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INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC
OPERATORS IN TRANSVERSALLY ANISOTROPIC GEOMETRIES\ast 

LILI YAN\dagger 

Abstract. We study inverse boundary problems for first order perturbations of the biharmonic
operator on a conformally transversally anisotropic Riemannian manifold of dimension n \geq 3. We
show that a continuous first order perturbation can be determined uniquely from the knowledge
of the set of the Cauchy data on the boundary of the manifold provided that the geodesic X-ray
transform on the transversal manifold is injective.
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1. Introduction and statement of results. Let (M, g) be a smooth compact
oriented Riemannian manifold of dimension n \geq 3 with smooth boundary \partial M . Let
 - \Delta g be the Laplace--Beltrami operator, and let ( - \Delta g)

2 be the biharmonic operator
on M . Let X \in C(M,TM) be a complex vector field and let q \in C(M,\BbbC ). In this
paper we shall be concerned with an inverse boundary problem for the first order
perturbation of the biharmonic operator,

LX,q = ( - \Delta g)
2 +X + q.

Let us now introduce some notation and state the main result of the paper. Let
u \in H3(M int) be a solution to

(1.1) LX,qu = 0 in M.

Here and in what follows Hs(M int), s \in \BbbR , is the standard Sobolev space on M int,
and M int = M \setminus \partial M stands for the interior of M . Let \nu be the unit outer normal
to \partial M . We shall define the trace of the normal derivative \partial \nu (\Delta gu) \in H - 1/2(\partial M) as
follows. Let \varphi \in H1/2(\partial M). Then letting v \in H1(M int) be a continuous extension of
\varphi , we set

\langle \partial \nu ( - \Delta gu), \varphi \rangle H - 1/2(\partial M)\times H1/2(\partial M) =

\int 
M

\bigl( 
\langle \nabla g( - \Delta gu),\nabla gv\rangle g +X(u)v + quv

\bigr) 
dVg,

(1.2)

where dVg is the Riemannian volume element onM . As u satisfies (1.1), the definition
of the trace \partial \nu (\Delta gu) on \partial M is independent of the choice of an extension v of \varphi .
Associated to (1.1), we define the set of the Cauchy data,
(1.3)
\scrC X,q = \{ (u| \partial M , (\Delta gu)| \partial M , \partial \nu u| \partial M , \partial \nu (\Delta gu)| \partial M ) : u \in H3(M int), LX,qu = 0 in M\} .
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6618 LILI YAN

Note that the first two elements in the set of the Cauchy data \scrC X,q correspond to the
Navier boundary conditions for the first order perturbation of the biharmonic opera-
tor. Physically, such operators arise when considering the equilibrium configuration
of an elastic plate which is hinged along the boundary; see [18]. One can also define
the set of the Cauchy data for the first order perturbation of the biharmonic operator,
based on the Dirichlet boundary conditions (u| \partial M , \partial \nu u| \partial M ), which corresponds to the
clamped plate equation,\widetilde \scrC X,q = \{ (u| \partial M , \partial \nu u| \partial M , \partial 2\nu u| \partial M , \partial 3\nu u| \partial M ) : u \in H3(M int), LX,qu = 0 in M\} .
The explicit description for the Laplacian in the boundary normal coordinates shows
that \scrC X,q = \widetilde \scrC X,q; see [35], [30].

The inverse boundary problem that we are interested in is to determine the vector
field X and the potential q from the knowledge of the set of the Cauchy data \scrC X,q.

This problem was studied extensively in the Euclidean setting, see [29], [30], [2],
[4], [24] [25] [8], [7], [19], [20], [44]. Specifically, it was shown in [29] that the set of the
Cauchy data \scrC X,q determines the vector field X and the potential q uniquely. Let us
note that the unique determination of a first order perturbation of the Laplacian is
not possible due to the gauge invariance of boundary measurements and in this case
the first order perturbation can be recovered only modulo a gauge transformation; see
[37], [42].

Going beyond the Euclidean setting, inverse boundary problems for lower order
perturbations of the Laplacian were only studied in the case when (M, g) is CTA
(conformally transversally anisotropic; see Definition 1.1 below) and under the as-
sumption that the geodesic X-ray transform on the transversal manifold is injective;
see the fundamental works [14] and [15] which initiated this study, and see also [12],
[13], [32], [33], [10].

Definition 1.1. A compact Riemannian manifold (M, g) of dimension n \geq 3
with boundary \partial M is called conformally transversally anisotropic (CTA) if M \subset \subset 
\BbbR \times M int

0 where g = c(e \oplus g0), (\BbbR , e) is the Euclidean real line, (M0, g0) is a smooth
compact (n  - 1)-dimensional manifold with smooth boundary, called the transversal
manifold, and c \in C\infty (\BbbR \times M0) is a positive function.

The injectivity of the geodesic X-ray transform is known when the manifold
(M0, g0) is simple, in the sense that any two points in M0 are connected by a unique
geodesic depending smoothly on the endpoints and that \partial M0 is strictly convex (see
[1], [36]), when M0 has strictly convex boundary and is foliated by strictly convex
hypersurfaces [41], [43], and also whenM0 has a hyperbolic trapped set and no conju-
gate points [21], [22]. An example of the latter occurs whenM0 is a negatively curved
manifold.

Turning our attention to the inverse boundary problem of determining the first
order perturbation of the biharmonic operator, this problem was solved in [5] in the
case when (M, g) is CTA and the transversal manifold (M0, g0) is simple, extending
the result of [14] to the case of biharmonic operators. To be on par with the best
results available for the perturbations of the Laplacian in the context of Riemannian
manifolds, the goal of this paper is to solve the inverse problem for the first order
perturbation of the biharmonic operator in the case when (M, g) is CTA and the ge-
odesic X-ray transform is injective on the transversal manifold (M0, g0), generalizing
the result of [15] to the case of biharmonic operators.

Let us recall some definitions related to the geodesic X-ray transform following
[21], [14]. The geodesics on M0 can be parametrized by points on the unit sphere
bundle SM0 = \{ (x, \xi ) \in TM0 : | \xi | = 1\} . Let
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INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC OPERATORS 6619

\partial \pm SM0 = \{ (x, \xi ) \in SM0 : x \in \partial M0,\pm \langle \xi , \nu (x)\rangle > 0\} 

be the incoming ( - ) and outgoing (+) boundaries of SM0. Here \nu is the unit outer
normal vector field to \partial M0. Here and in what follows \langle \cdot , \cdot \rangle is the duality between
T \ast M0 and TM0.

Let (x, \xi ) \in \partial  - SM0 and \gamma = \gamma x,\xi (t) be the geodesic on M0 such that \gamma (0) = x
and \.\gamma (0) = \xi . Let us denote by \tau (x, \xi ) the first time when the geodesic \gamma exits M0

with the convention that \tau (x, \xi ) = +\infty if the geodesic does not exit M0. We define
the incoming tail by

\Gamma  - = \{ (x, \xi ) \in \partial  - SM0 : \tau (x, \xi ) = +\infty \} .

When f \in C(M0,\BbbC ) and \alpha \in C(M0, T
\ast M0) is a complex valued 1-form, we define the

geodesic X-ray transform on (M0, g0) as follows:

I(f, \alpha )(x, \xi ) =

\int \tau (x,\xi )

0

\bigl[ 
f(\gamma x,\xi (t)) + \langle \alpha (\gamma x,\xi (t)), \.\gamma x,\xi (t)\rangle 

\bigr] 
dt, (x, \xi ) \in \partial  - SM0 \setminus \Gamma  - .

A unit speed geodesic segment \gamma = \gamma x,\xi : [0, \tau (x, \xi )] \rightarrow M0, \tau (x, \xi ) > 0, is called
nontangential if \gamma (0), \gamma (\tau (x, \xi )) \in \partial M0, \.\gamma (0), \.\gamma (\tau (x, \xi )) are nontangential vectors on
\partial M0, and \gamma (t) \in M int

0 for all 0 < t < \tau (x, \xi ).

Assumption 1. We assume that the geodesic X-ray transform on (M0, g0) is in-
jective in the sense that if I(f, \alpha )(x, \xi ) = 0 for all (x, \xi ) \in \partial  - SM0 \setminus \Gamma  - such that \gamma x,\xi 
is a nontangential geodesic, then f = 0 and \alpha = dp in M0 for some p \in C1(M0,\BbbC )
with p| \partial M0

= 0.

The main result of the paper is as follows.

Theorem 1.2. Let (M, g) be a CTA manifold of dimension n \geq 3 such that
Assumption 1 holds for the transversal manifold. Let X(1), X(2) \in C(M,TM) be
complex vector fields, and let q(1), q(2) \in C(M,\BbbC ). If \scrC X(1),q(1) = \scrC X(2),q(2) , then

X(1) = X(2) in M . Assuming furthermore that

(1.4) q(1)| \partial M = q(2)| \partial M ,

we have q(1) = q(2) in M .

Remark 1.3. Examples of nonsimple manifolds M0 satisfying Assumption 1 in-
clude in particular manifolds with a strictly convex boundary which are foliated by
strictly convex hypersurfaces [41], [43], and manifolds with a hyperbolic trapped set
and no conjugate points [21], [22].

Remark 1.4. To the best of our knowledge, Theorem 1.2 seems to be the first
result where one recovers a vector field uniquely on general CTA manifolds.

Remark 1.5. The assumption (1.4) is made for simplicity only and can be removed
by performing the boundary determination as done in Appendix A for the vector fields
X(1) and X(2). This can be done by using the approach of [23] combined with its
extensions in [34] and [17].

Let us proceed to describe the main ideas in the proof of Theorem 1.2. The key
step in the proof is a construction of complex geometric optics solutions for the equa-
tions LX,qu = 0 and L - X, - div(X)+qu = 0 in M . Here the operator L - X, - div(X)+q

represents the formal L2 adjoint of the operator LX,q. In contrast to the work [5],
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6620 LILI YAN

where one deals with the same inverse problem in the case of a simple transversal man-
ifold, here without a simplicity assumption, complex geometric optics solutions cannot
be easily constructed by means of a global WKB method, and following [15], we shall
construct complex geometric optics solutions based on Gaussian beam quasimodes for
the biharmonic operator ( - \Delta g)

2 conjugated by an exponential weight corresponding
to the limiting Carleman weight \phi (x) = \pm x1 for  - h2\Delta g on the CTA manifold (M, g);
see [14]. To convert the Gaussian beam quasimodes to exact solutions, we shall rely
on the corresponding Carleman estimate with a gain of two derivatives established in
[32]; see also [14].

Remark 1.6. We would like to note that one can obtain Gaussian beam quasi-
modes for the biharmonic operator ( - \Delta g)

2 conjugated by an exponential weight as
the Gaussian beam quasimodes for the Laplacian conjugated by an exponential weight.
However, such quasimodes are not enough to prove Theorem 1.2 as in order to recover
the vector field uniquely, one has to exploit a richer set of amplitudes which are not
available for the Gaussian beam quasimodes for the Laplacian.

Remark 1.7. When constructing Gaussian beam quasimodes for the Laplacian
conjugated by an exponential weight, one first reduces to the setting when the con-
formal factor c = 1 by using the following transformation:

c
n+2
4 \circ ( - \Delta g) \circ c - 

(n - 2)
4 =  - \Delta \widetilde g + \widetilde q,

where \widetilde g = e\oplus g0, \widetilde q =  - c
n+2
4 ( - \Delta g)(c

 - (n - 2)
4 );

see [15]. However, it seems that no such useful reduction is available for the bi-
harmonic operator and therefore, when constructing Gaussian beam quasimodes for
the biharmonic operator ( - \Delta g)

2 conjugated by an exponential weight, we shall pro-
ceed directly accommodating the conformal factor in the construction which makes it
somewhat more complicated.

Once complex geometric optics solutions are constructed, the next step is to sub-
stitute them into a suitable integral identity which is obtained as a consequence of
the equality \scrC X(1),q(1) = \scrC X(2),q(2) for the Cauchy data sets. Exploiting the concentra-
tion properties of the corresponding Gaussian beam together with Assumption 1, we
first show that there exists \psi \in C1(\BbbR \times M0) with compact support in x1 such that
\psi (x1, \cdot )| \partial M0

= 0 and X(1)  - X(2) = \nabla g\psi . To show that \psi = 0, i.e., X(1) = X(2), we
use the concentration properties of the Gaussian beam for the biharmonic operator
with a richer set of amplitudes which are not available for the Laplacian, combining
with Assumption 1. Finally, we show that q(1) = q(2) by using the concentration
properties of the Gaussian beam together with Assumption 1 once again.

The plan of the paper is as follows. In section 2 we construct Gaussian beam
quasimodes for the biharmonic operator conjugated by an exponential weight corre-
sponding to the limiting Carleman weight \phi and establish some concentration prop-
erties of them. In section 3 we convert the Gaussian beam quasimodes to the exact
complex geometric optics solutions. Section 4 is devoted to the proof of Theorem 1.2.
Finally, in Appendix A the boundary determination of a continuous vector field on a
compact manifold with boundary, from the set of the Cauchy data, is presented.

2. Gaussian beam quasimodes for biharmonic operators on conformally
anisotropic manifolds. Let (M, g) be a CTA manifold so that (M, g) \subset \subset (\BbbR \times 
M int

0 , c(e\oplus g0)). Here (\BbbR , e) is the Euclidean real line, (M0, g0) is a smooth compact
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INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC OPERATORS 6621

(n  - 1)--dimensional manifold with smooth boundary, and c \in C\infty (\BbbR \times M0) is a
positive function. Let us write x = (x1, x

\prime ) for local coordinates in \BbbR \times M0. Note that
\phi (x) = \pm x1 is a limiting Carleman weight for  - h2\Delta g; see Definition 3.1 in section 3,
and see also [14].

In this section we shall construct Gaussian beam quasimodes for the biharmonic
operator ( - \Delta g)

2 conjugated by an exponential weight corresponding to the limiting
Carleman weight \phi = \pm x1, i.e., suitable approximate solutions concentrated on a
single curve; see [38], [39]. Due to the presence of the conformal factor c, our quasi-
modes will be constructed on the manifold M and will be localized to nontangential
geodesics on the transversal manifold M0.

