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Abstract

We study a new type of separations between quantum and classical communication complexity,

separations that are obtained using quantum protocols where all parties are efficient, in the sense

that they can be implemented by small quantum circuits, with oracle access to their inputs. Our

main result qualitatively matches the strongest known separation between quantum and classical

communication complexity [8] and is obtained using a quantum protocol where all parties are efficient.

More precisely, we give an explicit partial Boolean function f over inputs of length N , such that:

(1) f can be computed by a simultaneous-message quantum protocol with communication complexity

polylog(N) (where at the beginning of the protocol Alice and Bob also have polylog(N) entangled

EPR pairs).

(2) Any classical randomized protocol for f , with any number of rounds, has communication

complexity at least Ω̃
(
N1/4

)
.

(3) All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be implemented

by quantum circuits of size polylog(N) (where Alice and Bob have oracle access to their inputs).

Items (1), (2) qualitatively match the strongest known separation between quantum and classical

communication complexity, proved by Gavinsky [8]. Item (3) is new. (Our result is incomparable

to the one of Gavinsky. While he obtained a quantitatively better lower bound of Ω
(
N1/2

)
in the

classical case, the referee in his quantum protocol is inefficient).

Exponential separations of quantum and classical communication complexity have been studied

in numerous previous works, but to the best of our knowledge the efficiency of the parties in the

quantum protocol has not been addressed, and in most previous separations the quantum parties

seem to be inefficient. The only separations that we know of that have efficient quantum parties

are the recent separations that are based on lifting [10, 5]. However, these separations seem to

require quantum protocols with at least two rounds of communication, so they imply a separation

of two-way quantum and classical communication complexity but they do not give the stronger

separations of simultaneous-message quantum communication complexity vs. two-way classical

communication complexity (or even one-way quantum communication complexity vs. two-way

classical communication complexity).

Our proof technique is completely new, in the context of communication complexity, and is

based on techniques from [15]. Our function f is based on a lift of the forrelation problem, using

xor as a gadget.
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1 Introduction

Exponential separations between quantum and classical communication complexity have

been established in various models and settings. These separations give explicit examples

of partial functions that can be computed by quantum protocols with very small commu-

nication complexity, while any classical randomized protocol requires significantly higher

communication complexity. However, to the best of our knowledge, in all these works the

efficiency of the quantum players in the quantum protocol has not been addressed and in

most of these separations, the quantum players are inefficient.

Communication complexity studies the amount of communication needed to perform

computational tasks that depend on two (or more) inputs, each given to a different player.

The efficiency of the players in a communication complexity protocol is usually not addressed.

If the players need to read their entire inputs, their time complexity is at least the length

of the inputs. However, the inputs may be represented compactly by a black box and

(particularly in the quantum case) we can hope for players that can be implemented very

efficiently by small (say, poly-logarithmic size) quantum circuits, with oracle access to their

inputs.

Our main result qualitatively matches the strongest known separation between quantum

and classical communication complexity [8] and is obtained using quantum protocols where

all players are efficient. To prove our results we use a completely different set of techniques,

based on techniques from the recent oracle separation of BQP and PH [15].

1.1 Previous Work

The relative power of quantum and classical communication complexity has been studied

in numerous of works. While it is unknown whether quantum communication can offer

exponential advantage over randomized communication for total functions, a series of works

gave explicit examples of partial Boolean functions (promise problems) that have quantum

protocols with very small communication complexity, while any classical protocol requires

exponentially higher communication complexity. The history of exponential advantage of

quantum communication, that is most relevant to our work, is briefly summarized below.

Buhrman, Cleve and Wigderson gave the first (exponential) separation between zero-error

quantum communication complexity and classical deterministic communication complex-

ity [4]. Raz gave the first exponential separation between two-way quantum communication

complexity and two-way randomized communication complexity [14]. Bar-Yossef et al [3]

(for search problems) and Gavinsky et al [9] (for promise problems) gave the first (expo-

nential) separations between one-way quantum communication complexity and one-way

randomized communication complexity. Klartag and Regev gave the first (exponential)

separation between one-way quantum communication complexity and two-way random-

https://arxiv.org/abs/1911.02218
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ized communication complexity [16]. Finally, Gavinsky gave an (exponential) separation

between simultaneous-message quantum communication complexity and two-way randomized

communication complexity [8].

We note that Gavinsky’s work is the strongest separation known today and essentially

subsumes the separations discussed above. More precisely, Gavinsky [8] gave an explicit

partial Boolean function f over inputs of length N , such that:

1. f can be computed by a simultaneous-message quantum protocol with communication

complexity polylog(N): Alice and Bob simultaneously send quantum messages of length

polylog(N) to a referee, who performs a quantum measurement on the messages and

announces the answer. (At the beginning of the protocol Alice and Bob also have

polylog(N) entangled EPR pairs).

We note that this also implies a one-way quantum protocol where Alice sends a message

of length polylog(N) qubits to Bob, who performs a measurement and announces the

answer (or vice versa).

2. Any classical randomized protocol for f has communication complexity at least Ω
(
N1/2

)
.

A drawback of Gavinsky’s separation, in the context of our work, is that the referee in

his quantum protocol is inefficient as it is required to perform O(N) quantum operations

(and this seems to be crucial in his lower bound proof).

As mentioned before, to the best of our knowledge, the efficiency of the quantum

players has not been addressed in previous works on separations of quantum and classical

communication complexity. The only separations that we know of that do have efficient

quantum parties are the separations that follow from the recent randomized query-to-

communication lifting theorems of [10, 5], applied to problems for which we know that

quantum decision trees offer an exponential advantage over randomized ones, such as the

forrelation problem of [1, 2]. However, lifting with the gadgets used in [10, 5] seems to

require quantum protocols with two rounds of communication. Thus, these theorems only

imply a separation of two-way quantum and classical communication complexity and do not

give the stronger separations of simultaneous-message quantum communication complexity

vs. two-way classical communication complexity (or even one-way quantum communication

complexity vs. two-way classical communication complexity).

1.2 Our Result

We recover Gavinsky’s state of the art separation, using entirely different techniques. While

the parameters in our bounds are weaker, our quantum protocol is efficient, in the sense that

it involves just polylog(N) amount of work by Alice, Bob and the referee, when the players

have blackbox access to their inputs. In other words, the output of the entire simultaneous

protocol can be described by a polylog(N) size quantum circuit, with oracle access to the

inputs.

More precisely, our main result gives an explicit partial Boolean function f over inputs of

length N , such that:

1. As in Gavinsky’s work, f can be computed by a simultaneous-message quantum protocol

with communication complexity polylog(N): Alice and Bob simultaneously send quantum

messages of length polylog(N) to a referee, who performs a quantum measurement on

the messages and announces the answer. (At the beginning of the protocol Alice and Bob

also have polylog(N) entangled EPR pairs).

As before, this also implies a one-way quantum protocol where Alice sends a message

of length polylog(N) qubits to Bob, who performs a measurement and announces the

answer (or vice versa).

