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—— Abstract

In this work, we establish lower-bounds against memory bounded algorithms for distinguishing
between natural pairs of related distributions from samples that arrive in a streaming setting.

Our first result applies to the problem of distinguishing the uniform distribution on {0,1}"
from uniform distribution on some unknown linear subspace of {0,1}". As a specific corollary, we
show that any algorithm that distinguishes between uniform distribution on {0,1}" and uniform
distribution on an n/2-dimensional linear subspace of {0,1}" with non-negligible advantage needs
224" samples or Q(n?) memory (tight up to constants in the exponent).

Our second result applies to distinguishing outputs of Goldreich’s local pseudorandom generator
from the uniform distribution on the output domain. Specifically, Goldreich’s pseudorandom
generator G fixes a predicate P : {0,1}* — {0,1} and a collection of subsets Si, Sz, ..., Sm C [n] of
size k. For any seed = € {0,1}", it outputs P(zs, ), P(zs,), ..., P(zs,,) where xs, is the projection
of z to the coordinates in S;. We prove that whenever P is t-resilient (all non-zero Fourier coeflicients
of (=1)% are of degree t or higher), then no algorithm, with < n° memory, can distinguish the

output of G from the uniform distribution on {0,1}™ with a large inverse polynomial advantage, for

(-0
stretch m < (%) % (barring some restrictions on k). The lower bound holds in the streaming

model where at each time step ¢, S; C [n] is a randomly chosen (ordered) subset of size k and the
distinguisher sees either P(zs;) or a uniformly random bit along with S;.

An important implication of our second result is the security of Goldreich’s generator with super
linear stretch (in the streaming model), against memory-bounded adversaries, whenever the predicate
P satisfies the necessary condition of t-resiliency identified in various prior works.

Our proof builds on the recently developed machinery for proving time-space trade-offs (Raz 2016
and follow-ups). Our key technical contribution is to adapt this machinery to work for distinguishing
problems in contrast to prior works on similar results for search/learning problems.
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1 Introduction

This work is motivated by the following basic question: suppose an algorithm is provided
with a stream of m i.i.d. samples from a random source. What’s the minimum memory
required to decide whether the source is “truly random” or “pseudorandom”?

Algorithmically distinguishing perfect randomness from pseudorandomness naturally
arises in the context of learning theory (and can even be equivalent to learning in certain
models [20, 24, 60, 36]), pseudorandomness and cryptography.

There has been a surge of progress in proving lower bounds for memory-bounded streaming
algorithms beginning with Shamir [55] and Steinhardt-Valiant-Wager [57] who conjectured a
Q(n?) memory lower bound for learning parity functions with 2°(") samples. This conjecture
was proven in [53]. In a follow up work, this was generalized to learning sparse parities in
[35] and more general learning problems in [54, 29, 45, 14, 18, 47, 46, 56, 30].

All of these lower bounds hold for learning (more generally, search) problems that ask to
identify an unknown member of a target function class from samples. In this work, we build
on the progress above and develop techniques to show lower bounds for apparently easier task
of simply distinguishing uniformly distributed samples from pseudorandom ones. [25] studies
the related problem of distribution testing under communication and memory constraints.
[25] gave a one-pass streaming algorithm (and a matching lower bound for a broad range
of parameters) for uniformity testing on [N] that uses m memory and O(N log(N)/(me*))
samples for distinguishing between uniform distribution on [N] and any distribution that is
e-far from uniform.

As we next discuss, our results have consequences of interest in cryptography (ruling
out memory-bounded attacks on Goldreich’s pseudorandom generator [31] in the streaming
model) and average-case complexity (unconditional lower bounds on the number of samples
needed, for memory-bounded algorithms, to refute random constraint satisfaction problems,
in the streaming model).

1.1 Our Results

We now describe our results in more detail. Our main results show memory-sample trade-offs
for distinguishing between truly random and pseudorandom sources for the following two
settings:

1. Uniform vs k-Subspace Source: The pseudorandom subspace source of dimension
k chooses some arbitrary k-dimensional linear subspace S C {0,1}™ and draws points
uniformly from S. The truly random source draws points uniformly from {0, 1}".

2. Uniform vs Local Pseudorandom Source: The pseudorandom source fixes a k-ary
Boolean predicate P : {0,1}¥ — {0,1}. It chooses a uniformly random = € {0,1}" and
generates samples (a,b) € [n]®) x {0,1} where [n]*) represents the set of all ordered
k-tuples with exactly k elements from [n] and « is chosen uniformly at random from
[n]%) and b is the evaluation of P at z® - the k-bit string obtained by projecting x onto
the coordinates indicated by «. The truly random source generates samples («, b) where
a € [n]® and b € {0,1} are chosen uniformly and independently.
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We model our algorithm by a read-once branching program (ROBP) of width 2° (or
memory b) and length m. Such a model captures any algorithm that takes as input a stream
of m samples and has a memory of at most b bits. Observe that there’s no restriction on the
computation done at any node of an ROBP.

Roughly speaking, this model gives the algorithm unbounded computational power and
bounds only its memory-size and the number of samples used.

Our first main result shows a lower bound on memory-bounded ROBPs for distinguishing
between uniform and k-subspace sources.

» Theorem 1 (Uniform vs Subspace Sources). Any algorithm that distinguishes between
uniform and subspace source of dimension k (assuming k > clogn for some large enough
constant ¢) with probability at least 1/2+2-°%) requires either a memory of Q(k?) or at least
220K) samples. In particular, distinguishing between the uniform distribution on {0,1}" and
the uniform distribution on an unkown linear subspace of dimension n/2 in {0,1}"™ requires
Q(n?) memory or 2" samples.

