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—— Abstract

We study a new type of separations between quantum and classical communication complexity,

separations that are obtained using quantum protocols where all parties are efficient, in the sense

that they can be implemented by small quantum circuits, with oracle access to their inputs. Our

main result qualitatively matches the strongest known separation between quantum and classical

communication complexity [8] and is obtained using a quantum protocol where all parties are efficient.

More precisely, we give an explicit partial Boolean function f over inputs of length NV, such that:

(1) f can be computed by a simultaneous-message quantum protocol with communication complexity
polylog(NN) (where at the beginning of the protocol Alice and Bob also have polylog(/N) entangled
EPR pairs).

(2) Any classical randomized protocol for f, with any number of rounds, has communication
complexity at least (N Y 4).

(3) All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be implemented
by quantum circuits of size polylog(N) (where Alice and Bob have oracle access to their inputs).

Items (1), (2) qualitatively match the strongest known separation between quantum and classical
communication complexity, proved by Gavinsky [8]. Item (3) is new. (Our result is incomparable
to the one of Gavinsky. While he obtained a quantitatively better lower bound of 2 (N v 2) in the
classical case, the referee in his quantum protocol is inefficient).

Exponential separations of quantum and classical communication complexity have been studied
in numerous previous works, but to the best of our knowledge the efficiency of the parties in the
quantum protocol has not been addressed, and in most previous separations the quantum parties
seem to be inefficient. The only separations that we know of that have efficient quantum parties
are the recent separations that are based on lifting [10, 5]. However, these separations seem to
require quantum protocols with at least two rounds of communication, so they imply a separation
of two-way quantum and classical communication complexity but they do not give the stronger
separations of simultaneous-message quantum communication complexity vs. two-way classical
communication complexity (or even one-way quantum communication complexity vs. two-way
classical communication complexity).

Our proof technique is completely new, in the context of communication complexity, and is
based on techniques from [15]. Our function f is based on a lift of the FORRELATION problem, using
XOR as a gadget.
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1 Introduction

Exponential separations between quantum and classical communication complexity have
been established in various models and settings. These separations give explicit examples
of partial functions that can be computed by quantum protocols with very small commu-
nication complexity, while any classical randomized protocol requires significantly higher
communication complexity. However, to the best of our knowledge, in all these works the
efficiency of the quantum players in the quantum protocol has not been addressed and in
most of these separations, the quantum players are inefficient.

Communication complexity studies the amount of communication needed to perform
computational tasks that depend on two (or more) inputs, each given to a different player.
The efficiency of the players in a communication complexity protocol is usually not addressed.
If the players need to read their entire inputs, their time complexity is at least the length
of the inputs. However, the inputs may be represented compactly by a black box and
(particularly in the quantum case) we can hope for players that can be implemented very
efficiently by small (say, poly-logarithmic size) quantum circuits, with oracle access to their
inputs.

Our main result qualitatively matches the strongest known separation between quantum
and classical communication complexity [8] and is obtained using quantum protocols where
all players are efficient. To prove our results we use a completely different set of techniques,
based on techniques from the recent oracle separation of BQP and PH [15].

1.1 Previous Work

The relative power of quantum and classical communication complexity has been studied
in numerous of works. While it is unknown whether quantum communication can offer
exponential advantage over randomized communication for total functions, a series of works
gave explicit examples of partial Boolean functions (promise problems) that have quantum
protocols with very small communication complexity, while any classical protocol requires
exponentially higher communication complexity. The history of exponential advantage of
quantum communication, that is most relevant to our work, is briefly summarized below.
Buhrman, Cleve and Wigderson gave the first (exponential) separation between zero-error
quantum communication complexity and classical deterministic communication complex-
ity [4]. Raz gave the first exponential separation between two-way quantum communication
complexity and two-way randomized communication complexity [14]. Bar-Yossef et al [3]
(for search problems) and Gavinsky et al [9] (for promise problems) gave the first (expo-
nential) separations between one-way quantum communication complexity and one-way
randomized communication complexity. Klartag and Regev gave the first (exponential)
separation between one-way quantum communication complexity and two-way random-
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ized communication complexity [16]. Finally, Gavinsky gave an (exponential) separation

between simultaneous-message quantum communication complexity and two-way randomized

communication complexity [8].

We note that Gavinsky’s work is the strongest separation known today and essentially
subsumes the separations discussed above. More precisely, Gavinsky [8] gave an explicit
partial Boolean function f over inputs of length IV, such that:

1. f can be computed by a simultaneous-message quantum protocol with communication
complexity polylog(NN): Alice and Bob simultaneously send quantum messages of length
polylog(NN) to a referee, who performs a quantum measurement on the messages and
announces the answer. (At the beginning of the protocol Alice and Bob also have
polylog(N) entangled EPR, pairs).

We note that this also implies a one-way quantum protocol where Alice sends a message

of length polylog(NN) qubits to Bob, who performs a measurement and announces the

answer (or vice versa).

2. Any classical randomized protocol for f has communication complexity at least (N 1/ 2).

A drawback of Gavinsky’s separation, in the context of our work, is that the referee in
his quantum protocol is inefficient as it is required to perform O(N) quantum operations
(and this seems to be crucial in his lower bound proof).

As mentioned before, to the best of our knowledge, the efficiency of the quantum
players has not been addressed in previous works on separations of quantum and classical
communication complexity. The only separations that we know of that do have efficient
quantum parties are the separations that follow from the recent randomized query-to-
communication lifting theorems of [10, 5], applied to problems for which we know that
quantum decision trees offer an exponential advantage over randomized ones, such as the
FORRELATION problem of [1, 2]. However, lifting with the gadgets used in [10, 5] seems to
require quantum protocols with two rounds of communication. Thus, these theorems only
imply a separation of two-way quantum and classical communication complexity and do not
give the stronger separations of simultaneous-message quantum communication complexity
vs. two-way classical communication complexity (or even one-way quantum communication
complexity vs. two-way classical communication complexity).

