
Visualizing and Slicing Topological Surfaces in Four Dimensions
Huan Liu; University of Louisville; Louisville, KY/USA
Hui Zhang; University of Louisville; Louisville, KY/USA

Abstract
Smooth topological surfaces embedded in 4D create com-

plex internal structures in their projected 3D figures. Often these
3D figures twist, turn, and fold back on themselves, leaving im-
portant properties behind the surface sheets. Triangle meshes are
not well suited for illustrating such internal structures and their
topological features. In this paper, we propose a new approach
to visualize these internal structures by slicing the 4D surfaces in
our dimensions and revealing the underlying 4D structßures us-
ing their cross-sectional diagrams. We think of a 4D-embedded
surface as a collection of 3D curves stacked and evolved in time,
very much like a 3D movie in a time-elapse form; and our new
approach is to translate a surface in 4-space into such a movie
— a sequence of time-lapse frames where successive terms in the
sequence differ at most by a critical change. The visualization in-
terface presented in this paper allows us to interactively define the
longitudinal axis, and the automatic algorithms can partition the
4D surface into parallel slices and expose its internal structure by
generating a time-lapse movie consisting of topologically mean-
ingful cross-sectional diagrams from the representative slices. We
have extracted movies from a range of known 4D mathematical
surfaces with our approach. The results of the usability study
show that the proposed slicing interface allows a mathematically
true user experience with surfaces in four dimensions.

Introduction
Our work concerns 2-dimensional surfaces smoothly embed-

ded in 4-space, a basic class of fundamental interest in descriptive
topology. The essential difference of these 4D entities from their
3D counterparts is that each vertex of the surfaces has a 4D “eye
coordinate,” or depth w, in addition to the coordinates (x, y, z) in
their 4D projection to 3D. Surfaces embedded in 4D play many
roles in analogs to those of our familiar curves in 3D[14]; for ex-
ample, spheres are the analogs of closed curves, and knots can be
generalized to “knotted surfaces” (closed 2D surfaces embedded
in 4D) [17].

Challenges arise when we try to visualize these 4D surfaces
(when triangulated.) Just as 2D shadows of 3D curves lose struc-
ture where lines cross, 3D graphics projections of smooth 4D
topological surfaces are interrupted where one surface intersects
another. Furthermore, many 4D surfaces are constructed by 3D
curves spun about a plane in 4D, thus their 3D figures often leave
important properties behind the surface sheets. Most existing 4D
visualization efforts employ a projection to 3D as a fundamen-
tal step, and exploit visual or haptic cues (see, e.g., [11, 10])
to help the viewer to identify salient global features of the four-
dimensional object.

We in this paper approach the problem from the mathemati-
cians points of view, by exploiting computer graphics and au-
tomatic algorithms to generate topological illustrations that can

Figure 1. A movie description to describe the underlying structure of a Klein

bottle (modified from Carter’s book [5]). Successive frames in the movie differ

at most by one critical change.

potentially help depict these unfamiliar surfaces embedded in
space beyond 3D. Our work is motivated by the movie descrip-
tion adopted in Carter’s book How Surfaces Intersect in Space
[5]. In this book, Carter thinks of 4-dimensional space as a
pile of 3-dimensional spaces, stacked in time; and a surface in
4-dimensional space as a collection of curves in 3-dimensional
space. That is, each 3-dimensional cutting plane in 4-space cuts
a surface in 4-dimensions, and the intersection is a collection of
closed curves that can reveal the internal structures behind the
surface in their 3D projections. For example, in Figure 1 seven
representative cutting planes were shown to create the topologi-
cally meaningful cross-sectional diagrams of a Klein bottle [13].
These seven diagrams in the progressing form (very much like
a flip-book animation), describe the underlying structure of the
Klein bottle, a one-sided surface which, if traveled upon, could
be followed back to the point of origin while flipping the traveler
upside down.

In this paper we take the first steps towards this goal by de-
signing a slicing interface that is able to automatically compute
the longitudinal axis and cutting planes to generate movies for us
to analyze these surfaces in 4D Euclidean space.