Crouch et. al. [16] recently proved that any algorithm that uses at most n/16 bits of
space requires Q(Q"/ 16) samples to distinguish between uniform source and a subspace source
of dimension k& = n/2. They suggest the question of improving the space bound to Q(n?)
while noting that their techniques do not suffice. For k = ©(n), our lower bound shows that
any algorithm with memory at most ¢n? for some absolute constant ¢ requires 2°4(") samples.
This resolves their question.

Upper bound. In Section 4, we exhibit a simple explicit branching program that uses 20(%)
samples and O(1) memory to succeed in solving the distinguishing problem with probability
3/4. We also show a simple algorithm that uses O(k?) memory and O(k) samples, and
succeeds in solving the distinguishing problem with probability 3/4. Thus, in the branching
program model, the lower bound is tight up to constants in the exponent.

Our second main result gives a memory-sample trade-off for the uniform vs local pseu-
dorandom source problem for all predicates that have a certain well-studied pseudorandom
property studied in cryptography under the name of resilience.

A k-ary Boolean function P is said to be t-resilient if t is the maximum integer such that
(—1)F (taking the range of the boolean function to be {-1,1}) has zero correlation with every
parity function of at most ¢ — 1 out of k bits. In particular, the parity function on & bits is
k-resilient.

» Theorem 2 (Uniform vs Local Pseudorandom Sources). Let 0 < € < 1 — 311(:)gg2f and P

be a t-resilient k-ary predicate for k < n(1=9/6/3 n/c*. Then, any ROBP that succeeds
with probability at least 1/2 + Q((%)Q(t(l_s))) at distinguishing between uniform and local
n\ (- (1=€))
(%)

pseudorandom source for predicate P, requires samples or n® memory.

Upper bound. In Subsection 5.3, we give an algorithm that takes (n® + k)klog n memory
and (n(*=9%)(n€ 4 k) samples, and distinguishes between uniform and local pseudorandom
source for any predicate P, with probability 99/100. Thus, the lower bounds are almost tight
up to logn factors and constant factors in the exponent for certain predicates (t = Q(k)).
The question of whether there exists a better algorithm that runs in O(n(!=*) samples and
O(n°) memory, and distinguishes between uniform and local pseudorandom source with high
probability, for ¢t-resilient predicates P, remains open.

2 ¢ is a large enough constant
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This result has interesting implications for well-studied algorithmic questions in average-
case complexity and cryptography such as refuting random constraint satisfaction [27, 2, 52,
37]) and existence of local pseudorandom generators [17, 49, 11, 43, 4, 5] with super linear
stretch where a significant effort has focused on proving lower bounds on various restricted
models such as propositional and algebraic proof systems, spectral methods, algebraic
methods and semidefinite programming hierarchies. While bounded memory attacks are
well-explored in cryptography [44, 15, 10, 9, 59, 26, 53, 61, 32, 58, 34, 19], to the best of our
knowledge, memory has not been studied as explicit resource in this context. We discuss
these applications further in the paper.

For the special case when P(x) = Zf ' mod 2, the parity function on k bits, we can
prove stronger results for a wider range of parameters.

» Theorem 3 (Uniform vs Local Pseudorandom Sources with Parity Predicate). Let 0 <
€ < 1—3%82 4hq P be the parity predicate on k bits for 0 < k < n/c (c is a large

logn
enough constant). Suppose there’s a ROBP that distinguishes between uniform and local

pseudorandom source for the parity predicate, with probability at least 1/2 + s and uses < n€

memory. If s > Q) ((’“)Q((l_s)‘k)» then, the ROBP requires (%)(Q((l_e)'k) samples.

n

A recent concurrent work [19] builds symmetric encryption schemes which are secure
against memory bounded adversaries, where each ciphertext makes at most k calls to a
“random” function. Even though the applications and techniques are different, the setting of
the analysis is almost identical and the paper obtains better bounds (in terms of constants
in the exponent) for the (and only the) parity predicate on k bits.

The above results show lower bounds for sublinear memory algorithms. For a slight
variant of the above uniform vs local pseudorandom source problem, we can in fact upgrade
our results to obtain the following lower bounds against super-linear memory algorithms.
See Section 4 for details.

» Theorem 4. For large enough n and k > clogn (where ¢ is a large enough constant)
and k < %, any algorithm that can distinguish satisfiable sparse parities of sparsity k on n
variables (of type (a,b) = (a*,a?,...,a™,b) € {0, 1}, where Vi € [n], a® = 1 with probability
% and b= (a,z)) from random ones (of similar type (a,b) but b is now chosen uniformly at
random from {0,1}), with success probability at least % + 2700 requires either a memory of

size Q(nk) or 2°F) samples.

In Remark 15, we observe that the above theorem is almost tight. Specifically, we observe
that there are ROBPs that use a constant memory and O(n2°*)) samples or O(nklogn)
memory and O(n) samples to distinguish uniform sources from locally pseudorandom ones.

1.2 Applications to Security of Goldreich’s Pseudorandom Generator

A fundamental goal in cryptography is to produce secure constructions of cryptographic
primities that are highly efficient. In line with this goal, Goldreich [31] proposed a candidate
one-way function given by the following pseudorandom mapping that takes n-bit input x and
outputs m bits: fix a predicate P : {0,1}* — {0,1}, pick ay,as, ..., a,, uniformly at random?
from [n]*®) and output P(z®), P(z%),..., P(z%"). Here, ay,...,a,, and P are public and
the seed x is secret. Later works (starting with [48]) suggested using this candidate as
pseudorandom generator.

