), (2.63), (2.72), on supp (¢), we have
sy — (n=2)
(283) vy =€"fh 3 ao(:v’l,t)x(gf) ws = (:c’l,t)x(g').

To proceed, we shall need the consequence of (2.10),

(2.84) 90l = 14+ O(ly|?),
as well as
1
(2.85) isp —isp = —2E1m<p — 2ARegp.

Using (2.83), (2.84), (2.85), (2.18), we get

86)
/ Y,

/0

0 JRn-2
U(t,y) (1 + O(ly|*))dyat.

- me — epy —{n=2) T (o 1) =
/ im0 gl (e 002 5 )it ol
Rn—2
L

ImH(t v y672)\t )\O(\y\ )h ”;2> aO(xlla t)bO (x/17 t)X2 <§/)
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Making the change of variable y = h'/27 in (2.86), we obtain that

L
/ vsmwd%oz// e—ImH(t)ﬂ'§6—2>\te>\h(’)(|§|2)ao(x’l,t)bo(x37t)
{z1}x Mo 0 JRrRn—2

(2.87)
NN 1/2 ~2 ~
e R
Using that
(n-2)/2
(2.88) / e mH®yygy = T
Rn—2 \/ det(ImH(t))

and the dominated covergence theorem, we get from (2.87) that

CYR
L S —
(2.89) z/ 672)"5(10(33’1,t)bo(a:’l,t)w(t,O)/ 2eiImH(t)y'ydydt
0 Rn-
L - (n—2)/2
= e Pag (! )bo (2!, t L t,0)dt.
e ot R D vt 0)

Let us proceed to simplify the expression in (2.89) in the case when ag is the amplitude
of the first type, i.e., ag be given by (2.39), and let by be given by (2.80). Then

_ (n—2)/2 N [ (n—2)/2
(2.90) ag (@, oo (@ 1)~ = (a1, ,0) " B (COFFO) T
det(ImH (t)) det(ImH (t))

Now it follows from (2.39) and (2.79) that
(2.91) G(t) + F(t) = G(to) + F(to) + /t tr Re(H (s))ds.

Using (2.91) and the property of solutions of the matrix Riccati equation [26, Lemma
2.58],

det (ImH(t)) = det (IIHH(tO))6_2 ftt[) trRe(H(s))ds7

we see that

(2.92) e—(G(t)-FW)LW — e—(G(to)-FF(to))ﬂ
det(ImH (t)) det(ImH (¢9))

is a constant in ¢. To fix this constant, when constructing the amplitude ag and b,
specifically, when solving (2.39) and (2.79) in Uy, we choose initial conditions for G
and F so that the constant in (2.92) is equal to 1. With this choice, it follows from
(2.89), (2.90), (2.92) that

L
(2.93) lim VWP dVy, = / e ey, t,0) " 2eb(t, 0)dt.
h=0 J a1 3 x Mo 0

This completes the proof of (2.81) in the case when supp (¢) C Wy.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/14/21 to 128.195.77.217 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC OPERATORS 6633

Let us now establish (2.81) when supp () C V;. Here on supp (¢) we have

(2.94) Vs = Z oV w, = Z wll,

Ly (t)=p; Ly (t)=p;
and hence,
(2.95) vz = Y oul) + 3 vOwl!"
Ly (t)=p; LAV y(t)=(t;)=p;

We shall use a nonstationary phase argument as in [15, end of proof Proposition 3.1]
to show that the contribution of the mixed terms vanishes in the limit h — 0, i.e., if

L £,

(2.96) lim vBOwpdv,, = 0.
0@ x Mo

In doing so, write

i1 [©) _ o (O]
Ugl) — eithgp p(l) p(l) —e ARe ¢ e sIm ¢ a(l)

)

and , , ,

wl) = einRee) 1) (1) — o=ARe ™) —slm (1)
and therefore,
(2.97) vgl)wgl/) = ei%d’p(l)m,

where )
¢ =Rep® —Re ).
Thus, in view of (2.96) and (2.97) we shall show that for I £ I/,

(2.98) lim i1 ?pD g ydV,, = 0.
h—0 {a! }x My

Since 0,0 (¢,0) = 9y (¢,0) = 1 and the geodesic intersects itself transversally, as
explained in [27, Lemma 7.2], we see that d¢(p;) # 0. By decreasing the set V; if
necessary, we may assume that d¢ # 0 in V;.

To prove (2.98), we shall integrate by parts and in doing so, we let € > 0 be
fixed, and decompose ¥ = 11 + 12, where 1 € C*°(My), supp (1) C V; and and
192l Lo (v;An1e) < €. Notice that ) may be nonzero on dM,. We have

(2.99) )/ PGV, | < o0 200 2 4] < O).
CL‘/I}XM[)
For the smooth part ¥, we integrate by parts using that
ibo — Ppeitey, = L s ay.
e i (6 )’ |d¢|2< ¢’ >90
We have
ite () 0P ite 7Ty
e wpW gV, = h——=e'n?pYq)ep,dS
(2.100) = (o)} x (V;noMe) e

]

1 ) _
ot / Lt (pO gy )dV,
{21 }x Mo

where L' = —L — div L is the transpose of L.
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In view of (2.58), the boundary term is of O(h) as h — 0. To estimate the second
term in the right-hand side of (2.100), we recall that

P0Gl = e=MRee®+Re ") —iA(Im o) —Im (") — & (Im ) 1m (")  — 252)
l 3 )
oo e o ().

