
Time-Space Tradeoffs for Distinguishing

Distributions and Applications to Security of

Goldreich’s PRG

Sumegha Garg
Department of Computer Science, Princeton University, NJ, USA

sumegha.garg@gmail.com

Pravesh K. Kothari1

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

kotpravesh@gmail.com

Ran Raz
Department of Computer Science, Princeton University, NJ, USA

ran.raz.mail@gmail.com

Abstract

In this work, we establish lower-bounds against memory bounded algorithms for distinguishing

between natural pairs of related distributions from samples that arrive in a streaming setting.

Our first result applies to the problem of distinguishing the uniform distribution on {0, 1}n

from uniform distribution on some unknown linear subspace of {0, 1}n. As a specific corollary, we

show that any algorithm that distinguishes between uniform distribution on {0, 1}n and uniform

distribution on an n/2-dimensional linear subspace of {0, 1}n with non-negligible advantage needs

2Ω(n) samples or Ω(n2) memory (tight up to constants in the exponent).

Our second result applies to distinguishing outputs of Goldreich’s local pseudorandom generator

from the uniform distribution on the output domain. Specifically, Goldreich’s pseudorandom

generator G fixes a predicate P : {0, 1}k → {0, 1} and a collection of subsets S1, S2, . . . , Sm ⊆ [n] of

size k. For any seed x ∈ {0, 1}n, it outputs P (xS1), P (xS2), . . . , P (xSm) where xSi is the projection

of x to the coordinates in Si. We prove that whenever P is t-resilient (all non-zero Fourier coefficients

of (−1)P are of degree t or higher), then no algorithm, with < nǫ memory, can distinguish the

output of G from the uniform distribution on {0, 1}m with a large inverse polynomial advantage, for

stretch m ≤
(

n

t

) (1−ǫ)
36

·t

(barring some restrictions on k). The lower bound holds in the streaming

model where at each time step i, Si ⊆ [n] is a randomly chosen (ordered) subset of size k and the

distinguisher sees either P (xSi) or a uniformly random bit along with Si.

An important implication of our second result is the security of Goldreich’s generator with super

linear stretch (in the streaming model), against memory-bounded adversaries, whenever the predicate

P satisfies the necessary condition of t-resiliency identified in various prior works.

Our proof builds on the recently developed machinery for proving time-space trade-offs (Raz 2016

and follow-ups). Our key technical contribution is to adapt this machinery to work for distinguishing

problems in contrast to prior works on similar results for search/learning problems.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-

tion

Keywords and phrases memory-sample tradeoffs, bounded storage cryptography, Goldreich’s local

PRG, distinguishing problems, refuting CSPs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.21

Category RANDOM

1 Part of this work was completed when Pravesh was at Princeton University and Institute for Advanced
Study, Princeton.

© Sumegha Garg, Pravesh K. Kothari, and Ran Raz;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sumegha.garg@gmail.com
mailto:kotpravesh@gmail.com
mailto:ran.raz.mail@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

Related Version A full version of this paper is available at https://arxiv.org/abs/2002.07235.

Funding Ran Raz: Research supported by the Simons Collaboration on Algorithms and Geometry,

by a Simons Investigator Award and by the National Science Foundation grant No. CCF-1714779.

Acknowledgements We would like to thank Avishay Tal and David Woodruff for the discussions

about the problem of distinguishing subspaces.

1 Introduction

This work is motivated by the following basic question: suppose an algorithm is provided

with a stream of m i.i.d. samples from a random source. What’s the minimum memory

required to decide whether the source is “truly random” or “pseudorandom”?

Algorithmically distinguishing perfect randomness from pseudorandomness naturally

arises in the context of learning theory (and can even be equivalent to learning in certain

models [20, 24, 60, 36]), pseudorandomness and cryptography.

There has been a surge of progress in proving lower bounds for memory-bounded streaming

algorithms beginning with Shamir [55] and Steinhardt-Valiant-Wager [57] who conjectured a

Ω(n2) memory lower bound for learning parity functions with 2o(n) samples. This conjecture

was proven in [53]. In a follow up work, this was generalized to learning sparse parities in

[35] and more general learning problems in [54, 29, 45, 14, 18, 47, 46, 56, 30].

All of these lower bounds hold for learning (more generally, search) problems that ask to

identify an unknown member of a target function class from samples. In this work, we build

on the progress above and develop techniques to show lower bounds for apparently easier task

of simply distinguishing uniformly distributed samples from pseudorandom ones. [25] studies

the related problem of distribution testing under communication and memory constraints.

[25] gave a one-pass streaming algorithm (and a matching lower bound for a broad range

of parameters) for uniformity testing on [N] that uses m memory and O(N log(N)/(mǫ4))

samples for distinguishing between uniform distribution on [N] and any distribution that is

ǫ-far from uniform.

As we next discuss, our results have consequences of interest in cryptography (ruling

out memory-bounded attacks on Goldreich’s pseudorandom generator [31] in the streaming

model) and average-case complexity (unconditional lower bounds on the number of samples

needed, for memory-bounded algorithms, to refute random constraint satisfaction problems,

in the streaming model).

1.1 Our Results

We now describe our results in more detail. Our main results show memory-sample trade-offs

for distinguishing between truly random and pseudorandom sources for the following two

settings:

1. Uniform vs k-Subspace Source: The pseudorandom subspace source of dimension

k chooses some arbitrary k-dimensional linear subspace S ⊆ {0, 1}n and draws points

uniformly from S. The truly random source draws points uniformly from {0, 1}n.

2. Uniform vs Local Pseudorandom Source: The pseudorandom source fixes a k-ary

Boolean predicate P : {0, 1}k → {0, 1}. It chooses a uniformly random x ∈ {0, 1}n and

generates samples (α, b) ∈ [n](k) × {0, 1} where [n](k) represents the set of all ordered

k-tuples with exactly k elements from [n] and α is chosen uniformly at random from

[n](k) and b is the evaluation of P at xα - the k-bit string obtained by projecting x onto

the coordinates indicated by α. The truly random source generates samples (α, b) where

α ∈ [n](k) and b ∈ {0, 1} are chosen uniformly and independently.

https://arxiv.org/abs/2002.07235

S. Garg, P. K. Kothari, and R. Raz 21:3

We model our algorithm by a read-once branching program (ROBP) of width 2b (or

memory b) and length m. Such a model captures any algorithm that takes as input a stream

of m samples and has a memory of at most b bits. Observe that there’s no restriction on the

computation done at any node of an ROBP.

Roughly speaking, this model gives the algorithm unbounded computational power and

bounds only its memory-size and the number of samples used.

Our first main result shows a lower bound on memory-bounded ROBPs for distinguishing

between uniform and k-subspace sources.

◮ Theorem 1 (Uniform vs Subspace Sources). Any algorithm that distinguishes between

uniform and subspace source of dimension k (assuming k > c log n for some large enough

constant c) with probability at least 1/2 + 2−o(k) requires either a memory of Ω(k2) or at least

2Ω(k) samples. In particular, distinguishing between the uniform distribution on {0, 1}n and

the uniform distribution on an unkown linear subspace of dimension n/2 in {0, 1}n requires

Ω(n2) memory or 2Ω(n) samples.

Crouch et. al. [16] recently proved that any algorithm that uses at most n/16 bits of

space requires Ω(2n/16) samples to distinguish between uniform source and a subspace source

of dimension k = n/2. They suggest the question of improving the space bound to Ω(n2)

while noting that their techniques do not suffice. For k = Θ(n), our lower bound shows that

any algorithm with memory at most cn2 for some absolute constant c requires 2Ω(n) samples.

This resolves their question.