Related Work
Traditional techniques for visualizing surfaces in 4D typi-

cally involve creating visual pictures of 4D entities intersecting in
a 3D projection and associating the fourth dimension (i.e., the w
“eye coordinate”) with visual cues such as 4D depth color, texture
density, etc (see e.g., [10, 11, 23]). Other representative efforts
include a variety of ways to render 4D objects (see e.g., Banks’

(a) (b)

(c) (d) (e)

Figure 2. Various approaches to visualizing a 4D spun trefoil knotted surface. (a) A 4D depth colored 3D figure. (b) Applying semi-transparency to the 4D

depth colored 3D figure of the 4D spun. (c) A cutaway view to expose the structure and intersections behind surface sheet. (d) A banded view. (e) A movie

description of the knotted sphere — a collection of 7 cross-sectional diagrams that describes the spun knot’s underlying structure.

interactive manipulation and display of surface in 4D [2], Chu’s
use of 4D light sources to render 4D surfaces [7], Noll’s paral-
lel and perspective projections of four-dimensional hyper-objects
rotating in four-dimensional space [19], and Zhang’s cloth-like
modeling and rendering of 4D surfaces [24]).

Figure 2 shows some of the typical 4D visualization tech-
niques. Figure 2(a) is the 3D graphics projection of a 4D spun
trefoil knot [9], with surface color keyed to 4D depth relative to
the projection center. The 3D figure contains massive intersec-
tions in 3D, especially behind the boundary surface. Transparency
is applied in Figure 2(b) to help the viewer to perceive the internal
structure — a trefoil knot spun about a plane in 4D. In prior visu-
alization efforts, the most common techniques for exposing the in-
ternal structure of 4D surfaces projected to 3D also include the use
of cutaway view (e.g., see Figure 2(d)) and “banded view” (see
e.g., Figure 2(e)), a different cutaway view by removing just alter-
nating bands from the surface to help the viewer to see through the
surface [1]. These images are undoubtedly important for under-
standing the complex spatial relationships and overall structures,
but they provide limited value of helping us understand the under-
lying structures and important features behind the surface sheet in
a 3D projection. It may also serve to confuse the user when the
visual evidence is difficult to interpret. For instance, making the
entire surface semi-transparent is arguably the simplest technique
for (partially) exposing occluded portions of the surface. While
the transparency view can sometimes convey the internal struc-
ture behind the surface sheet, it is nearly impossible for viewers
to distinguish and interpret the structure in regions where multiple
semi-transparent layers overlap. Similarly, cutaway and banded
views are both limited when applied to surfaces having very com-
plex internal structures (e.g., the 4D knotted spheres).

To visualize the internal structures behind a closed surface,
Karpenko et al. propose the use of exploded views by partition-

ing the surface into parallel slices, along a linear explosion axis
[12]. This approach is limited to 3D surfaces only. Carr et al.
introduce a method to compute the contour tree of a surface in
arbitrary dimensions [4]. The contour tree is a graph that tracks
contours of the level set as they split, join, appear, and disappear.
While this work focuses on only the topological properties of a
surface, it is difficult to visually map between the surface’s ge-
ometric shape and its topological structure. Edelsbrunner et al.
suggest that Reeb graph [8] can be used to indicate the topolog-
ical structure of a surfaces by locating all saddle points along a
longitudinal axis. Similar to Carr’s work, this work mainly con-
cerns how the surfaces split, join, appear, and disappear, and does
not address topological deformations.

We are thus motivated to design and implement a new visu-
alization paradigm that can summarize and visualize the interior
structure behind the 4D surface sheet in its 3D projection. The
basic idea is to slice the 4D surfaces, in our dimensions. Imagine
we have an infinite number of 3-dimensional cutting planes in 4-
space that cut the knotted sphere in Figure 2(e) in parallel. The
intersection of these cutting planes and the knotted sphere will
usually be a closed curve (or curves), except for the two cutting
planes that intersect the spun knot at a point, one on the north
pole and the other on the south. When the cutting plane intersects
a 4D surface at one single point (like on the north or south pole),
the surface has a critical point — often occur when the curve of
intersection have points of tangency, or sometimes three sheets of
the surface meet at a triple point. Now if we examine the cutting
planes between successive critical points and the resultant inter-
sections on these planes, and from them we extract the most rep-
resentative cross-sections, we will get the seven cross-sections in
Figure 2(f) that help to describe the spun knot’s underlying struc-
ture. With the advent of modern interactive graphics technology
and automatic algorithms we can begin to appreciate the challenge

Figure 3. System screen and major interface elements of our slicing-based visualization tool. 1⃝ — the toolbox to configure the slicing-based visualization tool,

user interface elements including e.g., model file dialogue, slider to set opacity level, radio button control to choose slicing mode (automatically or manually),

and checkbox control to choose 3D projection(i.e., (x,y,z), (x,y,w), (y,z,w), or (x,z,w)). 2⃝ — central visualization panel for one to position longitudinal axis,

cutting planes, and to view the slicing results. 3⃝ — movie outcome that contains the optimal cross-sections to represent the surface’s interior structure. 4⃝ —

cross-section viewer where one can define an arbitrary slicing window and observe the intersection.

of depicting such surfaces embedded in high dimensions by slic-
ing and visualizing their cross-sections, that had only existed in
the hand-drawn diagrams in [5] and [6].