ITCS 2021
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2. Any classical randomized protocol for f has communication complexity at least Ω̃
(
N1/4

)
.

3. All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be

implemented by quantum circuits of size polylog(N) (where Alice and Bob have oracle

access to their input).

The problem that we define is a lift of the forrelation problem of [1, 2, 15] with xor

as the gadget. Our proof technique follows the Fourier-analysis framework of [15]. Our proof

offers an entirely new and possibly simpler approach for communication complexity lower

bounds. We believe this technique may be applicable in a broader setting. We note that

lower bounds for lifting by xor, using a Fourier-analysis approach, were previously studied

in [13, 11].

1.3 Our Communication Complexity Problem

Let N = 2n and HN be the N × N normalized Hadamard matrix. Let x = (x1, x2) be an

input where x1, x2 ∈ {−1, 1}N . We define the forrelation of x as the correlation between the

second half x2 and the Hadamard transform of the first half x1.

forr(x) :=

〈
1√
N

HN (x1)

∣∣∣∣∣
1√
N

x2

〉

The communication problem for which our separation holds is a lift of the forrelation

problem of [15], with xor as the gadget. Let x, y ∈ {−1, 1}2N . Alice gets x and Bob gets y

and their goal is to compute the partial function F defined by

F (x, y) :=

{
1 if forr(x · y) ≥ 1

200 · 1
ln N

−1 if forr(x · y) ≤ 1
400 · 1

ln N .

Here x · y refers to the coordinate-wise product of the vectors x, y. We refer to this problem

as the forrelation problem.

◮ Theorem 1. The forrelation problem can be solved in the quantum simultaneous with

entanglement model with O(log3 N) bits of communication, when Alice and Bob are given

access to O(log3 N) bits of shared entanglement. Moreover, the protocol is efficient, as it can

be implemented by a O(log3 N) size quantum circuit with oracle access to inputs.

The quantum upper bound on F follows from the fact that the xor of the inputs can be

computed by a simultaneous-message quantum protocol, when the players share entanglement,

and the fact that forr(x) can be estimated by a small size quantum circuit [1, 2, 15].

◮ Theorem 2. The randomized bounded-error interactive communication cost of the forrela-

tion problem is Ω̃(N
1

4 ).

1.4 An Overview of the Lower Bound

In this section, we outline the proof of the lower bound. We use the forrelation distribution D
on {−1, 1}2N as defined by [15]. We define a distribution V on inputs to the communication

problem, obtained by sampling z ∼ D, and x ∈ {−1, 1}2N uniformly at random, and

setting y := x · z. Alice gets x and Bob gets y. It can be shown that the distribution V
has considerable support over the yes instances of F , while the uniform distribution U on

{−1, 1}4N has large support over the no instances of F . This fact along with the following

theorem implies a lower bound on the randomized communication cost of F .
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◮ Theorem 3. Consider the following distribution. A string z ∈ {−1, 1}2N is drawn from the

forrelation distribution, x ∼ U2N is drawn uniformly and y := x · z. Alice gets x and Bob gets

y. Given any deterministic communication protocol C : {−1, 1}2N × {−1, 1}2N → {−1, 1} of

cost c ≥ 1, its expectation when the inputs are drawn from this distribution is close to when

the inputs are drawn from the uniform distribution. That is,

∣∣∣∣∣∣
E

x∼U2N
z∼D

[C(x, x · z)] − E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣∣
≤ O

(
c2

N1/2

)
.

In other words, no deterministic protocol of cost o(N1/4) has considerable advantage in

distinguishing the above distribution from the uniform distribution.

We now outline the proof of this theorem. Any cost c protocol induces a partition of

the input space into at most 2c rectangles. Let A × B be any rectangle, and let 1A,1B :

{−1, 1}2N → {0, 1} be the indicator functions of A and B respectively. Note that for all

distributions S on {−1, 1}2N , we have

E
z∼S,

E
x∼U2N

[1A(x)1B(x · z)] = E
z∼S

[(1A ∗ 1B)(z)] .

Here, the notation f∗g refers to the convolution of Boolean functions f and g. This identity

implies that our goal is to show that the expectation of the function
∑

A×B(1A ∗1B)(z) over

a uniformly distributed z is close to the expectation over z ∼ D. An essential contribution of

the works of [15] and [7] is the following result. For any family of functions F that is closed

under restrictions, to show that the family is fooled by the forrelation distribution, it suffices

to bound the ℓ1-norm of the second level Fourier coefficients of the family. More precisely,

the maximum advantage of a function f ∈ F in distinguishing the uniform distribution and

D, is at most O
(

1√
N

)
times the maximum second level Fourier mass of a function f ∈ F .

Since small cost communication protocols form a family of functions closed under restrictions,

the same reasoning applies here. In this paper however, we present a complete proof of

this connection. We then provide the following bound on the second level Fourier mass

corresponding to a small cost protocol.

⊲ Claim 1. Let C(x, y) : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol

of cost c ≥ 1, let D(x, z) : R2N × R2N → R refer to the unique multilinear extension of

C(x, x · z) and H : R2N → R be defined by H(z) = Ex∼U2N
D(x, z). Then,

L2(H) ,
∑

|S|=2

|Ĥ(S)| ≤ 120c2.

We now describe the proof of this claim. Let A×B be a rectangle in the partition induced

by the cost c protocol. An important property of the convolution of two functions f, g is

that for all subsets S ⊆ [n], we have f̂ ∗ g(S) = f̂(S)ĝ(S). This, along with Cauchy-Schwarz

implies that

∑

|S|=2

∣∣∣ ̂1A ∗ 1B(S)
∣∣∣ =

∑

|S|=2

∣∣∣1̂A(S)1̂B(S)
∣∣∣ ≤


∑

|S|=2

1̂A(S)2




1/2
∑

|S|=2

1̂B(S)2




1/2

.

We then use a well known inequality on Fourier coefficients. It appears as “Level-k Inequalities”

in Ryan Odonnell’s book [12, Chapter 9.5] and it states that for a function f : {−1, 1}n →
{0, 1} with expectation E[f ] = α, for any k ≤ 2 ln(1/α), we have

∑
|S|=k

(
f̂(S)

)2

≤

ITCS 2021
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O(α2 lnk(1/α)). For simplicity, assume that |A| = |B| = 2(n−c)/2. The previous paragraphs

and the assumption that E[1A],E[1B] = 1
2c/2

imply that the advantage of a rectangle is at

most O
(

1√
N

1
2c c2

)
. Adding the contributions from all rectangles implies that the advantage

of a cost c protocol is at most O
(

c2

√
N

)
. This implies that every protocol of cost o(N1/4)

has advantage at most o(1) in distinguishing between U and V. The bound in the case of a

general partition follows from a concavity argument. This completes the proof overview.

Open Questions

We conjecture that the correct randomized communication complexity for this problem is

Ω̃(
√

N) and that the above proof technique can be strengthened to show this. One way

to do this would be to show a better bound on the Fourier coefficients of deterministic

communication protocols. In particular, it would suffice to show a bound of O(c ·poly log(N))

on the second level Fourier mass of protocols with c-bits of communication.