Upper bound. In Section 4, we exhibit a simple explicit branching program that uses 2O(k)

samples and O(1) memory to succeed in solving the distinguishing problem with probability

3/4. We also show a simple algorithm that uses O(k2) memory and O(k) samples, and

succeeds in solving the distinguishing problem with probability 3/4. Thus, in the branching

program model, the lower bound is tight up to constants in the exponent.

Our second main result gives a memory-sample trade-off for the uniform vs local pseu-

dorandom source problem for all predicates that have a certain well-studied pseudorandom

property studied in cryptography under the name of resilience.

A k-ary Boolean function P is said to be t-resilient if t is the maximum integer such that

(−1)P (taking the range of the boolean function to be {-1,1}) has zero correlation with every

parity function of at most t − 1 out of k bits. In particular, the parity function on k bits is

k-resilient.

◮ Theorem 2 (Uniform vs Local Pseudorandom Sources). Let 0 < ǫ < 1 − 3 log 24
log n and P

be a t-resilient k-ary predicate for k < n(1−ǫ)/6/3, n/c2. Then, any ROBP that succeeds

with probability at least 1/2 + Ω(
(

t
n

)Ω(t·(1−ǫ))
) at distinguishing between uniform and local

pseudorandom source for predicate P , requires
(

n
t

)Ω(t·(1−ǫ))
samples or nǫ memory.

Upper bound. In Subsection 5.3, we give an algorithm that takes (nǫ + k)k log n memory

and (n(1−ǫ)k)(nǫ + k) samples, and distinguishes between uniform and local pseudorandom

source for any predicate P , with probability 99/100. Thus, the lower bounds are almost tight

up to log n factors and constant factors in the exponent for certain predicates (t = Ω(k)).

The question of whether there exists a better algorithm that runs in O(n(1−ǫ)t) samples and

O(nǫ) memory, and distinguishes between uniform and local pseudorandom source with high

probability, for t-resilient predicates P , remains open.

2 c is a large enough constant

APPROX/RANDOM 2020

21:4 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

This result has interesting implications for well-studied algorithmic questions in average-

case complexity and cryptography such as refuting random constraint satisfaction [27, 2, 52,

37]) and existence of local pseudorandom generators [17, 49, 11, 43, 4, 5] with super linear

stretch where a significant effort has focused on proving lower bounds on various restricted

models such as propositional and algebraic proof systems, spectral methods, algebraic

methods and semidefinite programming hierarchies. While bounded memory attacks are

well-explored in cryptography [44, 15, 10, 9, 59, 26, 53, 61, 32, 58, 34, 19], to the best of our

knowledge, memory has not been studied as explicit resource in this context. We discuss

these applications further in the paper.

For the special case when P (x) =
∑k

i xi mod 2, the parity function on k bits, we can

prove stronger results for a wider range of parameters.

◮ Theorem 3 (Uniform vs Local Pseudorandom Sources with Parity Predicate). Let 0 <

ǫ < 1 − 3 log 24
log n and P be the parity predicate on k bits for 0 < k < n/c (c is a large

enough constant). Suppose there’s a ROBP that distinguishes between uniform and local

pseudorandom source for the parity predicate, with probability at least 1/2 + s and uses < nǫ

memory. If s > Ω
((

k
n

)Ω((1−ǫ)·k)
)

, then, the ROBP requires
(

n
k

)(Ω((1−ǫ)·k)
samples.

A recent concurrent work [19] builds symmetric encryption schemes which are secure

against memory bounded adversaries, where each ciphertext makes at most k calls to a

“random” function. Even though the applications and techniques are different, the setting of

the analysis is almost identical and the paper obtains better bounds (in terms of constants

in the exponent) for the (and only the) parity predicate on k bits.

The above results show lower bounds for sublinear memory algorithms. For a slight

variant of the above uniform vs local pseudorandom source problem, we can in fact upgrade

our results to obtain the following lower bounds against super-linear memory algorithms.

See Section 4 for details.

◮ Theorem 4. For large enough n and k > c log n (where c is a large enough constant)

and k ≤ n
4 , any algorithm that can distinguish satisfiable sparse parities of sparsity k on n

variables (of type (a, b) = (a1, a2, ..., an, b) ∈ {0, 1}n+1, where ∀i ∈ [n], ai = 1 with probability
k
n and b = 〈a, x〉) from random ones (of similar type (a, b) but b is now chosen uniformly at

random from {0, 1}), with success probability at least 1
2 + 2−o(k), requires either a memory of

size Ω(nk) or 2Ω(k) samples.

In Remark 15, we observe that the above theorem is almost tight. Specifically, we observe

that there are ROBPs that use a constant memory and O(n2O(k)) samples or O(nklogn)

memory and O(n) samples to distinguish uniform sources from locally pseudorandom ones.

1.2 Applications to Security of Goldreich’s Pseudorandom Generator

A fundamental goal in cryptography is to produce secure constructions of cryptographic

primities that are highly efficient. In line with this goal, Goldreich [31] proposed a candidate

one-way function given by the following pseudorandom mapping that takes n-bit input x and

outputs m bits: fix a predicate P : {0, 1}k → {0, 1}, pick a1, a2, . . . , am uniformly at random3

from [n](k) and output P (xa1), P (xa2), . . . , P (xam). Here, a1, . . . , am and P are public and

the seed x is secret. Later works (starting with [48]) suggested using this candidate as

pseudorandom generator.

3 More generally, Goldreich proposed that a1, a2, . . . , am could be chosen in a pseudorandom way so as
to ensure a certain “expansion” property. We omit a detailed discussion here.

S. Garg, P. K. Kothari, and R. Raz 21:5

The main question of interest is the precise trade-off between the locality k and the

stretch m for a suitable choice of the predicate P . In several applications, we need that the

generator has a super-linear stretch (i.e. m = n1+δ for some δ > 0) with constant locality

(i.e. k = O(1)).

The simplicity and efficiency of such a candidate is of obvious appeal. This simplicity

has been exploited to yield a host of applications including public-key cryptography from

combinatorial assumptions [6], highly efficient secure multiparty computation [33] and most

recently, basing indistinguishability obfuscation on milder assumptions [38, 3, 41, 39, 40].

Evidence for the security of Goldreich’s candidate has been based on analyzing natural

classes of attacks based on propositional proof systems [1], spectral methods and semidefinite

programming hierarchies [51, 2, 12, 37, 42, 11] and algebraic methods [7, 8]. In particular,

previous works [37, 8] identified t-resiliency of the predicate P as a necessary condition for

the security of the candidate for m = nΩ(t) stretch.

The uniform vs local pseudorandom source problem considered in this work is easily seen

as the algorithmic question of distinguishing the output stream generated by Goldreich’s

candidate generator from a uniformly random sequence of bits. In particular, our results

imply security of Goldreich’s candidate against bounded memory algorithms for super-linear

stretch when instantiated with any t-resilient predicate for large enough constant t (but

in the streaming model). Goldreich’s candidate generator would fix the sets a1, a2, . . . , am

(which are public) and output P (xa1), P (xa2), . . . , P (xam) for n sized input x (m > n). We

prove the security of Goldreich’s generator in the model where a1, a2, . . . , am, still public,

are chosen uniformly at random from [n](k) and streamed with the generated bits.

We note that our lower bounds continue to hold even when the locality k grows polyno-

mially with the seed length n.

◮ Corollary 5 (Corollary of Theorem 2). Let 0 < ǫ < 1 − 3 log 24
log n and P be a t-resilient k-ary

predicate for k = O(n(1−ǫ)/6). Then, Goldreich’s PRG, when instantiated with any t-resilient

k-ary predicate P such that k ≥ t > 36 and stretch m = (n/t)O(t)(1−ǫ), is secure against all

read-once branching programs with memory-size bounded from above by nǫ, in the streaming

model.