Overview of Slicing-based Visualization Tool
From the user’s point, our interface is a slicing-based visual-

ization tool, and it consists of a control panel and a visualization
area. The user using the tool can load, transform, and view the 3D
figures of 4D surfaces with various desired settings and parame-
ters. For example, the user can choose the sub-space and desired
parameters to generate the 3D picture of the 4D surface, and can
toggle between transparency view, cutaway view, and “banded
view” when creating the movie description.

More importantly, the tool provides user interface elements
for users to slice the surface and look into the structures behind the
surface sheet. One can interactively place a longitudinal axis for
the system to automatically place the slices and render the movie
to describe the underlying structure of the 4D surface (see Fig-
ure 3). In addition, the user can freely position a cutting plane in
our interface and examine the resultant intersection — the cross-
sectional diagrams to illustrate the surface’s topological features
behind the sheet.

The task of choosing an appropriate longitudinal axis is non-
trivial. A slightly different longitudinal axis may result in very
different movie descriptions from the same surface sheet. A
movie might serve to confuse the user when it is too lengthy and
the intersection is difficult to make sense of. Our interface can
suggest the optimum longitudinal axis which requires the least

number of cross sectional pieces to render the movie description.

Implementation Details
In this section, we describe the families of models used to

implement the interaction procedures, visual elements, slicing in-
terface, and the automatic algorithm to compute the longitudinal
axis and to extract and render the resultant movie. Our funda-
mental techniques are based on a wide variety of prior art, includ-
ing the use of exploded view in surface and volume visualiza-
tion [12, 21, 25], algorithms for 3D triangle mesh slicing[18, 15],
and other variants on computer graphics and visual interfaces for
mathematical visualization including, e.g., the work of [16] and
[20].

Our goal in this section is to interpret a surface in 4-
dimensional space as a collection of diagrams in 3-dimensional
space, stacked in time. Before we lay out details of our interac-
tion procedures and algorithms, some definitions are in order.

• Height function and 3D Projection. When slicing and ex-
posing the interior structures of a 4D surface with “flat”
cross-sectional images, we need a generic height function
R4 → R to define the spatial relationship between points on
the projection. In our implementation, the height function
also determines how the projection from 4D to 3D is de-
fined. We use the hyper-plane perpendicular to the direction
of the chosen height function to create the 3D projection.
While arbitrary height function can be defined and used, in
our solution we fix the height function to align with the w
eye coordinate and thus 4D entities are projected orthogo-

(a) (b) (c) (d) (e) (f)
Figure 4. Logical steps involved in the process of rendering a movie for the Klein Bottle. (a) Place longitudinal axis and slicing planes. (b) Obtain resultant

intersections. (c) Reconstruct the closed loops. (d) Identify critical changes and associated frames. (e) Selecting key frames for rendering the movie. (f) The

resultant movie.

nally into the xyz sub-space. The user can still “change” the
projection direction (the height function), with an intuitive
rolling-ball interface to apply 4D rotation to transform the
4D entities in their full dimensional space [11].

• Longitudinal Axis and Cutting Plane. When a surface
is projected and displayed in the 3D space, each vertex in
the 3D figure has a w coordinate in addition to the three-
dimensional coordinates (i.e., x, y, and z). In our slicing-
based visualization approach, we think of the surface in 4D
as a collection of cross-sectional diagrams, stacked in time.
To extract the topologically meaningful cross-sections, we
need to define a longitudinal axis time (i.e., the time) and the
cutting planes (i.e., the cross− sections). The longitudinal
axis and the cutting plane are perpendicular to each other.
For example, the red arrow in the central area of Figure 3
is the longitudinal axis, and the cutting planes are perpen-
dicularly positioned along the longitudinal axis. The longi-
tudinal axis defines the direction of the densely positioned
parallel cutting planes, from while the algorithm proposed in
this work will extract the most meaningful slices and their
diagrams as the 4D surface’s topological illustration.

Creating the Movie — Slicing based Visualization
The key ideas of the overall scenario should now be clear.