This shows that to bound the second term in the right-hand side of (2.100), it is
enough to analyze the contributions occurring when differentiating

!’
ot (Im e 4Im o >)7

as all the other contributions are of O(h), as h — 0.
As in [15], using (2.17), we have

|L(e= #ImeV+1me )y < o(h=1)|d(Im o + Tm 1)) [e=FIWI* < O(h="|y|)e~F I,

which shows that the corresponding contribution to the second term in the right-
hand side of (2.100) is of O(h'/?). This shows that the integral in the left-hand side
of (2.100) goes to 0 as h — 0, and this together with (2.99) establishes (2.96).

Using (2.93) for each of the factors v w! in (2.95), we get

lim vgl)wgl)dego :/ e Me(x,t,0) 7 20p(t, 0)dt.
h=0 J g1 1 x M, I

Summing over I;, appearing in the Fermi coordinates, such that t; € I; and v(¢;) = pj,
we get (2.81) when supp (¢) C V; and hence, in general.

Step 2. Establishing (2.82). Let X € C(M,TM) be a complex vector field, ¢ €
C(Mp), and 2} € R. Using a partition of unity, it is enough to verify (2.82) in
the following two cases: supp (¢v) C Wy and supp (¢) C V;. Assume first that
supp () C Wy. Using (2.83), we get

(2.101) h/ X(Us)mwdvgo =I5+ 12+ I
{z{ } x My
where
(2102) I171 = / iX(@)USWSwd%O,
{z]}xMo
(2103) 1172 =—h AX(@)USWSdegO,
{z] }x My
(2.104) L=h / BT 9 X (o)W pdVy,
{z1}x Mo

Using (2.1) and (2.2), we have

T12] < O |vs (&', )| 2 (ao) 1ws (1, )] 22 (arg) = O(R),
ispp—n=2)
12| SOM)Ie™*h™ 5 |2 gy <o s2m ws (21, ) L2 (aa0) = O(h).

(2.105)
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Let us now compute limy_,o I1,1. To that end, we write

(2.106) X =X10,, + Xi0 + Xy - 0y, = (21,t,y).

Using (2.18), we get

(2.107) dip =1+ O(yP),  dyp = O(lyl).

As X is continuous, it follows from (2.106) and (2.107) that

(2.108)  X(¢) = (Xe(21,1,0) +0(1)(1 + O(|y*)) + Oly|) = Xe(21,1,0) + o(1),

as y — 0, uniformly in z; and ¢. Using (2.108), as in (2.86), we obtain from (2.102)
that

L
o= [ [ it t.0) + o) T e HmH0rn 20
(2.109) 0 JRn
T A Y
coleh O 0 )it )1 + Oyt
We first observe that

(2110) hm 11,172 = O7
h—0

uniformly in x) and ¢, where

haa= [ ety glehity) = o)l “F e mil g2
RTL—
2 TR Y
Ol >ao<xa7t>bo<xa,t>x2(&)wu,y)(l +O(yl).

Indeed, let e > 0 and let § > 0 be such that |o(1)| < & when |y| <. Then

+ ‘/ g(ﬂfiyt,y)dy’
ly|>8

/ h("’;”e}bImH(t)y»ydy‘ + O(efdéz/h) < 50(1) + O(efd52/h),
Rn—2

11,2 < ‘/qg(fv’l,t,y)dy
Y=

<e0(1)

showing (2.110).
Using (2.110), making the change of variables y = h'/?7 in (2.109), using the
dominated convergence theorem, and (2.88), we get

L (n—=2)/2
2.111) lim L1y =i | Xi(),t,0)eMag(x), )bo (2, (¢, 0)— e dt
) Jim =i [ Xl 0)e o, DR D0, 0)
It follows from (2.101) with the help of (2.105) and (2.111) that
lim X (v )wspdV,
h=0 " J{aryx My %
(2.112) I " (n=2)/2
=i [ X2, t,0)e *Mag (2], t)bo (2}, t)(t,0) ———————dt
[ttt 00 et oG Bt )
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When ag is the amplitude of the first type, i.e. ag be given by (2.39), and by be given
by (2.80), using (2.90), (2.92), we get from (2.112) that

(2.113)

L
limh/ X (vg)WstpdVy, = z/ X (2, t,0)e" M e(zy,t,0)1 2 9p(t, 0)dt.
h=0 " Jipr i x My 0
This establishes (2.82) when supp () C Wy.

Assume now that supp (¢) C Vj}, and therefore, on supp (¢), vs and w, are given
by (2.94). Then

(2.114)
h X () wbdvy, =h Y / oyl vy,
{a?ll}X]\/Io l’y(t] . Q?l}X]\/Io
AU~ (t)=y(t)= zl}XMO

As before, we shall show that the mixed terms, i.e., [ # I’, vanish in the limit as
h — 0,

(2.115) }ILI_%}L/ X(fugl))wgl')z/)dvgo =0.
{CE }XIVI()

It follows from (2.101), (2.102), (2.103), (2.104), (2.105) that we only have to prove
that

(2.116) lim iX (00 )y Ouw®yav,, = 0.
h—0 {$,1}><M0

Now (2.116) follows by repeating a nonstationary phase argument as in the proof of
(2.96) replacing 1 by X (o®)y € C(Mp). Thus, using (2.114) and (2.116), we see
that

li X (vs)wy
hlg%)h {z{ }x My (Ué)wswdvgo

= > i Xu(@h, 1,00 e(wy,,0) (¢, 0)dt,
ty(t)=p; 7T
completing the proof of (2.82) when supp (¢) C V;. O
We shall also need the following result.