1.3 Applications to Refuting Random CSPs

Theorems 2 and 3 can also be intepreted as lower bounds for the problem of refuting random

constraint satisfaction problems.

A random CSP with predicate P : {0, 1}k → {0, 1} is a constraint satisfaction problem on

n variables x ∈ {0, 1}n. More relevant to us is the variant where the constraints are randomly

generated as follows: choose an ordered k-tuple of variables a from [n] at random, a bit

b ∈ {0, 1} at random and impose a constraint P (xa) = b. When the number of constraints

m ≫ n, the resulting instance is unsatisfiable with high probability for any non-constant

predicate P . The natural algorithmic problem in this regime is that of refutation - efficiently

finding a short witness that certifies that the given instance is far from satisfiable. It is

then easy to note that the uniform vs local pseudorandom source problem is the task of

distinguishing between constraints in a random CSP (with predicate P) and one with a

satisfying assignment. Note that refutation is formally harder than the task of distinguishing

between a random CSP and one that has a satisfying assignment.

Starting with investigating in proof complexity, random CSPs have been intensively

studied in the past three decades. When P is t-resilient for t ≥ 3, all known efficient

algorithms [2] require m ≫ n1.5 samples for the refutation problem. This issue was brought

APPROX/RANDOM 2020

21:6 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

to the forefront in [27] where Feige made the famous “Feige’s Hypothesis” conjecturing the

impossibility of refuting random 3SAT in polynomial time with Θ(n) samples. Variants of

Feige’s hypothesis for other predicates have been used to derive hardness results in both

supervised [21, 22, 23] and unsupervised machine learning [13].

In [51], t-resilience was noted as a necessary condition for the refutation problem to be

hard. Our Theorems 2 and 3 confirm this as a sufficient condition for showing lower-bounds

for the refutation (in fact, even for the easier “distinguishing” variant) of random CSPs, with

t-resilient predicates, in the streaming model with bounded memory.

2 Preliminaries

Denote by log the logarithm to base 2. We use Ber(p) to denote the Bernoulli distribution

with parameter p (probability of being 1). We use [n] to denote the set {1, 2, ..., n}.

For a random variable Z and an event E, we denote by PZ the distribution of the random

variables Z, and we denote by PZ|E the distribution of the random variable Z conditioned

on the event E.

Given an n−bit vector y ∈ {0, 1}n, we use yi to denote the ith coordinate of y, that is,

y = (y1, y2, ..., yn). We use y−i ∈ {0, 1}n−1 to denote y but with the ith coordinate deleted.

Given two n−bit vectors y, y′, we use 〈y, y′〉 to denote the inner product of y and y′ modulo 2,

that is, 〈y, y′〉 =
∑n

i=1 yiy′i mod 2. We use |y| to denote the number of ones in the vector y.

Given a set S, we use y ∈R S to denote the random process of picking y uniformly at

random from the set S. Given a probability distribution D, we use y ∼ D to denote the

random process of sampling y according to the distribution D.

Next, we restate (for convenience) the definitions and results from previous papers

[53, 54, 35, 29] that we use.

Viewing a Learning Problem as a Matrix

Let X, A be two finite sets of size larger than 1.

Let M : A × X → {−1, 1} be a matrix. The matrix M corresponds to the following

learning problem: There is an unknown element x ∈ X that was chosen uniformly at random.

A learner tries to learn x from samples (a, b), where a ∈ A is chosen uniformly at random and

b = M(a, x). That is, the learning algorithm is given a stream of samples, (a1, b1), (a2, b2) . . .,

where each at is uniformly distributed and for every t, bt = M(at, x).

These papers model the learner for the learning problem corresponding to the matrix M

using a branching program:

◮ Definition 6 (Branching Program for a Learning Problem). A branching program of length

m and width d, for learning, is a directed (multi) graph with vertices arranged in m + 1 layers

containing at most d vertices each. In the first layer, that we think of as layer 0, there is

only one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf. All vertices

in the last layer are leaves (but there may be additional leaves). Every non-leaf vertex in

the program has 2|A| outgoing edges, labeled by elements (a, b) ∈ A × {−1, 1}, with exactly

one edge labeled by each such (a, b), and all these edges going into vertices in the next layer.

Each leaf v in the program is labeled by an element x̃(v) ∈ X, that we think of as the output

of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A × {−1, 1} that are given as

input, define a computation-path in the branching program, by starting from the start vertex

and following at step t the edge labeled by (at, bt), until reaching a leaf. The program outputs

the label x̃(v) of the leaf v reached by the computation-path.

S. Garg, P. K. Kothari, and R. Raz 21:7

Success Probability: The success probability of the program is the probability that x̃ = x,

where x̃ is the element that the program outputs, and the probability is over x, a1, . . . , am

(where x is uniformly distributed over X and a1, . . . , am are uniformly distributed over A,

and for every t, bt = M(at, x)).

◮ Theorem 7 ([53, 54, 29]). Any branching program that learns x ∈ {0, 1}n, from random

linear equations over F2 with success probability 2−cn requires either a width of 2Ω(n2) or a

length of 2Ω(n) (where c is a small enough constant).

◮ Theorem 8 ([29]). Any branching program that learns x ∈ {0, 1}n, from random sparse

linear equations, of sparsity exactly ℓ, over F2 with success probability 2−cl (where c is a

small enough constant) requires:

1. Assuming ℓ ≤ n/2: either a width of size 2Ω(n·ℓ) or length of 2Ω(ℓ).

2. Assuming ℓ ≤ n0.9: either a width of size Ω(n · ℓ0.99) or length of ℓΩ(ℓ).

Norms and Inner Products

Let p ≥ 1. For a function f : X → R, denote by ‖f‖p the ℓp norm of f , with respect to the

uniform distribution over X, that is:

‖f‖p =

(
E

x∈RX
[|f(x)|p]

)1/p

.

For two functions f, g : X → R, define their inner product with respect to the uniform

distribution over X as

〈f, g〉 = E
x∈RX

[f(x) · g(x)].

For a matrix M : A × X → R and a row a ∈ A, we denote by Ma : X → R the

function corresponding to the a-th row of M . Note that for a function f : X → R, we have

〈Ma, f〉 = (M ·f)a

|X| .

◮ Definition 9 (L2-Extractor, [29]). Let X, A be two finite sets. A matrix M : A × X →

{−1, 1} is a (k′, ℓ′)-L2-Extractor with error 2−r′

, if for every non-negative f : X → R with
‖f‖2

‖f‖1
≤ 2ℓ′

there are at most 2−k′

· |A| rows a in A with

|〈Ma, f〉|

‖f‖1
≥ 2−r′

.

◮ Lemma 10 ([35]). Let Tl be the set of n-bit vectors with sparsity exactly-l for l ∈ N,

that is, Tl = {x ∈ {0, 1}n |
∑n

i=1 xi = l}. Let δ ∈ (0, 1]. Let BTl
(δ) = {α ∈ {0, 1}n |∣∣Ex∈Tl

(−1)〈α,x〉
∣∣ > δ}. Then, for δ ≥ (8l

n)
l
2 ,

|BTl
(δ)| ≤ 2e−δ2/l·n/8 · 2n

Branching Program for a Distinguishing Problem

Let X, A be two finite sets of size larger than 1. Let D0 be a distribution over the sample

space |A|. Let {D1(x)}x∈X be a set of distributions over the sample space |A|. Consider the

following distinguishing problem: An unknown b ∈ {0, 1} is chosen uniformly at random.