3 More generally, Goldreich proposed that a1, as,...,an could be chosen in a pseudorandom way so as
to ensure a certain “expansion” property. We omit a detailed discussion here.
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The main question of interest is the precise trade-off between the locality k and the
stretch m for a suitable choice of the predicate P. In several applications, we need that the
generator has a super-linear stretch (i.e. m = n'*? for some § > 0) with constant locality
(i.e. k=0(1)).

The simplicity and efficiency of such a candidate is of obvious appeal. This simplicity
has been exploited to yield a host of applications including public-key cryptography from
combinatorial assumptions [6], highly efficient secure multiparty computation [33] and most
recently, basing indistinguishability obfuscation on milder assumptions [38, 3, 41, 39, 40].

Evidence for the security of Goldreich’s candidate has been based on analyzing natural
classes of attacks based on propositional proof systems [1], spectral methods and semidefinite
programming hierarchies [51, 2, 12, 37, 42, 11] and algebraic methods [7, 8]. In particular,
previous works [37, 8] identified ¢-resiliency of the predicate P as a necessary condition for
the security of the candidate for m = n®(®) stretch.

The uniform vs local pseudorandom source problem considered in this work is easily seen
as the algorithmic question of distinguishing the output stream generated by Goldreich’s
candidate generator from a uniformly random sequence of bits. In particular, our results
imply security of Goldreich’s candidate against bounded memory algorithms for super-linear
stretch when instantiated with any t-resilient predicate for large enough constant ¢ (but
in the streaming model). Goldreich’s candidate generator would fix the sets a1, as, ..., an
(which are public) and output P(z%), P(x?2),..., P(x®) for n sized input = (m > n). We
prove the security of Goldreich’s generator in the model where ay,as, ..., an, still public,
are chosen uniformly at random from [n]*) and streamed with the generated bits.

We note that our lower bounds continue to hold even when the locality k£ grows polyno-
mially with the seed length n.

» Corollary 5 (Corollary of Theorem 2). Let 0 < e <1— 311?;? and P be a t-resilient k-ary

predicate for k = O(n(*=9)/%). Then, Goldreich’s PRG, when instantiated with any t-resilient
k-ary predicate P such that k >t > 36 and stretch m = (n/t)°®O0=9) s secure against all
read-once branching programs with memory-size bounded from above by n¢, in the streaming
model.

1.3 Applications to Refuting Random CSPs

Theorems 2 and 3 can also be intepreted as lower bounds for the problem of refuting random
constraint satisfaction problems.

A random CSP with predicate P : {0,1}* — {0, 1} is a constraint satisfaction problem on
n variables x € {0,1}"™. More relevant to us is the variant where the constraints are randomly
generated as follows: choose an ordered k-tuple of variables a from [n] at random, a bit
b € {0,1} at random and impose a constraint P(z®) = b. When the number of constraints
m > n, the resulting instance is unsatisfiable with high probability for any non-constant
predicate P. The natural algorithmic problem in this regime is that of refutation - efficiently
finding a short witness that certifies that the given instance is far from satisfiable. It is
then easy to note that the uniform vs local pseudorandom source problem is the task of
distinguishing between constraints in a random CSP (with predicate P) and one with a
satisfying assignment. Note that refutation is formally harder than the task of distinguishing
between a random CSP and one that has a satisfying assignment.

Starting with investigating in proof complexity, random CSPs have been intensively
studied in the past three decades. When P is t-resilient for ¢ > 3, all known efficient
algorithms [2] require m > n'-5 samples for the refutation problem. This issue was brought
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to the forefront in [27] where Feige made the famous “Feige’s Hypothesis” conjecturing the
impossibility of refuting random 3SAT in polynomial time with ©(n) samples. Variants of
Feige’s hypothesis for other predicates have been used to derive hardness results in both
supervised [21, 22, 23] and unsupervised machine learning [13].

In [51], t-resilience was noted as a necessary condition for the refutation problem to be
hard. Our Theorems 2 and 3 confirm this as a sufficient condition for showing lower-bounds
for the refutation (in fact, even for the easier “distinguishing” variant) of random CSPs, with
t-resilient predicates, in the streaming model with bounded memory.

2 Preliminaries

Denote by log the logarithm to base 2. We use Ber(p) to denote the Bernoulli distribution
with parameter p (probability of being 1). We use [n] to denote the set {1,2,...,n}.

For a random variable Z and an event F, we denote by P the distribution of the random
variables Z, and we denote by Pz g the distribution of the random variable Z conditioned
on the event E.

Given an n—bit vector y € {0,1}", we use 3’ to denote the i** coordinate of y, that is,
y=(y', 9> ...,y"). Weuse y~% € {0,1}"! to denote y but with the ith coordinate deleted.
Given two n—bit vectors y,y’, we use (y,y’) to denote the inner product of y and y’ modulo 2,
that is, (y,9') = > i, ¥'y’* mod 2. We use |y| to denote the number of ones in the vector y.

Given a set S, we use y €g S to denote the random process of picking y uniformly at
random from the set S. Given a probability distribution D, we use y ~ D to denote the
random process of sampling y according to the distribution D.

Next, we restate (for convenience) the definitions and results from previous papers
[53, 54, 35, 29] that we use.

Viewing a Learning Problem as a Matrix

Let X, A be two finite sets of size larger than 1.