PROPOSITION 2.4. Let 1) € C1(R x My) be such that 1(x1,-)|orm, = 0 and with
compact support in x1. Then there exist Gaussian beam quasimodes vs and wg given
by Proposition 2.1 such that vs is obtained using amplitudes of the second type and

h—0

i [ 20 [ (900wt ) E v o
R Mo

(2.117) —/6722-)@1/ (V) 1vswse(zr, ') 2 dV,, dxy
R Mo

L
= / / e 2AN@= ) () () e(wy, Y (E))dtday .
RJO
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Proof. In view of (2.60), using a partition of unity, it suffices to check (2.117) for
1 such that supp (¢(z1,-)) is in one of the sets V; or Wj. Let us first consider the
case when supp (¢¥(x1,-)) C Wi. Thus, on supp (¢(z1,-)), vs and w, are given by
(2.83) with ap being an amplitude of type two. To proceed, we note that

1 _
(2.118) Vot = =(02,%0a, + 9o Y0t - Oyr),
and therefore, using (2.10), we see that

atw(xla tv O)

(2.119) (V)ln,t,0) = Lo

Using (2.83), (2.118), and (2.119), a computation similar to that in the proof of
Proposition 2.3 (cf. (2.89) and (2.112)) gives

I = lim [h / e~ 2ire / (Vo) (vs)wse(xr, x') 2 dVy,day
R Mo

h—0

- / e 2 / (Vyh)1vsse(ar, x') % dVy,da
(2.120)

// 72T N((, — i) (@, t,0))ao (1, E)bo (21, )

(n—2)/2

—————————c(x1,t,0)2 " 'dtdx
det(ImH( ) clan,t, 0% a
When solving (2.37) and (2.79) for G and F', respectively, we choose the initial condi-
tions G(to) and F'(to) so that the constant in (2.92) is equal to 1. Then using (2.80),
(2.37), (2.92), we see that

(o1, OB D o(z1,£,0)57
ag(Ty,t T1,t) —F—=c(71,1t,0)2
O et mH (7))
L 22
(2.121) — ao(a1,t)e(w, 1,0) 2 FO ™

det(ImH (t))
= ag(z1,t)c(xq,t, 0)%7%66;(15) = ao(:cl,t)ed’(zl’t).

Combining (2.120) and (2.121), integrating by parts, using the fact that ¢ compact
support in z; and (x1,-)|on, = 0, and using (2.42), we get

L
- / / ™20 (9, — i0,)ib (1, 1, 0))ag(@1, £)e? "D dtdary
0
(2.122) / / A=Y (4 4,0) (D, — 01 (a0 (a1, £)e? D ) dt
:// 6721')‘(9“7”)1#(331,25,O)c(xl,t,())dtdml.
RJO

This completes the proof of (2.117) in the case when supp (¢(x1,-)) C Wk.
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Let us now show (2.117) when supp (¢(z1,-)) C V;. Then on supp (¢), vs and
w, are given by (2.94), and we have

(2.123)
/6—21')\961/ (R(V g00) (vs) — (V g0)10s)Wsc(z1, 2') 2 dVy, day
R Mo

- /_zml/ (V) (0D) — (V1) 100 )P e(zr, &) % dV,y, day +

Ly (t)=p;

Z / —2iAz, /JVI (vqw)(vgl)) _ (ng)lvgl))w‘gl,)c(xl’x/)%quod‘xl‘

LAy (t)=(ty)=p; ©

Now when [ #1’, as in (2.96) and (2.115), by a nonstationary phase argument we see
that

lim [ (h(V,) (0) — (Vo) 10wl e(ar, ') % dVy, =

h—0 My

uniformly in 27, and therefore, the limit A — 0 of the second sum in (2.123) is equal
to 0. Hence,

h—0

= Z // 2@ (2, 4, 0) ey, t, 0)dtday

Ly(t)=

i [ [ (W(T,0)(0) = (V)10 el o) FdVy,day
R My

showing (2.117) when supp (¢¥(z1,-)) C V. |

3. Construction of complex geometric optics solutions based on Gauss-
ian beam quasimodes. Let (M, g) be a CTA manifold so that (M,g) CcC (R x
M c(e @ go)). Let X,Y € L*°(M,TM) be complex vector fields, and let ¢ €
L>°(M,C). Consider the following operator:

(3.1) Pxyq= (-0, + X +div(Y) +¢.

Note that the operator Py y,q, comprises both the operator Ly , as well as its formal
adjoint L , = (—A,)? — X — div(X) +g. Here div(Y) € H~}(M™) is given by

(3.2) (div(Y), @) g = — / Y(p)dV, e C(M™),

where (-, -)ppne is a distributional duality on M. We shall also view div(Y) as
multiplication operator,

(3.3) div(Y) : Cg°(M™) — H~H(M™).
Therefore, it follows from (3.1) that
Pxy,q: C&o(M™) — H-'(M™).

In this section, we will construct complex geometric optics solutions to the equa-
tion Pxy,qu = 0 in M based on the Gaussian beam quasimodes for the conjugated
biharmonic operator, constructed in section 2.
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Assume, as we may, that (M, g) is embedded in a compact smooth manifold (N, g)
without boundary of the same dimension, and let U be open in N such that M C U.
Let ¢ € C*°(U,R) and let us consider the conjugated operator

P, =eh (=h?Ag)e™F = —h2Ay — [Vl + 2(V, hV), + hAgp
with the semiclassical principal symbol
P = IE]5 — |del; + 2i(¢, dp)g € CF(T™U).

Following [28], [14], we have the following definition.

DEFINITION 3.1. We say that ¢ € C°°(U,R) is a limiting Carleman weight for
—h?A, on (U,g) if dp # 0 on U, and the Poisson bracket of Rep, and Imp, satisfies

{Rep,,Imp,} =0 when p,=0.