2 Preliminaries

For n ∈ N, let [n] denote the set {1, 2, . . . , n}. For a vector x ∈ Rn and i ∈ [n], we refer

to the i-th coordinate of x by either x(i) or xi. For a subset S ⊂ [n], let xS ∈ R|S| be

the restriction of x to coordinates in S. For vectors x, y ∈ Rn, let x · y be their point-wise

product, i.e., the vector whose i-th coordinate is xiyi. Let 〈x|y〉 be the real inner product∑
i xiyi between x and y. Let v−1 be the coordinate-wise inverse of a vector v ∈ (R \ 0)n.

2.1 Fourier Analysis on the Boolean Hypercube

The set {−1, 1}n is referred to as the Boolean hypercube in n dimensions, or the n-

dimensional hypercube. We sometimes refer to it by {0, 1}n, using the bijection mapping

(x1, . . . , xn) ∈ {0, 1}n to ((−1)x1 , . . . , (−1)xn) ∈ {−1, 1}n. We also represent elements of

{−1, 1}n by elements of [2n], using the bijection mapping ((−1)x1 , . . . , (−1)xn) ∈ {−1, 1}n

to 1 +
∑n

i=1 2i−1xi ∈ [2n]. We typically use N to denote 2n. Let In denote the n × n identity

matrix. Let Un be the uniform distribution on {−1, 1}n. Let F := {F : {−1, 1}n → R} be

the set of all functions from the n-dimensional hypercube to the real numbers. This is a

real vector space of dimension 2n. We define an inner product over this space. For every

f, g, ∈ F , let

〈f, g〉 := E
x∼Un

[f(x)g(x)] .

For any universe U and a subset S ⊆ U , we use 1S : U → {0, 1} to refer to the indicator

function of S defined by:

1S(x) :=

{
1 if x ∈ S

0 otherwise.

The set of indicator functions of singleton sets {1{a} : a ∈ {−1, 1}n} is the standard

orthogonal basis for F . The character functions form an orthonormal basis for F . These

are functions χS : {−1, 1}n → {−1, 1} associated to every set S ⊆ [n] and are defined

at every point x ∈ {−1, 1}n by χS(x) :=
∏

i∈S xi. For a function f ∈ F , and S ⊆ [n],

we define its S-th Fourier coefficient to be f̂(S) := Ex∼Un
[f(x)χS(x)]. Every f ∈ F can

be expressed as f(x) =
∑

S⊆[n] f̂(S)χS(x). For f : {−1, 1}n → R and k ∈ {0, . . . , n}, let

Lk(f) :=
∑

S⊆[n],|S|=k

∣∣∣f̂(S)
∣∣∣ refer to the level k Fourier mass of f .
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Given functions f, g : {−1, 1}n → R, their convolution f ∗ g : {−1, 1}n → R is defined

as f ∗ g(x) := E
y∼Un

[f(y)g(y · x)]. A standard fact about convolution of functions is that

f̂ ∗ g(S) = f̂(S)ĝ(S) for all S ⊆ [n].

2.2 Quantum Computation

Let Hm be the Hilbert space of dimension 2m defined by the complex span of the orthonormal

basis {|x〉 : x ∈ {−1, 1}m}. We sometimes express these basis elements by integers {|i〉 : i ∈
[2m]} by the same correspondence as before.

Fix any universal set of gates for quantum computation. A quantum circuit Q :

{−1, 1}n → {−1, 1}m of space S consists of a set of S registers, the first n of which

are initialized to |x〉, the input, while the rest are initialized to |1〉. It further consists of

a sequence of operators chosen from the universal set of gates, along with a description of

which register they act on. The size of a circuit is the number of operators. The output of a

circuit is defined to be the contents of the first m registers. Since we want the output to be

Boolean, we assume that the circuit measures these registers and returns the outcome. Thus,

a quantum circuit is inherently probabilistic.

We now describe quantum circuits with query or oracle access. In this model, all registers

are initialized to |1〉 and the input x ∈ {−1, 1}n is not written into the registers. Instead, it

is compactly presented to the algorithm using a blackbox, a device which for every index

i ∈ [n], returns x(i)|i〉 when it is given |i〉 as input. More precisely, for every possible input

x ∈ {−1, 1}n, the oracle to x is the linear operator Ox : H⌈log n⌉ → H⌈log n⌉ which maps the

basis states |i〉 to xi|i〉 whenever i ∈ [n] and otherwise leaves it fixed. This indeed restricts

to a unitary operation on pure states, as its action on the basis states is described by a

diagonal {−1, 1}-matrix. This serves as the quantum analogue of a classical oracle, which is

a blackbox that returns x(i) on input i ∈ [n]. A quantum circuit with oracle access to inputs

is a quantum circuit that is allowed to use the Ox operator in addition to the usual operators,

where x is the input to the computation. The size of the circuit is the total number of gates

used from the universal gate set plus the number of oracle queries used. We say that an

algorithm is efficient, if it is described by a circuit of size at most poly log n with oracle

access to inputs. Note that it is possible to use the oracle Ox to explicitly write down the

input x into n registers, however, this requires n oracle calls and n registers. It is often the

case that this step is unnecessary.

2.3 Classical & Quantum Communication Complexity

Let f : {−1, 1}n × {−1, 1}m → {−1, 1} be a partial Boolean function. Alice (respectively

Bob) receives a private input x ∈ {−1, 1}n (respectively y ∈ {−1, 1}m) and the players’

goal is to compute f(x, y) if (x, y) is in the support of f , while exchanging as few bits as

possible. An input (x, y) is said to be a yes (respectively no) instance if f(x, y) = −1

(respectively if f(x, y) = 1). We assume familiarity with bounded-error randomized and

quantum communication complexity. In quantum communication with entanglement, Alice

and Bob are given m independent copies of the Bell state for some m ∈ N. In this case,

we say that Alice and Bob share m bits of entanglement. In the simultaneous model of

communication, Alice and Bob are not allowed to exchange messages with each other. Instead,

they are allowed one round of communication with a referee Charlie, to whom they can only

send qubits. The referee then performs some quantum operation on the qubits he receives

and returns a bit as the output. As before, a bounded-error simultaneous protocol computes

f if for all (x, y) in the support of f , with probability at least 2/3, the referee’s output agrees

with f(x, y). The cost is the total number of qubits that Alice and Bob send the referee.

ITCS 2021
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Note that in each of the above models of communication, every function f : {−1, 1}n ×
{−1, 1}m → {−1, 1} has communication cost at most n + m, since the players may simply

reveal their entire inputs. Hence, a small cost protocol is one in which the communication

cost is at most poly log(n + m).

A communication protocol is said to be efficient if it can be implemented by a small size

circuit with oracle access Ox, Oy to the inputs x, y. Protocols with small communication cost

are not necessarily efficient, as they may require computationally intensive processing on the

messages, or they may require the players to make several probes into their inputs.