Let M : Ax X — {—1,1} be a matrix. The matrix M corresponds to the following
learning problem: There is an unknown element z € X that was chosen uniformly at random.
A learner tries to learn x from samples (a,b), where a € A is chosen uniformly at random and
b= M(a,z). That is, the learning algorithm is given a stream of samples, (a1, b1), (az,b2) ...,
where each a; is uniformly distributed and for every ¢, by = M (a4, x).

These papers model the learner for the learning problem corresponding to the matrix M
using a branching program:

» Definition 6 (Branching Program for a Learning Problem). A branching program of length
m and width d, for learning, is a directed (multi) graph with vertices arranged in m+1 layers
containing at most d vertices each. In the first layer, that we think of as layer 0, there is
only one vertex, called the start vertex. A verter of outdegree 0 is called a leaf. All vertices
in the last layer are leaves (but there may be additional leaves). Fvery non-leaf vertex in
the program has 2|A| outgoing edges, labeled by elements (a,b) € A x {—1,1}, with exactly
one edge labeled by each such (a,b), and all these edges going into vertices in the next layer.
Each leaf v in the program is labeled by an element Z(v) € X, that we think of as the output
of the program on that leaf.

Computation-Path: The samples (a1,b1), ..., (4m,bm) € A x {=1,1} that are given as
input, define a computation-path in the branching program, by starting from the start vertex
and following at step t the edge labeled by (at,by), until reaching a leaf. The program outputs
the label Z(v) of the leaf v reached by the computation-path.
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Success Probability: The success probability of the program is the probability that T = x,
where X is the element that the program outputs, and the probability is over x,ai,...,0m
(where z is uniformly distributed over X and aq,...,a,, are uniformly distributed over A,
and for every t, by = M(a,x)).

» Theorem 7 ([53, 54, 29]). Any branching program that learns x € {0,1}", from random
linear equations over Fy with success probability 27" requires either a width of 29(*) or g
length of 2% (where ¢ is a small enough constant).

» Theorem 8 ([29]). Any branching program that learns x € {0,1}", from random sparse
linear equations, of sparsity evactly £, over Fo with success probability 2= (where ¢ is a
small enough constant) requires:

1. Assuming £ < n/2: either a width of size 249 or length of 29,

2. Assuming £ < n°9: either a width of size Q(n - £°9°) or length of £©).

Norms and Inner Products

Let p > 1. For a function f: X — R, denote by || f||, the £, norm of f, with respect to the
uniform distribution over X, that is:

i, = (B, )

For two functions f,g: X — R, define their inner product with respect to the uniform
distribution over X as

(f.9)= B [f@) gl

For a matrix M : A x X — R and a row a € A, we denote by M, : X — R the
function corresponding to the a-th row of M. Note that for a function f : X — R, we have

— M-fla
<Maaf> - x| -

» Definition 9 (Ly-Extractor, [29]). Let X, A be two finite sets. A matric M : A x X —
{=1,1} is a (K, 0')-Lo-Extractor with error 2", if for every non-negative f : X — R with

”}luf < 2¥ there are at most 27F - |A| rows a in A with

[(Ma, f)]
1f11x
» Lemma 10 ([35]). Let T; be the set of n-bit vectors with sparsity exactly-l for | € N,
that is, T, = {z € {0,1}" | Y0, x* = 1}. Let § € (0,1]. Let Br,(0) = {a € {0,1}" |
|Eper,(—1)®| > §}. Then, for § > ()3,

>

B, (5)] < 2¢7%7" /8 o

Branching Program for a Distinguishing Problem

Let X, A be two finite sets of size larger than 1. Let Dy be a distribution over the sample
space |A|. Let {D1(z)}zex be a set of distributions over the sample space |A|. Consider the
following distinguishing problem: An unknown b € {0, 1} is chosen uniformly at random.
If b = 0, the distinguisher is given independent samples from Dy. If b = 1, an unknown
x € X is chosen uniformly at random, and the distinguisher is given independent samples
from Dj(x). The distinguisher tries to learn b from the samples drawn according to the
respective distributions.
Formally, we model the distinguisher by a branching program as follows.
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» Definition 11 (Branching Program for a Distinguishing Problem). A branching program of
length m and width d, for distinguishing, is a directed (multi) graph with vertices arranged
in m~+ 1 layers containing at most d vertices each. In the first layer, that we think of as
layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0 is called
a leaf. All vertices in the last layer are leaves (but there may be additional leaves). Fvery
non-leaf vertex in the program has |A| outgoing edges, labeled by elements a € A, with exactly
one edge labeled by each such a, and all these edges going into vertices in the next layer.
Each leaf v in the program is labeled by a E(v) € {0,1}, that we think of as the output of the
program on that leaf.

Computation-Path: The samples ay,...,a,, € A that are given as input, define a
computation-path in the branching program, by starting from the start vertex and following
at step t the edge labeled by a;, until reaching a leaf. The program outputs the label B(v) of
the leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that b= b,
where b is the element that the program outputs, and the probability is over b,z a1, ..., am
(where b is uniformly distributed over {0,1}, x is uniformly distributed over X and ay, ..., an
are independently drawn from Do if b=0 and D1(z) if b=1).

3 Overview of the Proofs

We prove our theorems using two different techniques. We prove Theorems 1 and 4 through
reductions to the memory-sample lower bounds for the corresponding learning problems
in Section 4. Informally, for Theorem 1, we construct a branching program that learns
the unknown vector x from random linear equations in Fy by guessing each bit one by one
sequentially and using the distinguisher, for distinguishing subspaces from uniform, to check
if it guessed correctly. Then, we are able to lift the previously-known memory-sample lower
bounds for the learning problem (Theorem 7) to the distinguishing problem. Similarly, we
lift the memory-sample lower bounds for a variant of the learning problem in Theorem 8 to
the get Theorem 4.