We refer to [14] for a characterization of Riemannian manifolds admitting limiting
Carleman weights as well as for examples of limiting Carleman weights. In particular,
note that ¢(z) = £z, is a limiting Carleman weight for —h?A, on a CTA manifold;
see [14].

Our starting point is the following Carleman estimates for —h?A, with a gain of
two derivatives, established in [32]; see also [14] and [40].

PROPOSITION 3.2. Let ¢ be a limiting Carleman weight for —h*A, on U. Then
forall0 < h <1 andt € R, we have

k) _e
(3.4) Bl gesz vy < Clle? (~hAg)e™ Fullge oy, C >0,

for all w € C§°(M™).

Here H!(N), t € R, is the standard Sobolev space, equipped with the natural
semiclassical norm,

lull e vy = 11— h2Ag)2ul|p2(n).
Iterating (3.4), we get the following Carleman estimates for (—h%A,)?, for 0 < h < 1
and t € R:
® _9
(35) W Julers oy < Clle (“R2Bge Full s ), O3>0,

for all u € C§o(M™Y).
To construct complex geometric optics solutions for Px y,u = 0, we shall need
the following Carleman estimates for the operator Px y,q. In what follows we extend

X,Y,and g to N by zero and we denote these extensions by the same letters so that
X,Y € L°(N,TN) and g € L*(N,C).

PROPOSITION 3.3. Let ¢ be a limiting Carleman weight for —h?>A, on U. Then
for all 0 < h < 1, we have
o _e
(3.6) Wl ) < Clle? (0 Py )e Rullg-sixye € >0,

for all w € C§°(M™).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/14/21 to 128.195.77.217 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

6640 LILI YAN
Proof. First letting t = —3 in (3.5), we get for all 0 < h < 1,
(3.7) B3 Jull 1 vy < Clle® (—h2Ag)%e™ R ull y—s v,
for all u € C§°(M™). We also have
(38)  leFhiX (e Fu)lly sy < IAX (W) — KX (@)ull ey = O ullms .

In order to estimate |h* diV(Y)UHH_—f(N)v we shall use the following characterization

of the semiclassical norm in the Sobolev space H 3(N):

(v, )|

lollg-svy = sup '
HZ P (N) ) 19l az (v

0#£1pEC®

Using (3.2), for 0 # ¢ € C*°(N), we get

scl

(e div(V)e Fu )] < [ Y@V < 00 g 101z, v
and therefore,
(3.9) In* div(Y)ull sy < O(h?)|ull 1, (v)-
Finally, we have
(3.10) 1 qull s ey < Ol s,
Combining (3.7), (3.8), (3.9), and (3.10), we obtain (3.6) for all 0 < h < 1 and

u € C§o(M™®). 0

Note that the formal L? adjoint of Px,y,, is given by P % _x,yg Using the
fact that if ¢ is a limiting Carleman weight then so is —¢, we obtain the following
solvability result; see [14] and [31] for the details.

PROPOSITION 3.4. Let X, Y € L°(M,TM) be complex vector fields, and let q €
L>(M,C). Let ¢ be a limiting Carleman weight for —h?*A, on (U,g). If h > 0 is
small enough, then for any v € H=Y(M™), there is a solution u € H3(M™) of the
equation

e%(hzlvay’q)e*%u:v in  M™,

which satisfies

[l 23

scl

(Mznt) S ﬁ HUHH:CII(M“’“)

Let ]
s=p—+iA, 1SM:E’ AeR, X fixed.

We shall construct complex geometric optics solutions to the equation
(3.11) Pxyqu=0 in M™
of the form

(3.12) u=e (v +ry),
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where vy is a Gaussian beam quasimode for (—h?A,)?, constructed in Proposition
2.1. Thus, u is a solution to (3.11) provided that

(3.13)
eszl h4PX,Y7q€78m17"3 — 65931 h4PX7Y7q€75ml’Us — _esml (—h2A9)267511U3

— TP X (67 ,) — e At div(Y) (e 5 w,) — htqus =: F.

Let us estimates the terms in the right-hand side of (3.13) in H | (M™). First, it
follows from (2.1) that

(3.14) [le™™ (=h*Ag)*e " vs]l =1 (apimey < €77 (=12 Ag) 2™ 05 L2 (ary = O(h°/?)
and
(3.15)  [le* WX (e ws) |l =1 pginey < B2 X (v5) = s X (21)vs|2ar) = O(RY).

Letting 0 # p € C§°(M™*) and using (3.2), we obtain that

("™ h* div(Y) (e ™" vy), p) e | < h* / Y (vsp)|dV

= O(h?)||vs| H;d(Mim)HP| H] (Mint) = O(hS)HPHH;d(MM)a
and therefore,
(3.16) |5 ht div(Y) (e vyl =1 (aginey = O(h?).
We also have
(3.17) 1h4q0all - (ageey = O(Y).

Using (3.14), (3.15), (3.16), (3.17), we get from (3.13) that ||F||H;11(Mi"t) = O(h*/?).
An application of Proposition 3.4 to (3.13) gives that for all h > 0 small enough,
there exists 7, € H3(M™) such that Irsllare (arimey = O(h'/?). To summarize, we
have proven the following result.

PROPOSITION 3.5. Let X,Y € L®(M,TM) be complex vector fields, and let q €
L>*(M,C). Let s = 1 + i) with X\ € R being fized. For all h > 0 small enough, there
is a solution uy € H3(M™) of Px yu1 =0 in M having the form

up = e (vg + 1),

where vy € C®(M) is the Gaussian beam quasimode given in Proposition 2.1 and
r1 € H3(M™) such that 71l zs  arimy = O(h?) as h — 0.