1.2 Our Result

We recover Gavinsky’s state of the art separation, using entirely different techniques. While
the parameters in our bounds are weaker, our quantum protocol is efficient, in the sense that
it involves just polylog(/N) amount of work by Alice, Bob and the referee, when the players
have blackbox access to their inputs. In other words, the output of the entire simultaneous
protocol can be described by a polylog(N) size quantum circuit, with oracle access to the
inputs.

More precisely, our main result gives an explicit partial Boolean function f over inputs of
length N, such that:

1. As in Gavinsky’s work, f can be computed by a simultaneous-message quantum protocol
with communication complexity polylog(N): Alice and Bob simultaneously send quantum
messages of length polylog(V) to a referee, who performs a quantum measurement on
the messages and announces the answer. (At the beginning of the protocol Alice and Bob
also have polylog(N) entangled EPR pairs).

As before, this also implies a one-way quantum protocol where Alice sends a message
of length polylog(NN) qubits to Bob, who performs a measurement and announces the
answer (or vice versa).
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2. Any classical randomized protocol for f has communication complexity at least (N 1/ 4).

3. All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be
implemented by quantum circuits of size polylog(NN) (where Alice and Bob have oracle
access to their input).

The problem that we define is a lift of the FORRELATION problem of [1, 2, 15] with XOR
as the gadget. Our proof technique follows the Fourier-analysis framework of [15]. Our proof
offers an entirely new and possibly simpler approach for communication complexity lower
bounds. We believe this technique may be applicable in a broader setting. We note that
lower bounds for lifting by XOR, using a Fourier-analysis approach, were previously studied
in [13, 11].

1.3 Our Communication Complexity Problem

Let N = 2" and Hy be the N x N normalized Hadamard matrix. Let © = (x1,22) be an
input where x1, 2o € {—1,1}"V. We define the forrelation of x as the correlation between the
second half z5 and the Hadamard transform of the first half x;.

forr(z) := Hy(xq)

1 1
— —x
The communication problem for which our separation holds is a lift of the forrelation

problem of [15], with XOR as the gadget. Let =,y € {—1,1}2". Alice gets x and Bob gets y
and their goal is to compute the partial function F' defined by

1 if forr(z-y) > 55 gy

>
. 1 1
=1 if forr(z-y) < 356 o

F($7y) = {

Here z - y refers to the coordinate-wise product of the vectors x,y. We refer to this problem
as the forrelation problem.

» Theorem 1. The forrelation problem can be solved in the quantum simultaneous with
entanglement model with O(log3 N) bits of communication, when Alice and Bob are given
access to O(log3 N) bits of shared entanglement. Moreover, the protocol is efficient, as it can
be implemented by a O(log3 N) size quantum circuit with oracle access to inputs.

The quantum upper bound on F' follows from the fact that the XOR of the inputs can be
computed by a simultaneous-message quantum protocol, when the players share entanglement,
and the fact that forr(x) can be estimated by a small size quantum circuit [1, 2, 15].

» Theorem 2. The randomized bounded-error interactive communication cost of the forrela-
tion problem is Q(N7).

1.4 An Overview of the Lower Bound

In this section, we outline the proof of the lower bound. We use the forrelation distribution D
on {—1,1}2" as defined by [15]. We define a distribution V on inputs to the communication
problem, obtained by sampling z ~ D, and x € {—1,1}2" uniformly at random, and
setting y := x - z. Alice gets x and Bob gets y. It can be shown that the distribution V
has considerable support over the yes instances of F', while the uniform distribution &/ on
{—1,1}*" has large support over the no instances of F. This fact along with the following
theorem implies a lower bound on the randomized communication cost of F.
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» Theorem 3. Consider the following distribution. A string z € {—1,1}*N is drawn from the
forrelation distribution, x ~ Uspn is drawn uniformly and y := x-z. Alice gets x and Bob gets
y. Given any deterministic communication protocol C : {—1,1}2N x {—1,1}2N — {~1,1} of
cost ¢ > 1, its expectation when the inputs are drawn from this distribution is close to when
the inputs are drawn from the uniform distribution. That is,

2

E -2)] - R < — .

E [Clae-2]l- E [Clay]|[<0 (Nm)
z~D

In other words, no deterministic protocol of cost 0(N1/4) has considerable advantage in

distinguishing the above distribution from the uniform distribution.

We now outline the proof of this theorem. Any cost ¢ protocol induces a partition of
the input space into at most 2¢ rectangles. Let A x B be any rectangle, and let 14,15 :
{-1,1}?N — {0,1} be the indicator functions of A and B respectively. Note that for all
distributions S on {—1,1}?", we have

E B [a@ls@ )] = E (1 16)()-

Here, the notation fxg refers to the convolution of Boolean functions f and g. This identity
implies that our goal is to show that the expectation of the function ) 4. z(14 *15)(2) over
a uniformly distributed z is close to the expectation over z ~ D. An essential contribution of
the works of [15] and [7] is the following result. For any family of functions F that is closed
under restrictions, to show that the family is fooled by the forrelation distribution, it suffices
to bound the £;-norm of the second level Fourier coefficients of the family. More precisely,
the maximum advantage of a function f € F in distinguishing the uniform distribution and
D, is at most O (ﬁ) times the maximum second level Fourier mass of a function f € F.
Since small cost communication protocols form a family of functions closed under restrictions,
the same reasoning applies here. In this paper however, we present a complete proof of
this connection. We then provide the following bound on the second level Fourier mass
corresponding to a small cost protocol.