If b = 0, the distinguisher is given independent samples from D0. If b = 1, an unknown

x ∈ X is chosen uniformly at random, and the distinguisher is given independent samples

from D1(x). The distinguisher tries to learn b from the samples drawn according to the

respective distributions.

Formally, we model the distinguisher by a branching program as follows.

APPROX/RANDOM 2020

21:8 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

◮ Definition 11 (Branching Program for a Distinguishing Problem). A branching program of

length m and width d, for distinguishing, is a directed (multi) graph with vertices arranged

in m + 1 layers containing at most d vertices each. In the first layer, that we think of as

layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0 is called

a leaf. All vertices in the last layer are leaves (but there may be additional leaves). Every

non-leaf vertex in the program has |A| outgoing edges, labeled by elements a ∈ A, with exactly

one edge labeled by each such a, and all these edges going into vertices in the next layer.

Each leaf v in the program is labeled by a b̃(v) ∈ {0, 1}, that we think of as the output of the

program on that leaf.

Computation-Path: The samples a1, . . . , am ∈ A that are given as input, define a

computation-path in the branching program, by starting from the start vertex and following

at step t the edge labeled by at, until reaching a leaf. The program outputs the label b̃(v) of

the leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that b̃ = b,

where b̃ is the element that the program outputs, and the probability is over b, x, a1, . . . , am

(where b is uniformly distributed over {0, 1}, x is uniformly distributed over X and a1, . . . , am

are independently drawn from D0 if b = 0 and D1(x) if b = 1).

3 Overview of the Proofs

We prove our theorems using two different techniques. We prove Theorems 1 and 4 through

reductions to the memory-sample lower bounds for the corresponding learning problems

in Section 4. Informally, for Theorem 1, we construct a branching program that learns

the unknown vector x from random linear equations in F2 by guessing each bit one by one

sequentially and using the distinguisher, for distinguishing subspaces from uniform, to check

if it guessed correctly. Then, we are able to lift the previously-known memory-sample lower

bounds for the learning problem (Theorem 7) to the distinguishing problem. Similarly, we

lift the memory-sample lower bounds for a variant of the learning problem in Theorem 8 to

the get Theorem 4.

Theorems 2 and 3 are restated in Section 5. A brief overview of these theorems are as

follows. Recall, a pseudorandom source fixes a k-ary Boolean predicate P : {0, 1}k → {0, 1}.

It chooses a uniformly random x ∈ {0, 1}n and generates samples (α, b) ∈ [n](k) × {0, 1}

where α is a uniformly random (ordered) k-tuple of indices in [n] and b is the evaluation of

P at xα - the k-bit string obtained by projecting x onto the coordinates indicated by α. The

truly random source samples (α, b) where α ∈ [n](k) and b ∈ {0, 1} are chosen uniformly and

independently. The problem for a distinguisher is to correctly guess whether the m samples

are generated by a pseudorandom or a uniform source, when the samples arrive in a stream.

We first show through a hybrid argument that a distinguisher A that distinguishes between

the uniform and pseudorandom source, with an advantage of s over 1/2, can also distinguish

(with advantage of at least s/m) when only the jth (for some j) sample is drawn from the

“unknown source”, the first j − 1 samples are drawn from the pseudorandom source and the

last m − j samples are drawn from the uniform source.

Let v be the memory state of A after seeing the first j − 1 samples, which were generated

from a pseudorandom source with a seed x picked uniformly at random from {0, 1}n. Let

Px|v be the probability distribution of the random variable x conditioned on reaching v. If

the jth sample is generated using the same pseudorandom source, then ∀α ∈ [n](k), the bit b

is 0 with probability
∑

x′:P (x′α)=0 Px|v(x′) and 1 with probability 1 −
∑

x′:P (x′α)=0 Px|v(x′).

If the jth sample is generated using the uniform source, then ∀α ∈ [n](k), the bit b is 0 with

S. Garg, P. K. Kothari, and R. Raz 21:9

probability 1/2 and 1 with probability 1/2. Thus, for any α, A can identify the “unknown

source” with an at most
∣∣∣
∑

x′:P (x′α)=0 Px|v(x′) − 1/2
∣∣∣ advantage. We show that when A

has low memory (< nǫ for some 0 < ǫ < 1), then with high probability, it reaches a state

v such that Px|v has high min-entropy (informally, it’s hard to determine the seed for the

pseudorandom source). The argument till now (last 2 paragraphs) is common and has been

previously used to prove that a “source” fools bounded space, such as in [50].

Next, we use t-resiliency of P to show that when Px|v has high min-entropy, then with

high probability over α ∈ [n](k), b behaves almost like in a uniform source (Lemma 19), that

is, |
∑

x′:P (x′α)=0 Px|v(x′) − 1/2| is small. Hence, with high probability, it’s hard for A to

judge with ’good’ advantage whether b was generated from a pseudorandom or a uniform

source. Note that the last m − j samples generated by a uniform source can’t better this

advantage.

4 Time-Space Tradeoff through Reduction to Learning

In this section, we will state time-space tradeoffs for the following distinguishing problems,

which are proved using black-box reduction from the corresponding learning problems.

Distinguishing Subspaces from Uniform

Informally, we study the problem of distinguishing between the cases when the samples are

drawn from a uniform distribution over {0, 1}n and when the samples are drawn randomly

from a subspace of rank k over F2. Let L(k, n) be the set of all linear subspaces of dimension

k (⊆ {0, 1}n), that is, L(k, n) contains all subspaces V such that V = {v ∈ {0, 1}n | 〈wi, v〉 =

0 ∀i ∈ [n − k]} for some linearly independent vectors w1, w2, ..., wn−k. Formally, we consider

distinguishers for distinguishing between the following distributions:

1. D0: Uniform distribution over {0, 1}n.

2. D1(S), S ∈ L(k, n): Uniform distribution over S.

Note: If the subspace S is revealed, it’s easy for a branching program of constant width

to distinguish w.h.p. by checking the inner product of the samples with a vector in the

orthogonal complement of S.

A distinguisher can distinguish subspaces if for an unknown random linear subspace

S ∈ L(k, n), it can distinguish between D0 and D1(S). Formally, a distinguisher L, after

seeing m samples, has a success probability of p if

Pru1,...,um∼D0
[L(u1, ..., um) = 0] + PrS∈RL(k,n);u1,...,um∼D1(S)[L(u1, ..., um) = 1]

2
= p (1)

◮ Theorem 12. For k > c2 log n (where c2 is a large enough constant), any algorithm that

can distinguish k-dimensional subspaces over F
n
2 from F

n
2 ({0, 1}n), when samples are drawn

uniformly at random from the subspace or F
n
2 respectively, with success probability at least

1
2 + 2−o(k) requires either a memory of size Ω(k2) or 2Ω(k) samples.

For the proof, refer to the full version of the paper [28]. Briefly, we prove that using a

distinguisher for distinguishing subspaces, we can construct a branching program that learns

an unknown bit vector x from random linear equations over F2. Then, we are able to lift the

time-space tradeoffs of Theorem 7.