Similarly, for all h > 0 small enough, there is a solution uy € H3(M™) of
Px yquz =0 in M™ having the form

le(

ug = e** 1 (ws + 1r2),

where wy € C™®(M) is the Gaussian beam quasimode given in Proposition 2.1 and
ro € H3(M™) such that Ir2llzs (arimy = O(hY?) as h — 0.
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4. Proof of Theorem 1.2. Our starting point is the following integral identity.

PROPOSITION 4.1. Let XV, X2 € C(M,TM) with complex valued coefficients,
and q(l),q@) S C(]W7 (C) ]f CX(I)’q(l) = CX(2>,q<2)7 then

(4.1) / (XD = X®)(uy)7z + (¢ — ¢@)uswi3)dV, = 0
M

for uy,us € H3(M™) satisfying

(42) LX(1)7q(1)U1 =0 and wa,fdiv(W)Jrﬁzm =0.

Proof. First, using that us solves the equation
(4.3) L_xe —div(x@)4q Uz =0,

similar to (1.2), we define the boundary trace 9, (A,uz) € H~Y/2(OM) as follows.
Letting ¢ € H'/2(OM) and letting v € H'(M™*) be a continuous extension of ¢, we
set

<8V(_Agu72)7@)H*l/z(aM)le/Q(aM) = —/ (X(Z) ) V)@Udsg
(4.4) oM

+/ ((Vg(—Ang)7 Vgv)g + TQX(Q)(U) + q(2)1Tgv)dVg.
M

It follows from (4.3) that the definition of the trace 9, (A4uz) is independent of the
choice of extension v of .
As Cxm) 400 = Cx 4, there exists vp € H3(M™) such that

(4.5) LX(Z)’q(’z)'UQ:O in M
and

urlonr = v2lonrs  (Agur)lonr = (Agva)|onr,  Opurlanr = Ouvzlom,

4.6
( ) au(Agu1)|aN[ = ay(Agv2)|aM'

It follows from (4.6) in particular that

(4.7)  (Ou(Agu1),02) g-172(00)x H12 (001) = (O (Dg2), W) 172901y x H1/2(0M) -

Using that v solves (4.5) and (1.2), we get

(Ou(—Agv2),Uz) r-1/2(001) x H1/2(001)

4.8
Y - / ((Vg(=Ag02), Vyaz)g + X® (v )uz + q(Q)UQ@)dVg'
M

Using (4.4) and integration by parts, we obtain that

<3v(*Ag1T2)aU2>H—1/2(aM)xHl/Q(aM) = */E)M(XQ) V) Uzv2dS,
(4.9) +/ (VT2 Vg (=Dg)v2)g + X P (v2) + ¢Puz02)dV,
M

+/ (&,QTQ)Angng 7\/ (Ag@)ayvgdsg.
oM oM
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Combining (4.8) and (4.9), using (4.6), we obtain that

(4.10)

<8u(_AgU2)a7T2>H*1/2(8M)xH1/2(8M) = <8V(_A9U72)7 U2>H71/2(3M)xH1/2(aM)

+ / (X® . ) T500d5, — / (0,73) A2, + / (A, 73)9, 245,
OM oM OM

= (O Wi annyern o + [ (XD vy,

- / (0,73) A gurdS, + / (A,73)dyurdS,
OM OM

- / (<V9U72a Vg(=Ag)ui)g + @X(Q)(Ul) + 9(2)72u1)dvg-
M
On the other hand, using (4.2) for u; and (1.2), we get

<8y(—AgU1),U72>H—1/2(8M)XHl/Q(aM)

(4.11)
. / (Y (~ Ayt V150, + XD ()75 + ¢Vura) V.
M

The claim follows from (4.7), (4.10), and (4.11). |

Now by Proposition 3.5, for A > 0 small enough, there are ui,us € H3(M™)
solutions to LX(1)7q(1)u1 =0and L =0 in M™, of the form

X~ div(X @) U2
(4.12) up =e "vg+ry), uz = e ws +1r2),

where vs,ws; € C°(M) are the Gaussian beam quasimode given in Proposition 2.1
and

(4.13) il carmey = OUY2), Izl oy = O(R2),

as h — 0.

Let us denote X = XM —X®) and ¢ = ¢V —¢(®. By the boundary determination
of Proposition A.1, we have that X(|g = X |5, and therefore, we may extend
X by zero to the complement of M in R x My so that the extension X € C(R x
Mo,T(R X M()))

Step 1. Proving that there exists 1 € C*(R x My) with compact support in x1
such that Y (z1,-)|on, = 0 and Vb = X. In this step, we shall work with solutions
uy and uy given by (4.12) with vs and ws being the Gaussian beam quasimode for
which Proposition 2.3 holds. In particular, here vs has an amplitude of the first type.
Next, we would like to substitute u; and us into the integral identity (4.1), multiply
it by h, and let A — 0. To that end, first using (4.13), (2.1), and (2.2), we get

(4.14) ‘h [ qumaay,
M

- ’h / ge™ I (v, + 1) (W5 + 73)dVy| = O(h).
M
Writing « = (z1,2"), 2’ € My, and X = X10,, + X - 8,/, we obtain that

(415) h/ X(ul)%d‘@ =1+ Is+ I3+ 14,
M
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where
4.16 Li=h | e X (0)wdV, — | Xi(z1,z)e 2 omw,dV,,
g g

M M

(4.17) Iy = —hi) /M Xy (w1, 2")e 22 (v + 1)) (W5 + T2)dV,

(4.18) L=— | Xi(v1,2)e 221 (075 + Wery + r172)dV,
M

(4.19) Li=h /M 2% (X (1, )75 + X (r )5 + X (r1)73)dV,.