> Claim 1. Let C(x,y) : {—1,1}?" x {~1,1}?Y — {~1,1} be any deterministic protocol
of cost ¢ > 1, let D(x,z) : R2V x R2V — R refer to the unique multilinear extension of
C(z,r-2) and H : R® — R be defined by H(z) = E,p,, D(z,2). Then,

Lo(H) 2 Y |H(S)| < 1202
|S|=2

We now describe the proof of this claim. Let A x B be a rectangle in the partition induced
by the cost ¢ protocol. An importawoperty of the convolution of two functions f, g is
that for all subsets S C [n], we have f * g(S) = f(5)g(S). This, along with Cauchy-Schwarz
implies that

1/2 1/2

> [ Tss)| = Y [Tt < | 3 Tas?| | Y 1as)?

|5]=2 |S|=2 |5]=2 |5|=2
We then use a well known inequality on Fourier coefficients. It appears as “Level-k Inequalities”
in Ryan Odonnell’s book [12, Chapter 9.5] and it states that for a function f: {-1,1}" —

N2
{0,1} with expectation E[f] = «, for any k < 2In(1/a), we have } ¢ _, (f(S)) <
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O(e?In"(1/a)). For simplicity, assume that |A| = |B| = 2("~9)/2, The previous paragraphs
and the assumption that E[14],E[1g] = 2% imply that the advantage of a rectangle is at
most O (ﬁ 2%02) . Adding the contributions from all rectangles implies that the advantage
of a cost ¢ protocol is at most O (&%) This implies that every protocol of cost o( N1/4)

has advantage at most o(1) in distinguishing between &/ and V. The bound in the case of a
general partition follows from a concavity argument. This completes the proof overview.

Open Questions

We conjecture that the correct randomized communication complexity for this problem is
Q(V/N) and that the above proof technique can be strengthened to show this. One way
to do this would be to show a better bound on the Fourier coefficients of deterministic
communication protocols. In particular, it would suffice to show a bound of O(c- poly log(N))
on the second level Fourier mass of protocols with ¢-bits of communication.

2 Preliminaries

For n € N, let [n] denote the set {1,2,...,n}. For a vector x € R"” and i € [n], we refer
to the i-th coordinate of 2 by either (i) or x;. For a subset S C [n], let x5 € RISl be
the restriction of = to coordinates in S. For vectors z,y € R", let x - y be their point-wise
product, i.e., the vector whose i-th coordinate is z;y;. Let (x|y) be the real inner product
>, ziy; between z and y. Let v=! be the coordinate-wise inverse of a vector v € (R '\ 0)".

2.1 Fourier Analysis on the Boolean Hypercube

The set {—1,1}" is referred to as the Boolean hypercube in n dimensions, or the n-
dimensional hypercube. We sometimes refer to it by {0,1}", using the bijection mapping
(x1,...,2n) € {0,1}" to ((—=1)*,...,(=1)*) € {—1,1}". We also represent elements of
{=1,1}" by elements of [2"], using the bijection mapping ((—1)*,...,(=1)"") € {-1,1}"
to 14> 1, 27ty € [2"]. We typically use N to denote 2". Let I,, denote the n x n identity
matrix. Let U, be the uniform distribution on {—1,1}". Let F := {F : {-1,1}" — R} be
the set of all functions from the n-dimensional hypercube to the real numbers. This is a
real vector space of dimension 2”. We define an inner product over this space. For every
fr9,€ F, let

(f,9):= E [f(x)g(x)].
z~Up,
For any universe i and a subset S C U, we use 1g : U — {0,1} to refer to the indicator
function of S defined by:

To(x) = {1 ifzesS

0 otherwise.

The set of indicator functions of singleton sets {1, : a € {—1,1}"} is the standard
orthogonal basis for F. The character functions form an orthonormal basis for F. These
are functions xg : {—1,1}" — {—1,1} associated to every set S C [n] and are defined
at every point x € {—1,1}" by xs(z) := [[;cg i For a function f € F, and S C [n],

~

we define its S-th Fourier coefficient to be f(S) := E,wv, [f(z)xs(x)]. Every f € F can

-~

be expressed as f(z) = Y gy f(S)xs(@). For f:{-1,1}" = R and k € {0,...,n}, let
Li(f) == X scin), s1=k ’f(S)’ refer to the level k Fourier mass of f.
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Given functions f,g : {—1,1}" — R, their convolution f xg: {—1,1}" — R is defined
as fxg(z) := ]EU [f(y)g(y - x)]. A standard fact about convolution of functions is that
y~Un

Fx9(8) = F(S)3(S) for all S C [n].

2.2 Quantum Computation

Let H,, be the Hilbert space of dimension 2™ defined by the complex span of the orthonormal
basis {|z) : € {—1,1}"}. We sometimes express these basis elements by integers {|i) : i €
[2]} by the same correspondence as before.

Fix any universal set of gates for quantum computation. A quantum circuit @ :
{-1,1}" — {=1,1}™ of space S consists of a set of S registers, the first n of which
are initialized to |z), the input, while the rest are initialized to |1). It further consists of
a sequence of operators chosen from the universal set of gates, along with a description of
which register they act on. The size of a circuit is the number of operators. The output of a
circuit is defined to be the contents of the first m registers. Since we want the output to be
Boolean, we assume that the circuit measures these registers and returns the outcome. Thus,
a quantum circuit is inherently probabilistic.

We now describe quantum circuits with query or oracle access. In this model, all registers
are initialized to |1) and the input x € {—1,1}" is not written into the registers. Instead, it
is compactly presented to the algorithm using a blackbox, a device which for every index
i € [n], returns x(7)|é) when it is given |i) as input. More precisely, for every possible input
x € {—1,1}", the oracle to z is the linear operator O, : Hiogn] — Hflogn] Which maps the
basis states |i) to x;|i) whenever i € [n] and otherwise leaves it fixed. This indeed restricts
to a unitary operation on pure states, as its action on the basis states is described by a
diagonal {—1, 1}-matrix. This serves as the quantum analogue of a classical oracle, which is
a blackbox that returns z(i) on input i € [n]. A quantum circuit with oracle access to inputs
is a quantum circuit that is allowed to use the O, operator in addition to the usual operators,
where z is the input to the computation. The size of the circuit is the total number of gates
used from the universal gate set plus the number of oracle queries used. We say that an
algorithm is efficient, if it is described by a circuit of size at most polylogn with oracle
access to inputs. Note that it is possible to use the oracle O, to explicitly write down the
input x into n registers, however, this requires n oracle calls and n registers. It is often the
case that this step is unnecessary.