◮ Remark 13 (Tightness of the Lower Bound). We note two easy upper bounds that show

that our results in Theorem 12 are tight (up to constants in the exponent). Firstly, we

observe an algorithm B1 that distinguishes subspaces of dimension k from uniform, using

O(k2) memory and O(k) samples, with probability at least 3/4 (0 < k ≤ n − 1). B1 stores

APPROX/RANDOM 2020

21:10 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

the first min(8k, n) bits of the first 8k samples (in O(k2) memory); outputs 1 if the samples

(projected onto the first min(8k, n) coordinates) belong to a ≤ k-dimensional subspace (of

{0, 1}min(8k,n)), and 0 otherwise (can be checked using gaussian elimination). When the

samples are drawn from D1(S) for some k-dimensional subspace S, then B1 always outputs

the correct answer. When the samples are drawn from a uniform distribution on {0, 1}n, the

probability that 8k samples form a k-dimensional subspace is at most

(
8k

k

)
·

1

27k
≤ (8e)k2−7k < 2−2k ≤ 1/4

(because, if the 8k samples form a k-dimensional subspace, then at least 7k of them are

linearly dependent on the previously stored samples and that happens with at most 1/2

probability for each sample). Hence, B1 errs with at most 1/4 probability.

Secondly, we observe that there exists a branching program that distinguishes subspaces

of dimension k from uniform using constant width and O(k · 2k) length with probability at

least 3/4. Before, we show a randomized algorithm P that distinguishes between D0 and

D1(S) for every S ∈ L(k, n) with high probability. P is described as follows:

1. Repeat steps 2 to 3 sequentially for t = 10 · 2k iterations.

2. Pick a non-zero vector v uniformly at random from {0, 1}n. For the next 2k samples (of

the form a ∈ {0, 1}n), check if 〈a, v〉 = 0.

3. If all the 2k samples are orthogonal to v, exit the loop and output 1.

4. Output 0 (None of the randomly chosen vectors were orthogonal to all the samples seen

in its corresponding iteration).

The number of samples seen by P is 20k · 2k. Now, we prove that for every subspace S of

dimension k, that is, S ∈ L(k, n), P distinguishes between D0 and D1(S) with probability

at least 1 − 1
2 (e−5 + 10

2k) ≥ 3/44.

When the samples are drawn from D0, the probability that P outputs 1 is equal to the

probability that in at least one of the t iterations, the randomly chosen non-zero vector v was

orthogonal to the 2k samples drawn uniformly from {0, 1}n. Here, the probability is over v

and the samples. By union bound, we can bound the probability of outputting 1 (error) by

10 · 2k ·

(
1

2

)2k

=
10

2k
.

For a fixed subspace S ∈ L(k, n), the probability that we pick a non-zero vector v ∈ {0, 1}n

that is orthogonal to S is at least 2n−k−1
2n−1 > 2−(k+1). Therefore, when the samples are drawn

from D1(S), the probability that P outputs 0 (error) is upper bounded by
(
1 − 1

2k+1

)10·2k

≤

e−5. Here, the probability is over the vectors v and the samples. Now to construct a constant

width but 20k · 2k length branching program that distinguishes with probability at least 3/4,

we consider a bunch of branching programs each indexed by t vectors that are used in step 2

of the algorithm P . It’s easy to see that for a fixed set of t vectors, P can be implemented

by a constant width branching program. As, when the t vectors are uniformly distributed

over {0, 1}n (non-zero), P can distinguish with probability at least 3/4 for every subspace

S ∈ L(k, n), there exists a fixing to the t vectors such that the corresponding branching

program distinguishes between D0 and D1(S) (when S is chosen uniformly at random from

L(k, n)) with probability at least 3/4.

4 k ≥ 5

S. Garg, P. K. Kothari, and R. Raz 21:11

Distinguishing Satisfiable Sparse Equations from Uniform

Informally, we study the problem of distinguishing between the cases when the samples

are drawn from satisfiable sparse equations over F2 and when the samples are drawn from

random sparse equations.

Formally, we consider the distinguishing problem between the following two distributions:

1. D0: Distribution on (n + 1)-length vectors (v1, v2, ..., vn, b) ∈ {0, 1}n+1 where ∀i ∈ [n], vi

is 1 with probability k
n and 0 otherwise, and b is 1 with probability 1

2 and 0 otherwise.

2. D1(x), x ∈ {0, 1}n: Distribution on (n + 1)-length vectors (v1, v2, ..., vn, b) ∈ {0, 1}n+1

where ∀i ∈ [n], vi is 1 with probability k
n and 0 otherwise, and b = 〈v, x〉 where

v = (v1, v2, ..., vn).

Here, k is the sparsity parameter.

We say that a distinguisher can distinguish satisfiable sparse equations of sparsity k from

random ones if, when x is unknown and chosen uniformly at random from {0, 1}n, it can

distinguish between D0 and D1(x). Formally, a distinguisher L, after seeing m, has a success

probability of p if

Pru1,...,um∼D0
[L(u1, ..., um) = 0] + Prx∈R{0,1}n;u1,...,um∼D1(x)[L(u1, ..., um) = 1]

2
≥ p (2)

◮ Theorem 14. For large enough n and k > c5 log n (where c5 is a large enough constant)

and k ≤ n
4 , any algorithm that can distinguish random sparse parities of sparsity k on n

variables from satisfiable ones, with success probability at least 1
2 + 2−o(k), requires either a

memory of size Ω(nk) or 2Ω(k) samples.

◮ Remark 15 (Tightness of our Lower Bound). We note two easy upper bounds that show that

our results in Theorem 14 are almost tight. Firstly, we observe that there’s an algorithm B1

of memory O(nk log n) that uses O(n) samples and can distinguish random sparse parities

of sparsity k from satisfiable ones, with probability of at least 3/4. B1 just stores O(n)

samples (in O(nk log n) memory); if there exists x that satisfies all the samples, it outputs

1, otherwise it outputs 0. When the samples are satisfiable, that is, drawn from D1(x) (for

some x), B1 always outputs 1. When the samples are random, using the union bound, it’s

easy to see that the probability that there exists an x that satisfies all the O(n) samples is

exponentially small in n.

Second, there’s an algorithm B2 of constant memory that uses O(n · 2O(k)) samples and

can distinguish random sparse parities of sparsity k from satisfiable ones, with probability

of at least 3/4. The probability that a learning algorithm sees sample (a, b), such that

a = (1, 0, ..., 0), is at least ke−2k

n for k < n/2; thus, one can just wait for say 5 such samples

and see if the values of b are drawn randomly or are fixed, giving a constant memory and

O(ne2k) samples algorithm that distinguishes with high probability.

Refer to the full version of the paper [28] for the proof of Theorem 14. Briefly, we

prove that using such a distinguisher, we can construct a branching program that learns an

unknown bit vector x from sparse linear equations of sparsity k over F2. Unlike before, when

we were able to lift, we are not able to directly lift the time-space tradeoffs of Theorem 8,

because these lower bounds hold when the equations are of sparsity exactly-k. Following the

proof of Theorem 8 in [29] very closely, we can prove the following lemma:

◮ Lemma 16. Any branching program that learns x ∈ {0, 1}n from random linear equations

over F2 of type (a, b) = (a1, a2, ..., an, b) ∈ {0, 1}n+1, where ∀i ∈ [n], ai = 1 with probability
k
n and b = 〈a, x〉, with success probability 2−ck, requires either width of size 2Ω(n·k) or length

of 2Ω(k) (where c is a small enough constant, k ≤ n
4).

The proof is given in full version [28]. Now through reduction, we are able to lift the

time-space tradeoffs of Lemma 16 to get Theorem 14.

APPROX/RANDOM 2020

21:12 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

5 Sample-Memory Tradeoffs for Resilient Local PRGs

In this section, we prove our lower bound against memory bounded algorithms for distin-

guishing between streaming outputs of Goldreich’s pseudorandom generator and perfectly

random bits. Before stating our result in detail, we set up some notation and definitions

that will be convenient for us in this section.