Using (4.13), (2.1), and (2.2), we get
(4.20) || = O(h),  |Is| = O(h!%), L] = O(h'/?).
It follows from (4.1) with the help of (4.14), (4.15), and (4.20) that

4.21 li =0.
( 2) hli?%[1 0

Using that X = 0 outside of M, dV,; = czdx dVy,, Fubini’s theorem, and Proposition
2.3, we obtain from (4.21) that

0 = lim h/ e~ 2T X (vs)wse(z1, xl)%dvgodﬁl
h—0 R MO

(4.22) —lim [ e7? [ X (2, 2 YogWse(z, ') F dVy,day
h—0 R MO

_ /]R e~ 20w /0 (X1 (21, 7(1)) — X (21, 7(8))elwr, 1 (1) )M didar

Now the Riemmanian metric g on M induces a natural isomorphism between the
tangent and cotangent bundles given by

(4.23) ™™ — T*M, (z,X)~ (z,X"),

where X*(Y) = (X,Y). In local coordinates, X® = ZZk:l 95X jdxy, and using that
g=cle® gp), and (2.10), we get

X7 (21,7(8) = clzr,7(0)) X1 (21,7(®), X[ (21,7(1) = e, () Xe(21,7(1)).
Hence, it follows from (4.22), replacing 2\ by A, that
L .
@2 [ et N @) - X (0)itdn =0
R Jo

Letting

fo,2') = / e X (g 2 )dxy, 2 € My,
R
(4.25) n

a(\ o)=Y <AeiAI1X§(z1,x’))dxj,

j=2
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we have f()\, ) € C(My), a(N,-) € C(My, T*M), and (4.24) implies that

L
(4.26) / [F (D) — ia(A,3(t)]edt = 0,

along any unit speed nontangential geodesic v : [0, L] — My on My and any A € R.
Arguing as in [32, section 7], [10], using the injectivity of the geodesic X-ray transform
on functions and 1-forms, we conclude from (4.26) that there exist p; € C*(My),
pilon, = 0, such that

(4.27) A F0,2) +1p_1(2') =0, a(0,2") =idp(2'), 1=0,1,2,....

To proceed we shall follow [16, section 5] and let

1

(4.28) P(zy,2") = Xy, 2")dys,

—a

where supp (X°(,2")) C (—a,a). It follows from (4.27), (4.25) that

0= f(O,x’) = / Xf(ylvx/)dyh
R

and therefore, ¢ has compact support in x;. Thus, the Fourier transform of ¢ with
respect to x1, which we denote by ¥ (X, a’), is real analytic with respect to A, and
therefore, we have

(4.29) daa) =Y w’“lif

k=0

where ¥ (z') = (0%4)(0,2'). Tt follows from (4.28) that

(4.30) Dy (1, 2") = XV(x1,2"),

and therefore, taking the Fourier transform with respect to z1, and using (4.25)
(4.31) iMp(\, 2') = f(\2).

Differentiating (4.31) (I + 1)-times in A, letting A = 0, and using (4.27), we get
(4.32) Op(0,2) = ipi(2), 1=0,1,2,....

Substituting (4.32) into (4.29), we obtain that

{#\(A,x/) _ Z Zpl]i'x/) )\k’

k=0

and taking the differential in 2’ in the sense of distributions, and using (4.27), (4.25),
we see that

(4.33)
N x / X ak /
dyp(Na') =Y idp@) i _ 3 92002 3k _ 4x,a%) =3 XP(\a')da;.

k=0 ’ k=0 j=2
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Taking the inverse Fourier transform A\ — x; in (4.33), we get

(4.34) derp(z,2') = i XJ(w1,2")dw;.
=2

We also have from (4.30) that

(4.35) dpyp(x1,2") = X2y, 2" ).

It follows from (4.34) and (4.35) that

(4.36) dip = X°.

Using the inverse of (4.23), we see from (4.36) that

(4.37) Vo = X.

Recall that ¢ € C(R x Mp) with compact support in z; and ¥ (z1,)|on, = 0. It
follows from (4.37) that ¢ € C'(R x Mp).
Step 2. Showing that X = 0. Returning to (4.1) and using (4.37), we get

(4.38) /M (Vg¥)(u1)uz + quitz)dVy = 0

3 int ‘s _ _
for uy,ug € Hy, (M™) satisfying Ly ,0u; = 0 and L—W,—div(W)-s-qT)W =0.

Let now u; and ug be given by (4.12) with v, and ws being the Gaussian beam
quasimode for which Proposition 2.4 holds. In particular, here v, has an amplitude
of the second type. We would like to substitute u; and wuy into the integral identity
(4.38), multiply it by h, and let h — 0. Similar to (4.21), using (4.14) and (4.20), we
get

(4.39) Jim 7 /M e PV 1)) (v wsdV, — /M(wle—mlvswid% = 0.

It follows from (4.39) with the help of Proposition 2.4,

(4.40) || e et @)t @) o

Now (4.40) can be written as
(4.41) / De(2X, y(t)e 2Mdt = 0
8!

for any A € R and any nontangential geodesic v in My, where

—

pe(2\, x') = /OC e~ 2% () (1, 2’ )day.