2.3 Classical & Quantum Communication Complexity

Let f:{-1,1}" x {—1,1}™ — {—1,1} be a partial Boolean function. Alice (respectively
Bob) receives a private input @ € {—1,1}" (respectively y € {—1,1}"™) and the players’
goal is to compute f(x,y) if (z,y) is in the support of f, while exchanging as few bits as
possible. An input (x,y) is said to be a YES (respectively NO) instance if f(z,y) = —1
(vespectively if f(z,y) = 1). We assume familiarity with bounded-error randomized and
quantum commaunication complerity. In quantum communication with entanglement, Alice
and Bob are given m independent copies of the Bell state for some m € N. In this case,
we say that Alice and Bob share m bits of entanglement. In the simultaneous model of
communication, Alice and Bob are not allowed to exchange messages with each other. Instead,
they are allowed one round of communication with a referee Charlie, to whom they can only
send qubits. The referee then performs some quantum operation on the qubits he receives
and returns a bit as the output. As before, a bounded-error simultaneous protocol computes
f if for all (z,y) in the support of f, with probability at least 2/3, the referee’s output agrees
with f(z,y). The cost is the total number of qubits that Alice and Bob send the referee.

54:7
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Note that in each of the above models of communication, every function f:{—1,1}" x
{=1,1} = {—1,1} has communication cost at most n + m, since the players may simply
reveal their entire inputs. Hence, a small cost protocol is one in which the communication
cost is at most poly log(n + m).

A communication protocol is said to be efficient if it can be implemented by a small size
circuit with oracle access O, Oy to the inputs x,y. Protocols with small communication cost
are not necessarily efficient, as they may require computationally intensive processing on the
messages, or they may require the players to make several probes into their inputs.

2.4 The Forrelation Distribution D

Let z ~ D refer to a random variable = distributed according to the probability distribution
D. We use Pp to refer to the probability measure associated with D and P,.p(E(x)) to refer
to the probability of event E(x) when x ~ D. For an event E(x), we will denote by D|E(x)
(respectively D|—FE(x)), the distribution D conditioned on the event E(z) occurring (respect-
ively, the event E(x) not occurring). Let € > 0 be a parameter, f(z) : R — R a function and

D a distribution on R™. We say that D fools f with error e if ]EU [f(z)] — ED[f(x)] <e.

Let AM(u,0?) denote a Gaussian distribution of mean p € R and variance 0 € R>q. We

will repeatedly use the following standard facts about Gaussians.
2

Gaussian Concentration inequality: For X ~ N(u,02), we have P[|X — u| > a] < e 37,
The sum ), X; of independent Gaussians X; ~ N (p;,07) is distributed according to

N2 mis D, 7).

Let N = 2". The Hadamard matrix Hy is an N X N unitary matrix. We let z and y in
{0,1}" index rows and columns of Hy respectively. The entries of Hy are as follows.

1 .
—— if Y, x;y; mod 2=0
HN (fﬁ, y) = @ .
TN otherwise
Let = (71, 22) for x1, 79 € {—1,1}". We define the forrelation of x as the correlation

between the second half x5 and the Hadamard transform of the first half z;.

1 1
orr(x) = —=Hn(x1)|—=2
We state the definition of the forrelation distribution, as defined in [15]. Fix a parameter
501%' We first define an auxilliary Gaussian distribution G generated by sampling the
first half uniformly at random and letting the second half be the Hadamard transform of the
first half. More precisely,

€ =

1. Sample z1,...,zx ~ N(0,¢€).
2. Let y= Hyx.
3. Output (z,y).

This is a Gaussian random variable in 2NV dimensions of mean 0 and covariance matrix given
by

GHN Hy
Hy In |-
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Let trnc : R — [—1, 1] be the truncation function which on input o > 1, returns 1, o < —1
returns —1 and otherwise returns . This naturally defines a function trnc : RN — [—1,1]?V
obtained by truncating each coordinate. We now define a distribution D over {—1,1}2V
generated from G by truncating the sample and then independently sampling each coordinate
as follows.

1. Sample z € G.
2. For each coordinate i € [2N] independently, let z; = 1 with probability Hm"fnc(z) and —1

1—trne(z;)

with probability 5

3. Output 2’.
We refer to the distribution D as the forrelation distribution. We state Claim 6.3 from [15]

which implies that a vector drawn from this distribution has large forrelation on expectation.

The proof is omitted.

» Lemma 2. Let D be the forrelation distribution as defined previously. Then,

E. p[forr(z)] > %

2.5 Multilinear Functions on D

Given a function f: {—1,1}" — R, there is a unique multilinear polynomial f:R* >R
which agrees with f on {—1,1}". This polynomial is called the multilinear extension of f. The
multilinear extension of any character function xs(z) is precisely [[;. g ;. The multilinear
extension f of f satisfies f(x) = > scn] 7(S) [I;cg i for all z € R™. We sometimes identify
f with its multilinear extension. The main content of this section is that bounded multilinear
functions have similar expectations under G and under D.

> Claim 3. Let F : R*N — R be any multinear function F' = g F(S)xs. Then,

!
E PG = B [Flrne()

The proof of this claim is identical to that of Equation (2) in [15]. The details can be
found in the full version of this paper. The following claim states that E,g[F (trnc(z))] is
pretty close to E,..g[F(z)] for a bounded multilinear function F'. Its proof is identical to
that in [15], so we omit it. The underlying idea is that € is small, so the random variable
z ~ G has an exponentially decaying norm, furthermore, bounded multilinear functions F' on
{—1,1}?N cannot grow faster than exponentially in the norm of the argument.

> Claim 4. Let F(z) be any multilinear polynomial mapping {—1,1}?" to [~1,1]. Let
20 € [-1/2,1/2]*N, p < I and N > 1. Then,

E.g [|F(trnc(zo + pz)) — F(20 + p2)|] < N

We remark that the bound in [15] is 5. The improved bound of < in Claim 4 follows from

N5
as opposed to € = z— as in [15].