The logical series of modeling steps, the problems they induce,

and the ultimate resolution of the problems are as follows:

• Place the longitudinal axis and position the cutting planes.
To ensure the inclusion of all cross-sections from which we
will extract the movie, cutting planes are position densely
perpendicular to the longitudinal axis (see e.g., Figure 4(a)).

• Compute the intersections. Each cutting plane will slice the
3D figure of the 4D entity, leaving intersections on the plane.
The intersections is the key to our understanding of the un-
derlying 4D structure (see Figure 4(b)).

• Reconstruct the closed loops. We think of a 4D surface as
a collection of evolving closed loops, stacked in time. In-
tersections in the format of points and line segments will be
recognized and closed loop(s) will be reconstructed in this
step (see Figure 4(c)).

• Identify critical changes and removing associated transi-
tioning frames. The third step it to locate and remove crit-
ical time points. These time points often reveal critical
changes in movie content. These time points are removed
from the candidate elements and the candidate frames are
divided into different sections according to the critical time
points(see Figure 4(d)).

• Choose the optimal frames between critical changes and
render the movie. Frames between successive critical
changes undergo trivial changes. In the last step we iden-

tify the best frame from each partition divided by successive
critical changes, and the remaining frames now are rendered
into the movie (see Figure 4(e) and (f)).

(a) (b) (c)

Figure 5. Place longitudinal axis and position cutting planes. (a) An ar-

bitrary longitudinal axis placed around the mass center of the surface’s 3D

figure. (b) Rotate the surface until the chosen longitudinal axis coincides with

y-axis. (c) Place cutting planes densely along the longitudinal axis.

Compute the intersections. Computing intersections of the
surface and the parallel cutting planes is an essential part of our
resolution of the problems. Figure 5 shows the basic idea — when
the longitudinal axis is determined, we first rotate the surface so
that its longitudinal axis coincides with the y-axis in the world
coordinate system (see Figure 5(a) and (b)). This transformation
facilitates the computation as the cutting planes now are all paral-
lel to the xy plane, and we can simply check on each triangle’s y
coordinate range to determine the collection of the cutting planes
it intersects with. The cutting planes are placed densely along
the longitudinal axis (see Figure 5(c)). Intersections of cutting
planes with the surface are in the format of points and line seg-
ments. To improve the computational efficiency, our implemen-
tation adopted several methods introduced in [18], including the
sorting and grouping of the triangle meshes, and the binary search
method to quickly identify triangles for intersection computing.
It is worth noting that the line segments are disordered and their
endpoints still carry the w coordinate.

Figure 6. Reconstruct the close loops from line segments in the intersec-

tions. (a) A cutting plane slices a Klein Bottle, and the resultant intersections

have two collection of line segments that appear to overlap each other, with

different w coordinates. (b) We string line segment with each other. Based

on their w coordinates, these line segments are stringed into two close loops.

Reconstruct the closed loop(s). The next step is to string the
disordered line segments from the raw intersections into one or
more closed polygons. Since our principle test cases are closed
surfaces embedded in 4D, the line segments in the raw intersec-
tion should form one or more closed loops. For example, in Fig-
ure 6 the cutting plane slices through the Klein Bottle, and the raw
intersections are shown in Figure 6(a), the collection of the line

(a)

(b)

(c)

(d)

(e)

Figure 7. The five types of critical changes. (a) The birth/death of a compo-

nent. (b)-(d) Changes corresponding to the three Reidemeister moves. (e)

The fusing/fissuring change.

segments in the intersections can be stringed into two close loops
since they exhibit different w eye coordinates (Figure 6(b)).

Identify Critical Changes. The densely positioned cutting
planes slice the surface, and that results in a large number of
cross-sectional frames. Most of the changes between successive

(a) (b) (c) (d) (e)

Figure 8. Frames containing unsafe diagrams correspond to critical change moments. (a) corresponds to critical change 0 in (Figure 7(a)). (b) corresponds to

critical change I in (Figure 7(b)). (c) corresponds to critical change II (Figure 7(c)). (d) corresponds to critical change IV (Figure 7(d)) and (e) is corresponding

to critical change V (Figure 7(e)).

frames are small and trivial changes from a topological perspec-
tive. Occasionally, the frames undergo significant changes such as
the appearance or disappearance of a new close loop, the change
in the number of crossings in the diagrams, or a Reidemeister
type of move. In [5] Carter summarizes five critical changes we
might encounter over the cross-sectional frames sliced from the
surfaces.

• Type 0: The birth/death of a simple closed curve. As de-
picted in Figure 7(a), frame c is introduced when the cutting
plane is tangent to the surface, and frame c is the transition-
ing frame leading to the birth of the closed loop in the next
frame.