Theorems 2 and 3 are restated in Section 5. A brief overview of these theorems are as
follows. Recall, a pseudorandom source fixes a k-ary Boolean predicate P : {0,1}* — {0,1}.
It chooses a uniformly random z € {0,1}" and generates samples (a,b) € [n]*) x {0,1}
where « is a uniformly random (ordered) k-tuple of indices in [n] and b is the evaluation of
P at z - the k-bit string obtained by projecting x onto the coordinates indicated by a. The
truly random source samples (a, b) where o € [n](*) and b € {0,1} are chosen uniformly and
independently. The problem for a distinguisher is to correctly guess whether the m samples
are generated by a pseudorandom or a uniform source, when the samples arrive in a stream.
We first show through a hybrid argument that a distinguisher A that distinguishes between
the uniform and pseudorandom source, with an advantage of s over 1/2, can also distinguish
(with advantage of at least s/m) when only the jth (for some j) sample is drawn from the
“unknown source”, the first j — 1 samples are drawn from the pseudorandom source and the
last m — j samples are drawn from the uniform source.

Let v be the memory state of A after seeing the first j — 1 samples, which were generated
from a pseudorandom source with a seed x picked uniformly at random from {0,1}". Let
.|, be the probability distribution of the random variable x conditioned on reaching v. If
the jth sample is generated using the same pseudorandom source, then Vo € [n](k’), the bit b
is 0 with probability fozp(x'a):o P, (2") and 1 with probability 1 — Zx’:P(m’a):O Py ().
If the jth sample is generated using the uniform source, then Ya € [n]*), the bit b is 0 with



S. Garg, P. K. Kothari, and R. Raz

probability 1/2 and 1 with probability 1/2. Thus, for any a, A can identify the “unknown
source” with an at most >° /. p(,ra)—o Paju(z) — 1/2‘ advantage. We show that when A
has low memory (< n¢ for some 0 < € < 1), then with high probability, it reaches a state
v such that P, has high min-entropy (informally, it’s hard to determine the seed for the
pseudorandom source). The argument till now (last 2 paragraphs) is common and has been
previously used to prove that a “source” fools bounded space, such as in [50].

Next, we use t-resiliency of P to show that when P, |, has high min-entropy, then with
high probability over o € [n]*), b behaves almost like in a uniform source (Lemma 19), that
is, |Zx/:P(x'a)=o P, (2") — 1/2] is small. Hence, with high probability, it’s hard for A to
judge with ’good’ advantage whether b was generated from a pseudorandom or a uniform
source. Note that the last m — j samples generated by a uniform source can’t better this
advantage.

4 Time-Space Tradeoff through Reduction to Learning

In this section, we will state time-space tradeoffs for the following distinguishing problems,
which are proved using black-box reduction from the corresponding learning problems.

Distinguishing Subspaces from Uniform

Informally, we study the problem of distinguishing between the cases when the samples are
drawn from a uniform distribution over {0,1}™ and when the samples are drawn randomly
from a subspace of rank k over Fy. Let L(k,n) be the set of all linear subspaces of dimension
k (C {0,1}™), that is, L(k,n) contains all subspaces V such that V = {v € {0,1}" | (w;,v) =
0 Vi € [n— k]} for some linearly independent vectors wy, wa, ..., w,—k. Formally, we consider
distinguishers for distinguishing between the following distributions:

1. Dy: Uniform distribution over {0,1}".

2. Dy(S), S € L(k,n): Uniform distribution over S.

Note: If the subspace S is revealed, it’s easy for a branching program of constant width
to distinguish w.h.p. by checking the inner product of the samples with a vector in the
orthogonal complement of S.

A distinguisher can distinguish subspaces if for an unknown random linear subspace
S € L(k,n), it can distinguish between Dy and D;(S). Formally, a distinguisher L, after
seeing m samples, has a success probability of p if

Prul,...,umeg [L(ula ceey um) = 0] + PrSGRL(k’,n);ul,...,umNDl(S) [L(ulv 7um) = 1]
2

» Theorem 12. For k > cylogn (where ¢y is a large enough constant), any algorithm that
can distinguish k-dimensional subspaces over Fy from Fy ({0,1}"), when samples are drawn
uniformly at random from the subspace or Fy respectively, with success probability at least
% +27°0) requires either a memory of size Q(k?) or 2%*) samples.

For the proof, refer to the full version of the paper [28]. Briefly, we prove that using a
distinguisher for distinguishing subspaces, we can construct a branching program that learns
an unknown bit vector z from random linear equations over Fo. Then, we are able to lift the
time-space tradeoffs of Theorem 7.

» Remark 13 (Tightness of the Lower Bound). We note two easy upper bounds that show
that our results in Theorem 12 are tight (up to constants in the exponent). Firstly, we
observe an algorithm B; that distinguishes subspaces of dimension k from uniform, using
O(k?) memory and O(k) samples, with probability at least 3/4 (0 < k <n —1). B; stores
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the first min(8k, n) bits of the first 8k samples (in O(k?) memory); outputs 1 if the samples
(projected onto the first min(8k, n) coordinates) belong to a < k-dimensional subspace (of
{0,1}™in(8%:n)) "and 0 otherwise (can be checked using gaussian elimination). When the
samples are drawn from D;(S) for some k-dimensional subspace S, then By always outputs
the correct answer. When the samples are drawn from a uniform distribution on {0,1}", the
probability that 8% samples form a k-dimensional subspace is at most

8k\ 1 _ _
<k> .ﬁg(&e)"@ Th <272 < 1/4

(because, if the 8k samples form a k-dimensional subspace, then at least 7k of them are
linearly dependent on the previously stored samples and that happens with at most 1/2
probability for each sample). Hence, B; errs with at most 1/4 probability.