. _ 1
our choice of € = 51—,

2.6 Moments of G

In this section we state some facts about the moments of the forrelation distribution that
will be useful later. We use the following notation to refer to the moments of G.

é(S, T) = (m,iE)NQ HSL‘Z‘ H Yj

i€S  jET
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The following claim and its proof are analogous to Claim 4.1 in [15].

o> Claim 5. Let S,T C [N] and 4,5 € [N]. Let ky = |S|, ko = |T'|. Then,
- G{i} {4}) = eNTV2(—1)t0a),

G(S,T) =0 if ky # ks.

( )‘ < FRINTR/2 i | = Ky = ko

( )‘ < e8! for all S, T.

[y

2.
3. |G(S, T
4. |G(S,T
3 The Forrelation Communication Problem

In this section we formally state the main theorems of this paper.
_ 1

Let ¢ = sy

restate Theorem 3.

be the parameter as before, defining the forrelation distribution. We

» Theorem 3. Consider the following distribution. A string z € {—1,1}2N is drawn from the
forrelation distribution, x ~ Uspy is drawn uniformly and y := x - z. Alice gets x and Bob gets
y. Given any deterministic communication protocol C : {—1,1}2N x {—1,1}2N — {—1,1} of
cost ¢ > 1, its expectation when the inputs are drawn from this distribution is close to when
the inputs are drawn from the uniform distribution. That is,

2

. — < —e | .

LB G- B [Cy)] <0 (N1/2)
z~D

In other words, no deterministic protocol of cost o(N'/*) has considerable advantage in

distinguishing the above distribution from the uniform distribution.

» Definition 6 (The Forrelation Problem). Alice is given z € {—1,1}?" and Bob is given
y € {—1,1}*N. Their goal is to compute the partial boolean function F defined as follows.

Flz,y) = {1 if forr(xz-y) > ¢€/4

1 if forr(z-y) <e/8.
We restate Theorem 1 and Theorem 2.

» Theorem 1. The forrelation problem can be solved in the quantum simultaneous with
entanglement model with O(log3 N) bits of communication, when Alice and Bob are given
access to O(log3 N) bits of shared entanglement. Moreover, the protocol is efficient, as it can
be implemented by a O(log3 N) size quantum circuit with oracle access to inputs.

The upper bound on the quantum communication complexity of the forrelation problem
follows from the fact that the XOR of the inputs can be computed by a simultaneous-message
quantum protocol, when the players share entanglement, and the fact that forr(o) can be
estimated by a small size quantum circuit [1, 2, 15]. The proof of Theorem 1 can be found
in the full version of this paper.

» Theorem 2. The randomized bounded-error interactive communication cost of the forrela-
tion problem is Q(N7).

The lower bound on the randomized communication complexity of the forrelation problem
follows from Theorem 3 and Lemma 2. The proof of Theorem 2 can be found in the full
version of this paper. We now describe the proof of Theorem 3.
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4 Proof of Theorem 3 : Distributional Lower Bound

Let C : {—1,1}2¥ x {~1,1}2¥ — {—1,1} be any deterministic protocol of cost at most c.

Let D : {—1,1}?N x {~1,1}?Y — {~1,1} be defined as follows. For z,z € {—1,1}?V,
D(z,z) :=C(x,z - 2).

We will also use D(z, z) to refer to its mulilinear extension. Note that our goal is to show
that the function E [D(z,z)] of z is fooled by D. Towards this, we will prove that it is

z~Usn

fooled by pG for small p. This approach was first used in [6] and is analogous to Claim 7.2
in [15].

» Lemma 7. Let p < ﬁ and let C(x,y) be any deterministic protocol of cost ¢ > 1 for
the forrelation problem. As before, let D(x,z) : R?N x R2N — R refer to the multilinear
extension of C(z,x - 2). Let P € [—p,p)*N. Then,

12 2.2
E [D(x.2)- E [D(2) < 227
z2~P-G z,x~Us N \/N

z~Uan

+ p*N3.

Proof of Lemma 7. We begin by observing some properties of the distribution P -G. The

sample z ~ P - G is obtained by scaling the i-th coordinate of 2z’ ~ G by P; for each i € [2N].

This implies that for all S C [2N],
E = P | E . 1
E_xs(2)] (Q ) E_[s(:)] (1)

Part (2.) of Claim 5 implies that the odd moments of G are zero. Equation (1) implies that
this is also true for P - G. That is, for all S C [2N],

[S] is odd = ZN]%Q [xs(z)] =0. (2)

Part (3.) of Claim 5 implies that for S C [2N],|S| = 2k, the S-th moment E...gxs(2) is at
most €*k!N~%/2 in magnitude. Along with equation (1), this implies that for k € N,

< (H Pi> EFRINTFZ < pPheFINTR/2, (3)
€S

We now proceed with the proof of the lemma. Let

A = ZN%-Q [D(z,2)] — ZJEEUM [D(z, 2)]|.

Note that this is the quantity we wish to bound in the lemma. For ease of notation, let
H :{-1,1}*N — [-1,1] be defined at every point z € {—1,1}?" by
H(z):= E [D(z,2)].
z~Uan
We identify H(z) with its multilinear extension. Note that by uniqueness of multilinear
extensions, the above equality holds even for z € R?YN. This implies that
E [D(z,z)]= E [H(z)] and E [D(z,2)]= E [H(2)].

z~P-G z~P-G zx~Usn z~Us N
z~Uan
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This, along with the definition of A implies that

A=| E [HE)]- E [HE)|.

2~P-G z~Uan

Note that H(z) = )¢ H(S)xs(z) for all z € RN, This implies that for all distributions Z

on R2V, we have E [H(z)] =Yg H(S) E_[xs(2)]- This implies that

A= Y ﬁ(S)( E [xs(z)] -~ E [XS<z>1).

z~P-G z~Uan
SCEN]

For any probability distribution, the moment corresponding to the empty set is 1 by definition.
For all non empty sets S, we have IEII [xs(z)] = 0. Using this fact in the above equality,
z

~U2N
along with the triangle inequality, we have

_E [xs(2)]

A= Y HES) E sl < Y |AS)
0#£S5C[2N] 0#£SC[2N]

We use the bounds from (2) and (3) on the moments of P - G to derive the following.