The first main result of this section is as follows. In this result H1(M int) stands
for the standard Sobolev space, equipped with the semiclassical norm,

\| u\| 2H1
scl(M

int) = \| u\| 2L2(M) + \| h\nabla gu\| 2L2(M).

Proposition 2.1. Let s = \mu + i\lambda with 1 \leq \mu = 1/h and \lambda \in \BbbR being fixed, and
let \gamma : [0, L] \rightarrow M0 be a unit speed nontangential geodesic on M0. Then there exist
families of Gaussian beam quasimodes vs, ws \in C\infty (M) such that

(2.1) \| vs\| H1
scl(M

int) = \scrO (1), \| esx1( - h2\Delta g)
2e - sx1vs\| L2(M) = \scrO (h5/2),

and

(2.2) \| ws\| H1
scl(M

int) = \scrO (1), \| e - sx1( - h2\Delta g)
2esx1ws\| L2(M) = \scrO (h5/2),

as h \rightarrow 0. Moreover, in a sufficiently small neighborhood U of a point p \in \gamma ([0, L]),
the quasimode vs is a finite sum,

vs| U = v(1)s + \cdot \cdot \cdot + v(P )
s ,

where t1 < \cdot \cdot \cdot < tP are the times in [0, L] where \gamma (tl) = p. Each v
(l)
s has the form

(2.3) v(l)s = eis\varphi 
(l)

a(l), l = 1, . . . , P,

where \varphi = \varphi (l) \in C\infty (U ;\BbbC ) satisfies for t close to tl,

\varphi (\gamma (t)) = t, \nabla \varphi (\gamma (t)) = \.\gamma (t), Im (\nabla 2\varphi (\gamma (t))) \geq 0, Im (\nabla 2\varphi )| \.\gamma (t)\bot > 0,

and a(l) \in C\infty (\BbbR \times U) is of the form

a(l)(x1, t, y) = h - 
(n - 2)

4 a
(l)
0 (x1, t)\chi 

\biggl( 
y

\delta \prime 

\biggr) 
,

where for all l = 1, . . . , P , either a
(l)
0 is given by

(2.4) a
(l)
0 = e - \phi 

(l)(x1,t),

defining an amplitude of the first type, or a
(l)
0 satisfies the equation

(2.5)
1

c(x1, t, 0)
(\partial x1

 - i\partial t)(e
\phi (l)(x1,t)a

(l)
0 ) = 1,
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6622 LILI YAN

defining an amplitude of the second type. Here

(2.6) \phi (l)(x1, t) = log c(x1, t, 0)
n
4  - 1

2 +G(l)(t), \partial tG
(l)(t) =

1

2
(\Delta g0\varphi 

(l))(t, 0),

(t, y) are the Fermi coordinates for \gamma for t close to tl, \chi \in C\infty 
0 (\BbbR n - 2) is such that

0 \leq \chi \leq 1, \chi = 1 for | y| \leq 1/4 and \chi = 0 for | y| \geq 1/2, and \delta \prime > 0 is a fixed number
that can be taken arbitrarily small.

In a sufficiently small neighborhood U of a point p \in \gamma ([0, L]), the quasimode ws
is a finite sum,

ws| U = w(1)
s + \cdot \cdot \cdot + w(P )

s ,

where t1 < \cdot \cdot \cdot < tP are the times in [0, L] where \gamma (tl) = p. Each w
(l)
s has the form

(2.7) w(l)
s = eis\varphi 

(l)

b(l), l = 1, . . . , P,

where \varphi (l) is the same as in (2.3), and b(l) \in C\infty (\BbbR \times U) is of the form

b(l)(x1, t, y) = h - 
(n - 2)

4 b
(l)
0 (x1, t)\chi 

\biggl( 
y

\delta \prime 

\biggr) 
,

where

(2.8) b
(l)
0 = e - 

\widetilde \phi (l)(x1,t).

Here

(2.9) \widetilde \phi (l)(x1, t) = log c(x1, t, 0)
n
4  - 1

2 + F (l)(t), \partial tF
(l)(t) =

1

2
(\Delta g0\varphi 

(l))(t, 0).

Remark 2.2. Note that the first type of the amplitudes, i.e., a
(l)
0 given by (2.4),

will be used to recover the potential q as well as the vector field X up to a suitable
gauge transformation, while to recover X uniquely, we shall have to work with the

second type of amplitudes, i.e., a
(l)
0 solving (2.5).

Proof. To construct Gaussian beam quasimodes, we shall follow the standard
approach; see [15], [32]. The novelty here is that when working with the biharmonic
operator we have to accommodate the presence of the conformal factor c throughout
the construction. We are also led to consider a richer class of amplitudes for the
Gaussian beam quasimodes.

Step 1. Preparation. Let us isometrically embed the manifold (M0, g0) into a

larger closed manifold (\widehat M0, g0) of the same dimension. This is possible as we can

form the manifold \widehat M0 = M0\sqcup \partial M0
M0, which is the disjoint union of two copies of

M0, glued along the boundary; see [15, Proof of Proposition 3.1]. We extend \gamma as a

unit speed geodesic in \widehat M0. Let \varepsilon > 0 be such that \gamma (t) \in \widehat M0 \setminus M0 and \gamma (t) has no
self-intersection for t \in [ - 2\varepsilon , 0) \cup (L,L + 2\varepsilon ]. This choice of \varepsilon is possible since \gamma is
nontangential.

Our aim is to construct Gaussian beam quasimodes near \gamma ([ - \varepsilon , L+ \varepsilon ]). We shall
start by carrying out the quasimode construction locally near a given point p0 = \gamma (t0)
on \gamma ([ - \varepsilon , L+ \varepsilon ]). Let (t, y) \in U = \{ (t, y) \in \BbbR \times \BbbR n - 2 : | t - t0| < \delta , | y| < \delta \prime \} , \delta , \delta \prime > 0,
be Fermi coordinates near p0; see [27]. We may assume that the coordinates (t, y)
extend smoothly to a neighborhood of U . The geodesic \gamma near p0 is then given by
\Gamma = \{ (t, y) : y = 0\} , and

gjk0 (t, 0) = \delta jk, \partial ylg
jk
0 (t, 0) = 0.
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Hence, near the geodesic

(2.10) gjk0 (t, y) = \delta jk +\scrO (| y| 2).

Let us first construct the quasimode vs in (2.1) for the operator esx1( - h2\Delta g)
2e - sx1 .

In doing so, we consider the following Gaussian beam ansatz:

(2.11) vs(x1, t, y) = eis\varphi (t,y)a(x1, t, y; s).

Here \varphi \in C\infty (U,\BbbC ) is such that

(2.12) Im\varphi \geq 0, Im\varphi | \Gamma = 0, Im\varphi (t, y) \sim | y| 2 = dist((y, t),\Gamma )2,

and a \in C\infty (\BbbR \times U,\BbbC ) is an amplitude such that supp(a(x1, \cdot )) is close to \Gamma ; see [39],
[26]. Notice that here we choose \varphi to depend on the transversal variables (t, y) only
while a is a function of all the variables.

Let us first compute esx1( - h2\Delta g)
2e - sx1vs. To that end, letting

(2.13) \widetilde \varphi (x1, t, y) = x1  - i\varphi (t, y), \widehat \varphi = sh\widetilde \varphi ,
we first get

(2.14) e
\widehat \varphi 
h ( - h2\Delta g)e

 - \widehat \varphi 
h =  - h2\Delta g + h(2\langle \nabla g \widehat \varphi ,\nabla g\cdot \rangle g +\Delta g \widehat \varphi ) - \langle \nabla g \widehat \varphi ,\nabla g \widehat \varphi \rangle g.

Here and in what follows we write \langle \cdot , \cdot \rangle g to denote the Riemannian scalar product on
tangent and cotangent spaces. In view of (2.14), we see that

es\widetilde \varphi ( - h2\Delta g)
2e - s\widetilde \varphi = h4

\bigl( 
 - \Delta g + s(2\langle \nabla g \widetilde \varphi ,\nabla g\cdot \rangle g +\Delta g \widetilde \varphi ) - s2\langle \nabla g \widetilde \varphi ,\nabla g \widetilde \varphi \rangle g\bigr) 2,

and therefore,

esx1( - h2\Delta g)
2e - sx1vs = eis\varphi h4

\bigl( 
 - \Delta g + s(2\langle \nabla g \widetilde \varphi ,\nabla g\cdot \rangle g +\Delta g \widetilde \varphi ) - s2\langle \nabla g \widetilde \varphi ,\nabla g \widetilde \varphi \rangle g\bigr) 2a.(2.15)

Step 2. Solving an eikonal equation to determine the phase function \varphi (t, y). Fol-
lowing the WKB method, we start by considering the eikonal equation

\langle \nabla g \widetilde \varphi ,\nabla g \widetilde \varphi \rangle g = 0,

and we would like to find \varphi = \varphi (t, y) \in C\infty (U,\BbbC ) such that

(2.16) \langle \nabla g \widetilde \varphi ,\nabla g \widetilde \varphi \rangle g = \scrO (| y| 3), y \rightarrow 0,

and

(2.17) Im\varphi \geq d| y| 2,

with some d > 0. Using that g = c(e\otimes g0) and (2.13), we see that

\langle \nabla g \widetilde \varphi ,\nabla g \widetilde \varphi \rangle g = c - 1(1 - \langle \nabla g0\varphi ,\nabla g0\varphi \rangle g0),

and therefore, in view of (2.16), we have to find \varphi satisfying the standard eikonal
equation,

1 - \langle \nabla g0\varphi ,\nabla g0\varphi \rangle g0 = \scrO (| y| 3), y \rightarrow 0.
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6624 LILI YAN

As in [15], [38], and [39], we can choose,

(2.18) \varphi (t, y) = t+
1

2
H(t)y \cdot y,

whereH(t) is a unique smooth complex symmetric solution of the initial value problem
for the matrix Riccati equation,

(2.19) \.H(t) +H(t)2 = F (t), H(t0) = H0,

with H0 being a complex symmetric matrix with Im (H0) positive definite and F (t)
being a suitable symmetric matrix, determined by the metric tensor; see [15, Proof
of Proposition 3.1]. Hence, as explained in [15], [38], and [39], Im (H(t)) is positive
definite for all t.

Step 3. Solving a transport equation to find an amplitude a. We look for a smooth
amplitude a = a(x1, x

\prime ) satisfying the transport equation,

(2.20) L2a = \scrO (| y| ),

as y \rightarrow 0. Here

(2.21) L := 2\langle \nabla g \widetilde \varphi ,\nabla g\cdot \rangle g +\Delta g \widetilde \varphi .
To proceed let us first simplify the operator L. To that end, in view of (2.13), a direct
computation shows that

(2.22) \langle \nabla g \widetilde \varphi ,\nabla g\cdot \rangle g =
1

c
(\partial x1

 - ig - 1
0 (x\prime )\varphi \prime 

x\prime \cdot \partial x\prime ),

(2.23) \Delta g \widetilde \varphi = \Delta gx1  - i\Delta g\varphi (x
\prime ),

where

(2.24) \Delta gx1 =

\biggl( 
n

2
 - 1

\biggr) 
1

c2
\partial x1

c,

and

(2.25) \Delta g\varphi =
1

c
\Delta g0\varphi +

\biggl( 
n

2
 - 1

\biggr) 
1

c2
\langle \nabla g0c,\nabla g0\varphi \rangle g0 .

In view of (2.22), (2.23), (2.24), (2.25), the operator L given by (2.21) becomes

L =
2

c
(\partial x1  - ig - 1

0 (x\prime )\varphi \prime 
x\prime \cdot \partial x\prime ) +

\biggl( 
n

2
 - 1

\biggr) 
1

c2
\partial x1c - 

i

c
\Delta g0\varphi  - 

\biggl( 
n

2
 - 1

\biggr) 
i

c2
\langle \nabla g0c,\nabla g0\varphi \rangle g0 .

(2.26)

Let us proceed to simplify the operator L further. Using (2.10) and (2.18), we see
that

(2.27) g - 1
0 (x\prime )\varphi \prime 

x\prime \cdot \partial x\prime = \partial t +\scrO (| y| 2)\partial t +H(t)y \cdot \partial y +\scrO (| y| 2) \cdot \partial y.

Using (2.10) and (2.18), we also have

(\Delta g0\varphi )(t, 0) = | g0|  - 1/2\partial x\prime 
j
(| g0| 1/2gjk0 \partial x\prime 

k
\varphi )| y=0 = \delta jk\partial x\prime 

j
\partial x\prime 

k
\varphi | y=0

= \delta jkHjk = trH(t),
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and therefore

(2.28) (\Delta g0\varphi )(t, y) = (\Delta g0\varphi )(t, 0) +\scrO (| y| ) = trH(t) +\scrO (| y| ).

Finally, using (2.10) and (2.18), we get

(2.29) \langle \nabla g0c,\nabla g0\varphi \rangle g0 = \partial tc+\scrO (| y| ).

Using (2.27), (2.28), (2.29), the operator L in (2.26) becomes

(2.30)

L =
2

c

\biggl[ 
\partial x1  - i\partial t  - iH(t)y \cdot \partial y +

\biggl( 
n

4
 - 1

2

\biggr) 
(\partial x1  - i\partial t) log c - 

i

2
trH(t)

+\scrO (| y| ) +\scrO (| y| 2)\partial t +\scrO (| y| 2)\partial y
\biggr] 

=
2

c(x1, t, 0)

\biggl[ 
\partial x1

 - i\partial t  - iH(t)y \cdot \partial y + (\partial x1
 - i\partial t) log c(x1, t, 0)

n
4  - 1

2

 - i

2
trH(t) +\scrO (| y| ) +\scrO (| y| )(\partial x1

, \partial t) +\scrO (| y| 2)\partial y
\biggr] 
.