• Type I: The critical change introduced by a type I Reide-
meister move. As shown in Figure 7(b), the preceding and
succeeding frames of the critical change frame c appear to
have undergone a type I Reidemeister move. This criticla
change also has led to the addition/reduction of one cross-
ings.

• Type II: The critical change introduced by a type II Reide-
meister move. For example, the preceding and succeeding
frames of the critical change frame c in Fig 7(c) appear to
have undergone a type II Reidemeister move, which also has
led to addition/reduction by two crossings.

• Type III: The critical change introduced by a type III Rei-
demeister move. For example, in Figure 7(d), the preceding
and succeeding frames of the critical change frame c appear
to have undergone a type III Reidemeister move.

• Type IV : The operation of fusing two components into one,
or fissuring one component into two. As depicted in Fig-
ure 7(e), frame c is introduced when the cutting plane is tan-
gent to the surface. The preceding and succeeding frames
of the critical change frame c appear to have undergone a
fusing/fissuring operation.

Our next task is to identify the transitioning frames that cor-
respond to the critical changes illustrated in Figure 7. These
frames can be geometrically identified — they are the transition-
ing frames between other frames where the diagrams are in safe
position [20]. A diagram is in a safe position when it fulfills the
following conditions:

• No two non-adjacent edges in the components are closer
than a threshold distance dclose;

• No two crossings in the components are closer than a thresh-
old distance dclose;

As indicated in Figure 7, when the five types of critical
changes occur, the diagrams on the transitioning frames are turn-
ing into unsafe position (see e.g., Figure 8), until the critical
change is accomplished. The unsafe positions corresponding to
the five types of critical changes are summarized in Figure 8,
where we highlight the the unsafe regions which our system de-
tects and recognizes as critical changes.

The system scans all the cross-sectional diagrams and check
whether or not they are in a safe position, or in an unsafe po-
sition corresponding to a critical change. A series of consecu-
tive unsafe frames are considered by the system as critical time
points. The system locates all the critical time points (see Fig-
ure 4(d)), and removes these unsafe frames representing the criti-
cal time points from the candidate frames. The remaining candi-
date frames are divided into sections separated by the (removed)
critical time points.

(a) (b)

Figure 9. Select optimal frame by comparing the sum of minimal distance

between candidate frames.

Best frame identification in one section. The final step is to
identify the best-shaped frame in each section (separated by the
critical changes) to represent underlying structure of the surface
sheet corresponding to the section. The system selects the opti-
mal frame from each section to generate the final movie. In our
implementation, the comparison metric considers the following
factors:

1. Crossing Distance. The sum of minimal crossing dis-
tance is used to determine which frame is more relaxed
(preferred). For a given frame, we find all the cross-
ings, Ci(i = 1,2, ...,n), the distance of Ci and C j is de-
fined as D(i, j), then calculate the minimum value of the
distance from each crossing to all other crossings M(i) =
min(D(i,1), ...,D(1, i − 1),D(i, i + 1), ...,D(i,n)), and then

Figure 10. Select optimal frame with better convexity. (a) convexity = 1.0

(b) convexity = 0.5

sum up the minimum distance of each crossing to get the
sum of minimal distance S = ∑

n
i=1 M(i). The system prefers

the frame with greater crossing distance. For example, in
Figure 9, the sum of minimal crossing distance of frame in
Figure 9(a) is smaller than that of Figure 9(b), which means
the frame in Figure 9(b) is more “relaxed” than the other, so
it is preferred.

2. Length. Suppose two frames have the same sum of mini-
mal crossing distance or have fewer than two crossings, the
system counts the length of all polygons in two frames, and
the frame with greater length is preferred.

3. Convexity. In the case where the sum of the minimum
crossings is equal or the number of crossings is less than 2,
the frame with the more “convex” polygon is preferred. The
convexity of a polygon can be calculated as in Algorithm 1.
For example in Figure 10, convexity of the cross-sectional
diagram in Figure 10(a) is greater than Figure 10(b), so the
system would prefer the cross-section in (a).
In this paper, we compare both the perimeter and convexity
to determine the frame with the best shape if the sum of the
minimum intersection distances is the same or the number of
intersections is less than 2. By default, the weight of length
is 0.7 and the weight of convexity is 0.3.

After the system identifies the best frame from each partition
of the original movies and renders them into a movie, as Fig-
ure 4(e) and (f) shows, the movie contains the minimum number
of frames that are topologically meaningful to describe the under-
lying structure of the 4D surface.