Secondly, we observe that there exists a branching program that distinguishes subspaces
of dimension k from uniform using constant width and O(k - 2¥) length with probability at
least 3/4. Before, we show a randomized algorithm P that distinguishes between Dy and
D1 (S) for every S € L(k,n) with high probability. P is described as follows:

1. Repeat steps 2 to 3 sequentially for ¢ = 10 - 2¥ iterations.
2. Pick a non-zero vector v uniformly at random from {0,1}". For the next 2k samples (of

the form a € {0,1}"), check if (a,v) = 0.

3. If all the 2k samples are orthogonal to v, exit the loop and output 1.

4. Output 0 (None of the randomly chosen vectors were orthogonal to all the samples seen
in its corresponding iteration).

The number of samples seen by P is 20k - 2¥. Now, we prove that for every subspace S of

dimension k, that is, S € L(k,n), P distinguishes between Dy and D;(S) with probability

at least 1 — 1(e™® + 12) > 3/4%.

When the samples are drawn from Dy, the probability that P outputs 1 is equal to the
probability that in at least one of the ¢ iterations, the randomly chosen non-zero vector v was
orthogonal to the 2k samples drawn uniformly from {0, 1}". Here, the probability is over v
and the samples. By union bound, we can bound the probability of outputting 1 (error) by

nN* 10
10-28. (=) ==
02 (5) -y

For a fixed subspace S € L(k,n), the probability that we pick a non-zero vector v € {0,1}"

that is orthogonal to S is at least 2721%_;1

> 2~ (k+1) Therefore, when the samples are drawn

k
from D7 (S), the probability that P outputs 0 (error) is upper bounded by (1 — 2,6%)10'2 <

e~°. Here, the probability is over the vectors v and the samples. Now to construct a constant
width but 20k - 2F length branching program that distinguishes with probability at least 3/4,
we consider a bunch of branching programs each indexed by ¢ vectors that are used in step 2
of the algorithm P. It’s easy to see that for a fixed set of ¢ vectors, P can be implemented
by a constant width branching program. As, when the ¢ vectors are uniformly distributed
over {0,1}" (non-zero), P can distinguish with probability at least 3/4 for every subspace
S € L(k,n), there exists a fixing to the ¢ vectors such that the corresponding branching
program distinguishes between Dy and D;(S) (when S is chosen uniformly at random from
L(k,n)) with probability at least 3/4.

tk>5
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Distinguishing Satisfiable Sparse Equations from Uniform

Informally, we study the problem of distinguishing between the cases when the samples
are drawn from satisfiable sparse equations over Fy and when the samples are drawn from
random sparse equations.

Formally, we consider the distinguishing problem between the following two distributions:
1. Dq: Distribution on (n + 1)-length vectors (v!,v?,...,0™,b) € {0,1}"*! where Vi € [n], v

is 1 with probability % and 0 otherwise, and b is 1 with probability % and 0 otherwise.
2. Dy(x), z € {0,1}": Distribution on (n + 1)-length vectors (vt,v?,...;0", b) € {0,1}"+!

where Vi € [n], v® is 1 with probability % and 0 otherwise, and b = (v,z) where

v=(vhv?, ..., 0").

Here, k is the sparsity parameter.

We say that a distinguisher can distinguish satisfiable sparse equations of sparsity & from
random ones if, when z is unknown and chosen uniformly at random from {0,1}", it can
distinguish between Dy and D;(x). Formally, a distinguisher L, after seeing m, has a success
probability of p if

Prul,...,umeo [L(ula ceey Um) = O] + PerR{O,l}";ul,...,umNDl(x) [L(ul, ceey um) = 1]

2
» Theorem 14. For large enough n and k > cslogn (where c5 is a large enough constant)
and k < %, any algorithm that can distinguish random sparse parities of sparsity k on n
variables from satisfiable ones, with success probability at least % +27°0) requires either a

>p (2)

memory of size Q(nk) or 2%*) samples.

» Remark 15 (Tightness of our Lower Bound). We note two easy upper bounds that show that
our results in Theorem 14 are almost tight. Firstly, we observe that there’s an algorithm Bj
of memory O(nklogn) that uses O(n) samples and can distinguish random sparse parities
of sparsity k from satisfiable ones, with probability of at least 3/4. Bj just stores O(n)
samples (in O(nklogn) memory); if there exists = that satisfies all the samples, it outputs
1, otherwise it outputs 0. When the samples are satisfiable, that is, drawn from D;(x) (for
some x), By always outputs 1. When the samples are random, using the union bound, it’s
easy to see that the probability that there exists an x that satisfies all the O(n) samples is
exponentially small in n.

Second, there’s an algorithm Bs of constant memory that uses O(n - 20(k)) samples and
can distinguish random sparse parities of sparsity k from satisfiable ones, with probability
of at least 3/4. The probability that a learning algorithm sees sample (a,b), such that
a=(1,0,...,0), is at least ke:k for k < m/2; thus, one can just wait for say 5 such samples
and see if the values of b are drawn randomly or are fixed, giving a constant memory and
O(ne?*) samples algorithm that distinguishes with high probability.