Let \chi \in C\infty 
0 (\BbbR n - 2) be such that \chi = 1 for | y| \leq 1/4 and \chi = 0 for | y| \geq 1/2. We

look for the amplitude a in the form

(2.31) a(x1, t, y) = h - 
(n - 2)

4 a0(x1, t)\chi 

\biggl( 
y

\delta \prime 

\biggr) 
,

where a0(\cdot , \cdot ) \in C\infty (\BbbR \times \{ t : | t  - t0| < \delta \} ) is independent of y. In view of (2.20), a0
should satisfy the equation

(2.32) L2a0 = \scrO (| y| ),

as y \rightarrow 0. In view of (2.30), we write

(2.33) L =
2

c(x1, t, 0)
(L0 +R),

where

(2.34) L0 = (\partial x1
 - i\partial t) + (\partial x1

 - i\partial t) log c(x1, t, 0)
n
4  - 1

2  - i

2
trH(t)

and

(2.35) R =  - iH(t)y \cdot \partial y +\scrO (| y| ) +\scrO (| y| )(\partial x1 , \partial t) +\scrO (| y| 2)\partial y.

To solve our inverse problem, we need two types of amplitudes. Let us proceed to
construct the first type of amplitudes. In doing so, first note that as a0 is independent
of y, if a0 solves the equation

(2.36) L0a0 = 0,

then a0 satisfies (2.32). Let us proceed to find a solution to (2.36). To that end,
letting

(2.37) \phi (x1, t) = log c(x1, t, 0)
n
4  - 1

2 +G(t), \partial tG(t) =
1

2
trH(t),
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6626 LILI YAN

we see that

(2.38) L0 = e - \phi (x1,t)(\partial x1
 - i\partial t)e

\phi (x1,t).

We solve (2.36) by taking

(2.39) a0 = e - \phi = c(x1, t, 0)
1
2 - 

n
4 e - G(t), \partial tG(t) =

1

2
trH(t).

Now we proceed to find the second type of amplitudes, which is given by more
general solutions to (2.32). As a0 is independent of y, using (2.33), (2.34), and (2.35),
equation (2.32) becomes

2

c(x1, t, 0)
[L0 +R]

\biggl( 
2

c(x1, t, 0)
L0a0(x1, t) +\scrO (| y| )

\biggr) 
= \scrO (| y| ),

or simply

(2.40) L0

\biggl( 
1

c(x1, t, 0)
L0

\biggr) 
a0(x1, t) = 0.

Using (2.38), we see that (2.40) becomes

(2.41) (\partial x1
 - i\partial t)

\biggl( 
1

c(x1, t, 0)
(\partial x1

 - i\partial t)(e
\phi (x1,t)a0)

\biggr) 
= 0.

To solve (2.41), we choose a0(x1, t) to be a solution to

(2.42)
1

c(x1, t, 0)
(\partial x1

 - i\partial t)(e
\phi (x1,t)a0) = 1.

Note that (2.42) can be solved as it is a standard inhomogeneous \partial equation in the
complex plane z = x1  - it,

(2.43) \partial (e\phi (x1,t)a0) = c/2.

Step 4. Establishing the estimates (2.1) locally near the point p0. First it follows
from (2.11) and (2.31) that

(2.44) vs(x1, t, y) = eis\varphi (t,y)h - 
(n - 2)

4 a0(x1, t)\chi 

\biggl( 
y

\delta \prime 

\biggr) 
.

Using (2.17), we have

(2.45) | vs(x1, t, y)| \leq \scrO (1)h - 
(n - 2)

4 e - 
1
hd| y| 

2

\chi 

\biggl( 
y

\delta \prime 

\biggr) 
, (x1, t, y) \in J \times U,

and therefore,

(2.46) \| vs\| L2(J\times U) \leq \scrO (1)\| h - 
(n - 2)

4 e - 
1
hd| y| 

2

\| L2(| y| \leq \delta \prime /2) = \scrO (1), h\rightarrow 0,

where J \subset \BbbR is a large fixed bounded open interval. Similarly, it follows from (2.44)
that

(2.47) \| \nabla vs\| L2(J\times U) = \scrO (h - 1).
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Let us next estimate \| esx1( - h2\Delta g)
2e - sx1vs\| L2(J\times U). To that end, letting

(2.48) f = \langle \nabla g \widetilde \varphi ,\nabla g \widetilde \varphi \rangle g = \scrO (| y| 3)

(cf. (2.16)), we obtain from (2.15) with the help of (2.21) that

(2.49)
esx1( - h2\Delta g)

2e - sx1vs = eis\varphi h4
\bigl( 
( - \Delta g)

2a - s\Delta g(La) + s2\Delta g(fa)

+ sL( - \Delta ga) + s2L2a - s3L(fa) + s2f(\Delta ga) - s3fLa+ s4f2a
\bigr) 
.

We shall proceed to bound each term in (2.49) in L2(J \times U). First using (2.31) and
(2.17), we get

(2.50)
\| eis\varphi h4( - \Delta g)

2a\| L2(J\times U) = h4\| eis\varphi h - 
(n - 2)

4 ( - \Delta g)
2(a0\chi )\| L2(J\times U)

= \scrO (h4)\| h - 
(n - 2)

4 e - 
d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (h4),

and similarly,

(2.51) \| eis\varphi h4s\Delta g(La)\| L2(J\times U) = \scrO (h3)

and

(2.52) \| eis\varphi h4sL(\Delta ga)\| L2(J\times U) = \scrO (h3).

Now to bound eis\varphi h4s2\Delta g(fa) in L
2(J \times U) we note that the worst case occurs when

\Delta g falls on f , and in this case we have, using (2.48) and (2.31),

\| eis\varphi h4s2\Delta g(f)a\| L2(J\times U) \leq \scrO (h2)\| h - 
(n - 2)

4 | y| e - d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (h5/2),

and therefore,

(2.53) \| eis\varphi h4s2\Delta g(fa)\| L2(J\times U) = \scrO (h5/2).

Here we have used the following bound:

(2.54) \| h - 
(n - 2)

4 | y| ke - d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (hk/2), k = 1, 2, . . . .

Similarly, using (2.32) and (2.54), we get

(2.55) \| eis\varphi h4s2L2a\| L2(J\times U) \leq \scrO (h2)\| h - 
(n - 2)

4 | y| e - d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (h5/2).

Using (2.48), (2.54), and the fact that L(\scrO (| y| 3)) = \scrO (| y| 3), we obtain that

\| eis\varphi h4s3L(fa)\| L2(J\times U) \leq \scrO (h)\| h - 
(n - 2)

4 | y| 3e - d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (h5/2),

\| eis\varphi h4s2f(\Delta ga)\| L2(J\times U) \leq \scrO (h2)\| h - 
(n - 2)

4 | y| 3e - d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (h7/2),

\| eis\varphi h4s3fLa\| L2(J\times U) \leq \scrO (h)\| h - 
(n - 2)

4 | y| 3e - d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (h5/2),

\| eis\varphi h4s4f2a\| L2(J\times U) \leq \scrO (1)\| h - 
(n - 2)

4 | y| 6e - d
h | y| 2\| L2(| y| \leq \delta \prime /2) = \scrO (h3).

(2.56)

Combining (2.49), (2.50), (2.51), (2.52), (2.53), (2.55), (2.56), we get

(2.57) \| esx1( - h2\Delta g)
2e - sx1vs\| L2(J\times U) = \scrO (h5/2).

This completes verification of (2.1) locally.
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For later purposes we need estimates for \| vs(x1, \cdot )\| L2(\partial M0). If U contains a bound-
ary point x0 = (t0, 0) \in \partial M0, then \partial t| x0

is transversal to \partial M0. Let \rho be a boundary
defining function for M0 so that \partial M0 is given by the zero set \rho (t, y) = 0 near x0.
Then \nabla \rho (x0) is normal to \partial M0, and hence, \partial t\rho (x0) \not = 0. By the implicit function
theorem, there is a smooth function y \mapsto \rightarrow t(y) near 0 such that \partial M0 near x0 is given
by \{ (t(y), y) : | y| < r0\} for some r0 > 0 small; see also [27]. Then using (2.45), we get

(2.58)

\| vs(x1, \cdot )\| 2L2(\partial M0\cap U) =

\int 
| y| <r0

| vs(x1, t(y), y)| 2dS(y)

\leq \scrO (1)

\int 
\BbbR n - 2

h - 
(n - 2)

2 e - 2 d
h | y| 2dy = \scrO (1).

Step 5. Establishing estimates (2.1) globally. Now let us construct the quasimode
vs in M by gluing together quasimodes defined along small pieces of the geodesic. As
\gamma : ( - 2\varepsilon , L+ 2\varepsilon ) \rightarrow \widehat M0 is a unit speed nontangential geodesic, an application of [27,
Lemma 7.2] shows that \gamma | [ - \varepsilon ,L+\varepsilon ] self-intersects only at finitely many times tj with

0 \leq t1 < \cdot \cdot \cdot < tN \leq L.

We let t0 =  - \varepsilon and tN+1 = L + \varepsilon . By [15, Lemma 3.5], there exists an open cover
\{ (Uj , \kappa j)\} N+1

j=0 of \gamma ([ - \varepsilon , L + \varepsilon ]) consisting of coordinate neighborhoods having the
following properties:

(i) \kappa j(Uj) = Ij\times B, where Ij are open intervals and B = B(0, \delta \prime ) is an open ball
in \BbbR n - 2. Here \delta \prime > 0 can be taken arbitrarily small and the same for each
Uj ,

(ii) \kappa j(\gamma (t)) = (t, 0) for each t \in Ij ,
(iii) tj only belongs to Ij and Ij \cap Ik = \emptyset unless | j  - k| \leq 1,
(iv) \kappa j = \kappa k on \kappa  - 1

j ((Ij \cap Ik)\times B).

To construct the quasimode vs globally, we first find a function v
(0)
s = eis\varphi 

(0)

a(0),

a(0) = h - 
(n - 2)

4 a
(0)
0 \chi , in U0 as above. Choose some t\prime 0 with \gamma (t\prime 0) \in U0 \cap U1. To

construct the phase \varphi (1) in U1, we solve the Riccati equation (2.19) with the ini-
tial condition H(1)(t\prime 0) = H(0)(t\prime 0). Continuing in this way, we obtain the phases
\varphi (0), \varphi (1), . . . , \varphi (N+1) such that \varphi (j) = \varphi (j+1) on Uj \cap Uj+1. In a similar way, by
solving ODE in (2.37) with prescribed initial conditions we get \phi (0), . . . , \phi (N+1), and

therefore, in view of (2.39) we obtain a
(0)
0 , a

(1)
0 , . . . , a

(N+1)
0 , and hence, we construct

the amplitude of the first type globally.
To construct the amplitude of the second type, we need to solve the inhomoge-

neous \=\partial --type equations (2.43). To that end, we first find a
(0)
0 and a

(1)
0 which are

solutions of (2.43) on \widetilde J \times I0 and on \widetilde J \times I1, respectively. Here \widetilde J \subset \BbbR is a bounded

open interval. Then we see that e\phi 
(1)

a
(1)
0  - e\phi 

(0)

a
(0)
0 is holomorphic on \widetilde J \times (I0 \cap I1).

By [6, Example 3.25], there are holomorphic functions g1, g0 on \widetilde J \times I1 and \widetilde J \times I0,

respectively, such that e\phi 
(1)

a
(1)
0  - e\phi (0)

a
(0)
0 = g0 - g1 on \widetilde J \times (I0\cap I1). Thus, modifying

a
(0)
0 and a

(1)
0 , we can always arrange so that a

(0)
0 = a

(1)
0 on \widetilde J \times (I0 \cap I1). Proceeding

in the same way, we can find a
(2)
0 , . . . , a

(N+1)
0 so that a

(j)
0 = a

(j+1)
0 on \widetilde J \times (Ij \cap Ij+1),

and hence, we construct the amplitude of the second type globally.

Thus, we obtain the quasimodes v
(0)
s , . . . , v

(N+1)
s such that

(2.59) v(j)s (x1, \cdot ) = v(j+1)
s (x1, \cdot ) in Uj \cap Uj+1
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for all x1. Let \chi j = \chi j(t) \in C\infty 
0 (Ij) be such that

\sum N+1
j=0 \chi j = 1 near [ - \varepsilon , L+ \varepsilon ], and

define our quasimode v globally by

vs =

N+1\sum 
j=0

\chi jv
(j)
s .

Let us next give a local description of the quasimode vs near self-intersecting
points of the geodesic \gamma and near the other points of \gamma . To that end, let p1, . . . , pR \in 
M0 be the distinct points where the geodesic self-intersects, and let 0 \leq t1 < \cdot \cdot \cdot < tR\prime 

be the times of self-intersections. Let V1, . . . , VR be small neighborhoods in \widehat M0 around
pj , j = 1, . . . , R. Then choosing \delta \prime small enough we obtain an open cover in \widehat M0,

(2.60) supp (vs(x1, \cdot )) \cap M0 \subset (\cup Rj=1Vj) \cup (\cup Sk=1Wk),

where in each Vj , the quasimode is a finite sum,

(2.61) vs(x1, \cdot )| Vj
=

\sum 
l:\gamma (tl)=pj

v(l)s (x1, \cdot ),

and in each Wk (where there are no self-intersecting points), in view of (2.59), there
is some l(k) so that the quasimode is given by

(2.62) vs(x1, \cdot )| Wk
= vl(k)s (x1, \cdot ).

We also have
supp (vs) \cap M \subset (\cup Rj=1

\widetilde J \times Vj) \cup (\cup Sk=1
\widetilde J \times Wk),

where \widetilde J \subset \BbbR is a bounded open interval.
Finally, the bounds in (2.1) follow from the bounds (2.46), (2.47), (2.57), and the

representations (2.61) and (2.62) of v.
Step 6. Construction of the Gaussian beam quasimodes ws. Now look for a

Gaussian beam quasimode for the operator e - sx1( - h2\Delta g)
2esx1 in the form

(2.63) ws(x1, t, y) = eis\varphi (t,y)b(x1, t, y; s),

where \varphi \in C\infty (U) is the phase function given by (2.18), and b \in C\infty (\BbbR \times U) is an
amplitude, which we shall proceed to determine. To that end, first, similarly to (2.15),
we get

e - sx1( - h2\Delta g)
2esx1ws= eis\varphi h4

\bigl( 
 - \Delta g  - s(2\langle \nabla g

\widetilde \widetilde \varphi ,\nabla g\cdot \rangle g +\Delta g
\widetilde \widetilde \varphi ) - s2\langle \nabla g

\widetilde \widetilde \varphi ,\nabla g
\widetilde \widetilde \varphi \rangle g\bigr) 2b,(2.64)

where

(2.65) \widetilde \widetilde \varphi (x1, t, y) = x1 + i\varphi (t, y).