5.1 Formal Setup

A k-ary predicate P is a Boolean function P : {0, 1}k → {0, 1}. Let
∑

α⊆[k] P̂ (α)χα be the

Fourier polynomial for (−1)P ((−1)P (x) = (−1)P (x)). P is said to be t-resilient if t is the

maximum positive integer such that P̂ (α) = 0 whenever |α| < t. In particular, the parity

function 〈α, x〉 is |α|-resilient. Here, χα : {0, 1}k → {−1, 1} is such that χα(x) = (−1)〈α,x〉.

Let [n](k) denote the set of all ordered k-tuples of exactly k elements of [n]. That is, no

element of [n] occurs more than once in any tuple of [n](k). For any a ∈ [n](k), let ai ∈ [n]

denote the element of [n] appearing in the ith position in a. Given x ∈ {0, 1}n and a ∈ [n](k),

let xa ∈ {0, 1}k be defined so that (xa)i = xai

for every 1 ≤ i ≤ k.

For any k-ary predicate P , consider the problem of distinguishing between the following

two distributions on (a, b) ∈ [n](k) × {0, 1} where (a, b) are sampled as follows:

1. Dnull: 1) Choose a uniformly at random from [n](k), and 2) choose b uniformly at random

and independently from {0, 1}.

2. Dplanted(x), x ∈ {0, 1}n: 1) Choose a uniformly at random from [n](k), and 2) set

b = P (xa).

Note that a is chosen uniformly at random from [n](k) in both distributions. However,

while the bit b is independent of a in Dnull, it may be correlated with a in Dplanted.

A distinguisher for the above problem gets access to m i.i.d. samples ut = (at, bt), t ∈ [m]

from one of Dnull and Dplanted(x) for a uniformly randomly chosen x ∈ {0, 1}n and outputs

either “planted” or “null”. We say that the distinguisher succeeds with probability p if

Pr
u1,...,um∼Dnull

[L(u1, ..., um) = “null”] + Pr
x∈R{0,1}n;

u1,...,um∼Dplanted(x)

[L(u1, ..., um) = “planted”]

is greater than 2p. In the language used in the previous sections, think of “null” as being

equivalent to 0 and “planted” being equivalent to 1, that is, Dnull ≡ D0 and Dplanted(x) ≡

D1(x). Therefore, the success probability of the distinguisher L can be written as

Pru1,...,um∼D0 [L(u1, ..., um) = 0] + Prx∈R{0,1}n;u1,...,um∼D1(x)[L(u1, ..., um) = 1]

2
≥ p (3)

In particular, if x ∈ {0, 1}n is “revealed” to a distinguishing algorithm, then it is easy to

use Θ(log(1/ǫ)) samples and constant width branching program to distinguish correctly with

probability at least 1 − ǫ between Dnull and Dplanted.

5.2 Main Result

The main result of this section is the following sample-memory trade-off for any distinguisher.

◮ Theorem 17. Let P be a t-resilient k-ary predicate. Let 0 < ǫ < 1 − 3 log 24
log n and k < n/c.

Suppose there’s an algorithm that distinguishes between Dnull and Dplanted with probability

at least 1/2 + s and uses < nǫ memory. Then, whenever 0 < t ≤ k < n
(1−ǫ)

6 /3 and

s > c1(n
t)−(1−ǫ

36)t, the algorithm requires (n
t)(1−ǫ

36)t samples. Here, c and c1 are large enough

constants.

S. Garg, P. K. Kothari, and R. Raz 21:13

Note that when k is a constant, this theorem gives a sample-memory tradeoff even for Ω(n)

memory.

Our argument yields a slightly better quantitative lower bound for the special case when

P is the parity function, that is, P (x) = (
∑k

i=1 xi) mod 2. We will represent this function

by Xor.

◮ Theorem 18. Let 0 < ǫ < 1 − 3 log 24
log n and P be the parity predicate Xor on k = t bits.

Suppose there’s an algorithm that distinguishes between Dnull and Dplanted with probability at

least 1/2 + s and uses < nǫ memory. Then for k ≤ n/c5, if s > 3(n
k)−(1−ǫ

18)k, the algorithm

requires (n
k)(1−ǫ

18)k samples.

We prove both Theorem 17 and 18 via the same sequence of steps except for a certain

quantitative bound presented in Lemma 19. In the next subsection, we give an algorithm

that takes Õ(nǫ + k)k memory and Õ(n(1−ǫ)k) samples, and distinguishes between Dnull

and Dplanted for any predicate P , with probability 99/100. Thus, the lower bounds are

almost tight up to constant factors in the exponent for the parity predicate. The question of

whether there exists an algorithm that runs in O(n(1−ǫ)t) samples and O(nǫ) memory, and

distinguishes between Dnull and Dplanted with high probability, for t-resilient predicates P ,

remains open.

5.3 Tightness of the Lower Bound

In this section, we observe that there exists an algorithm A that takes O((nǫ + k) · k log n)

memory and O(n(1−ǫ)k · (nǫ + k)) samples, and distinguishes between Dnull and Dplanted for

any predicate P , with probability 99/100 (for nǫ > 10).

A runs over 4n(1−ǫ)k · (nǫ + k) samples and stores the first 2(nǫ + k) samples (a, b) ∈

[n](k) × {0, 1} such that ai ≤ nǫ + k, ∀i ∈ [k], that is, the bit b depends only on the first

nǫ + k bits of x under the distribution Dplanted(x). If A encounters less than 2(nǫ + k)

samples of the above mentioned form, A outputs 1 (“planted”). Otherwise, A goes over all

the possibilities of the first nǫ + k bits of x (2nǫ+k possibilities in total) and checks if it could

have generated the stored samples. If there exists a y ∈ {0, 1}nǫ+k that generated the stored

samples, A outputs 1 (“planted”), otherwise A outputs 0.

It’s easy to see that A uses m = 4n(1−ǫ)k · (nǫ + k) samples and at most 2(nǫ + k) · k log n

memory (as it takes only k log n memory to store a sample). Next, we calculate the probability

of success. Let Zj be a random variable as follows: Zj = 1 if the jth sample (aj , bj) is such

that ai
j ≤ nǫ + k, ∀i ∈ [k] and 0 otherwise.

Pr[Zj = 1] =
|[nǫ + k](k)|

|[n](k)|
≥ n−(1−ǫ)k

And E[
∑m

j=1 Zj] = 4(nǫ + k). By Chernoff bound, Pr[
∑

j Zj < 2(nǫ + k)] ≤ e−
4(nǫ+k)

8 ≤ 1
100 .

Therefore, the probability that A stores 2(nǫ + k) samples is at least 99/100. It’s easy to see

that A always outputs 1 when the samples are generated from Dplanted(x) for any x.

The probability that A outputs 1, given that it stored 2(nǫ +k) samples, when the samples

are generate from Dnull is equal to the probability that there exists a y ∈ {0, 1}nǫ+k that

could have generated the stored samples. Let (a′
1, b′

1), ..., (a′
2(nǫ+k), b′

2(nǫ+k)) be the stored

samples. There are at most 2nǫ+k sequences of b′
1, ..., b′

2(nǫ+k) generated by some y given

5 c is a large enough constant

APPROX/RANDOM 2020

21:14 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

{a′
j}j∈[2(nǫ+k)]. As, under Dnull, b is chosen uniformly at random from {0, 1}, the probability

that there exists y ∈ {0, 1}nǫ+k that could have generated the stored samples is at most
2nǫ+k

22(nǫ+k) = 2−(nǫ+k) ≤ 1/100. Hence, the probability of success is at least 99/100.

5.4 Proof of Theorems 17 and 18

For the full proof, please refer to the full version of the paper [28]. In this section, we give a

very brief outline of the proof and state a crucial lemma. Fix a t-resilient k-ary predicate P .