2.4 The Forrelation Distribution D

Let x ∼ D refer to a random variable x distributed according to the probability distribution

D. We use PD to refer to the probability measure associated with D and Px∼D(E(x)) to refer

to the probability of event E(x) when x ∼ D. For an event E(x), we will denote by D|E(x)

(respectively D|¬E(x)), the distribution D conditioned on the event E(x) occurring (respect-

ively, the event E(x) not occurring). Let ǫ ≥ 0 be a parameter, f(x) : Rn → R a function and

D a distribution on Rn. We say that D fools f with error ǫ if

∣∣∣∣ E
x∼Un

[f(x)] − E
x∼D

[f(x)]

∣∣∣∣ ≤ ǫ.

Let N (µ, σ2) denote a Gaussian distribution of mean µ ∈ R and variance σ2 ∈ R≥0. We

will repeatedly use the following standard facts about Gaussians.

Gaussian Concentration inequality: For X ∼ N (µ, σ2), we have P[|X − µ| ≥ a] ≤ e− a2

2σ2 .

The sum
∑

i Xi of independent Gaussians Xi ∼ N (µi, σ2
i ) is distributed according to

N (
∑

i µi,
∑

i σ2
i ).

Let N = 2n. The Hadamard matrix HN is an N × N unitary matrix. We let x and y in

{0, 1}n index rows and columns of HN respectively. The entries of HN are as follows.

HN (x, y) :=

{
1√
N

if
∑

i xiyi mod 2 = 0
−1√

N
otherwise

Let x = (x1, x2) for x1, x2 ∈ {−1, 1}N . We define the forrelation of x as the correlation

between the second half x2 and the Hadamard transform of the first half x1.

forr(x) :=

〈
1√
N

HN (x1)

∣∣∣∣∣
1√
N

x2

〉

We state the definition of the forrelation distribution, as defined in [15]. Fix a parameter

ǫ = 1
50 ln N . We first define an auxilliary Gaussian distribution G generated by sampling the

first half uniformly at random and letting the second half be the Hadamard transform of the

first half. More precisely,

1. Sample x1, . . . , xN ∼ N (0, ǫ).

2. Let y = HN x.

3. Output (x, y).

This is a Gaussian random variable in 2N dimensions of mean 0 and covariance matrix given

by

ǫ

[
IN HN

HN IN

]
.
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Let trnc : R → [−1, 1] be the truncation function which on input α > 1, returns 1, α < −1

returns −1 and otherwise returns α. This naturally defines a function trnc : R2N → [−1, 1]2N

obtained by truncating each coordinate. We now define a distribution D over {−1, 1}2N

generated from G by truncating the sample and then independently sampling each coordinate

as follows.

1. Sample z ∈ G.

2. For each coordinate i ∈ [2N ] independently, let z′
i = 1 with probability 1+trnc(zi)

2 and −1

with probability 1−trnc(zi)
2 .

3. Output z′.

We refer to the distribution D as the forrelation distribution. We state Claim 6.3 from [15]

which implies that a vector drawn from this distribution has large forrelation on expectation.

The proof is omitted.

◮ Lemma 2. Let D be the forrelation distribution as defined previously. Then,

Ez∼D[forr(z)] ≥ ǫ

2
.

2.5 Multilinear Functions on D

Given a function f : {−1, 1}n → R, there is a unique multilinear polynomial f̃ : Rn → R

which agrees with f on {−1, 1}n. This polynomial is called the multilinear extension of f . The

multilinear extension of any character function χS(x) is precisely
∏

i∈S xi. The multilinear

extension f̃ of f satisfies f̃(x) =
∑

S⊆[n] f̂(S)
∏

i∈S xi for all x ∈ Rn. We sometimes identify

f with its multilinear extension. The main content of this section is that bounded multilinear

functions have similar expectations under G and under D.

⊲ Claim 3. Let F : R2N → R be any multinear function F =
∑

S F̂ (S)χS . Then,

E
z′∼D

[F (z′)] = E
z∼G

[F (trnc(z))].

The proof of this claim is identical to that of Equation (2) in [15]. The details can be

found in the full version of this paper. The following claim states that Ez∼G [F (trnc(z))] is

pretty close to Ez∼G [F (z)] for a bounded multilinear function F . Its proof is identical to

that in [15], so we omit it. The underlying idea is that ǫ is small, so the random variable

z ∼ G has an exponentially decaying norm, furthermore, bounded multilinear functions F on

{−1, 1}2N cannot grow faster than exponentially in the norm of the argument.

⊲ Claim 4. Let F (z) be any multilinear polynomial mapping {−1, 1}2N to [−1, 1]. Let

z0 ∈ [−1/2, 1/2]2N , p ≤ 1
2 and N > 1. Then,

Ez∼G [|F (trnc(z0 + pz)) − F (z0 + pz)|] ≤ 8

N5
.

We remark that the bound in [15] is 8
N2 . The improved bound of 8

N5 in Claim 4 follows from

our choice of ǫ = 1
50 ln N , as opposed to ǫ = 1

24 ln N as in [15].

2.6 Moments of G

In this section we state some facts about the moments of the forrelation distribution that

will be useful later. We use the following notation to refer to the moments of G.

Ĝ(S, T ) := E
(x,y)∼G


∏

i∈S

xi

∏

j∈T

yj



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The following claim and its proof are analogous to Claim 4.1 in [15].

⊲ Claim 5. Let S, T ⊆ [N ] and i, j ∈ [N ]. Let k1 = |S|, k2 = |T |. Then,

1. Ĝ({i}, {j}) = ǫN−1/2(−1)〈i,j〉.
2. Ĝ(S, T ) = 0 if k1 6= k2.

3.
∣∣∣Ĝ(S, T )

∣∣∣ ≤ ǫkk!N−k/2 if k = k1 = k2.

4.
∣∣∣Ĝ(S, T )

∣∣∣ ≤ ǫ|S| for all S, T .

3 The Forrelation Communication Problem

In this section we formally state the main theorems of this paper.

Let ǫ = 1
50 ln N be the parameter as before, defining the forrelation distribution. We

restate Theorem 3.

◮ Theorem 3. Consider the following distribution. A string z ∈ {−1, 1}2N is drawn from the

forrelation distribution, x ∼ U2N is drawn uniformly and y := x · z. Alice gets x and Bob gets

y. Given any deterministic communication protocol C : {−1, 1}2N × {−1, 1}2N → {−1, 1} of

cost c ≥ 1, its expectation when the inputs are drawn from this distribution is close to when

the inputs are drawn from the uniform distribution. That is,

∣∣∣∣∣∣
E

x∼U2N
z∼D

[C(x, x · z)] − E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣∣
≤ O

(
c2

N1/2

)
.

In other words, no deterministic protocol of cost o(N1/4) has considerable advantage in

distinguishing the above distribution from the uniform distribution.

◮ Definition 6 (The Forrelation Problem). Alice is given x ∈ {−1, 1}2N and Bob is given

y ∈ {−1, 1}2N . Their goal is to compute the partial boolean function F defined as follows.