With \varphi given by (2.18), we have

\langle \nabla g
\widetilde \widetilde \varphi ,\nabla g

\widetilde \widetilde \varphi \rangle g = \scrO (| y| 3),

as y \rightarrow 0. We thus look for the smooth amplitude b = b(x1, x
\prime ) satisfying the transport

equation,

(2.66) \widetilde L2b = \scrO (| y| ),
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6630 LILI YAN

where

(2.67) \widetilde L = 2\langle \nabla g
\widetilde \widetilde \varphi ,\nabla g\cdot \rangle g +\Delta g

\widetilde \widetilde \varphi .
Let us simplify the operator \widetilde L. First using (2.65), we get

(2.68) \langle \nabla g
\widetilde \widetilde \varphi ,\nabla g\cdot \rangle g =

1

c
(\partial x1

+ ig - 1
0 (x\prime )\varphi \prime 

x\prime \cdot \partial x\prime ),

(2.69) \Delta g \widetilde \varphi = \Delta gx1 + i\Delta g\varphi (x
\prime ).

Hence, using (2.68), (2.69), (2.24), and (2.25), the operator \widetilde L given by (2.67) becomes

\widetilde L =
2

c
(\partial x1 + ig - 1

0 (x\prime )\varphi \prime 
x\prime \cdot \partial x\prime ) +

\biggl( 
n

2
 - 1

\biggr) 
1

c2
\partial x1c+

i

c
\Delta g0\varphi +

\biggl( 
n

2
 - 1

\biggr) 
i

c2
\langle \nabla g0c,\nabla g0\varphi \rangle g0 .

(2.70)

Using (2.27), (2.28), (2.29), the operator \widetilde L in (2.70) becomes

(2.71)

\widetilde L = =
2

c(x1, t, 0)

\biggl[ 
\partial x1

+ i\partial t + iH(t)y \cdot \partial y + (\partial x1
+ i\partial t) log c(x1, t, 0)

n
4  - 1

2

+
i

2
trH(t) +\scrO (| y| ) +\scrO (| y| )(\partial x1

, \partial t) +\scrO (| y| 2)\partial y
\biggr] 
.

We look for the amplitude b in the form

(2.72) b(x1, t, y) = h - 
(n - 2)

4 b0(x1, t)\chi 

\biggl( 
y

\delta \prime 

\biggr) 
,

where b0(\cdot , \cdot ) \in C\infty (\BbbR \times \{ t : | t - t0| < \delta \} ) is independent of y, and in view of (2.66),
b0 should satisfy

(2.73) \widetilde L2b0 = \scrO (| y| ), y \rightarrow 0.

It follows from (2.70) that

(2.74) \widetilde L =
2

c(x1, t, 0)
(\widetilde L0 + \widetilde R),

where

(2.75) \widetilde L0 = (\partial x1
+ i\partial t) + (\partial x1

+ i\partial t) log c(x1, t, 0)
n
4  - 1

2 +
i

2
trH(t),

and

(2.76) \widetilde R = iH(t)y \cdot \partial y +\scrO (| y| ) +\scrO (| y| )(\partial x1 , \partial t) +\scrO (| y| 2)\partial y.

In contrast to the construction of the Gaussian beam quasimodes vs, we shall only
need amplitudes of the first type. To construct such amplitudes, we note that as b0
is independent of y, if b0 solves the equation

(2.77) \widetilde L0b0 = 0,
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then b0 satisfies (2.73). To find a solution to (2.77), we note that

(2.78) \widetilde L0 = e - 
\widetilde \phi (x1,t)(\partial x1

+ i\partial t)e
\widetilde \phi (x1,t),

where \widetilde \phi (x1, t) is given by

(2.79) \widetilde \phi (x1, t) = log c(x1, t, 0)
n
4  - 1

2 + F (t), \partial tF (t) =
1

2
trH(t).

We solve (2.77) by taking

(2.80) b0 = e - 
\widetilde \phi = c(x1, t, 0)

1
2 - 

n
4 e - F (t).

Proceeding further as in the construction of the quasimode vs above, we obtain
the quasimode ws \in C\infty (M) such that (2.2) holds.

We shall need the following result.

Proposition 2.3. Let X \in C(M,TM) be a complex vector field, let \psi \in C(M0),
and let x\prime 1 \in \BbbR . Then there exist the Gaussian beam quasimodes vs and ws given by
Proposition 2.1 such that vs is obtained using amplidutes of the first type and we have

(2.81) lim
h\rightarrow 0

\int 
\{ x\prime 

1\} \times M0

vsws\psi dVg0 =

\int L

0

e - 2\lambda tc(x1, \gamma (t))
1 - n

2 \psi (\gamma (t))dt

and

lim
h\rightarrow 0

h

\int 
\{ x\prime 

1\} \times M0

X(vs)ws\psi dVg0 = i

\int L

0

Xt(x
\prime 
1, \gamma (t))e

 - 2\lambda tc(x1, \gamma (t))
1 - n

2 \psi (\gamma (t))dt.

(2.82)

Here Xt(x
\prime 
1, \gamma (t)) = \langle X(x\prime 1, \gamma (t)), (0, \.\gamma (t))\rangle g.

Proof. Step 1. Proof of (2.81). Let \psi \in C(M0), x
\prime 
1 \in \BbbR . Using a partition of

unity, in view of (2.60), it suffices to establish (2.81) for \psi having compact support
in one of the sets Vj or Wk. First, assume that \psi \in C0(M0), supp (\psi ) \subset Wk. Thus,
in view of (2.62), (2.44), (2.63), (2.72), on supp (\psi ), we have

(2.83) vs = eis\varphi h - 
(n - 2)

4 a0(x
\prime 
1, t)\chi 

\biggl( 
y

\delta \prime 

\biggr) 
, ws = eis\varphi h - 

(n - 2)
4 b0(x

\prime 
1, t)\chi 

\biggl( 
y

\delta \prime 

\biggr) 
.

To proceed, we shall need the consequence of (2.10),

(2.84) | g0| 1/2 = 1 +\scrO (| y| 2),

as well as

(2.85) is\varphi  - is\varphi =  - 2
1

h
Im\varphi  - 2\lambda Re\varphi .

Using (2.83), (2.84), (2.85), (2.18), we get

\int 
\{ x\prime 

1\} \times M0

vsws\psi dVg0

=

\int L

0

\int 
\BbbR n - 2

e - 2 1
h Im\varphi e - 2\lambda Re\varphi h - 

(n - 2)
2 a0(x

\prime 
1, t)b0(x

\prime 
1, t)\chi 

2

\biggl( 
y

\delta \prime 

\biggr) 
\psi (t, y)| g0| 

1
2 dydt

=

\int L

0

\int 
\BbbR n - 2

e - 
1
h ImH(t)y\cdot ye - 2\lambda te\lambda \scrO (| y| 2)h - 

(n - 2)
2 a0(x

\prime 
1, t)b0(x

\prime 
1, t)\chi 

2

\biggl( 
y

\delta \prime 

\biggr) 
\psi (t, y)(1 +\scrO (| y| 2))dydt.

(2.86)
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Making the change of variable y = h1/2\widetilde y in (2.86), we obtain that

(2.87)

\int 
\{ x\prime 

1\} \times M0

vsws\psi dVg0 =

\int L

0

\int 
\BbbR n - 2

e - ImH(t)\widetilde y\cdot \widetilde ye - 2\lambda te\lambda h\scrO (| \widetilde y| 2)a0(x\prime 1, t)b0(x\prime 1, t)
\chi 2

\biggl( 
h1/2\widetilde y
\delta \prime 

\biggr) 
\psi (t, h1/2\widetilde y)(1 + h\scrO (| \widetilde y| 2))dtd\widetilde y.

Using that

(2.88)

\int 
\BbbR n - 2

e - ImH(t)y\cdot ydy =
\pi (n - 2)/2\sqrt{} 
det(ImH(t))

,

and the dominated covergence theorem, we get from (2.87) that

(2.89)

lim
h\rightarrow 0

\int 
\{ x\prime 

1\} \times M0

vsws\psi dVg0

=

\int L

0

e - 2\lambda ta0(x
\prime 
1, t)b0(x

\prime 
1, t)\psi (t, 0)

\int 
\BbbR n - 2

e - ImH(t)y\cdot ydydt

=

\int L

0

e - 2\lambda ta0(x
\prime 
1, t)b0(x

\prime 
1, t)

\pi (n - 2)/2\sqrt{} 
det(ImH(t))

\psi (t, 0)dt.

Let us proceed to simplify the expression in (2.89) in the case when a0 is the amplitude
of the first type, i.e., a0 be given by (2.39), and let b0 be given by (2.80). Then

(2.90) a0(x
\prime 
1, t)b0(x

\prime 
1, t)

\pi (n - 2)/2\sqrt{} 
det(ImH(t))

= c(x1, t, 0)
1 - n

2 e - (G(t)+F (t)) \pi (n - 2)/2\sqrt{} 
det(ImH(t))

.

Now it follows from (2.39) and (2.79) that

(2.91) G(t) + F (t) = G(t0) + F (t0) +

\int t

t0

trRe(H(s))ds.

Using (2.91) and the property of solutions of the matrix Riccati equation [26, Lemma
2.58],

det (ImH(t)) = det (ImH(t0))e
 - 2

\int t
t0

tr Re(H(s))ds
,

we see that

(2.92) e - (G(t)+F (t)) \pi (n - 2)/2\sqrt{} 
det(ImH(t))

= e - (G(t0)+F (t0))
\pi (n - 2)/2\sqrt{} 

det(ImH(t0))

is a constant in t. To fix this constant, when constructing the amplitude a0 and b0,
specifically, when solving (2.39) and (2.79) in U0, we choose initial conditions for G
and F so that the constant in (2.92) is equal to 1. With this choice, it follows from
(2.89), (2.90), (2.92) that

(2.93) lim
h\rightarrow 0

\int 
\{ x\prime 

1\} \times M0

vsws\psi dVg0 =

\int L

0

e - 2\lambda tc(x1, t, 0)
1 - n

2 \psi (t, 0)dt.

This completes the proof of (2.81) in the case when supp (\psi ) \subset Wk.
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Let us now establish (2.81) when supp (\psi ) \subset Vj . Here on supp (\psi ) we have

(2.94) vs =
\sum 

l:\gamma (tl)=pj

v(l)s , ws =
\sum 

l:\gamma (tl)=pj

w(l)
s ,

and hence,

(2.95) vsws =
\sum 

l:\gamma (tl)=pj

v(l)s w
(l)
s +

\sum 
l \not =l\prime ,\gamma (tl)=\gamma (tl\prime )=pj

v(l)s w
(l\prime )
s .

We shall use a nonstationary phase argument as in [15, end of proof Proposition 3.1]
to show that the contribution of the mixed terms vanishes in the limit h \rightarrow 0, i.e., if
l \not = l\prime ,

(2.96) lim
h\rightarrow 0

\int 
\{ x\prime 

1\} \times M0

v(l)s w
(l\prime )
s \psi dVg0 = 0.

In doing so, write

v(l)s = ei
1
hRe\varphi (l)

p(l), p(l) = e - \lambda Re\varphi (l)

e - sIm\varphi (l)

a(l)

and
w(l\prime )
s = ei

1
hRe\varphi (l\prime )

q(l
\prime ), q(l

\prime ) = e - \lambda Re\varphi (l\prime )
e - sIm\varphi (l\prime )

b(l
\prime ),

and therefore,

(2.97) v(l)s w
(l\prime )
s = ei

1
h\phi p(l)q(l\prime ),

where
\phi = Re\varphi (l)  - Re\varphi (l\prime ).

Thus, in view of (2.96) and (2.97) we shall show that for l \not = l\prime ,

(2.98) lim
h\rightarrow 0

\int 
\{ x\prime 

1\} \times M0

ei
1
h\phi p(l)q(l\prime )\psi dVg0 = 0.

Since \partial t\varphi 
(l)(t, 0) = \partial t\varphi 

(l\prime )(t, 0) = 1 and the geodesic intersects itself transversally, as
explained in [27, Lemma 7.2], we see that d\phi (pj) \not = 0. By decreasing the set Vj if
necessary, we may assume that d\phi \not = 0 in Vj .

To prove (2.98), we shall integrate by parts and in doing so, we let \varepsilon > 0 be
fixed, and decompose \psi = \psi 1 + \psi 2, where \psi 1 \in C\infty (M0), supp (\psi 1) \subset Vj and and
\| \psi 2\| L\infty (Vj\cap M0) \leq \varepsilon . Notice that \psi may be nonzero on \partial M0. We have

(2.99)

\bigm| \bigm| \bigm| \bigm| \int 
\{ x\prime 

1\} \times M0

ei
1
h\phi p(l)q(l\prime )\psi 2dVg0

\bigm| \bigm| \bigm| \bigm| \leq \| v(l)s \| L2\| w(l)
s \| L2\| \psi 2\| L\infty \leq \scrO (\varepsilon ).

For the smooth part \psi 1, we integrate by parts using that

ei
1
h\phi =

h

i
L(ei

1
h\phi ), L =

1

| d\phi | 2
\langle d\phi , d\cdot \rangle g0 .

We have

(2.100)

\int 
\{ x\prime 

1\} \times M0

ei
1
h\phi p(l)q(l\prime )\psi 1dVg0 =

\int 
\{ x\prime 

1\} \times (Vj\cap \partial M0)

h
\partial \nu \phi 

i| d\phi | 2
ei

1
h\phi p(l)q(l\prime )\psi 1dS

+ h
1

i

\int 
\{ x\prime 

1\} \times M0

ei
1
h\phi Lt(p(l)q(l\prime )\psi 1)dVg0 ,

where Lt =  - L - divL is the transpose of L.
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In view of (2.58), the boundary term is of \scrO (h) as h\rightarrow 0. To estimate the second
term in the right-hand side of (2.100), we recall that

p(l)q(l\prime ) = e - \lambda (Re\varphi (l)+Re\varphi (l\prime ))e - i\lambda (Im\varphi (l) - Im\varphi (l\prime ))e - 
1
h (Im\varphi (l)+Im\varphi (l\prime ))h - 

(n - 2)
2

a
(l)
0 (x\prime 1, t)b

(l\prime )
0 (x\prime 1, t)\chi 

2

\biggl( 
y

\delta \prime 

\biggr) 
.