Automatically Computed Longitudinal Axis
Given a specific longitudinal axis, our system can generate a

movie to describe the surface’s structure, with a minimum num-
ber of frames that are topologically representative. Choosing an
optimal longitudinal axis is not a trivial task. A slightly differ-
ent longitudinal axis can possibly result in a very different or an
unnecessarily complicated movie. The movies can differ in the
number of frames, the contents of the frames in the movie. In
this section, we discuss an algorithm to automatically compute
the optimized longitudinal axis with which our system will render
the shortest movie containing the most relaxed and topologically
meaningful cross-sections.

Algorithm 1: Polygon Convexity Calculation
Input : Vertex list vertices[] of length n
Output: Convexity
i = 0
Convexity = 0
while i < n do

v1 = vector(vertices[i],vertices[(i+1) mod n])
v2 = vector(vertices[i],vertices[(i+2) mod n])
if v1× v2 > 0 then

Convexity =Convexity+1
end
if v1× v2 < 0 then

Convexity =Convexity−1
end
i = i+1;

end
Convexity = |Convexity|/n

The basic components of the algorithm is described in Fig-
ure 11. The algorithm rotates the surface so that its longitudinal
axis coincides with z-axis as the initial step. The algorithm then
rotate the surface around the x-axis and y-axis, respectively, s de-
gree each time for 180 degrees in total. In this way, we get a total
of

(180
s
)2

longitudinal axes differently positioned to search for
the best movie outcome (see e.g., the three representative longi-
tudinal axes in Figure 11(b)). For each longitudinal axis, a movie
outcome is generated (see Figure 11(c)). Then the system com-
pares all the candidate movies and ranks the movies for the viewer
(see Figure 11(d) and (f)). The metric used to compare the candi-
date movies follows the following rules:

1. Movie Length. Compare the length of the two movies, and
the shorter movie is preferred. For example, in Figure 11,
different longitudinal axes were tested for generating the
best movie to describe a 4D torus. In Figure 11 1⃝, the can-
didate longitudinal axes results in a one-frame movie, which
perfectly describes underlying S1 × S1 structure behind the
3D figure of the 4D torus. The candidate longitudinal axis in
Figure 11 2⃝ results in a movie of three frames, and in Fig-
ure 11 3⃝ the movie contains 5 frames. Our algorithm ranks
the movie outcome in Figure 11 1⃝ the best.

2. Crossings. In the events of two movies having the same
length, our algorithm calculates the number of crossings
from each frame, and prefer the movie outcome with the
lesser total crossing number.

3. Total Length of Close Loop(s). When two movies are of
same length and same crossing number, the total length of
the close loop(s) in the two movies are compared. The al-
gorithm recommends the movie with greater total length of
close loop(s).

More Examples
We implemented the presented algorithms in C++. Our core

rending capability, including the planar knot diagram and the 3D
rendering for surface is based on OpenGL. The software currently
runs on a MacBook Pro with 2.2GHz 6-Core Intel Core i7 Pro-
cessor and Radeon Pro 555X graphic processor.

(a) (b) (c) (d)
Figure 11. Auto-computed longitudinal axis.(a) Generating candidate longitudinal axes by rotating the surface around x-axis and y-axis incrementally, 180 in

total. (b)→(c) generate movies from each candidate longitudinal axis. (d) Ranking and recommending the best movie from all movie outcomes.

We utilized the interface to render movies for a family of
surfaces in 4-space. In Figure 12, we show a series of movies ren-
dered for a Klein bottle being relaxed from the traditional bottle
shape into a pinched torus shape[24]. The Klein bottle is a closed
non-orientable surface that has no inside or outside, first described
by Felix Klein[22]. Our tool starts with the standard shape of
Klein bottle, and renders movies across difference phases while
the Klein bottle was being relaxed with a energy based relaxation
model[24]. The Klein bottle reaches its minimum energy state
and appears to be a pinched torus in our dimensions (see e.g., the
movie in Figure 12 at the end)