F (x, y) =

{
−1 if forr(x · y) ≥ ǫ/4

1 if forr(x · y) ≤ ǫ/8.

We restate Theorem 1 and Theorem 2.

◮ Theorem 1. The forrelation problem can be solved in the quantum simultaneous with

entanglement model with O(log3 N) bits of communication, when Alice and Bob are given

access to O(log3 N) bits of shared entanglement. Moreover, the protocol is efficient, as it can

be implemented by a O(log3 N) size quantum circuit with oracle access to inputs.

The upper bound on the quantum communication complexity of the forrelation problem

follows from the fact that the xor of the inputs can be computed by a simultaneous-message

quantum protocol, when the players share entanglement, and the fact that forr(◦) can be

estimated by a small size quantum circuit [1, 2, 15]. The proof of Theorem 1 can be found

in the full version of this paper.

◮ Theorem 2. The randomized bounded-error interactive communication cost of the forrela-

tion problem is Ω̃(N
1

4 ).

The lower bound on the randomized communication complexity of the forrelation problem

follows from Theorem 3 and Lemma 2. The proof of Theorem 2 can be found in the full

version of this paper. We now describe the proof of Theorem 3.



U. Girish, R. Raz, and A. Tal 54:11

4 Proof of Theorem 3 : Distributional Lower Bound

Let C : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol of cost at most c.

Let D : {−1, 1}2N × {−1, 1}2N → {−1, 1} be defined as follows. For x, z ∈ {−1, 1}2N ,

D(x, z) := C(x, x · z).

We will also use D(x, z) to refer to its mulilinear extension. Note that our goal is to show

that the function E
x∼U2N

[D(x, z)] of z is fooled by D. Towards this, we will prove that it is

fooled by pG for small p. This approach was first used in [6] and is analogous to Claim 7.2

in [15].

◮ Lemma 7. Let p ≤ 1
2N and let C(x, y) be any deterministic protocol of cost c ≥ 1 for

the forrelation problem. As before, let D(x, z) : R2N × R2N → R refer to the multilinear

extension of C(x, x · z). Let P ∈ [−p, p]2N . Then,

∣∣∣∣∣∣
E

z∼P ·G
x∼U2N

[D(x, z)] − E
z,x∼U2N

[D(x, z)]

∣∣∣∣∣∣
≤ 120ǫc2p2

√
N

+ p4N3.

Proof of Lemma 7. We begin by observing some properties of the distribution P · G. The

sample z ∼ P · G is obtained by scaling the i-th coordinate of z′ ∼ G by Pi for each i ∈ [2N ].

This implies that for all S ⊆ [2N ],

E
z∼P ·G

[χS(z)] =

(∏

i∈S

Pi

)
E

z∼G
[χS(z)] . (1)

Part (2.) of Claim 5 implies that the odd moments of G are zero. Equation (1) implies that

this is also true for P · G. That is, for all S ⊆ [2N ],

|S| is odd =⇒ E
z∼P ·G

[χS(z)] = 0. (2)

Part (3.) of Claim 5 implies that for S ⊆ [2N ], |S| = 2k, the S-th moment Ez∼GχS(z) is at

most ǫkk!N−k/2 in magnitude. Along with equation (1), this implies that for k ∈ N,

|S| = 2k =⇒
∣∣∣∣ E
z∼P ·G

[χS(z)]

∣∣∣∣ ≤
(∏

i∈S

Pi

)
ǫkk!N−k/2 ≤ p2kǫkk!N−k/2. (3)

We now proceed with the proof of the lemma. Let

∆ :=

∣∣∣∣∣∣
E

z∼P ·G
x∼U2N

[D(x, z)] − E
z,x∼U2N

[D(x, z)]

∣∣∣∣∣∣
.

Note that this is the quantity we wish to bound in the lemma. For ease of notation, let

H : {−1, 1}2N → [−1, 1] be defined at every point z ∈ {−1, 1}2N by

H(z) := E
x∼U2N

[D(x, z)] .

We identify H(z) with its multilinear extension. Note that by uniqueness of multilinear

extensions, the above equality holds even for z ∈ R2N . This implies that

E
z∼P ·G
x∼U2N

[D(x, z)] = E
z∼P ·G

[H(z)] and E
z,x∼U2N

[D(x, z)] = E
z∼U2N

[H(z)].
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This, along with the definition of ∆ implies that

∆ =

∣∣∣∣ E
z∼P ·G

[H(z)] − E
z∼U2N

[H(z)]

∣∣∣∣ .

Note that H(z) =
∑

S Ĥ(S)χS(z) for all z ∈ R2N . This implies that for all distributions Z
on R2N , we have E

z∼Z
[H(z)] =

∑
S Ĥ(S) E

z∼Z
[χS(z)]. This implies that

∆ =

∣∣∣∣∣∣
∑

S⊆[2N ]

Ĥ(S)

(
E

z∼P ·G
[χS(z)] − E

z∼U2N

[χS(z)]

)∣∣∣∣∣∣
.

For any probability distribution, the moment corresponding to the empty set is 1 by definition.

For all non empty sets S, we have E
z∼U2N

[χS(z)] = 0. Using this fact in the above equality,

along with the triangle inequality, we have

∆ =

∣∣∣∣∣∣
∑

∅6=S⊆[2N ]

Ĥ(S) E
z∼P ·G

[χS(z)]

∣∣∣∣∣∣
≤

∑

∅6=S⊆[2N ]

∣∣∣Ĥ(S)
∣∣∣
∣∣∣∣ E
z∼P ·G

[χS(z)]

∣∣∣∣ .

We use the bounds from (2) and (3) on the moments of P · G to derive the following.

∆ ≤
∑

|S|=2k
k≥1

∣∣∣Ĥ(S)
∣∣∣ p2kǫkk!N−k/2

=
∑

k≥1

L2k(H)p2kǫkk!N−k/2

We upper bound L2k(H) by
(

2N
2k

)
when k ≥ 2. This implies that

∆ ≤ L2(H)
ǫp2

√
N

+
∑

k≥2

(
2N

2k

)
p2kǫkk!N−k/2

≤ L2(H)
ǫp2

√
N

+
∑

k≥2

22kN2k

(2k)!
p2kǫkk!N−k/2

≤ L2(H)
ǫp2

√
N

+
∑

k≥2

N3k/2p2k4kǫk.

In the summation
∑

k≥2 N3k/2p2k4kǫk, we see that every successive term is smaller than the

previous by a factor of at least 1/4. This is because the assumption p ≤ 1
2N implies that

p2N3/2 ≤ p2N2 ≤ 1
4 and because 4ǫ ≤ 1. Thus, we can bound this summation by twice the

first term, which is 16p4N3ǫ2. This implies that

∆ ≤ L2(H)
ǫp2

√
N

+ 32p4N3ǫ2.

Since ǫ = 1
50 ln N ≤ 1

32 , we may bound 32p4N3ǫ2 by p4N3. This implies that

∆ ≤ L2(H)
ǫp2

√
N

+ p4N3.