This shows that to bound the second term in the right-hand side of (2.100), it is
enough to analyze the contributions occurring when differentiating

e - 
1
h (Im\varphi (l)+Im\varphi (l\prime )),

as all the other contributions are of \scrO (h), as h\rightarrow 0.
As in [15], using (2.17), we have

| L(e - 1
h (Im\varphi (l)+Im\varphi (l\prime )))| \leq \scrO (h - 1)| d(Im\varphi (l) + Im\varphi (l\prime ))| e - 1

hd| y| 
2

\leq \scrO (h - 1| y| )e - 1
hd| y| 

2

,

which shows that the corresponding contribution to the second term in the right-
hand side of (2.100) is of \scrO (h1/2). This shows that the integral in the left-hand side
of (2.100) goes to 0 as h\rightarrow 0, and this together with (2.99) establishes (2.96).

Using (2.93) for each of the factors v
(l)
s w

(l)
s in (2.95), we get

lim
h\rightarrow 0

\int 
\{ x\prime 

1\} \times M0

v(l)s w
(l)
s \psi dVg0 =

\int 
Il

e - 2\lambda tc(x1, t, 0)
1 - n

2 \psi (t, 0)dt.

Summing over Il, appearing in the Fermi coordinates, such that tl \in Il and \gamma (tl) = pj ,
we get (2.81) when supp (\psi ) \subset Vj and hence, in general.

Step 2. Establishing (2.82). Let X \in C(M,TM) be a complex vector field, \psi \in 
C(M0), and x\prime 1 \in \BbbR . Using a partition of unity, it is enough to verify (2.82) in
the following two cases: supp (\psi ) \subset Wk and supp (\psi ) \subset Vj . Assume first that
supp (\psi ) \subset Wk. Using (2.83), we get

(2.101) h

\int 
\{ x\prime 

1\} \times M0

X(vs)ws\psi dVg0 = I1,1 + I1,2 + I2,

where

(2.102) I1,1 =

\int 
\{ x\prime 

1\} \times M0

iX(\varphi )vsws\psi dVg0 ,

(2.103) I1,2 =  - h
\int 
\{ x\prime 

1\} \times M0

\lambda X(\varphi )vsws\psi dVg0 ,

(2.104) I2 = h

\int 
\{ x\prime 

1\} \times M0

h - 
(n - 2)

4 eis\varphi X(a0\chi )ws\psi dVg0 .

Using (2.1) and (2.2), we have

(2.105)
| I1,2| \leq \scrO (h)\| vs(x\prime , \cdot )\| L2(M0)\| ws(x

\prime 
1, \cdot )\| L2(M0) = \scrO (h),

| I2| \leq \scrO (h)\| eis\varphi h - 
(n - 2)

4 \| L2(\{ | y| \leq \delta \prime /2\} )\| ws(x\prime 1, \cdot )\| L2(M0) = \scrO (h).
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Let us now compute limh\rightarrow 0 I1,1. To that end, we write

(2.106) X = X1\partial x1 +Xt\partial t +Xy \cdot \partial y, x = (x1, t, y).

Using (2.18), we get

(2.107) \partial t\varphi = 1 +\scrO (| y| 2), \partial y\varphi = \scrO (| y| ).

As X is continuous, it follows from (2.106) and (2.107) that

(2.108) X(\varphi ) = (Xt(x1, t, 0) + o(1))(1 +\scrO (| y| 2)) +\scrO (| y| ) = Xt(x1, t, 0) + o(1),

as y \rightarrow 0, uniformly in x1 and t. Using (2.108), as in (2.86), we obtain from (2.102)
that

(2.109)

I1,1 =

\int L

0

\int 
\BbbR n - 2

i(Xt(x
\prime 
1, t, 0) + o(1))h - 

(n - 2)
2 e - 

1
h ImH(t)y\cdot ye - 2\lambda te\lambda \scrO (| y| 2)

a0(x
\prime 
1, t)b0(x

\prime 
1, t)\chi 

2

\biggl( 
y

\delta \prime 

\biggr) 
\psi (t, y)(1 +\scrO (| y| 2))dydt.

We first observe that

(2.110) lim
h\rightarrow 0

I1,1,2 = 0,

uniformly in x\prime 1 and t, where

I1,1,2 =

\int 
\BbbR n - 2

g(x\prime 1, t, y)dy, g(x\prime 1, t, y) = o(1)h - 
(n - 2)

2 e - 
1
h ImH(t)y\cdot ye - 2\lambda t

e\lambda \scrO (| y| 2)a0(x
\prime 
1, t)b0(x

\prime 
1, t)\chi 

2

\biggl( 
y

\delta \prime 

\biggr) 
\psi (t, y)(1 +\scrO (| y| 2)).

Indeed, let \varepsilon > 0 and let \delta > 0 be such that | o(1)| \leq \varepsilon when | y| \leq \delta . Then

| I1,1,2| \leq 
\bigm| \bigm| \bigm| \bigm| \int 

| y| \leq \delta 
g(x\prime 1, t, y)dy

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int 
| y| \geq \delta 

g(x\prime 1, t, y)dy

\bigm| \bigm| \bigm| \bigm| 
\leq \varepsilon \scrO (1)

\bigm| \bigm| \bigm| \bigm| \int 
\BbbR n - 2

h - 
(n - 2)

2 e - 
1
h ImH(t)y\cdot ydy

\bigm| \bigm| \bigm| \bigm| +\scrO (e - d\delta 
2/h) \leq \varepsilon \scrO (1) +\scrO (e - d\delta 

2/h),

showing (2.110).
Using (2.110), making the change of variables y = h1/2\widetilde y in (2.109), using the

dominated convergence theorem, and (2.88), we get

(2.111) lim
h\rightarrow 0

I1,1 = i

\int L

0

Xt(x
\prime 
1, t, 0)e

 - 2\lambda ta0(x
\prime 
1, t)b0(x

\prime 
1, t)\psi (t, 0)

\pi (n - 2)/2\sqrt{} 
det(ImH(t))

dt.

It follows from (2.101) with the help of (2.105) and (2.111) that

(2.112)

lim
h\rightarrow 0

h

\int 
\{ x\prime 

1\} \times M0

X(vs)ws\psi dVg0

= i

\int L

0

Xt(x
\prime 
1, t, 0)e

 - 2\lambda ta0(x
\prime 
1, t)b0(x

\prime 
1, t)\psi (t, 0)

\pi (n - 2)/2\sqrt{} 
det(ImH(t))

dt.
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When a0 is the amplitude of the first type, i.e. a0 be given by (2.39), and b0 be given
by (2.80), using (2.90), (2.92), we get from (2.112) that

lim
h\rightarrow 0

h

\int 
\{ x\prime 

1\} \times M0

X(vs)ws\psi dVg0 = i

\int L

0

Xt(x
\prime 
1, t, 0)e

 - 2\lambda tc(x1, t, 0)
1 - n

2 \psi (t, 0)dt.

(2.113)

This establishes (2.82) when supp (\psi ) \subset Wk.
Assume now that supp (\psi ) \subset Vj , and therefore, on supp (\psi ), vs and ws are given

by (2.94). Then

h

\int 
\{ x\prime 

1\} \times M0

X(vs)ws\psi dVg0 = h
\sum 

l:\gamma (tl)=pj

\int 
\{ x\prime 

1\} \times M0

X(v(l)s )w
(l)
s \psi dVg0

+ h
\sum 

l \not =l\prime :\gamma (tl)=\gamma (tl\prime )=pj

\int 
\{ x\prime 

1\} \times M0

X(v(l)s )w
(l\prime )
s \psi dVg0 .

(2.114)

As before, we shall show that the mixed terms, i.e., l \not = l\prime , vanish in the limit as
h\rightarrow 0,

(2.115) lim
h\rightarrow 0

h

\int 
\{ x\prime 

1\} \times M0

X(v(l)s )w
(l\prime )
s \psi dVg0 = 0.

It follows from (2.101), (2.102), (2.103), (2.104), (2.105) that we only have to prove
that

(2.116) lim
h\rightarrow 0

\int 
\{ x\prime 

1\} \times M0

iX(\varphi (l))v(l)s w
(l\prime )
s \psi dVg0 = 0.

Now (2.116) follows by repeating a nonstationary phase argument as in the proof of
(2.96) replacing \psi by X(\varphi (l))\psi \in C(M0). Thus, using (2.114) and (2.116), we see
that

lim
h\rightarrow 0

h

\int 
\{ x\prime 

1\} \times M0

X(vs)ws\psi dVg0

=
\sum 

l:\gamma (tl)=pj

i

\int 
Il

Xt(x
\prime 
1, t, 0)e

 - 2\lambda tc(x1, t, 0)
1 - n

2 \psi (t, 0)dt,

completing the proof of (2.82) when supp (\psi ) \subset Vj .

We shall also need the following result.

Proposition 2.4. Let \psi \in C1(\BbbR \times M0) be such that \psi (x1, \cdot )| \partial M0 = 0 and with
compact support in x1. Then there exist Gaussian beam quasimodes vs and ws given
by Proposition 2.1 such that vs is obtained using amplitudes of the second type and

(2.117)

lim
h\rightarrow 0

\biggl[ 
h

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(\nabla g\psi )(vs)wsc(x1, x
\prime )

n
2 dVg0dx1

 - 
\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(\nabla g\psi )1vswsc(x1, x
\prime )

n
2 dVg0dx1

\biggr] 
=

\int 
\BbbR 

\int L

0

e - 2i\lambda (x1 - it)\psi (x1, \gamma (t))c(x1, \gamma (t))dtdx1.
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Proof. In view of (2.60), using a partition of unity, it suffices to check (2.117) for
\psi such that supp (\psi (x1, \cdot )) is in one of the sets Vj or Wk. Let us first consider the
case when supp (\psi (x1, \cdot )) \subset Wk. Thus, on supp (\psi (x1, \cdot )), vs and ws are given by
(2.83) with a0 being an amplitude of type two. To proceed, we note that

(2.118) \nabla g\psi =
1

c
(\partial x1

\psi \partial x1
+ g - 1

0 \partial x\prime \psi \cdot \partial x\prime ),

and therefore, using (2.10), we see that

(2.119) (\nabla \psi )t(x1, t, 0) =
\partial t\psi (x1, t, 0)

c(x1, t, 0)
.

Using (2.83), (2.118), and (2.119), a computation similar to that in the proof of
Proposition 2.3 (cf. (2.89) and (2.112)) gives

(2.120)

I = lim
h\rightarrow 0

\biggl[ 
h

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(\nabla g\psi )(vs)wsc(x1, x
\prime )

n
2 dVg0dx1

 - 
\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(\nabla g\psi )1vswsc(x1, x
\prime )

n
2 dVg0dx1

\biggr] 
=  - 

\int 
\BbbR 

\int L

0

e - 2i\lambda x1e - 2\lambda t((\partial x1
 - i\partial t)\psi (x1, t, 0))a0(x1, t)b0(x1, t)

\pi (n - 2)/2\sqrt{} 
det(ImH(t))

c(x1, t, 0)
n
2  - 1dtdx1.

When solving (2.37) and (2.79) for G and F , respectively, we choose the initial condi-
tions G(t0) and F (t0) so that the constant in (2.92) is equal to 1. Then using (2.80),
(2.37), (2.92), we see that

(2.121)

a0(x1, t)b0(x1, t)
\pi (n - 2)/2\sqrt{} 
det(ImH(t))

c(x1, t, 0)
n
2  - 1

= a0(x1, t)c(x1, t, 0)
n
4  - 1

2 e - F (t) \pi (n - 2)/2\sqrt{} 
det(ImH(t))

= a0(x1, t)c(x1, t, 0)
n
4  - 1

2 eG(t) = a0(x1, t)e
\phi (x1,t).

Combining (2.120) and (2.121), integrating by parts, using the fact that \psi compact
support in x1 and \psi (x1, \cdot )| \partial M0 = 0, and using (2.42), we get

(2.122)

I = - 
\int 
\BbbR 

\int L

0

e - 2i\lambda (x1 - it)((\partial x1
 - i\partial t)\psi (x1, t, 0))a0(x1, t)e

\phi (x1,t)dtdx1

=

\int 
\BbbR 

\int L

0

e - 2i\lambda (x1 - it)\psi (x1, t, 0)(\partial x1
 - i\partial t)(a0(x1, t)e

\phi (x1,t))dtdx1

=

\int 
\BbbR 

\int L

0

e - 2i\lambda (x1 - it)\psi (x1, t, 0)c(x1, t, 0)dtdx1.

This completes the proof of (2.117) in the case when supp (\psi (x1, \cdot )) \subset Wk.
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6638 LILI YAN

Let us now show (2.117) when supp (\psi (x1, \cdot )) \subset Vj . Then on supp (\psi ), vs and
ws are given by (2.94), and we have

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(h(\nabla g\psi )(vs) - (\nabla g\psi )1vs)wsc(x1, x
\prime )

n
2 dVg0dx1

=
\sum 

l:\gamma (tl)=pj

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(h(\nabla g\psi )(v
(l)
s ) - (\nabla g\psi )1v

(l)
s )w

(l)
s c(x1, x

\prime )
n
2 dVg0dx1+

\sum 
l \not =l\prime :\gamma (tl)=\gamma (tl\prime )=pj

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(h(\nabla g\psi )(v
(l)
s ) - (\nabla g\psi )1v

(l)
s )w

(l\prime )
s c(x1, x

\prime )
n
2 dVg0dx1.