Equation (4.41) says that the attenuated geodesic ray transform of 1/p\c with constant
attenuation —2\ vanishes along all nontangential geodesics in M. Arguing as in [15,
Proof of Theorem 1.2] and using the injectivity of the geodesic X-ray transform on
functions, we conclude that ¥c = 0, and therefore ¥ = 0, and hence X = 0.
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Step 3. Proving that ¢ = 0. Returning to (4.1) and substituting X(V = X we
get

(4.42) / quiTzdVy =0
M

for uy,us € Hsgcl(Mmt) satisfying LX(1)7q(1)U1 =0 and Lfﬁ,fdiv(ﬁ%kq(imua =0.
Let now u; and us be given by (4.12) with v, and ws being the Gaussian beam
quasimode for which Proposition 2.3 holds. In particular, here vs; has an amplitude
of the first type. Substituting u; and us into (4.42), we obtain that

(443) 0= / qulzngVg =1L+ 15,
M
where
L= / e P o andV, = / e~ FAT / qUsWse? AV, d,
M R My
I = / e 2 AT g (v Ty + s + ri72)dV,.
M

Here in view of the assumption (1.4), we extended ¢ by zero to the complement of M
in R x Mj so that the extension ¢ € C(R x Mg, C).
Using (4.13), (2.1), and (2.2), we see that

(4.44) |I,| = O(h/?).
Letting h — 0, we obtain from (4.43), (4.44) with the help of Proposition 2.3 that

L
/6—21')\11/ e_QAt(qc)(qjl,’y(t))dtdxl =0.
R 0

Arguing as in [15, Proof of Theorem 1.2] and using the injectivity of the geodesic
X-ray transform on functions, we conclude that gc = 0, and therefore ¢ = 0. This
complete the proof of Theorem 1.2.

Appendix A. Boundary determination of a first order perturbation of
the biharmonic operator. When proving Theorem 1.2, an important step consists
in determining the boundary values of the first order perturbation of the biharmonic
operator. The purpose of this section is to carry out this step by adapting the method
of [9], [32].

PROPOSITION A.1. Let (M,g) be a CTA manifold of dimension n > 3. Let
XM X ¢ C(M, TM) with complex vector fields and ¢V),q? € L>(M,C). If
Cg,X(l),q(l) = Cg,X(2>,q<2): then X(l)|aM = X(Q) |6M-

Proof. We shall follow [9], [32] closely. We shall construct some special solutions
to the equations LX(I),q(l)u1 =0and L = 0, whose boundary

—X®),— div(X @) +q@ 42
values have an oscillatory behavior while becoming increasingly concentrated near
a given point on the boundary of M. Substituting these solutions into the integral
identity (4.1) will allow us to prove that X |gp; = X®)|ops.

In doing so, let g € OM and let (z1,...,x,) be the boundary normal coordinates
centered at xg so that in these coordinates, zo = 0, the boundary dM is given by
{x, =0}, and M™ is given by {z,, > 0}. We shall assume, as we may, that

(A1) g*°(0) =6, 1<a,B<n-1,
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and therefore ToOM = R~ !, equipped with the Euclidean metric. The unit tangent
vector 7 is then given by 7 = (7/,0) Where 7 € R"1 |7/| = 1. Associated to the
tangent vector 7’ is the covector &, = 3757 1 9as(0 )T = To € Ty OM.

Let n € C§°(R™,R) be a function such that supp () is in a small neighborhood
of 0, and

(A.2) / n(x',0)%dx’ = 1.
Rn—1
Following [9], in the boundary normal coordinates, we set

x it
(A.3) vo(z) = 77<>\1/2>6A(T w0 <A<,
so that vy € C°°(M) with supp (vo) in O(AY/?) neighborhood of zo = 0. Here 7/ is
viewed as a covector.
Let v1 € H}(M™) be the solution to the following Dirichlet problem for the
Laplacian:

—Agv1 = Agvg in M,

’U1|8M =0.

(A.4)

Let 6(z) be the distance from € M to the boundary of M. As proved in the [32,
Appendix], the following estimates hold:

(A.5) lvoll2(ary € OA"T ),
(A.6) lorllzzary < OA"T FH),
(A.7) ldvr]|z2(ary < ONF )

(A.8) ldvol| 2(ar) < ONT ~2),
(A.9) I6d(vo + v1)l|z2(ar) < ONT *2),
(A.10) ||U0HL2(3M O()\ )

We shall also need Hardy’s inequality,

(A11) | 1r@/saEav, < c [ ey,

where f € Hi(M™); see [11].
Next we would like to show the existence of a solution u; € H3(M™!) to the
equation

(Al?) LX(1))q(1)U1:0 in M,

of the form

(A.13) up = vo + v + 11,
with
(A.14) 71| s agimey < OAT +3).
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To that end, plugging (A.13) into (A.12), we obtain the following equation of ry:

(A.15)
Ly qor1 = —((=2g)? + XU + ¢ (v +v1) = =(XP +¢W)(vg +v1) in M.

Applying Proposition 3.4 with A > 0 small but fixed, we conclude the existence of
r1 € H3(M™®) such that

(A.16) Il < OMIXD + D) (g +01)ll -1 g

Let us now bound the norm in the right-hand side of (A.16). To that end, letting
P € C§°(M™) and using (A.11), (A.9), we get

(XD (vg 4 v1), ) ppime

< OMNX Y L an16d(vo + v1)ll L2 (ar) 19| 21 agimey

(A17) S
SO T T2)|[Y] g agine)-

By (A.5) and (A.6), we have

(g™ (vo + v1), ) agimt | < 1™ | a0y lvo + vill 2 any 9]l 22 ar)

(A.18) it
SO T T2)|[9] g (agine)-

The estimate (A.14) follows from (A.16), (A.17), and (A.18).
Let us show that there exists a solution uy € H?(M™) of L — U2

—X ), —div(X @) +¢
=0 in M of the form

(A.19) Uz = Vo + U1 + 72,

where 79 € H3(M™) with

n—1_,1
(AQO) ||’I“2||H3(Minc) < O()\ 4 +2).