A< Y ‘}AI(S)’ pek I N k2

|S|=2k
E>1

= E:sz(H)p%ekk!]\f’k/2
k>1

We upper bound Lok (H) by (221,:[) when k > 2. This implies that

2
€p 2N X Lk
A< LQ(H)\/—N + § j (2k>p2kekk:!N k/2
k>2

6p2 22k:N2k:

= PUUN T2 )

2
< LQ(H)% + 3 N2k,
E>2

p2k€kk!N7k/2

In the summation ), ., N 3k/2p2k gk ek we see that every successive term is smaller than the
previous by a factor of at least 1 /4. This is because the assumption p < ﬁ implies that
p2N3/2 < p2?N? < i and because 4e < 1. Thus, we can bound this summation by twice the
first term, which is 16p* N3e2. This implies that

2

A < Lo(H) 1 3954 N3¢2,

- VN

Since € = we may bound 32p* N3e? by p*N3. This implies that

1 1
50In N < 327

€P2 4773
A< LQ(H)W +p N°.

We restate Claim 1 which provides a bound on Ly (H).
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> Claim 1. Let C(z,y) : {—1,1}?Y x {=1,1}?¥ — {—1,1} be any deterministic protocol
of cost ¢ > 1, let D(x,2) : R?V x R?2N — R refer to the unique multilinear extension of
C(m x - z) and H : R?N — R be defined by H(z) = E,vp,, D(,z). Then,

23" [H(S)| < 1206,
|S|=2

This claim along with the preceding inequality implies that
2
€p 4773
A <120 —= + p*N®.
This completes the proof of Lemma 7. <

Proof of Claim 1. In order to bound the level-2 Fourier mass of H, we will use the following
lemma. Its statement and proof appear as “Level-k Inequalities” on Page 259 of “Analysis of
Boolean Functions” [12].

» Lemma 8 (Level-k Inequalities). Let F': {—1,1}" — {0,1} have mean E[F] = « and let
k € N be at most 2In(1/a). Then,

5 k
~ 9 [ 2e
Z (F(S)) <a (k ln(l/a)> .
|S|=k

We now show the desired bound on Lo (H). Since C' is a deterministic protocol of cost
at most ¢, it induces a partition of the input space {—1,1}2" x {—1,1}2" into at most 2¢
rectangles. Let P be this partition and let A x B index rectangles in P, where A (respectively
B) is the set of Alice’s (respectively Bob’s) inputs compatible with the rectangle. Let

C(A x B) € {—1,1} be the output of the protocol on inputs from a rectangle A x B € P.

For all z,y € {—1,1}*", we have
Clx,y)= Y C(AxB)La(2)1p(y).
AxBeP
By definition, D(z, z) = C(x,x - z). This implies that
D(z,z)= >  C(Ax B)ls(2)lp(z-2).
AxBeP
Taking an expectation over x ~ Uy of the above identity implies that
H(z)2 E [D(x,2)]= » C(AxB)(1ax1g)(2).
z~Uan
AxBeP
This implies that for any S C [n], we have
HS) = > CAxBIs+15(8) = Y CAxB)LA(S)L5(S).
AxBeP AxBeP
We thus obtain

-3 ‘Erw)‘

|S|=2
=Y | 3 cAxBTAS)Ts(S)
|S|=2|AxBeP

Z Z“lA )[T5(S)].

AxB€P|$ 2
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0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 1 Plot of the function y = = (ln %)2

We apply Cauchy Schwarz to the term - g _, [TA(S)|[15(S)| to obtain

> (X Gsr) (X )

AxBEP |S|=2 |S|=2

1/2

For ease of notation, let pu(A4) = 2|2i1‘v denote the measure of a set A C {—1,1}2" under Uay.

We first ensure that for each rectangle A x B € P, we have u(A) < 1 and p(B) < 1. We
may do this by adding 2 extra bits of communication for each player. For k = 2, we have
k=2In(e) <2In (A) and k£ < 2In ( . We apply Lemma 8 on the indicator functions 1 4
and 1p for k£ = 2 to obtain

S (Ta®)” < n@?(em(/u(4)) md 3 (T5()) < u(B) (em(1/u(B)) "
|S|=2 |S]=2
Substituting this in the bound for Ls(H), we have

1
u(B)

L) <& Y u(Apu(B)In—ln
AxBeP

Let A :==¢€? > u(A)u(B)In ﬁ In ﬁ be the expression in the R.H.S. of the above.
AxBeP

Note that it suffices to upper bound A. Consider the case when P consists of 2¢ rect-

angleb A x B, each of which satisfies u(A) = pu(B) = 5. In this case, A evaluates to

€Y axpep 3 (922)? = O(c?). This proves the lemma in this special case. A similar bound

holds for the general case and the proof follows from a concavity argument that we describe

now.

Since p(A), u(B) < 1, we have the following inequality.

A 1 1
D M@ B

AXBeEP

€2 n 1 0 1
- AXZBEPM(A)M(B)I M(A)M(B)l w(A)u(B)

o 3 e o)

AxBeP
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Let f : [0,00) — R be defined by f(p) := pln(1/p)?. A small calculation shows that

f is a concave function in the interval [0, 0.3] (see Figure 7). Let «; € [0,0.3] for i € [k].

Jensen’s inequality applied to f states that for ¢ ~ [k] drawn uniformly at random, we have
E;[f(a;)] < f(E;[a;]). This implies that

k k k 2
Zai In(1/a;)? < <Z ai> In (k) .
i=1 i=1 D1 Qi

We apply this inequality to the terms in A by substituting a; with u(A x B). We may do
this since the assumption that u(A), u(B) < L implies that u(A x B) < % < 0.3. This

e — e?

implies that

62 . 9ct+4 2
ne <sz:Be7>u(A : B)> 1 (EAxBep (A x B))

Since ) 4, gep (A x B) = 1, we have

A < ée*(c+4)*(In2)? <1202
This completes the proof of Claim 1. <

We now show that an analogue of Lemma 7 holds for restricted protocols, similarly to
Claim 7.3 in [15].