Refer to the full version of the paper [28] for the proof of Theorem 14. Briefly, we
prove that using such a distinguisher, we can construct a branching program that learns an
unknown bit vector x from sparse linear equations of sparsity k over Fy. Unlike before, when
we were able to lift, we are not able to directly lift the time-space tradeoffs of Theorem 8§,
because these lower bounds hold when the equations are of sparsity ezactly-k. Following the
proof of Theorem 8 in [29] very closely, we can prove the following lemma:

» Lemma 16. Any branching program that learns x € {0,1}" from random linear equations
over Fy of type (a,b) = (at,a?,...,a™,b) € {0,1}"+L where Vi € [n], a® = 1 with probability
% and b = {a, ), with success probability 2~ requires either width of size 2Unk) o length
of 2°) (where ¢ is a small enough constant, k < 1)

The proof is given in full version [28]. Now through reduction, we are able to lift the

time-space tradeoffs of Lemma 16 to get Theorem 14.
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5 Sample-Memory Tradeoffs for Resilient Local PRGs

In this section, we prove our lower bound against memory bounded algorithms for distin-
guishing between streaming outputs of Goldreich’s pseudorandom generator and perfectly
random bits. Before stating our result in detail, we set up some notation and definitions
that will be convenient for us in this section.

5.1 Formal Setup

A k-ary predicate P is a Boolean function P : {0,1}* — {0,1}. Let > aClk] P(a)xa be the
Fourier polynomial for (—1)7 ((—=1)(x) = (—=1)"®)). P is said to be t-resilient if t is the
maximum positive integer such that P(a) = 0 whenever |a| < t. In particular, the parity
function («,z) is |a|-resilient. Here, yq : {0, 1}* — {—1,1} is such that x,(z) = (=1)f®®).
Let [n]*) denote the set of all ordered k-tuples of exactly & elements of [n]. That is, no
k). For any a € [n]*), let o’ € [n]
denote the element of [n] appearing in the ith position in a. Given z € {0,1}" and a € [n]*),
let ¢ € {0,1}* be defined so that (z%)* = x® for every 1 <i < k.
For any k-ary predicate P, consider the problem of distinguishing between the following
two distributions on (a,b) € [n]*®) x {0,1} where (a,b) are sampled as follows:
1. Dyyy: 1) Choose a uniformly at random from [n)®*), and 2) choose b uniformly at random
and independently from {0, 1}.
2. Dpianteda(r), z € {0,1}": 1) Choose a uniformly at random from [n](*), and 2) set
b= P(z%).

element of [n] occurs more than once in any tuple of [n]

Note that a is chosen uniformly at random from [n]®*) in both distributions. However,
while the bit b is independent of a in Dy, it may be correlated with a in Dpjanted-

A distinguisher for the above problem gets access to m i.i.d. samples u; = (a¢, by),t € [m]
from one of Dy, and Dpjanted(2z) for a uniformly randomly chosen z € {0,1}™ and outputs
either “planted” or “null”. We say that the distinguisher succeeds with probability p if

Pr [L(ugy .oy tly) = “null”] +

Pr
UL seeey U ~ Dot r€r{0,1}";
ULy U ~Dpranted (T)

[L(uq, ..., ) = “planted”)

is greater than 2p. In the language used in the previous sections, think of “null” as being

equivalent to 0 and “planted” being equivalent to 1, that is, Dy = Do and Dpjantea(t) =

D; (z). Therefore, the success probability of the distinguisher L can be written as

Pru . um~ Do [L(UL, ooy Ui ) = 0] 4+ Proc 60,1170y, o Dy () [ L0215 oy Ur) = 1]

5 >p (3)

In particular, if € {0,1}™ is “revealed” to a distinguishing algorithm, then it is easy to

use O(log(1/¢)) samples and constant width branching program to distinguish correctly with
probability at least 1 — € between Dy,;; and Dpianted-

5.2 Main Result

The main result of this section is the following sample-memory trade-off for any distinguisher.

» Theorem 17. Let P be a t-resilient k-ary predicate. Let 0 < e <1 — 311?;7? and k < njc.

Suppose there’s an algorithm that distinguishes between Dy and Dpjgnteq with probability

at least 1/2 + s and uses < n® memory. Then, whenever 0 < t < k < n(lgg)/S and

s> cl(%)_(%)t, the algorithm requires (%)(%)t samples. Here, ¢ and ¢1 are large enough
constants.
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Note that when k is a constant, this theorem gives a sample-memory tradeoff even for Q(n)
memory.

Our argument yields a slightly better quantitative lower bound for the special case when
P is the parity function, that is, P(z) = (Zle z%) mod 2. We will represent this function

by Xor.

» Theorem 18. Let 0 < e <1 — 3% and P be the parity predicate Xor on k =t bits.
Suppose there’s an algorithm that distinguishes between Dy and Dpjgnteq with probability at
least 1/2 + s and uses < n® memory. Then for k <n/c®, if s > 3(%)_(11;86)’“, the algorithm

requires (%)(%)k samples.

We prove both Theorem 17 and 18 via the same sequence of steps except for a certain
quantitative bound presented in Lemma 19. In the next subsection, we give an algorithm
that takes O(n€ 4+ k)k memory and O(n(=9%) samples, and distinguishes between D,
and Dpianteq for any predicate P, with probability 99/100. Thus, the lower bounds are
almost tight up to constant factors in the exponent for the parity predicate. The question of
whether there exists an algorithm that runs in O(n!=9*) samples and O(n¢) memory, and
distinguishes between Dy,,;; and Dpjanteq With high probability, for ¢-resilient predicates P,
remains open.