Applying Proposition 3.4 with A > 0 small but fixed to the equation,

(A21) L X® 4 div(X®) — ¢@)(vg+v1) in M,

SX®,—div(X@)1q@ 2 = (

we conclude the existence of ro € H'(M™) such that

(A.22) [72]] g3 (agimey < OD[I(X @ + div(X @) — ¢@) (v + v1) || -1 (aginey.-

To bound the norm in the right-hand side of (A.22), we let 1) € C§°(M™"), and using
(A.11), (3.2), (A.5), (A.6), (A.9), we get

[(div(X @) (vg + v1), 1) pims

%/X@wﬁﬂwmg

(A23) = ‘ / X @ (vg + v1)dV, +’ / (vo + v1) X @ (4h)dV,

< OM)[Jod(vo + vi)ll 2 (any 1 1 (arimey + O(D)]|vo + vl 2 (an) 11| 1 (aainey
n—1
< O T )[4 s gy

The bound (A.20) follows from (A.22), (A.23), (A.17), (A.18).
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The next step is to substitute the solution w; and wus, given in (A.13) and (A.19),

into the integral identity (4.1), multiply by A~ o , and compute the limit as A — 0.

In doing so, we write

(A24) =) / X (u))03 + quuizdV, = Iy + I + Is + Iy + I + I,
M

where

(n—1)

L= / X (v0)T5dV,,
M

(n—1)

I = - /X(vo)@dvg,
M

(n=1)

I = 23 /X(rl)@dvg,
M

(n—

IQ = )\_ 21) / X(’Uo)ﬁdvtq,
M

I4 = A_(ngl) / X(Ul)%d%,
M

IG = A_ (ngl) / qulwd%
M

Let us compute limy_,o I;. To that end, writing X = Xjamj, we have

2

(A25)  Xug = ex (7o' Himn) [Aé(Xn) (;) +iA X () (i) (;)}
and

(A.26) Xvotg = e [A‘é(Xn) (;) n (;) +id T X (2) - (7, ) (;ﬂ .

Making the change of variable y’ = /\"f—;z, Yn = 5, using that X € C(M,TM), n has

compact support, (A.1) and (A.2), we get
(A.27)

oy I = “m/ / 2\ (X)W s Ay )n( s Ay gy, Aga) | B dyndy’
RrR2—1 Jo

A—0 A—0
i / / e 2 iX ARy Ayn) - (7, D02 (s A2 yn) 9Ny, Ayn) |2 dyndy’
A—0 rn-1 Jo
= %X(O) (7 )9).

The fact that v; € Hg(M™) together with the estimates (A.11), (A.9), (A.7)
gives that

(n—1)

— v 1
(A.28) (L] <O\ )||X||Loo(M)||5dvo||L2(M>H§1||L2(M> =0(2).

To estimate I3, first assume that (M, g) is embedded in a compact smooth man-
ifold (N, g) without boundary of the same dimension. Let us extend X € C(M,TM)
to a continuous vector field on N, and still write X € C(N,TN). Using a partition of
unity argument together with a regularization in each coordinate patch, we see that
there exists a family X, € C°°(N,TN) such that

(A29) [|X = Xrllze = 0(1), [[Xrllze =0(1), [VXrllzee =O(r"), 7—0.
We write

(A30) Ig = 1371 + 1372,
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where

(n—-1)

(A31) 13,1 =\ =2 / (X — XT)(’U())TQdVg, I372 = )\7("
M

= / X, (vo)73dV,,.
M

Using (A.29), (A.8), (A.20), we get

(A.32) 51| < O 5T 1X = Xe |z ldvoll 2 an) 17l z2ar) = o(1),
as 7 — 0. To estimate I3, integrating by parts, we obtain that

(A.33) I30 = J1+ J2+ Js,

where

(n—1) _(n—1)

J1 =—-\" "2 / ’L)()X.,-(E)dvg, J2 =-A 2 / diV(XT)UoﬁdVg,
M M

(A.34)

(n—1)

Jg =)\ 2 / (I/ . XT)’Uoﬁng.
oM

Using (A.29), (A.20), (A.5), we get

_ (-1
(A35) | 1] < O 2 )1 X+ [ (any [lvol [ 2 (any |dr2 [ L2 (ary = O(A),
: ENCET I _
| Ja| <O =) div X- || Lo (any 00| 2 any 172l L2 oy = O(77HN).

Using (A.10), (A.29), (A.20), and the trace theorem, we obtain that
_ (n—1)
(A36) sl € OO - X, a0l 2(oan Il ary = OV,

Choosing 7 = A'/2, we conclude from (A.30), (A.31), (A.32), (A.33), (A.34), (A.35),
(A.36) that

(A.37) lIs] = o(1), X—0.
Now (A.5), (A.6), (A.20) imply that

(A.38) ug |z = ON"T +2),
Using (A.38) together with (A.7), we have

(1) 1
(A.39) s < O™ 7)) lldva | 2 lluzll 2 (ar) = O(AZ).

Using (A.38) together with (A.14), we get

(n—1)

(A.40) 15| < O™ =2 )ldrill L2y lluzl L2 (ar) = O(A).

Last let us estimate |Ig|. Using (A.38) and a similar bound for u1, we see that

_(n—1)
(A.41) 16| < O™ 2 )l o anylluall L2 (any luz || L2 (ary = O(N).

Now it follows from (A.24), (A.27), (A.28), (A.37), (A.39), (A.40), and (A.41)
that

- oy
)1\1:1%)[—2)((0) (r',i) =0,

and therefore,
X(l)(o) : (T/7i) =Xx® (0) : (Tlvi)7

for all 7 € R™~!. This completes the proof of Proposition A.1. 0
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