We restate Claim 1 which provides a bound on L2(H).
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⊲ Claim 1. Let C(x, y) : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol

of cost c ≥ 1, let D(x, z) : R2N × R2N → R refer to the unique multilinear extension of

C(x, x · z) and H : R2N → R be defined by H(z) = Ex∼U2N
D(x, z). Then,

L2(H) ,
∑

|S|=2

|Ĥ(S)| ≤ 120c2.

This claim along with the preceding inequality implies that

∆ ≤ 120c2 ǫp2

√
N

+ p4N3.

This completes the proof of Lemma 7. ◭

Proof of Claim 1. In order to bound the level-2 Fourier mass of H, we will use the following

lemma. Its statement and proof appear as “Level-k Inequalities” on Page 259 of “Analysis of

Boolean Functions” [12].

◮ Lemma 8 (Level-k Inequalities). Let F : {−1, 1}n → {0, 1} have mean E[F ] = α and let

k ∈ N be at most 2 ln(1/α). Then,

∑

|S|=k

(
F̂ (S)

)2

≤ α2

(
2e

k
ln(1/α)

)k

.

We now show the desired bound on L2(H). Since C is a deterministic protocol of cost

at most c, it induces a partition of the input space {−1, 1}2N × {−1, 1}2N into at most 2c

rectangles. Let P be this partition and let A×B index rectangles in P, where A (respectively

B) is the set of Alice’s (respectively Bob’s) inputs compatible with the rectangle. Let

C(A × B) ∈ {−1, 1} be the output of the protocol on inputs from a rectangle A × B ∈ P.

For all x, y ∈ {−1, 1}2N , we have

C(x, y) =
∑

A×B∈P
C(A × B)1A(x)1B(y).

By definition, D(x, z) = C(x, x · z). This implies that

D(x, z) =
∑

A×B∈P
C(A × B)1A(x)1B(x · z).

Taking an expectation over x ∼ U2N of the above identity implies that

H(z) , E
x∼U2N

[D(x, z)] =
∑

A×B∈P
C(A × B)

(
1A ∗ 1B

)
(z).

This implies that for any S ⊆ [n], we have

Ĥ(S) =
∑

A×B∈P
C(A × B) ̂1A ∗ 1B(S) =

∑

A×B∈P
C(A × B)1̂A(S)1̂B(S).

We thus obtain

L2(H) =
∑

|S|=2

∣∣∣Ĥ(S)
∣∣∣

=
∑

|S|=2

∣∣∣∣∣
∑

A×B∈P
C(A × B)1̂A(S)1̂B(S)

∣∣∣∣∣

≤
∑

A×B∈P

∑

|S|=2

|1̂A(S)||1̂B(S)|.
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We apply Cauchy Schwarz to the term
∑

|S|=2 |1̂A(S)||1̂B(S)| to obtain

L2(H) ≤
∑

A×B∈P

( ∑

|S|=2

1̂A(S)2
)1/2( ∑

|S|=2

1̂B(S)2
)1/2

.

For ease of notation, let µ(A) = |A|
22N denote the measure of a set A ⊆ {−1, 1}2N under U2N .

We first ensure that for each rectangle A × B ∈ P, we have µ(A) ≤ 1
e and µ(B) ≤ 1

e . We

may do this by adding 2 extra bits of communication for each player. For k = 2, we have

k = 2 ln(e) ≤ 2 ln 1
µ(A) and k ≤ 2 ln 1

µ(B) . We apply Lemma 8 on the indicator functions 1A

and 1B for k = 2 to obtain

∑

|S|=2

(
1̂A(S)

)2

≤ µ(A)2
(

e ln(1/µ(A))
)2

and
∑

|S|=2

(
1̂B(S)

)2

≤ µ(B)2
(

e ln(1/µ(B))
)2

.

Substituting this in the bound for L2(H), we have

L2(H) ≤ e2
∑

A×B∈P
µ(A)µ(B) ln

1

µ(A)
ln

1

µ(B)
.

Let ∆ := e2
∑

A×B∈P
µ(A)µ(B) ln 1

µ(A) ln 1
µ(B) be the expression in the R.H.S. of the above.

Note that it suffices to upper bound ∆. Consider the case when P consists of 2c rect-

angles A × B, each of which satisfies µ(A) = µ(B) = 1
2c/2

. In this case, ∆ evaluates to

e2
∑

A×B∈P
1
2c ( c ln 2

2 )2 = O(c2). This proves the lemma in this special case. A similar bound

holds for the general case and the proof follows from a concavity argument that we describe

now.

Since µ(A), µ(B) ≤ 1, we have the following inequality.

∆ , e2
∑

A×B∈P
µ(A)µ(B) ln

1

µ(A)
ln

1

µ(B)

≤ e2
∑

A×B∈P
µ(A)µ(B) ln

1

µ(A)µ(B)
ln

1

µ(A)µ(B)

= e2
∑

A×B∈P
µ(A × B)

(
ln

1

µ(A × B)

)2

.
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Let f : [0, ∞) → R be defined by f(p) := p ln(1/p)2. A small calculation shows that

f is a concave function in the interval [0, 0.3] (see Figure 7). Let αi ∈ [0, 0.3] for i ∈ [k].

Jensen’s inequality applied to f states that for i ∼ [k] drawn uniformly at random, we have

Ei[f(αi)] ≤ f(Ei[αi]). This implies that

k∑

i=1

αi ln(1/αi)
2 ≤

(
k∑

i=1

αi

)
ln

(
k

∑k
i=1 αi

)2

.

We apply this inequality to the terms in ∆ by substituting αi with µ(A × B). We may do

this since the assumption that µ(A), µ(B) ≤ 1
e implies that µ(A × B) ≤ 1

e2 ≤ 0.3. This

implies that

∆ ≤ e2

( ∑

A×B∈P
µ(A × B)

)
ln

(
2c+4

∑
A×B∈P µ(A × B)

)2

Since
∑

A×B∈P µ(A × B) = 1, we have

∆ ≤ e2(c + 4)2(ln 2)2 ≤ 120c2.

This completes the proof of Claim 1. ⊳

We now show that an analogue of Lemma 7 holds for restricted protocols, similarly to

Claim 7.3 in [15].

◮ Lemma 9. Let p ≤ 1
4N and C(x, y) be any deterministic protocol of cost c ≥ 1 for the

forrelation problem. As before, let D(x, z) : R2N ×R2N → R refer to the multilinear extension

of C(x, x · z). Let z0 ∈ [−1/2, 1/2]2N . Then,

∣∣∣∣∣∣
E

z∼pG
x∼U2N

[D(x, z0 + z)] − E
z,x∼U2N

[D(x, z0 + z)]

∣∣∣∣∣∣
≤ 120ǫc2(2p)2

√
N

+ (2p)4N3.

◮ Corollary 10. Under the same hypothesis as in Lemma 9,

∣∣∣Ez∼pG [D(0, z0 + z)] − D(0, z0)
∣∣∣ ≤ 120ǫc2(2p)2

√
N

+ (2p)4N3.