5.3 Tightness of the Lower Bound

In this section, we observe that there exists an algorithm A that takes O((n® + k) - klogn)
memory and O(n! =% . (n€ + k)) samples, and distinguishes between D,,,,;; and Dpianted for
any predicate P, with probability 99/100 (for n¢ > 10).

A runs over 4n(*=9% . (n¢ 4 k) samples and stores the first 2(n¢ 4 k) samples (a,b) €
[n)®) x {0,1} such that a* < n® + k,Vi € [k], that is, the bit b depends only on the first
n® + k bits of x under the distribution Dpjgnteq(z). If A encounters less than 2(n® + k)
samples of the above mentioned form, A outputs 1 (“planted”). Otherwise, A goes over all
the possibilities of the first n€ 4 k bits of (27 t* possibilities in total) and checks if it could
have generated the stored samples. If there exists a y € {0, 1}”6““ that generated the stored
samples, A outputs 1 (“planted”), otherwise A outputs 0.

It’s easy to see that A uses m = 4n(1=9* . (n¢ + k) samples and at most 2(n¢ + k) - klogn
memory (as it takes only &k log n memory to store a sample). Next, we calculate the probability
of success. Let Z; be a random variable as follows: Z; = 1 if the j'* sample (a;,b;) is such
that aj» < nf+k,Vi € [k] and 0 otherwise.

€ k
Hn +k]( )| > n—(l—e)k

Pz =1= ")

4(n€+k)
< 1

And E[}]T, Z;] = 4(n° + k). By Chernoff bound, Pr[}; Z; < 2(n + k)] < e~
Therefore, the probability that A stores 2(n€ + k) samples is at least 99/100. It’s easy to see
that A always outputs 1 when the samples are generated from D,janieq(z) for any .

The probability that A outputs 1, given that it stored 2(n€+ k) samples, when the samples
are generate from D,y is equal to the probability that there exists a y € {0,1}*" % that
could have generated the stored samples. Let (ay,01), ..., (ah,c, 1) Dy(ye 1)) De the stored
on+k

samples. There are at most sequences of b, ..., bé(ng k) generated by some y given

5 ¢is a large enough constant

= 100"
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{a}}jei2(ne+ry- As, under Dy, b is chosen uniformly at random from {0, 1}, the probability
that there exists y € {0, 1}"5‘HC that could have generated the stored samples is at most
2n,€+k

SEeTE = 2~ ("+k) < 1/100. Hence, the probability of success is at least 99,/100.

5.4 Proof of Theorems 17 and 18

For the full proof, please refer to the full version of the paper [28]. In this section, we give a
very brief outline of the proof and state a crucial lemma. Fix a t-resilient k-ary predicate P.
Let B be a branching program with bounded width and length, that distinguishes between
Dy and Dpjgniea(x) (x is uniformly distributed over {0,1}™) for the predicate P, with
non-negligible probability.

We first use hybrid argument to obtain that the branching program B must have a non-
trivial probability of distinguishing with a single sample. Towards this, define H;(x) to be
the distribution over m samples where the first j samples are drawn from Dpgnieq(z) and the
remaining m — j samples are from D;,,;. Using hybrid argument, there is a j' € {1,...,m}
such that B distinguishes between the hybrids Hj _;(z) and H, (z) with non-negligible
probability. Then to contradict, we show that a bounded-width and bounded-length B
cannot distinguish between the hybrids H; _1(z) and Hj(x).

Let v; be a vertex of the branching program B after seeing the first j° — 1 (generated
from a pseudorandom source with a seed x picked uniformly at random from {0,1}"). Let
Py, be the probability distribution of the random variable x conditioned on reaching v;.
If the j'th sample is generated using the same pseudorandom source (as in Hj/(x)), then
Ya € [n]®), the bit b is 0 with probability Zx/:P(x/ﬂ):O Py, (z') and 1 with probability
1- Zx/:P(z/ﬂ):O Py, (2"). If the j'th sample is generated using the uniform source (as in
Hj_1(x)), then Va € [n]®®), the bit b is 0 with probability 1/2 and 1 with probability 1/2.
Thus, for any a, B can distinguish with at most ZI,IP(I,Q):O Py, () — 1/2‘ advantage.
We show that when B has bounded width, then with high probability, it reaches a vertex
v1 such that P, has high min-entropy. We then use t-resiliency of P to show that when
Py, has high min-entropy, then with high probability over a € [n)*), the expression

- Zm,:P(z,Q):O Py, (2')| is small (the following lemma). Hence, with high probability, it’s
hard for B to distinguish whether the j'th sample was generated from H;/ (x) or H;i_1(z).
Note that the last m — j samples, generated by a uniform source, can’t better this advantage.

Define T; = {a € {0,1}" : Y. ;a* =1} for L € N. For ¢ > 0,k >t > 0, let L be the
set of vertices v such that P, has min-entropy of at least (n — n® — tlog(n/t)), that is,
va' € {0,1}", Pypp(a’) < 27" - (n/t).

> Lemma 19. Forall0 <e<1-3%82% o<t <k < {%,n(lgé)/?;}, and v1 € L,

logn ’

< e~ (R

3 Papu (@) - (~1)PE)

for all but at most con~ ()t fraction of a € [n]*®) (recall that P is a t-resilient k-ary
predicate).

Forallv, € L, 0 <e<1— 3l

logn ?

0<k<m,

€

<2 (37

3 Py, (@) - (~1)XrE

for all but at most 2(%)_(%)’“ fraction of a € [n]*).
Here, ¢ and co are large enough constants.
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