(2.123)

Now when l \not = l\prime , as in (2.96) and (2.115), by a nonstationary phase argument we see
that

lim
h\rightarrow 0

\int 
M0

(h(\nabla g\psi )(v
(l)
s ) - (\nabla g\psi )1v

(l)
s )w

(l\prime )
s c(x1, x

\prime )
n
2 dVg0 = 0,

uniformly in x1, and therefore, the limit h\rightarrow 0 of the second sum in (2.123) is equal
to 0. Hence,

lim
h\rightarrow 0

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

(h(\nabla g\psi )(vs) - (\nabla g\psi )1vs)wsc(x1, x
\prime )

n
2 dVg0dx1

=
\sum 

l:\gamma (tl)=pj

\int 
\BbbR 

\int 
Il

e - 2i\lambda (x1 - it)\psi (x1, t, 0)c(x1, t, 0)dtdx1,

showing (2.117) when supp (\psi (x1, \cdot )) \subset Vj .

3. Construction of complex geometric optics solutions based on Gauss-
ian beam quasimodes. Let (M, g) be a CTA manifold so that (M, g) \subset \subset (\BbbR \times 
M int

0 , c(e \oplus g0)). Let X,Y \in L\infty (M,TM) be complex vector fields, and let q \in 
L\infty (M,\BbbC ). Consider the following operator:

(3.1) PX,Y,q = ( - \Delta g)
2 +X + div(Y ) + q.

Note that the operator PX,Y,q comprises both the operator LX,q as well as its formal
adjoint L\ast 

X,q = ( - \Delta g)
2  - X  - div(X) + q. Here div(Y ) \in H - 1(M int) is given by

(3.2) \langle div(Y ), \varphi \rangle M int :=  - 
\int 
Y (\varphi )dV, \varphi \in C\infty 

0 (M int),

where \langle \cdot , \cdot \rangle M int is a distributional duality on M int. We shall also view div(Y ) as
multiplication operator,

(3.3) div(Y ) : C\infty 
0 (M int) \rightarrow H - 1(M int).

Therefore, it follows from (3.1) that

PX,Y,q : C
\infty 
0 (M int) \rightarrow H - 1(M int).

In this section, we will construct complex geometric optics solutions to the equa-
tion PX,Y,qu = 0 in M based on the Gaussian beam quasimodes for the conjugated
biharmonic operator, constructed in section 2.
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INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC OPERATORS 6639

Assume, as we may, that (M, g) is embedded in a compact smooth manifold (N, g)
without boundary of the same dimension, and let U be open in N such that M \subset U .
Let \varphi \in C\infty (U,\BbbR ) and let us consider the conjugated operator

P\varphi = e
\varphi 
h ( - h2\Delta g)e

 - \varphi 
h =  - h2\Delta g  - | \nabla \varphi | 2g + 2\langle \nabla \varphi , h\nabla \rangle g + h\Delta g\varphi 

with the semiclassical principal symbol

p\varphi = | \xi | 2g  - | d\varphi | 2g + 2i\langle \xi , d\varphi \rangle g \in C\infty (T \ast U).

Following [28], [14], we have the following definition.

Definition 3.1. We say that \varphi \in C\infty (U,\BbbR ) is a limiting Carleman weight for
 - h2\Delta g on (U, g) if d\varphi \not = 0 on U , and the Poisson bracket of Re p\varphi and Im p\varphi satisfies

\{ Re p\varphi , Im p\varphi \} = 0 when p\varphi = 0.

We refer to [14] for a characterization of Riemannian manifolds admitting limiting
Carleman weights as well as for examples of limiting Carleman weights. In particular,
note that \phi (x) = \pm x1 is a limiting Carleman weight for  - h2\Delta g on a CTA manifold;
see [14].

Our starting point is the following Carleman estimates for  - h2\Delta g with a gain of
two derivatives, established in [32]; see also [14] and [40].

Proposition 3.2. Let \phi be a limiting Carleman weight for  - h2\Delta g on U . Then
for all 0 < h\ll 1 and t \in \BbbR , we have

(3.4) h\| u\| Ht+2
scl (N) \leq C\| e

\phi 
h ( - h2\Delta g)e

 - \phi 
h u\| Ht

scl(N), C > 0,

for all u \in C\infty 
0 (M int).

Here Ht(N), t \in \BbbR , is the standard Sobolev space, equipped with the natural
semiclassical norm,

\| u\| Ht
scl(N) = \| (1 - h2\Delta g)

t
2u\| L2(N).

Iterating (3.4), we get the following Carleman estimates for ( - h2\Delta g)
2, for 0 < h\ll 1

and t \in \BbbR :

(3.5) h2\| u\| Ht+4
scl (N) \leq C\| e

\phi 
h ( - h2\Delta g)

2e - 
\phi 
h u\| Ht

scl(N), C > 0,

for all u \in C\infty 
0 (M int).

To construct complex geometric optics solutions for PX,Y,qu = 0, we shall need
the following Carleman estimates for the operator PX,Y,q. In what follows we extend
X, Y , and q to N by zero and we denote these extensions by the same letters so that
X,Y \in L\infty (N,TN) and q \in L\infty (N,\BbbC ).

Proposition 3.3. Let \phi be a limiting Carleman weight for  - h2\Delta g on U . Then
for all 0 < h\ll 1, we have

(3.6) h2\| u\| H1
scl(N) \leq C\| e

\phi 
h (h4PX,Y,q)e

 - \phi 
h u\| H - 3

scl (N), C > 0,

for all u \in C\infty 
0 (M int).
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Proof. First letting t =  - 3 in (3.5), we get for all 0 < h\ll 1,

(3.7) h2\| u\| H1
scl(N) \leq C\| e

\phi 
h ( - h2\Delta g)

2e - 
\phi 
h u\| H - 3

scl (N)

for all u \in C\infty 
0 (M int). We also have

(3.8) \| e
\phi 
h h4X(e - 

\phi 
h u)\| H - 3

scl (N) \leq \| h4X(u) - h3X(\phi )u\| L2(N) = \scrO (h3)\| u\| H1
scl(N).

In order to estimate \| h4 div(Y )u\| H - 3
scl (N), we shall use the following characterization

of the semiclassical norm in the Sobolev space H - 3(N):

\| v\| H - 3
scl (N) = sup

0 \not =\psi \in C\infty (N)

| \langle v, \psi \rangle N | 
\| \psi \| H3

scl(N)

.

Using (3.2), for 0 \not = \psi \in C\infty (N), we get

| \langle h4e
\phi 
h div(Y )e - 

\phi 
h u, \psi \rangle N | \leq 

\int 
N

h4| Y (u\psi )| dV \leq \scrO (h3)\| u\| H1
scl(N)\| \psi \| H3

scl(N),

and therefore,

(3.9) \| h4 div(Y )u\| H - 3
scl (N) \leq \scrO (h3)\| u\| H1

scl(N).

Finally, we have

(3.10) \| h4qu\| H - 3
scl (N) \leq \scrO (h4)\| u\| H1

scl(N).

Combining (3.7), (3.8), (3.9), and (3.10), we obtain (3.6) for all 0 < h \ll 1 and
u \in C\infty 

0 (M int).

Note that the formal L2 adjoint of PX,Y,q is given by P - X, - X+Y ,q. Using the
fact that if \phi is a limiting Carleman weight then so is  - \phi , we obtain the following
solvability result; see [14] and [31] for the details.

Proposition 3.4. Let X,Y \in L\infty (M,TM) be complex vector fields, and let q \in 
L\infty (M,\BbbC ). Let \phi be a limiting Carleman weight for  - h2\Delta g on (U, g). If h > 0 is
small enough, then for any v \in H - 1(M int), there is a solution u \in H3(M int) of the
equation

e
\phi 
h (h4PX,Y,q)e

 - \phi 
h u = v in M int,

which satisfies

\| u\| H3
scl(M

int) \leq 
C

h2
\| v\| H - 1

scl (M
int).

Let

s = \mu + i\lambda , 1 \leq \mu =
1

h
, \lambda \in \BbbR , \lambda fixed.

We shall construct complex geometric optics solutions to the equation

(3.11) PX,Y,qu = 0 in M int

of the form

(3.12) u = e - sx1(vs + rs),
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INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC OPERATORS 6641

where vs is a Gaussian beam quasimode for ( - h2\Delta g)
2, constructed in Proposition

2.1. Thus, u is a solution to (3.11) provided that

esx1h4PX,Y,qe
 - sx1rs = - esx1h4PX,Y,qe

 - sx1vs =  - esx1( - h2\Delta g)
2e - sx1vs

 - esx1h4X(e - sx1vs) - esx1h4 div(Y )(e - sx1vs) - h4qvs =: F.

(3.13)

Let us estimates the terms in the right-hand side of (3.13) in H - 1
scl (M

int). First, it
follows from (2.1) that

(3.14) \| esx1( - h2\Delta g)
2e - sx1vs\| H - 1

scl (M
int) \leq \| esx1( - h2\Delta g)

2e - sx1vs\| L2(M) = \scrO (h5/2)

and

(3.15) \| esx1h4X(e - sx1vs)\| H - 1
scl (M

int) \leq \| h4X(vs) - h4sX(x1)vs\| L2(M) = \scrO (h3).

Letting 0 \not = \rho \in C\infty 
0 (M int) and using (3.2), we obtain that

| \langle esx1h4 div(Y )(e - sx1vs), \rho \rangle M int | \leq h4
\int 

| Y (vs\rho )| dV

= \scrO (h3)\| vs\| H1
scl(M

int)\| \rho \| H1
scl(M

int) = \scrO (h3)\| \rho \| H1
scl(M

int),

and therefore,

(3.16) \| esx1h4 div(Y )(e - sx1vs)\| H - 1
scl (M

int) = \scrO (h3).

We also have

(3.17) \| h4qvs\| H - 1
scl (M

int) = \scrO (h4).

Using (3.14), (3.15), (3.16), (3.17), we get from (3.13) that \| F\| H - 1
scl (M

int) = \scrO (h5/2).

An application of Proposition 3.4 to (3.13) gives that for all h > 0 small enough,
there exists rs \in H3(M int) such that \| rs\| H3

scl(M
int) = \scrO (h1/2). To summarize, we

have proven the following result.

Proposition 3.5. Let X,Y \in L\infty (M,TM) be complex vector fields, and let q \in 
L\infty (M,\BbbC ). Let s = 1

h + i\lambda with \lambda \in \BbbR being fixed. For all h > 0 small enough, there
is a solution u1 \in H3(M int) of PX,Y,qu1 = 0 in M int having the form

u1 = e - sx1(vs + r1),

where vs \in C\infty (M) is the Gaussian beam quasimode given in Proposition 2.1 and
r1 \in H3(M int) such that \| r1\| H3

scl(M
int) = \scrO (h1/2) as h\rightarrow 0.

Similarly, for all h > 0 small enough, there is a solution u2 \in H3(M int) of
PX,Y,qu2 = 0 in M int having the form

u2 = esx1(ws + r2),

where ws \in C\infty (M) is the Gaussian beam quasimode given in Proposition 2.1 and
r2 \in H3(M int) such that \| r2\| H3

scl(M
int) = \scrO (h1/2) as h\rightarrow 0.

D
ow

nl
oa

de
d 

12
/1

4/
21

 to
 1

28
.1

95
.7

7.
21

7 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

6642 LILI YAN

4. Proof of Theorem 1.2. Our starting point is the following integral identity.

Proposition 4.1. Let X(1), X(2) \in C(M,TM) with complex valued coefficients,
and q(1), q(2) \in C(M,\BbbC ). If \scrC X(1),q(1) = \scrC X(2),q(2) , then

(4.1)

\int 
M

\bigl( 
(X(1)  - X(2))(u1)u2 + (q(1)  - q(2))u1u2

\bigr) 
dVg = 0

for u1, u2 \in H3(M int) satisfying

(4.2) LX(1),q(1)u1 = 0 and L - X(2), - div(X(2))+q(2)
u2 = 0.

Proof. First, using that u2 solves the equation

(4.3) L - X(2), - div(X(2))+q(2)u2 = 0,

similar to (1.2), we define the boundary trace \partial \nu (\Delta gu2) \in H - 1/2(\partial M) as follows.
Letting \varphi \in H1/2(\partial M) and letting v \in H1(M int) be a continuous extension of \varphi , we
set

(4.4)

\langle \partial \nu ( - \Delta gu2), \varphi \rangle H - 1/2(\partial M)\times H1/2(\partial M) =  - 
\int 
\partial M

(X(2) \cdot \nu )u2vdSg

+

\int 
M

\bigl( 
\langle \nabla g( - \Delta gu2),\nabla gv\rangle g + u2X

(2)(v) + q(2)u2v
\bigr) 
dVg.

It follows from (4.3) that the definition of the trace \partial \nu (\Delta gu2) is independent of the
choice of extension v of \varphi .

As \scrC X(1),q(1) = \scrC X(2),q(2) , there exists v2 \in H3(M int) such that

(4.5) LX(2),q(2)v2 = 0 in M

and

(4.6)
u1| \partial M = v2| \partial M , (\Delta gu1)| \partial M = (\Delta gv2)| \partial M , \partial \nu u1| \partial M = \partial \nu v2| \partial M ,

\partial \nu (\Delta gu1)| \partial M = \partial \nu (\Delta gv2)| \partial M .

It follows from (4.6) in particular that

(4.7) \langle \partial \nu (\Delta gu1), u2\rangle H - 1/2(\partial M)\times H1/2(\partial M) = \langle \partial \nu (\Delta gv2), u2\rangle H - 1/2(\partial M)\times H1/2(\partial M).

Using that v2 solves (4.5) and (1.2), we get

(4.8)

\langle \partial \nu ( - \Delta gv2), u2\rangle H - 1/2(\partial M)\times H1/2(\partial M)

=

\int 
M

\bigl( 
\langle \nabla g( - \Delta gv2),\nabla gu2\rangle g +X(2)(v2)u2 + q(2)v2u2

\bigr) 
dVg.