» Lemma 9. Let p < ﬁ and C(z,y) be any deterministic protocol of cost ¢ > 1 for the
forrelation problem. As before, let D(x,2) : R*?N x R?N — R refer to the multilinear extension
of C(z,z - 2). Let 29 € [-1/2,1/2]*N. Then,

120ec?(2p)?

E [D(z,z0+2)]— E [D(z, 2 +2)]| < + (2p)*N3.
10 [D(z, 20 + 2)] Z’INUQN[ (w,20 + 2)]| < N (2p)
r~U2 N

» Corollary 10. Under the same hypothesis as in Lemma 9,

120ec?(2p)?
VN

Proof of Corollary 10 from Lemma 9. Since D(z, z) is a multilinear polynomial, for all
z € R?N we have E, s, [D(z, 2)] = D(0,2). This implies that for all 2o € R?Y,

Enpg[D(0, 20 + 2)] = D(0, 20)| < +(2p)' N,

Eg [D(x, 20 + 2)] = E.pg[D(0, 20 + 2)].
Z~op!
z~Uan

For all zg € R*N | since E, .y, [D(0, 20 + 2)] = D(0, 20), we have

E [D(xz,z+ 2)] = D(0,2).

z,x~Uan
The proof of Corollary 10 follows from the above two equalities and Lemma 9. |

Proof of Lemma 9. Similarly to the approach of [6, 15], we will express D(x, zg + z) as the
average output of restricted protocols (C o p)(x,x - z), on which we can use Lemma 7 to
derive the result. These restricted protocols roughly correspond to Alice and Bob fixing
a common subset I C [2N] of their inputs in a predetermined way and then running the
original protocol. We formalize this now.
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A restriction p of R?Y is an element of {—1,1,*}2". It defines an action p : RN — R2V
in the following natural way. For any z € R?Y and i € [2N],

(p(2)) () := {pO) if p(4) € {-1,1}

z(i)  otherwise.

Let sign : (R\0) — {—1,1} be the function which maps real numbers to their sign. Given
20 € [-1/2,1/2]?N  let R,, be a distribution over restrictions of R?Y defined as follows. For
each i € [2N], independently, set!:

(i) {sign(zo(i)) with probability |zo(7)]
p(i) ==

* with probability 1 — |2¢(4)].
Let P € R?N be such that P, := m for every i € [2N]. Note that the assumption of

29 € [~1/2,1/2]?" ensures that P is a well defined element of [1,2]?V. For any z € R?Y and
i € [2N], the expected value of the ith coordinate of p(z) when p ~ R, can be computed as
follows.

pw%zo[(P(Z))(i)] = |z0(i)|sign(zo(2)) + (1 — |20(2)])2(2) = 2z0(7) + %ZZ(Z)

This implies that for any fixed z,z € R*V and 2o € [-1/2,1/2]?V, since D is a multilinear
function, we have

LB DG pe)] =D, B [pl)) = Dlw 20+ P -2).

Replacing z with P - z in the above equality implies that

E [D(a,p(P-2))] = Dla, 50+ 2).

This equality allows us to rewrite the L.H.S. of Lemma 9 as follows.

A:=| E [D(z,z0+2)]— E [D(z,20+2)]

z~pg, z,x~Us N
z~UanN

g, B I - E E[D
ZNpP'g’pNRZo[ (x7p<Z))] ZNP~U2N79NRzO[ (m7p(2))]
z~Uan wmUnn

= ]E ]E _D s — ]E D ;
o B D@ = E D p(2)]

z~Uan s~ Uan

For a multilinear polynomial, its expectation over a product distribution depends only on
the mean of that distribution. This allows us to replace the expectation of D(z, p(z)) over
z ~ P -Usn by an expectation over z ~ Usy. We thus obtain

R NS R N El @
z~Usn z~UaN

L If 20(4) is zero, then p(i) = * with probability 1.
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For any p € {—1,1,%}*"Y and u € {-1,1}?", we define a substitution p* : R*V — RV
obtained from p and u as follows. For any x € R?" and i € [2N],

u(d) if p(i) € {—1,1}
x(i)  otherwise.

This is an action on R?Y which replaces the values of coordinates specified by p, with values
from u. For every fixed p, as we vary over z,u ~ Usy the distribution of p%(x) is exactly
Usn. This implies that for all z € R2Y p € {—1,1,}2V]

E [D(z,p(2))] = E [D(p*(x),p(2))]

x~Usn z,u~Usn

Substituting this in equation (4), we have

A= LB LB | B PO @ - B 1P pte)

Applying Triangle Inequality on the above, we have

8 B E | EDEWAE - E [DE @) (5)
z~Uan

Fix any p € {—1,1,*}>V and u € {-1,1}2N. For every z,2z € {—1,1}2Y we have
D(z,z) = C(x,z - z), furthermore, p%(z),p(z) € {—1,1}?N. This implies that for every
r,z € {—1,1}?N,

D(p*(x), p(2)) = C(p"(x), p*(2) - p(2))- (6)

This prompts us to define a communication protocol C' o p* where Alice and Bob first
restrict their inputs and then run the original protocol C. The restriction is that for each
coordinate i € [2N] with p; € {—1,1}, Alice overwrites her input z; with u; while Bob
overwrites his input y; with p;u;. The main property of this restricted protocol is that for all
z,z € {—1,1}2N,

(Cop")(a,x-2) = Clp" (), p"(a) - p(2)).