In addition to the automatic method, our interface also pro-
vides a manual way to generate a movie of a surface. The manual
method has its own advantages, one of which is that the direction
of motion of the cutting plane can be defined by the user. In the
examples depicted in Figure 13(a) and (b), the user places cutting
planes around the 4D spun trefoil knotted sphere and the 1-twist
spun knot to explore the underlying structure. The 6 user-defined
cutting planes positioned in Figure 13(a) generate identical cross-
sectional diagrams, revealing the underlying spinning structure
of the 4D spun — the 4D surface is constructed by a three-
dimensional knot spun about a plane in four dimensions. The
resultant cross-sectional diagrams in Figure 13(b) reveal a differ-
ent spinning process — the 1-twist spun knot was constructed by
a twist spinning trefoil knot, which rotates 360 degree itself while

spun about a plane in 4D.
In Figure 14 is a Boy’s surface, a surface embedded in three-

dimensional space, first studied by Werner in 1901 [3]. The algo-
rithm and interface presented in this paper can also be exploited
to generate the movie description to help us understand the un-
derlying structure of the Boy’s surface. Figure 14(c) reveals the
complex internal structure of the surface through our slicing in-
terface.

Preliminary Usability Evaluation
We have performed a preliminary usability study in the UofL

VCL (Visual Computing Lab) to evaluate our interface. The study
invited a group of 12 non-expert participants to play two games
we designed and adapted from our visualization tool. In both
games, the participants were asked to interact with the five math-
ematical surfaces, shown in Figure 11, Figure 12, Figure 13(a),
Figure 13(b) and Figure 14 respectively. Participants were asked
to perform two tasks:

1. Drawing game — participants were given an interface ca-
pable of rendering a surface and allowing the user to rotate,
scale, cut, and adjust the rendering of the surface (such as
the opacity level). After interacting with the mathematical
surface, participants were asked to describe the structure of
the surface by drawing the contours of the surface they ex-
perimented with.

(a) (b) (c) (d)
Figure 12. A series of movies generated for the Klein bottle, evolving from the classic shape to the pinched torus shape.

(a)

(b)

Figure 13. Apply user-defined slices to explore the 4D spun knotted sphere

in (a), and the 1-twist spun knotted surface in (b).

2. Matching game — participants were presented a collection
of 3D static images of the surfaces, as well as flip-books of
cross-sectional diagrams. Participants were asked to match
the surface plots with the equivalent flip-books of diagrams.

Table 1 summarizes the completion rates of the participants
from the two games. All the participants were able to complete
the tasks of matching the flip-books and the image of the surfaces.
However with the drawing game, the more complicated surfaces
were given the lower completion rate the results shows. Inter-
views with participants reveals that it was nearly impossible for
them to understand the internal structure of the complicated sur-
faces. The participants all agree that our slicing interface can help
them visualize how surfaces intersect in 4-space by “seeing” the
key frames of the internal structures.

The study results suggest this new visualization that can en-
able and enrich one’s mathematical experience with mathematical
surfaces, particular those embedded in high dimensional surfaces.

Conclusion
In this paper, we discuss a novel visualization method to slice

2-manifolds embedded in 4 dimensions and explore their underly-
ing topological structures. Through this new visualization, we can

(a) (b) (c)
Figure 14. Generating movie for the Boy’s surface. (a) A hand-drawn figure

of the Boy’s surface in Carter’s book [5]. (b) The longitudinal axis and cutting

positions in our interface. (c) A movie of 4 frames generated to describe the

interior structure of the Boy’s surface.

Table 1: Completion rate of the two games in usability study

model
Drawing game
completion rate

Matching game
completion rate

4D torus 75% 100%
Klein bottle 83% 100%
4D spun trefoil 50% 100%
1-twisted spun 33% 100%
Boy’s surface 17% 100%

Average 53% 100%

begin to appreciate the underlying mathematics and topological
features behind the surface sheets of these 4D surfaces’ 3D fig-
ures. We further provide an automated interface of recommended
slice directions to discover the most suitable slice sequence possi-
ble for the study. Several case studies have shown that our method
works well in extracting useful geometric or topological proper-
ties on many classical surfaces, and this new automated approach
could be applied to the study of knotted surfaces in more complex
and general 4-dimensional spaces.

Starting from this basic slicing and movie-rendering frame-
work, we plan to proceed to attack more 4D visualization prob-
lems such as the interactive manipulation of apparently knotted,
but actually unknotted, spheres in 4D. Other planned future work
will extend the range of objects for which we can support the in-
teractive visualization of the smooth deformation between Boy
and Roman surface, and the evolutions among various 3D figures
of the Klein bottle that have given the same surface in 4-space.In
order to implement an interactive interface, improving computa-
tional efficiency is an essential part, both in the slicing process and
in the recommendation of longitudinal axes, with the possibility
of using parallel computing to improve the computing efficiency.

Acknowledgments
This work was supported in part by National Science Foun-

dation grant IIS-1651581 and DUE-1726532.