Using (4.4) and integration by parts, we obtain that

(4.9)

\langle \partial \nu ( - \Delta gu2),v2\rangle H - 1/2(\partial M)\times H1/2(\partial M) =  - 
\int 
\partial M

(X(2) \cdot \nu )u2v2dSg

+

\int 
M

\bigl( 
\langle \nabla gu2,\nabla g( - \Delta g)v2\rangle g + u2X

(2)(v2) + q(2)u2v2
\bigr) 
dVg

+

\int 
\partial M

(\partial \nu u2)\Delta gv2dSg  - 
\int 
\partial M

(\Delta gu2)\partial \nu v2dSg.
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Combining (4.8) and (4.9), using (4.6), we obtain that

\langle \partial \nu ( - \Delta gv2),u2\rangle H - 1/2(\partial M)\times H1/2(\partial M) = \langle \partial \nu ( - \Delta gu2), v2\rangle H - 1/2(\partial M)\times H1/2(\partial M)

+

\int 
\partial M

(X(2) \cdot \nu )u2v2dSg  - 
\int 
\partial M

(\partial \nu u2)\Delta gv2dSg +

\int 
\partial M

(\Delta gu2)\partial \nu v2dSg

= \langle \partial \nu ( - \Delta gu2), u1\rangle H - 1/2(\partial M)\times H1/2(\partial M) +

\int 
\partial M

(X(2) \cdot \nu )u2u1dSg

 - 
\int 
\partial M

(\partial \nu u2)\Delta gu1dSg +

\int 
\partial M

(\Delta gu2)\partial \nu u1dSg

=

\int 
M

\bigl( 
\langle \nabla gu2,\nabla g( - \Delta g)u1\rangle g + u2X

(2)(u1) + q(2)u2u1
\bigr) 
dVg.

(4.10)

On the other hand, using (4.2) for u1 and (1.2), we get

(4.11)

\langle \partial \nu ( - \Delta gu1),u2\rangle H - 1/2(\partial M)\times H1/2(\partial M)

=

\int 
M

\bigl( 
\langle \nabla g( - \Delta g)u1,\nabla gu2\rangle g +X(1)(u1)u2 + q(1)u1u2

\bigr) 
dVg.

The claim follows from (4.7), (4.10), and (4.11).

Now by Proposition 3.5, for h > 0 small enough, there are u1, u2 \in H3(M int)
solutions to LX(1),q(1)u1 = 0 and L - X(2), - div(X(2))+q(2)

u2 = 0 in M int, of the form

(4.12) u1 = e - sx1(vs + r1), u2 = esx1(ws + r2),

where vs, ws \in C\infty (M) are the Gaussian beam quasimode given in Proposition 2.1
and

(4.13) \| r1\| H1
scl(M

int) = \scrO (h1/2), \| r2\| H1
scl(M

int) = \scrO (h1/2),

as h\rightarrow 0.
Let us denoteX = X(1) - X(2) and q = q(1) - q(2). By the boundary determination

of Proposition A.1, we have that X(1)| \partial M = X(2)| \partial M , and therefore, we may extend
X by zero to the complement of M in \BbbR \times M0 so that the extension X \in C(\BbbR \times 
M0, T (\BbbR \times M0)).

Step 1. Proving that there exists \psi \in C1(\BbbR \times M0) with compact support in x1
such that \psi (x1, \cdot )| \partial M0

= 0 and \nabla g\psi = X. In this step, we shall work with solutions
u1 and u2 given by (4.12) with vs and ws being the Gaussian beam quasimode for
which Proposition 2.3 holds. In particular, here vs has an amplitude of the first type.
Next, we would like to substitute u1 and u2 into the integral identity (4.1), multiply
it by h, and let h\rightarrow 0. To that end, first using (4.13), (2.1), and (2.2), we get

(4.14)

\bigm| \bigm| \bigm| \bigm| h\int 
M

qu1u2dVg

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| h\int 
M

qe - 2i\lambda x1(vs + r1)(ws + r2)dVg

\bigm| \bigm| \bigm| \bigm| = \scrO (h).

Writing x = (x1, x
\prime ), x\prime \in M0, and X = X1\partial x1

+ \widetilde X \cdot \partial x\prime , we obtain that

(4.15) h

\int 
M

X(u1)u2dVg = I1 + I2 + I3 + I4,
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where

I1 = h

\int 
M

e - 2i\lambda x1X(vs)wsdVg  - 
\int 
M

X1(x1, x
\prime )e - 2i\lambda x1vswsdVg,(4.16)

I2 =  - hi\lambda 
\int 
M

X1(x1, x
\prime )e - 2i\lambda x1(vs + r1)(ws + r2)dVg,(4.17)

I3 =  - 
\int 
M

X1(x1, x
\prime )e - 2i\lambda x1(vsr2 + wsr1 + r1r2)dVg,(4.18)

I4 = h

\int 
M

e - 2i\lambda x1(X(vs)r2 +X(r1)ws +X(r1)r2)dVg.(4.19)

Using (4.13), (2.1), and (2.2), we get

(4.20) | I2| = \scrO (h), | I3| = \scrO (h1/2), | I4| = \scrO (h1/2).

It follows from (4.1) with the help of (4.14), (4.15), and (4.20) that

(4.21) lim
h\rightarrow 0

I1 = 0.

Using that X = 0 outside of M , dVg = c
n
2 dx1dVg0 , Fubini's theorem, and Proposition

2.3, we obtain from (4.21) that

(4.22)

0 = lim
h\rightarrow 0

h

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

X(vs)wsc(x1, x
\prime )

n
2 dVg0dx1

 - lim
h\rightarrow 0

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

X1(x1, x
\prime )vswsc(x1, x

\prime )
n
2 dVg0dx1

= - 
\int 
\BbbR 
e - 2i\lambda x1

\int L

0

\bigl( 
X1(x1, \gamma (t)) - iXt(x1, \gamma (t))

\bigr) 
c(x1, \gamma (t))e

 - 2\lambda tdtdx1.

Now the Riemmanian metric g on M induces a natural isomorphism between the
tangent and cotangent bundles given by

(4.23) TM \rightarrow T \ast M, (x,X) \mapsto \rightarrow (x,Xb),

where Xb(Y ) = \langle X,Y \rangle . In local coordinates, Xb =
\sum n
j,k=1 gjkXjdxk, and using that

g = c(e\oplus g0), and (2.10), we get

Xb
1(x1, \gamma (t)) = c(x1, \gamma (t))X1(x1, \gamma (t)), Xb

t (x1, \gamma (t)) = c(x1, \gamma (t))Xt(x1, \gamma (t)).

Hence, it follows from (4.22), replacing 2\lambda by \lambda , that

(4.24)

\int 
\BbbR 

\int L

0

e - i\lambda x1 - \lambda t(Xb
1(x1, \gamma (t)) - iXb

t (x1, \gamma (t)))dtdx1 = 0.

Letting

(4.25)

f(\lambda , x\prime ) =

\int 
\BbbR 
e - i\lambda x1Xb

1(x1, x
\prime )dx1, x\prime \in M0,

\alpha (\lambda , x\prime ) =

n\sum 
j=2

\biggl( \int 
\BbbR 
e - i\lambda x1Xb

j (x1, x
\prime )

\biggr) 
dxj ,
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we have f(\lambda , \cdot ) \in C(M0), \alpha (\lambda , \cdot ) \in C(M0, T
\ast M), and (4.24) implies that

(4.26)

\int L

0

[f(\lambda , \gamma (t)) - i\alpha (\lambda , \.\gamma (t))]e - \lambda tdt = 0,

along any unit speed nontangential geodesic \gamma : [0, L] \rightarrow M0 on M0 and any \lambda \in \BbbR .
Arguing as in [32, section 7], [10], using the injectivity of the geodesic X-ray transform
on functions and 1-forms, we conclude from (4.26) that there exist pl \in C1(M0),
pl| \partial M0

= 0, such that

(4.27) \partial l\lambda f(0, x
\prime ) + lpl - 1(x

\prime ) = 0, \partial l\lambda \alpha (0, x
\prime ) = idpl(x

\prime ), l = 0, 1, 2, . . . .

To proceed we shall follow [16, section 5] and let

(4.28) \psi (x1, x
\prime ) =

\int x1

 - a
Xb

1(y1, x
\prime )dy1,

where supp (Xb(\cdot , x\prime )) \subset ( - a, a). It follows from (4.27), (4.25) that

0 = f(0, x\prime ) =

\int 
\BbbR 
Xb

1(y1, x
\prime )dy1,

and therefore, \psi has compact support in x1. Thus, the Fourier transform of \psi with
respect to x1, which we denote by \widehat \psi (\lambda , x\prime ), is real analytic with respect to \lambda , and
therefore, we have

(4.29) \widehat \psi (\lambda , x\prime ) = \infty \sum 
k=0

\psi k(x
\prime )

k!
\lambda k,

where \psi k(x
\prime ) = (\partial k\lambda 

\widehat \psi )(0, x\prime ). It follows from (4.28) that

(4.30) \partial x1\psi (x1, x
\prime ) = Xb

1(x1, x
\prime ),

and therefore, taking the Fourier transform with respect to x1, and using (4.25)

(4.31) i\lambda \psi (\lambda , x\prime ) = f(\lambda , x\prime ).

Differentiating (4.31) (l + 1)-times in \lambda , letting \lambda = 0, and using (4.27), we get

(4.32) \partial l\lambda 
\widehat \psi (0, x\prime ) = ipl(x

\prime ), l = 0, 1, 2, . . . .

Substituting (4.32) into (4.29), we obtain that

\widehat \psi (\lambda , x\prime ) = \infty \sum 
k=0

ipl(x
\prime )

k!
\lambda k,

and taking the differential in x\prime in the sense of distributions, and using (4.27), (4.25),
we see that

dx\prime \widehat \psi (\lambda , x\prime ) = \infty \sum 
k=0

idpl(x
\prime )

k!
\lambda k =

\infty \sum 
k=0

\partial k\lambda \alpha (0, x
\prime )

k!
\lambda k = \alpha (\lambda , x\prime ) =

n\sum 
j=2

\widehat Xb
j (\lambda , x

\prime )dxj .

(4.33)D
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Taking the inverse Fourier transform \lambda \mapsto \rightarrow x1 in (4.33), we get

(4.34) dx\prime \psi (x1, x
\prime ) =

n\sum 
j=2

Xb
j (x1, x

\prime )dxj .

We also have from (4.30) that

(4.35) dx1
\psi (x1, x

\prime ) = Xb
1(x1, x

\prime )dx1.

It follows from (4.34) and (4.35) that

(4.36) d\psi = Xb.

Using the inverse of (4.23), we see from (4.36) that

(4.37) \nabla g\psi = X.

Recall that \psi \in C(\BbbR \times M0) with compact support in x1 and \psi (x1, \cdot )| \partial M0
= 0. It

follows from (4.37) that \psi \in C1(\BbbR \times M0).
Step 2. Showing that X = 0. Returning to (4.1) and using (4.37), we get

(4.38)

\int 
M

\bigl( 
(\nabla g\psi )(u1)u2 + qu1u2

\bigr) 
dVg = 0

for u1, u2 \in H3
scl(M

int) satisfying LX(1),q(1)u1 = 0 and L - X(2), - div(X(2))+q(2)
u2 = 0.

Let now u1 and u2 be given by (4.12) with vs and ws being the Gaussian beam
quasimode for which Proposition 2.4 holds. In particular, here vs has an amplitude
of the second type. We would like to substitute u1 and u2 into the integral identity
(4.38), multiply it by h, and let h\rightarrow 0. Similar to (4.21), using (4.14) and (4.20), we
get

(4.39) lim
h\rightarrow 0

h

\int 
M

e - 2i\lambda x1(\nabla g\psi )(vs)wsdVg  - 
\int 
M

(\nabla g\psi )1e
 - 2i\lambda x1vswsdVg = 0.

It follows from (4.39) with the help of Proposition 2.4,

(4.40)

\int 
\BbbR 

\int L

0

e - 2i\lambda (x1 - it)\psi (x1, \gamma (t))c(x1, \gamma (t))dtdx1 = 0.

Now (4.40) can be written as

(4.41)

\int 
\gamma 

\widehat \psi c(2\lambda , \gamma (t))e - 2\lambda tdt = 0

for any \lambda \in \BbbR and any nontangential geodesic \gamma in M0, where

\widehat \psi c(2\lambda , x\prime ) = \int \infty 

 - \infty 
e - 2i\lambda x1(\psi c)(x1, x

\prime )dx1.

Equation (4.41) says that the attenuated geodesic ray transform of \widehat \psi c with constant
attenuation  - 2\lambda vanishes along all nontangential geodesics in M0. Arguing as in [15,
Proof of Theorem 1.2] and using the injectivity of the geodesic X-ray transform on
functions, we conclude that \psi c = 0, and therefore \psi = 0, and hence X = 0.
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Step 3. Proving that q = 0. Returning to (4.1) and substituting X(1) = X(2), we
get

(4.42)

\int 
M

qu1u2dVg = 0

for u1, u2 \in H3
scl(M

int) satisfying LX(1),q(1)u1 = 0 and L - X(2), - div(X(2))+q(2)
u2 = 0.

Let now u1 and u2 be given by (4.12) with vs and ws being the Gaussian beam
quasimode for which Proposition 2.3 holds. In particular, here vs has an amplitude
of the first type. Substituting u1 and u2 into (4.42), we obtain that

(4.43) 0 =

\int 
M

qu1u2dVg = I1 + I2,

where

I1 =

\int 
M

e - 2i\lambda x1qvswsdVg =

\int 
\BbbR 
e - 2i\lambda x1

\int 
M0

qvswsc
n
2 dVg0dx1,

I2 =

\int 
M

e - 2i\lambda x1q(vsr2 + r1ws + r1r2)dVg.

Here in view of the assumption (1.4), we extended q by zero to the complement of M
in \BbbR \times M0 so that the extension q \in C(\BbbR \times M0,\BbbC ).

Using (4.13), (2.1), and (2.2), we see that

(4.44) | I2| = \scrO (h1/2).

Letting h\rightarrow 0, we obtain from (4.43), (4.44) with the help of Proposition 2.3 that\int 
\BbbR 
e - 2i\lambda x1

\int L

0

e - 2\lambda t(qc)(x1, \gamma (t))dtdx1 = 0.

Arguing as in [15, Proof of Theorem 1.2] and using the injectivity of the geodesic
X-ray transform on functions, we conclude that qc = 0, and therefore q = 0. This
complete the proof of Theorem 1.2.

Appendix A. Boundary determination of a first order perturbation of
the biharmonic operator. When proving Theorem 1.2, an important step consists
in determining the boundary values of the first order perturbation of the biharmonic
operator. The purpose of this section is to carry out this step by adapting the method
of [9], [32].