Proof of Corollary 10 from Lemma 9. Since D(x, z) is a multilinear polynomial, for all

z ∈ R2N , we have Ex∼U2N
[D(x, z)] = D(0, z). This implies that for all z0 ∈ R2N ,

E
z∼pG

x∼U2N

[D(x, z0 + z)] = Ez∼pG [D(0, z0 + z)].

For all z0 ∈ R2N , since Ez∼U2N
[D(0, z0 + z)] = D(0, z0), we have

E
z,x∼U2N

[D(x, z0 + z)] = D(0, z0).

The proof of Corollary 10 follows from the above two equalities and Lemma 9. ◭

Proof of Lemma 9. Similarly to the approach of [6, 15], we will express D(x, z0 + z) as the

average output of restricted protocols (C ◦ ρ)(x, x · z), on which we can use Lemma 7 to

derive the result. These restricted protocols roughly correspond to Alice and Bob fixing

a common subset I ⊆ [2N ] of their inputs in a predetermined way and then running the

original protocol. We formalize this now.
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A restriction ρ of R2N is an element of {−1, 1, ∗}2N . It defines an action ρ : R2N → R2N

in the following natural way. For any z ∈ R2N and i ∈ [2N ],

(ρ(z))(i) :=

{
ρ(i) if ρ(i) ∈ {−1, 1}
z(i) otherwise.

Let sign : (R\0) → {−1, 1} be the function which maps real numbers to their sign. Given

z0 ∈ [−1/2, 1/2]2N , let Rz0
be a distribution over restrictions of R2N defined as follows. For

each i ∈ [2N ], independently, set1:

ρ(i) :=

{
sign(z0(i)) with probability |z0(i)|
∗ with probability 1 − |z0(i)|.

Let P ∈ R2N be such that Pi := 1
1−|z0(i)| for every i ∈ [2N ]. Note that the assumption of

z0 ∈ [−1/2, 1/2]2N ensures that P is a well defined element of [1, 2]2N . For any z ∈ R2N and

i ∈ [2N ], the expected value of the ith coordinate of ρ(z) when ρ ∼ Rz0
can be computed as

follows.

E
ρ∼Rz0

[(ρ(z))(i)] = |z0(i)|sign(z0(i)) + (1 − |z0(i)|)z(i) = z0(i) +
1

Pi
z(i)

This implies that for any fixed x, z ∈ R2N and z0 ∈ [−1/2, 1/2]2N , since D is a multilinear

function, we have

E
ρ∼Rz0

[D(x, ρ(z))] = D(x, E
ρ∼Rz0

[ρ(z)]) = D(x, z0 + P −1 · z).

Replacing z with P · z in the above equality implies that

E
ρ∼Rz0

[D(x, ρ(P · z))] = D(x, z0 + z).

This equality allows us to rewrite the L.H.S. of Lemma 9 as follows.

∆ :=

∣∣∣∣∣∣
E

z∼pG,
x∼U2N

[D(x, z0 + z)] − E
z,x∼U2N

[D(x, z0 + z)]

∣∣∣∣∣∣

=

∣∣∣∣∣∣
E

z∼pP ·G,
x∼U2N

E
ρ∼Rz0

[D(x, ρ(z))] − E
z∼P ·U2N ,

x∼U2N

E
ρ∼Rz0

[D(x, ρ(z))]

∣∣∣∣∣∣

=

∣∣∣∣∣∣
E

ρ∼Rz0


 E

z∼pP ·G,
x∼U2N

[D(x, ρ(z))] − E
z∼P ·U2N ,

x∼U2N

[D(x, ρ(z))]



∣∣∣∣∣∣
.

For a multilinear polynomial, its expectation over a product distribution depends only on

the mean of that distribution. This allows us to replace the expectation of D(x, ρ(z)) over

z ∼ P · U2N by an expectation over z ∼ U2N . We thus obtain

∆ =

∣∣∣∣∣∣
E

ρ∼Rz0


 E

z∼pP ·G,
x∼U2N

[D(x, ρ(z))] − E
z∼U2N ,
x∼U2N

[D(x, ρ(z))]



∣∣∣∣∣∣

(4)

1 If z0(i) is zero, then ρ(i) = ∗ with probability 1.
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For any ρ ∈ {−1, 1, ∗}2N and u ∈ {−1, 1}2N , we define a substitution ρu : R2N → R2N

obtained from ρ and u as follows. For any x ∈ R2N and i ∈ [2N ],

(ρu(x))(i) :=

{
u(i) if ρ(i) ∈ {−1, 1}
x(i) otherwise.

This is an action on R2N which replaces the values of coordinates specified by ρ, with values

from u. For every fixed ρ, as we vary over x, u ∼ U2N the distribution of ρu(x) is exactly

U2N . This implies that for all z ∈ R2N , ρ ∈ {−1, 1, ∗}2N ,

E
x∼U2N

[D(x, ρ(z))] = E
x,u∼U2N

[D(ρu(x), ρ(z))].

Substituting this in equation (4), we have

∆ =

∣∣∣∣∣∣
E

ρ∼Rz0

E
u∼U2N


 E

z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))] − E
z,x∼U2N

[D(ρu(x), ρ(z))]



∣∣∣∣∣∣
.

Applying Triangle Inequality on the above, we have

∆ ≤ E
ρ∼Rz0

E
u∼U2N

∣∣∣∣∣∣
E

z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))] − E
z,x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣
. (5)

Fix any ρ ∈ {−1, 1, ∗}2N and u ∈ {−1, 1}2N . For every x, z ∈ {−1, 1}2N , we have

D(x, z) = C(x, x · z), furthermore, ρu(x), ρ(z) ∈ {−1, 1}2N . This implies that for every

x, z ∈ {−1, 1}2N ,

D(ρu(x), ρ(z)) = C(ρu(x), ρu(x) · ρ(z)). (6)

This prompts us to define a communication protocol C ◦ ρu where Alice and Bob first

restrict their inputs and then run the original protocol C. The restriction is that for each

coordinate i ∈ [2N ] with ρi ∈ {−1, 1}, Alice overwrites her input xi with ui while Bob

overwrites his input yi with ρiui. The main property of this restricted protocol is that for all

x, z ∈ {−1, 1}2N ,

(C ◦ ρu)(x, x · z) = C(ρu(x), ρu(x) · ρ(z)).

This, along with equation (6) implies that D(ρu(x), ρ(z)) is the unique multilinear extension

of (C ◦ ρu)(x, x · z). The cost of C ◦ ρu is at most that of C since Alice and Bob don’t

need to communicate to restrict their inputs. We now use Lemma 7 on C ◦ ρu to argue

that pP · G fools E
x∼U2N

[D(ρu(x), ρ(z))]. The conditions of the lemma are satisfied since

pP ∈ [−2p, 2p]2N , p ≤ 1
4N , and C ◦ ρu is a protocol of cost at most c and whose multilinear

extension is D(ρu(x), ρ(z)). The lemma implies that

∣∣∣∣∣∣
E

z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))] − E
z∼U2N ,
x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣
≤ 120ǫc2(2p)2

√
N

+ (2p)4N3.