This, along with equation (6) implies that D(p*(x), p(z)) is the unique multilinear extension
of (C o p*)(z,x-2). The cost of C o p* is at most that of C since Alice and Bob don’t
need to communicate to restrict their inputs. We now use Lemma 7 on C' o p* to argue
that pP - G fools IND[E],ZN[D(/)“ (z),p(2))]. The conditions of the lemma are satisfied since

pP € [-2p,2p]?N, p < ﬁ, and C o p" is a protocol of cost at most ¢ and whose multilinear
extension is D(p*(z), p(z)). The lemma implies that

< 120ec?(2p)?

E [D(p" - E [D(p" 2p)* N*.
LB DG @) - E D6 E)p(2)]| € S+ (20)
z~Uan z~Uan
Substituting this in inequality (5) completes the proof of Lemma 9. <
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Proof of Theorem 3. Since D(z,z) is the multilinear extension of C(z,z - z) and since D
and Usy are distributions over {—1,1}2V, we have

EINUQNyzND[C(x’ x-z)] = ]EINUQNyZND[D(x’ z)] = E.p[D(0, 2)].

When x ~ Usy and y ~ Usn are independently sampled, the distribution of (z,x - y) is Usn.
This implies that

IE96,3/~U2N [O(‘Ta y)] = ]Efﬂ,yNUQN [D(LE, € - y)] = D(07 0)

The above two equations allow us to rewrite the quantity in the L.H.S. of Theorem 3 as
follows.

A = xw%m\,[c(xu € Z)] - ;C,yLI:EUzN[C('T7 y)] = EZND[D(()’ Z)] - D(O’ 0)
z~D

Claim 3 applied on the multilinear polynomial D implies that E,.p[D(0,z)] =
E.g[D(0,trnc(z))]. Substituting this in the above equality implies that

A = |E.g[D(0, trne(z))] — D(0, 0)‘.

Let t = 16N* p = % = ﬁ. Let 2z ..., 2 ~ G be independent samples and let Z refer
to this collection of random variables. For i € [t], define =) := p(z(M) + ...+ (V). By
convention, 2=(9) := 0. Note that for i € [t], 2=(*) has a Gaussian distribution with mean
0 and covariance matrix as p?i times that of G. Thus, 2=®) is sampled according to G.

Substituting this in the previous equality implies that
A = |Ez[D(0,trnc(2="))] — D(0,0)|.
To bound the above quantity, for each 0 <i <t — 1, we show a bound on

A= ‘EZ[D(o,tmc(zS“H)))] — Ez[D(0, trne(5D))]|.

Since 2=(0) = 0, the triangle inequality implies that A < Z:;é A;.

Fix any i € {0,...,t — 1}. We now bound A;. Let E; be the event that z=() ¢
[~1/2,1/2]*N. We first observe that E; is a low probability event. Since each z=()(j) is
distributed as A (0, p%ie), where p?i < 1 and e = 1/(501n N), we have

P[=<0)(j) ¢ [~1/2,1/2]] < B[N(0, )| > 1/2] < exp(—1/8¢) < exp(—61n N) = —

NG
Applying a Union bound over coordinates j € [2N], we have for each 0 < i <,
; 12
P[E;] = P[z=(®) ¢ [-1/2,1/2)?N] < 2N+ < w5 (7)

When E; does not occur, we have trnc(2=(") = 2=0) ¢ [-1/2,1/2]*N. For every fixed
value of_zf(i) in this range, we apply Corollary 10 with parameters p = 27,20 = 2= and
z = 2S04 _ 2=() = pz(i+1)  Note that the conditions in the hypothesis are satisfied since
20 € [-1/2,1/2)*N, p < 1/(4N) and the random variable pz(*+1 is distributed as pG. The
corollary implies that for every 2<() € [-1/2,1/2]?N,

< 120ec?(2p)?

‘Ez {D(O’ZS(H-I)) | ZS(i)] —E, [D(O’Zg(i)) | Zg(i)} ‘
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Since —F; implies that 2= € [~1/2,1/2]*, we have

< 120ec?(2p)?

‘IEZ { (0, 25U+ | ﬂEZ} _E, [D(o,zi@) | ﬂEZ}

We apply Claim 4 on the multilinear polynomial D(0,z2) : [-1,1]* — [~1,1] with the
parameters p = ﬁ, 2o = 2= and z = 20D, Note that the conditions are satisfied since
20 € [1/2,1/2]*" and p < . The claim implies that

, , 8
e 00,5564 1 5] 5 [P0t -] <

The previous two inequalities, along with the triangle inequality, imply that

< 120ec?(2p)?

8
> N1/2 +<2p)4N3+7

N5°
(8)
Note that for every possible values of 2<(+1) and 2= the difference D(0, trnc(z=0+1))—

D(0,trnc(2=®)) is bounded in magnitude by 2, since D(O,trnc(z)) maps R?Y to [—1,1].
This implies that

)Ez [D(o, trnc(zS0+D)) | ﬁEl} _E, [D(o, PON ﬁEZ}

‘IEZ [D(07trnc(z§(i+1))) | El} —Ez {D(O,trnc(zg(i))) \ El} ’ <2
Thus, we have

A; < P[-E;) - ]EZ [D(0, trne(z<+D)) | =E;] — EZ[D(0, tre(2<D)) | - E;]

+P[E ‘EZ 0, trne(zS0HDY) | By — E£[D(0, trne(5D)) | Ei]

< \]Ez (0, trne(z=+V)) [ SE;] = Ez[D(0, trne(z=")) | ~E]| + 2P[E;]
- ‘]EZ[D(Q trnc(zS0tD)) | =B — Ez[D(0, 220 | B3] | + 2P[E3)
120ec?(2p)? 3 8 4

The equality in the fourth line follows from the fact that whenever E; does not occur,
trne(z=(0) = 2= by deﬁnition The last inequality follows from inequalities (7) and (8).

Along with the fact that t = 5 = 16N*, and € < 1, this implies that
— 120ec?(2p)? 5 12 480ec? 9 g 192
SZ (71\11/2 + 2N+ 1) € o 16PN+

c2 1 2
‘O(wW)‘O(w)'

The last inequality follows from the assumption that ¢ > 1. This completes the proof of
Theorem 3. <
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