Proposition A.1. Let (M, g) be a CTA manifold of dimension n \geq 3. Let
X(1), X(2) \in C(M,TM) with complex vector fields and q(1), q(2) \in L\infty (M,\BbbC ). If
\scrC g,X(1),q(1) = \scrC g,X(2),q(2) , then X

(1)| \partial M = X(2)| \partial M .

Proof. We shall follow [9], [32] closely. We shall construct some special solutions
to the equations LX(1),q(1)u1 = 0 and L - X(2), - div(X(2))+q(2)

u2 = 0, whose boundary

values have an oscillatory behavior while becoming increasingly concentrated near
a given point on the boundary of M . Substituting these solutions into the integral
identity (4.1) will allow us to prove that X(1)| \partial M = X(2)| \partial M .

In doing so, let x0 \in \partial M and let (x1, . . . , xn) be the boundary normal coordinates
centered at x0 so that in these coordinates, x0 = 0, the boundary \partial M is given by
\{ xn = 0\} , and M int is given by \{ xn > 0\} . We shall assume, as we may, that

(A.1) g\alpha \beta (0) = \delta \alpha \beta , 1 \leq \alpha , \beta \leq n - 1,
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and therefore T0\partial M = \BbbR n - 1, equipped with the Euclidean metric. The unit tangent
vector \tau is then given by \tau = (\tau \prime , 0) where \tau \prime \in \BbbR n - 1, | \tau \prime | = 1. Associated to the

tangent vector \tau \prime is the covector \xi \prime \alpha =
\sum n - 1
\beta =1 g\alpha \beta (0)\tau 

\prime 
\beta = \tau \prime \alpha \in T \ast 

x0
\partial M .

Let \eta \in C\infty 
0 (\BbbR n,\BbbR ) be a function such that supp (\eta ) is in a small neighborhood

of 0, and

(A.2)

\int 
\BbbR n - 1

\eta (x\prime , 0)2dx\prime = 1.

Following [9], in the boundary normal coordinates, we set

(A.3) v0(x) = \eta 

\biggl( 
x

\lambda 1/2

\biggr) 
e

i
\lambda (\tau \prime \cdot x\prime +ixn), 0 < \lambda \ll 1,

so that v0 \in C\infty (M) with supp (v0) in \scrO (\lambda 1/2) neighborhood of x0 = 0. Here \tau \prime is
viewed as a covector.

Let v1 \in H1
0 (M

int) be the solution to the following Dirichlet problem for the
Laplacian:

(A.4)
 - \Delta gv1 = \Delta gv0 in M,

v1| \partial M = 0.

Let \delta (x) be the distance from x \in M to the boundary of M . As proved in the [32,
Appendix], the following estimates hold:

\| v0\| L2(M) \leq \scrO (\lambda 
n - 1
4 + 1

2 ),(A.5)

\| v1\| L2(M) \leq \scrO (\lambda 
n - 1
4 + 1

2 ),(A.6)

\| dv1\| L2(M) \leq \scrO (\lambda 
n - 1
4 ),(A.7)

\| dv0\| L2(M) \leq \scrO (\lambda 
n - 1
4  - 1

2 ),(A.8)

\| \delta d(v0 + v1)\| L2(M) \leq \scrO (\lambda 
n - 1
4 + 1

2 ),(A.9)

\| v0\| L2(\partial M) \leq \scrO (\lambda 
n - 1
4 ).(A.10)

We shall also need Hardy's inequality,

(A.11)

\int 
M

| f(x)/\delta (x)| 2dVg \leq C

\int 
M

| df(x)| 2dVg,

where f \in H1
0 (M

int); see [11].
Next we would like to show the existence of a solution u1 \in H3(M int) to the

equation

(A.12) LX(1),q(1)u1 = 0 in M,

of the form

(A.13) u1 = v0 + v1 + r1,

with

(A.14) \| r1\| H3(M int) \leq \scrO (\lambda 
n - 1
4 + 1

2 ).
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To that end, plugging (A.13) into (A.12), we obtain the following equation of r1:

LX(1),q(1)r1 =  - (( - \Delta g)
2 +X(1) + q(1))(v0 + v1) =  - (X(1) + q(1))(v0 + v1) in M.

(A.15)

Applying Proposition 3.4 with h > 0 small but fixed, we conclude the existence of
r1 \in H3(M int) such that

(A.16) \| r1\| H3(M int) \leq \scrO (1)\| (X(1) + q(1))(v0 + v1)\| H - 1(M int).

Let us now bound the norm in the right-hand side of (A.16). To that end, letting
\psi \in C\infty 

0 (M int) and using (A.11), (A.9), we get

(A.17)
| \langle X(1)(v0 + v1), \psi \rangle M int | \leq \scrO (1)\| X(1)\| L\infty (M)\| \delta d(v0 + v1)\| L2(M)\| \psi \| H1(M int)

\leq \scrO (\lambda 
n - 1
4 + 1

2 )\| \psi \| H1(M int).

By (A.5) and (A.6), we have

(A.18)
| \langle q(1)(v0 + v1), \psi \rangle M int | \leq \| q(1)\| L\infty (M0)\| v0 + v1\| L2(M)\| \psi \| L2(M)

\leq \scrO (\lambda 
n - 1
4 + 1

2 )\| \psi \| H1(M int).

The estimate (A.14) follows from (A.16), (A.17), and (A.18).
Let us show that there exists a solution u2 \in H3(M int) of L - X(2), - div(X(2))+q(2)

u2
= 0 in M of the form

(A.19) u2 = v0 + v1 + r2,

where r2 \in H3(M int) with

(A.20) \| r2\| H3(M int) \leq \scrO (\lambda 
n - 1
4 + 1

2 ).

Applying Proposition 3.4 with h > 0 small but fixed to the equation,

(A.21) L - X(2), - div(X(2))+q(2)
r2 = (X(2) + div(X(2)) - q(2))(v0 + v1) in M,

we conclude the existence of r2 \in H1(M int) such that

(A.22) \| r2\| H3(M int) \leq \scrO (1)\| (X(2) + div(X(2)) - q(2))(v0 + v1)\| H - 1(M int).

To bound the norm in the right-hand side of (A.22), we let \psi \in C\infty 
0 (M int), and using

(A.11), (3.2), (A.5), (A.6), (A.9), we get

(A.23)

| \langle div(X(2))(v0 + v1), \psi \rangle M int | =
\bigm| \bigm| \bigm| \bigm| \int X(2)((v0 + v1)\psi )dVg

\bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \int \psi X(2)(v0 + v1)dVg

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int (v0 + v1)X(2)(\psi )dVg

\bigm| \bigm| \bigm| \bigm| 
\leq \scrO (1)\| \delta d(v0 + v1)\| L2(M)\| \psi \| H1(M int) +\scrO (1)\| v0 + v1\| L2(M)\| \psi \| H1(M int)

\leq \scrO (\lambda 
n - 1
4 + 1

2 )\| \psi \| H1(M int).

The bound (A.20) follows from (A.22), (A.23), (A.17), (A.18).
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The next step is to substitute the solution u1 and u2, given in (A.13) and (A.19),

into the integral identity (4.1), multiply by \lambda  - 
(n - 1)

2 , and compute the limit as \lambda \rightarrow 0.
In doing so, we write

(A.24) I := \lambda  - 
(n - 1)

2

\int 
M

X(u1)u2 + qu1u2dVg = I1 + I2 + I3 + I4 + I5 + I6,

where

I1 = \lambda  - 
(n - 1)

2

\int 
M

X(v0)v0dVg, I2 = \lambda  - 
(n - 1)

2

\int 
M

X(v0)v1dVg,

I3 = \lambda  - 
(n - 1)

2

\int 
M

X(v0)r2dVg, I4 = \lambda  - 
(n - 1)

2

\int 
M

X(v1)u2dVg,

I5 = \lambda  - 
(n - 1)

2

\int 
M

X(r1)u2dVg, I6 = \lambda  - 
(n - 1)

2

\int 
M

qu1u2dVg.

Let us compute lim\lambda \rightarrow 0 I1. To that end, writing X = Xj\partial xj , we have

(A.25) Xv0 = e
i
\lambda (\tau \prime \cdot x\prime +ixn)

\biggl[ 
\lambda  - 

1
2 (X\eta )

\biggl( 
x

\lambda 
1
2

\biggr) 
+ i\lambda  - 1X(x) \cdot (\tau \prime , i)\eta 

\biggl( 
x

\lambda 
1
2

\biggr) \biggr] 
and

(A.26) Xv0v0 = e - 
2xn
\lambda 

\biggl[ 
\lambda  - 

1
2 (X\eta )

\biggl( 
x

\lambda 
1
2

\biggr) 
\eta 

\biggl( 
x

\lambda 
1
2

\biggr) 
+ i\lambda  - 1X(x) \cdot (\tau \prime , i)\eta 2

\biggl( 
x

\lambda 
1
2

\biggr) \biggr] 
.

Making the change of variable y\prime = x\prime 

\lambda 1/2 , yn = xn

\lambda , using that X \in C(M,TM), \eta has
compact support, (A.1) and (A.2), we get
(A.27)

lim
\lambda \rightarrow 0

I1 = lim
\lambda \rightarrow 0

\int 
\BbbR n - 1

\int \infty 

0

e - 2yn\lambda 
1
2 (X\eta )(y\prime , \lambda 

1
2 yn)\eta (y

\prime , \lambda 
1
2 yn)| g(\lambda 

1
2 y\prime , \lambda yn)| 

1
2 dyndy

\prime 

+ lim
\lambda \rightarrow 0

\int 
\BbbR n - 1

\int \infty 

0

e - 2yn iX(\lambda 
1
2 y\prime , \lambda yn) \cdot (\tau \prime , i)\eta 2(y\prime , \lambda 

1
2 yn)| g(\lambda 

1
2 y\prime , \lambda yn)| 

1
2 dyndy

\prime 

=
i

2
X(0) \cdot (\tau \prime , i).

The fact that v1 \in H1
0 (M

int) together with the estimates (A.11), (A.9), (A.7)
gives that

(A.28) | I2| \leq \scrO (\lambda  - 
(n - 1)

2 )\| X\| L\infty (M)\| \delta dv0\| L2(M)\| 
v1
\delta 
\| L2(M) = \scrO (\lambda 

1
2 ).

To estimate I3, first assume that (M, g) is embedded in a compact smooth man-
ifold (N, g) without boundary of the same dimension. Let us extend X \in C(M,TM)
to a continuous vector field on N , and still write X \in C(N,TN). Using a partition of
unity argument together with a regularization in each coordinate patch, we see that
there exists a family X\tau \in C\infty (N,TN) such that

(A.29) \| X  - X\tau \| L\infty = o(1), \| X\tau \| L\infty = \scrO (1), \| \nabla X\tau \| L\infty = \scrO (\tau  - 1), \tau \rightarrow 0.

We write

(A.30) I3 = I3,1 + I3,2,
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where

(A.31) I3,1 = \lambda  - 
(n - 1)

2

\int 
M

(X  - X\tau )(v0)r2dVg, I3,2 = \lambda  - 
(n - 1)

2

\int 
M

X\tau (v0)r2dVg.

Using (A.29), (A.8), (A.20), we get

(A.32) | I3,1| \leq \scrO (\lambda  - 
(n - 1)

2 )\| X  - X\tau \| L\infty (M)\| dv0\| L2(M)\| r2\| L2(M) = o(1),

as \tau \rightarrow 0. To estimate I3,2, integrating by parts, we obtain that

(A.33) I3,2 = J1 + J2 + J3,

where

(A.34)

J1 =  - \lambda  - 
(n - 1)

2

\int 
M

v0X\tau (r2)dVg, J2 =  - \lambda  - 
(n - 1)

2

\int 
M

div(X\tau )v0r2dVg,

J3 = \lambda  - 
(n - 1)

2

\int 
\partial M

(\nu \cdot X\tau )v0r2dSg.

Using (A.29), (A.20), (A.5), we get

(A.35)
| J1| \leq \scrO (\lambda  - 

(n - 1)
2 )\| X\tau \| L\infty (M)\| v0\| L2(M)\| dr2\| L2(M) = \scrO (\lambda ),

| J2| \leq \scrO (\lambda  - 
(n - 1)

2 )\| divX\tau \| L\infty (M)\| v0\| L2(M)\| r2\| L2(M) = \scrO (\tau  - 1\lambda ).

Using (A.10), (A.29), (A.20), and the trace theorem, we obtain that

(A.36) | J3| \leq \scrO (\lambda  - 
(n - 1)

2 )\| \nu \cdot X\tau \| L\infty (M)\| v0\| L2(\partial M)\| r2\| H1(M) = \scrO (\lambda 1/2).

Choosing \tau = \lambda 1/2, we conclude from (A.30), (A.31), (A.32), (A.33), (A.34), (A.35),
(A.36) that

(A.37) | I3| = o(1), \lambda \rightarrow 0.

Now (A.5), (A.6), (A.20) imply that

(A.38) \| u2\| L2 = \scrO (\lambda 
n - 1
4 + 1

2 ).

Using (A.38) together with (A.7), we have

(A.39) | I4| \leq \scrO (\lambda  - 
(n - 1)

2 )\| dv1\| L2(M)\| u2\| L2(M) = \scrO (\lambda 
1
2 ).

Using (A.38) together with (A.14), we get

(A.40) | I5| \leq \scrO (\lambda  - 
(n - 1)

2 )\| dr1\| L2(M)\| u2\| L2(M) = \scrO (\lambda ).

Last let us estimate | I6| . Using (A.38) and a similar bound for u1, we see that

(A.41) | I6| \leq \scrO (\lambda  - 
(n - 1)

2 )\| q\| L\infty (M)\| u1\| L2(M)\| u2\| L2(M) = \scrO (\lambda ).

Now it follows from (A.24), (A.27), (A.28), (A.37), (A.39), (A.40), and (A.41)
that

lim
\lambda \rightarrow 0

I =
i

2
X(0) \cdot (\tau \prime , i) = 0,

and therefore,
X(1)(0) \cdot (\tau \prime , i) = X(2)(0) \cdot (\tau \prime , i),

for all \tau \prime \in \BbbR n - 1. This completes the proof of Proposition A.1.
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