Let B be a branching program with bounded width and length, that distinguishes between

Dnull and Dplanted(x) (x is uniformly distributed over {0, 1}n) for the predicate P , with

non-negligible probability.

We first use hybrid argument to obtain that the branching program B must have a non-

trivial probability of distinguishing with a single sample. Towards this, define Hj(x) to be

the distribution over m samples where the first j samples are drawn from Dplanted(x) and the

remaining m − j samples are from Dnull. Using hybrid argument, there is a j′ ∈ {1, ..., m}

such that B distinguishes between the hybrids Hj′−1(x) and Hj′(x) with non-negligible

probability. Then to contradict, we show that a bounded-width and bounded-length B

cannot distinguish between the hybrids Hj′−1(x) and Hj′(x).

Let v1 be a vertex of the branching program B after seeing the first j′ − 1 (generated

from a pseudorandom source with a seed x picked uniformly at random from {0, 1}n). Let

Px|v1
be the probability distribution of the random variable x conditioned on reaching v1.

If the j′th sample is generated using the same pseudorandom source (as in Hj′(x)), then

∀a ∈ [n](k), the bit b is 0 with probability
∑

x′:P (x′a)=0 Px|v1
(x′) and 1 with probability

1 −
∑

x′:P (x′a)=0 Px|v1
(x′). If the j′th sample is generated using the uniform source (as in

Hj′−1(x)), then ∀a ∈ [n](k), the bit b is 0 with probability 1/2 and 1 with probability 1/2.

Thus, for any a, B can distinguish with at most
∣∣∣
∑

x′:P (x′a)=0 Px|v1
(x′) − 1/2

∣∣∣ advantage.

We show that when B has bounded width, then with high probability, it reaches a vertex

v1 such that Px|v1
has high min-entropy. We then use t-resiliency of P to show that when

Px|v1
has high min-entropy, then with high probability over a ∈ [n](k), the expression∣∣∣ 1

2 −
∑

x′:P (x′a)=0 Px|v1
(x′)

∣∣∣ is small (the following lemma). Hence, with high probability, it’s

hard for B to distinguish whether the j′th sample was generated from Hj′(x) or Hj′−1(x).

Note that the last m − j samples, generated by a uniform source, can’t better this advantage.

Define Tl = {ā ∈ {0, 1}n :
∑n

i=1 āi = l} for l ∈ N. For ǫ > 0, k ≥ t > 0, let L be the

set of vertices v such that Px|v has min-entropy of at least (n − nǫ − t log(n/t)), that is,

∀x′ ∈ {0, 1}n, Px|v(x′) ≤ 2nǫ−n · (n/t)t.

◮ Lemma 19. For all 0 < ǫ < 1 − 3 log 24
log n , 0 < t ≤ k < { n

c , n
(1−ǫ)

6 /3}, and v1 ∈ L,

∣∣∣∣∣
∑

x′

Px|v1
(x′) · (−1)P (x′a)

∣∣∣∣∣ ≤ c2n−(1−ǫ
18)t

for all but at most c2n−(1−ǫ
18)t fraction of a ∈ [n](k) (recall that P is a t-resilient k-ary

predicate).

For all v1 ∈ L, 0 < ǫ < 1 − 3 log 24
log n , 0 < k < n

c ,

∣∣∣∣∣
∑

x′

Px|v1
(x′) · (−1)Xor(x′a)

∣∣∣∣∣ ≤ 2
(n

k

)−(1−ǫ
9)k

for all but at most 2(n
k)−(1−ǫ

9)k fraction of a ∈ [n](k).

Here, c and c2 are large enough constants.

S. Garg, P. K. Kothari, and R. Raz 21:15

Please refer to the full version [28] for the proof of the above lemma.

References

1 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudor-

andom generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88, 2004.

doi:10.1137/S0097539701389944.

2 Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP. In 2015

IEEE 56th Annual Symposium on Foundations of Computer Science—FOCS 2015, pages

689–708. IEEE Computer Soc., Los Alamitos, CA, 2015.

3 Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from

functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730, 2015.

URL: https://eprint.iacr.org/2015/730.

4 Benny Applebaum. Pseudorandom generators with long stretch and low locality from random

local one-way functions. SIAM J. Comput., 42(5):2008–2037, 2013.

5 Benny Applebaum. Cryptographic hardness of random local functions - survey. Computational

Complexity, 25(3):667–722, 2016.

6 Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different

assumptions. In STOC’10—Proceedings of the 2010 ACM International Symposium on Theory

of Computing, pages 171–180. ACM, New York, 2010.

7 Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-bias

generators. J. Cryptology, 29(3):577–596, 2016.

8 Benny Applebaum and Shachar Lovett. Algebraic attacks against random local functions and

their countermeasures. In STOC, pages 1087–1100. ACM, 2016.

9 Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlasting security in the

bounded storage model. IEEE Trans. Information Theory, 48(6):1668–1680, 2002. doi:

10.1109/TIT.2002.1003845.

10 Yonatan Aumann and Michael O. Rabin. Information theoretically secure communication

in the limited storage space model. In Advances in Cryptology - CRYPTO ’99, 19th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,

Proceedings, pages 65–79, 1999. doi:10.1007/3-540-48405-1_5.

11 Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh K. Kothari. Limits on low-degree

pseudorandom generators (or: Sum-of-squares meets program obfuscation). In Advances in

Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,

Part II, pages 649–679, 2018. doi:10.1007/978-3-319-78375-8_21.

12 Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of squares lower bounds from pairwise

independence [extended abstract]. In STOC’15—Proceedings of the 2015 ACM Symposium on

Theory of Computing, pages 97–106. ACM, New York, 2015.

13 Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares hierarchy. In

COLT, volume 49 of JMLR Workshop and Conference Proceedings, pages 417–445. JMLR.org,

2016.

14 Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for learning finite

functions from random evaluations, with applications to polynomials. In Conference On

Learning Theory, pages 843–856, 2018.

15 Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded

adversaries. In Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings, pages 292–306,

1997. doi:10.1007/BFb0052243.

16 Michael S. Crouch, Andrew McGregor, Gregory Valiant, and David P. Woodruff. Stochastic

streams: Sample complexity vs. space complexity. In ESA, volume 57 of LIPIcs, pages

32:1–32:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

APPROX/RANDOM 2020

https://doi.org/10.1137/S0097539701389944
https://eprint.iacr.org/2015/730
https://doi.org/10.1109/TIT.2002.1003845
https://doi.org/10.1109/TIT.2002.1003845
https://doi.org/10.1007/3-540-48405-1_5
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/BFb0052243

21:16 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

17 Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC. In 26th International

Symposium on Mathematical Foundations of Computer Science, MFCS, pages 272–284, 2001.

18 Yuval Dagan and Ohad Shamir. Detecting correlations with little memory and communication.

In Conference On Learning Theory, pages 1145–1198, 2018.

19 Wei Dai, Stefano Tessaro, and Xihu Zhang. Super-linear time-memory trade-offs for symmetric

encryption. Cryptology ePrint Archive, Report 2020/663, 2020. URL: https://eprint.iacr.

org/2020/663.

20 Amit Daniely. Complexity theoretic limitations on learning halfspaces. In Daniel Wichs and

Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 105–117. ACM,

2016. doi:10.1145/2897518.2897520.

21 Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. More data speeds up training time in

learning halfspaces over sparse vectors. In NIPS, pages 145–153, 2013.

22 Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. The complexity of learning halfspaces

using generalized linear methods. In COLT, volume 35 of JMLR Workshop and Conference

Proceedings, pages 244–286. JMLR.org, 2014.

23 Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper

learning complexity. In STOC, pages 441–448. ACM, 2014.