Substituting this in inequality (5) completes the proof of Lemma 9. ◭
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Proof of Theorem 3. Since D(x, z) is the multilinear extension of C(x, x · z) and since D
and U2N are distributions over {−1, 1}2N , we have

Ex∼U2N ,z∼D[C(x, x · z)] = Ex∼U2N ,z∼D[D(x, z)] = Ez∼D[D(0, z)].

When x ∼ U2N and y ∼ U2N are independently sampled, the distribution of (x, x · y) is U4N .

This implies that

Ex,y∼U2N
[C(x, y)] = Ex,y∼U2N

[D(x, x · y)] = D(0, 0).

The above two equations allow us to rewrite the quantity in the L.H.S. of Theorem 3 as

follows.

∆ :=

∣∣∣∣∣∣
E

x∼U2N
z∼D

[C(x, x · z)] − E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣∣
=
∣∣∣Ez∼D[D(0, z)] − D(0, 0)

∣∣∣

Claim 3 applied on the multilinear polynomial D implies that Ez∼D[D(0, z)] =

Ez∼G [D(0, trnc(z))]. Substituting this in the above equality implies that

∆ =
∣∣∣Ez∼G [D(0, trnc(z))] − D(0, 0)

∣∣∣.

Let t = 16N4, p = 1√
t

= 1
4N2 . Let z(1), . . . , z(t) ∼ G be independent samples and let Z refer

to this collection of random variables. For i ∈ [t], define z≤(i) := p(z(1) + . . . + z(i)). By

convention, z≤(0) := 0. Note that for i ∈ [t], z≤(i) has a Gaussian distribution with mean

0 and covariance matrix as p2i times that of G. Thus, z≤(t) is sampled according to G.

Substituting this in the previous equality implies that

∆ =
∣∣EZ [D(0, trnc(z≤t))] − D(0, 0)

∣∣ .

To bound the above quantity, for each 0 ≤ i ≤ t − 1, we show a bound on

∆i :=
∣∣∣EZ [D(0, trnc(z≤(i+1)))] − EZ [D(0, trnc(z≤(i)))]

∣∣∣.

Since z≤(0) = 0, the triangle inequality implies that ∆ ≤ ∑t−1
i=0 ∆i.

Fix any i ∈ {0, . . . , t − 1}. We now bound ∆i. Let Ei be the event that z≤(i) /∈
[−1/2, 1/2]2N . We first observe that Ei is a low probability event. Since each z≤(i)(j) is

distributed as N (0, p2iǫ), where p2i ≤ 1 and ǫ = 1/(50 ln N), we have

P[z≤(i)(j) /∈ [−1/2, 1/2]] ≤ P[|N (0, ǫ)| ≥ 1/2] ≤ exp(−1/8ǫ) ≤ exp(−6 ln N) =
1

N6

Applying a Union bound over coordinates j ∈ [2N ], we have for each 0 ≤ i ≤ t,

P[Ei] = P[z≤(i) /∈ [−1/2, 1/2]2N ] ≤ 2N
1

N6
≤ 2

N5
. (7)

When Ei does not occur, we have trnc(z≤(i)) = z≤(i) ∈ [−1/2, 1/2]2N . For every fixed

value of z≤(i) in this range, we apply Corollary 10 with parameters p = 1
4N2 , z0 = z≤(i) and

z = z≤(i+1) − z≤(i) = pz(i+1). Note that the conditions in the hypothesis are satisfied since

z0 ∈ [−1/2, 1/2]2N , p ≤ 1/(4N) and the random variable pz(i+1) is distributed as pG. The

corollary implies that for every z≤(i) ∈ [−1/2, 1/2]2N ,

∣∣∣EZ

[
D(0, z≤(i+1)) | z≤(i)

]
− EZ

[
D(0, z≤(i)) | z≤(i)

] ∣∣∣ ≤ 120ǫc2(2p)2

N1/2
+ (2p)4N3.
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Since ¬Ei implies that z≤(i) ∈ [−1/2, 1/2]2N , we have

∣∣∣EZ

[
D(0, z≤(i+1)) | ¬Ei

]
− EZ

[
D(0, z≤(i)) | ¬Ei

] ∣∣∣ ≤ 120ǫc2(2p)2

N1/2
+ (2p)4N3.

We apply Claim 4 on the multilinear polynomial D(0, z) : [−1, 1]2N → [−1, 1] with the

parameters p = 1
4N2 , z0 = z≤(i) and z = z(i+1). Note that the conditions are satisfied since

z0 ∈ [1/2, 1/2]2N and p ≤ 1
2 . The claim implies that

∣∣∣EZ

[
D(0, z≤(i+1)) | ¬Ei

]
− EZ

[
D(0, trnc(z≤(i+1))) | ¬Ei

] ∣∣∣ ≤ 8

N5
.

The previous two inequalities, along with the triangle inequality, imply that

∣∣∣EZ

[
D(0, trnc(z≤(i+1))) | ¬Ei

]
−EZ

[
D(0, z≤(i)) | ¬Ei

] ∣∣∣ ≤ 120ǫc2(2p)2

N1/2
+(2p)4N3 +

8

N5
.

(8)

Note that for every possible values of z≤(i+1) and z≤(i), the difference D(0, trnc(z≤(i+1)))−
D(0, trnc(z≤(i))) is bounded in magnitude by 2, since D(0, trnc(z)) maps R2N to [−1, 1].

This implies that
∣∣∣EZ

[
D(0, trnc(z≤(i+1))) | Ei

]
− EZ

[
D(0, trnc(z≤(i))) | Ei

] ∣∣∣ ≤ 2.

Thus, we have

∆i ≤ P[¬Ei] ·
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei] − EZ [D(0, trnc(z≤(i))) | ¬Ei]

∣∣∣

+ P[Ei] ·
∣∣∣EZ [D(0, trnc(z≤(i+1))) | Ei] − EZ [D(0, trnc(z≤(i))) | Ei]

∣∣∣

≤
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei] − EZ [D(0, trnc(z≤(i))) | ¬Ei]

∣∣∣+ 2P[Ei]

=
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei] − EZ [D(0, z≤(i)) | ¬Ei]

∣∣∣+ 2P[Ei]

≤ 120ǫc2(2p)2

N1/2
+ (2p)4N3 +

8

N5
+

4

N5
.

The equality in the fourth line follows from the fact that whenever Ei does not occur,

trnc(z≤(i)) = z≤(i) by definition. The last inequality follows from inequalities (7) and (8).

Along with the fact that t = 1
p2 = 16N4, and ǫ ≤ 1, this implies that

∆ ≤
t−1∑

i=0

∆i ≤ t
(120ǫc2(2p)2

N1/2
+ (2p)4N3 +

12

N5

)
≤ 480ǫc2

N1/2
+ 16p2N3 +

192

N

= O

(
c2

N1/2
+

1

N

)
= O

(
c2

N1/2

)
.

The last inequality follows from the assumption that c ≥ 1. This completes the proof of

Theorem 3. ◭
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