References
[1] T. F. Banchoff. Beyond the third dimension. Scientific American

Library New York, 1990.
[2] D. Banks. Interactive manipulation and display of surfaces in four

dimensions. In Proceedings of the 1992 Symposium on Interactive
3D Graphics, I3D ’92, page 197–207, New York, NY, USA, 1992.
Association for Computing Machinery.

[3] W. Boy. Über die Curvatura integra ud Topologie geschlossener
Flächen. Dieterich, 1901.

[4] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Computational Geometry, 24(2):75–94, 2003.

[5] J. S. Carter. How surfaces intersect in space: an introduction to
topology, volume 2. World Scientific, 1995.

[6] J. S. Carter and M. Saito. Knotted surfaces and their diagrams.
American Mathematical Soc., 1998.

[7] A. Chu, C.-W. Fu, A. Hanson, and P.-A. Heng. Gl4d: A gpu-based
architecture for interactive 4d visualization. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1587–1594, 2009.

[8] H. Edelsbrunner and J. Harer. Computational topology: an intro-
duction. American Mathematical Soc., 2010.

[9] G. Friedman. Knot spinning, handbook of knot theory, 187–208,
2005.

[10] A. Hanson and H. Zhang. Multimodal exploration of the fourth
dimension. In VIS 05. IEEE Visualization, 2005., pages 263–270,
2005.

[11] A. J. Hanson, K. I. Ishkov, and J. H. Ma. Meshview: Visualizing the
fourth dimension. Overview of the MeshView 4D geometry viewer,
1999.

[12] O. Karpenko, W. Li, N. Mitra, and M. Agrawala. Exploded view
diagrams of mathematical surfaces. IEEE Transactions on Visual-
ization and Computer Graphics, 16(6):1311–1318, 2010.

[13] L. H. Kauffman. Virtual knot theory. arXiv preprint math/9811028,
1998.

[14] S. Klimenkol, I. Nikitin, M. Göbel, and H. Tramberend. Visualiza-
tion in topology: assembling the projective plane. In Visualization
in Scientific Computing’97, pages 95–104. Springer, 1997.

[15] A. Koschan. Perception-based 3d triangle mesh segmentation using
fast marching watersheds. In 2003 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 2003. Proceed-
ings., volume 2, pages II–II. IEEE, 2003.

[16] H. Liu and H. Zhang. A suggestive interface for untangling math-
ematical knots. IEEE Transactions on Visualization and Computer
Graphics, 27(2):593–602, 2021.

[17] J. F. Martins. Categorical groups, knots and knotted surfaces. arXiv
preprint math/0502562, 2005.

[18] R. Minetto, N. Volpato, J. Stolfi, R. Gregori, and M. da Silva. An
optimal algorithm for 3d triangle mesh slicing. Computer-Aided
Design, 92, 07 2017.

[19] A. M. Noll. A computer technique for displaying ¡i¿n¡/i¿-
dimensional hyperobjects. Commun. ACM, 10(8):469–473, Aug.
1967.

[20] R. G. Scharein. Interactive topological drawing. PhD thesis, Uni-
versity of British Columbia, 1998.

[21] I. Viola and E. Gröller. On the role of topology in focus+context
visualization. In H. Hauser, H. Hagen, and H. Theisel, editors,
Topology-based Methods in Visualization, pages 171–181, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[22] E. W. Weisstein. Klein bottle. https://mathworld. wolfram. com/,
2003.

[23] H. Zhang and A. Hanson. Shadow-driven 4d haptic visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics,
13(6):1688–1695, 2007.

[24] H. Zhang and H. Liu. Relaxing topological surfaces in four dimen-

sions. The Visual Computer, 36(10):2341–2353, 2020.
[25] H. Zhang, J. Weng, and G. Ruan. Visualizing 2-dimensional mani-

folds with curve handles in 4d. IEEE transactions on visualization
and computer graphics, 20(12):2575–2584, 2014.

Author Biography
Huan Liu received B.S. degree in Information Systems and Manage-

ment from Communication University of Zhejiang, China, in 2018. Liu is
currently pursuing Ph.D. degree in University of Louisville, USA. Liu’s re-
search interests include mathematical visualization and computer graph-
ics.

Hui Zhang is Associate Professor at the Computer Science and En-
gineering Department, University of Louisville, USA. Zhang received his
Ph.D. from the Computer Science Department at Indiana University, USA.
Zhang’s research interests include data visualization, data mining, and
computer graphics with applications in mathematical visualization, med-
ical and dental computing, and other big data problems.