24 Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning dnf’s.

In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, Proceedings of the 29th

Conference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, volume 49

of JMLR Workshop and Conference Proceedings, pages 815–830. JMLR.org, 2016. URL:

http://proceedings.mlr.press/v49/daniely16.html.

25 Ilias Diakonikolas, Themis Gouleakis, Daniel M Kane, and Sankeerth Rao. Communication

and memory efficient testing of discrete distributions. In Conference on Learning Theory,

pages 1070–1106, 2019.

26 Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-storage

model. In Advances in Cryptology - EUROCRYPT 2004, International Conference on the

Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,

Proceedings, pages 126–137, 2004. doi:10.1007/978-3-540-24676-3_8.

27 Uriel Feige. Relations between average case complexity and approximation complexity. In

Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages

534–543. ACM, New York, 2002. doi:10.1145/509907.509985.

28 Sumegha Garg, Pravesh K Kothari, and Ran Raz. Time-space tradeoffs for distinguishing

distributions and applications to security of goldreich’s prg. arXiv preprint, 2020. arXiv:

2002.07235.

29 Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for

learning. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

pages 990–1002. ACM, 2018.

30 Sumegha Garg, Ran Raz, and Avishay Tal. Time-space lower bounds for two-pass learning. In

34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2019.

31 Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic Colloquium

on Computational Complexity (ECCC), 7(90), 2000.

32 Jiaxin Guan and Mark Zhandary. Simple schemes in the bounded storage model. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pages

500–524. Springer, 2019.

33 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Ef-

ficient non-interactive secure computation. In Advances in Cryptology - EUROCRYPT

2011 - 30th Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 406–425, 2011.

doi:10.1007/978-3-642-20465-4_23.

https://eprint.iacr.org/2020/663
https://eprint.iacr.org/2020/663
https://doi.org/10.1145/2897518.2897520
http://proceedings.mlr.press/v49/daniely16.html
https://doi.org/10.1007/978-3-540-24676-3_8
https://doi.org/10.1145/509907.509985
http://arxiv.org/abs/2002.07235
http://arxiv.org/abs/2002.07235
https://doi.org/10.1007/978-3-642-20465-4_23

S. Garg, P. K. Kothari, and R. Raz 21:17

34 Joseph Jaeger and Stefano Tessaro. Tight time-memory trade-offs for symmetric encryption. In

Annual International Conference on the Theory and Applications of Cryptographic Techniques,

pages 467–497. Springer, 2019.

35 Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages

1067–1080. ACM, 2017.

36 Pravesh K. Kothari and Roi Livni. Improper learning by refuting. In 9th Innovations in

Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,

USA, pages 55:1–55:10, 2018. doi:10.4230/LIPIcs.ITCS.2018.55.

37 Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower

bounds for refuting any CSP. In Proceedings of the 49th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 132–145,

2017. doi:10.1145/3055399.3055485.

38 Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.

In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,

Proceedings, Part I, pages 28–57, 2016. doi:10.1007/978-3-662-49890-3_2.

39 Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs.

Cryptology ePrint Archive, Report 2016/1096, 2016. URL: https://eprint.iacr.org/2016/

1096.

40 Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and

block-wise local prgs. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I,

pages 630–660, 2017. doi:10.1007/978-3-319-63688-7_21.

41 Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like as-

sumptions on constant-degree graded encodings. In Irit Dinur, editor, IEEE 57th Annual

Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt

Regency, New Brunswick, New Jersey, USA, pages 11–20. IEEE Computer Society, 2016.

doi:10.1109/FOCS.2016.11.

42 Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom gener-

ators and applications to indistinguishability obfuscation. In Theory of Cryptography - 15th

International Conference, TCC, volume 10677, pages 119–137. Springer, 2017.

43 Alex Lombardi and Vinod Vaikuntanathan. Minimizing the complexity of Goldreich’s pseu-

dorandom generator. IACR Cryptology ePrint Archive, page 277, 2017.

44 Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. J.

Cryptology, 5(1):53–66, 1992. doi:10.1007/BF00191321.

45 Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space bounded

learning. In COLT, volume 65 of Proceedings of Machine Learning Research, pages 1516–1566.

PMLR, 2017.

46 Dana Moshkovitz and Michal Moshkovitz. Entropy samplers and strong generic lower bounds

for space bounded learning. In 9th Innovations in Theoretical Computer Science Conference

(ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

47 Michal Moshkovitz and Naftali Tishby. Mixing complexity and its applications to neural

networks. arXiv preprint, 2017. arXiv:1703.00729.

48 Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In FOCS,

pages 136–145. IEEE Computer Society, 2003.

49 Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On ǫ-biased generators in NC0. Random

Structures Algorithms, 29(1):56–81, 2006. doi:10.1002/rsa.20112.

50 N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System

Sciences, 52(1):43–52, 1996.

APPROX/RANDOM 2020

https://doi.org/10.4230/LIPIcs.ITCS.2018.55
https://doi.org/10.1145/3055399.3055485
https://doi.org/10.1007/978-3-662-49890-3_2
https://eprint.iacr.org/2016/1096
https://eprint.iacr.org/2016/1096
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1007/BF00191321
http://arxiv.org/abs/1703.00729
https://doi.org/10.1002/rsa.20112

21:18 Time-Space Tradeoffs for Distinguishing and Security of Goldreich’s PRG

51 Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal polynomial

stretch. In IEEE 29th Conference on Computational Complexity—CCC 2014, pages 1–12.

IEEE Computer Soc., Los Alamitos, CA, 2014. doi:10.1109/CCC.2014.9.

52 Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random csps below

the spectral threshold. In STOC, pages 121–131. ACM, 2017.

53 Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.

In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages

266–275. IEEE, 2016.

54 Ran Raz. A time-space lower bound for a large class of learning problems. In 58th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,

October 15-17, 2017, pages 732–742, 2017.

55 Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning

and estimation. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence,

and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems

27: Annual Conference on Neural Information Processing Systems 2014, December 8-13

2014, Montreal, Quebec, Canada, pages 163–171, 2014. URL: http://papers.nips.cc/book/

advances-in-neural-information-processing-systems-27-2014.

56 Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear

regression with small error. arXiv preprint, 2019. arXiv:1904.08544.

57 Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical

queries. In COLT, volume 49 of JMLR Workshop and Conference Proceedings, pages 1490–1516.

JMLR.org, 2016.

58 Stefano Tessaro and Aishwarya Thiruvengadam. Provable time-memory trade-offs: symmetric

cryptography against memory-bounded adversaries. In Theory of Cryptography Conference,

pages 3–32. Springer, 2018.

59 Salil P. Vadhan. On constructing locally computable extractors and cryptosystems in the

bounded storage model. In CRYPTO, volume 2729 of Lecture Notes in Computer Science,

pages 61–77. Springer, 2003.

60 Salil P. Vadhan. On learning vs. refutation. In COLT, volume 65 of Proceedings of Machine

Learning Research, pages 1835–1848. PMLR, 2017.

61 Gregory Valiant and Paul Valiant. Information theoretically secure databases. arXiv preprint,

2016. arXiv:1605.02646.

https://doi.org/10.1109/CCC.2014.9
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014
http://arxiv.org/abs/1904.08544
http://arxiv.org/abs/1605.02646

	Introduction
	Our Results
	Applications to Security of Goldreich's Pseudorandom Generator
	Applications to Refuting Random CSPs

	Preliminaries
	Overview of the Proofs
	Time-Space Tradeoff through Reduction to Learning
	Sample-Memory Tradeoffs for Resilient Local PRGs
	Formal Setup
	Main Result
	Tightness of the Lower Bound
	Proof of Theorems 17 and 18

