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Abstract—We prove that any two-pass graph streaming
algorithm for the s-t reachability problem in n-vertex directed

graphs requires near-quadratic space of n2−o(1) bits. As a
corollary, we also obtain near-quadratic space lower bounds
for several other fundamental problems including maximum
bipartite matching and (approximate) shortest path in undi-
rected graphs.

Our results collectively imply that a wide range of graph
problems admit essentially no non-trivial streaming algorithm
even when two passes over the input is allowed. Prior to our
work, such impossibility results were only known for single-
pass streaming algorithms, and the best two-pass lower bounds

only ruled out o(n7/6) space algorithms, leaving open a large
gap between (trivial) upper bounds and lower bounds.

Keywords-Graph streaming; communication complexity; s-t
reachability, multi pass streaming lower bounds

I. INTRODUCTION

Graph streaming algorithms process the input graph with

n known vertices by making one or a few passes over

the sequence of its unknown edges (given in an arbitrary

order) and using a limited memory (much smaller than

the input size which is O(n2) for a graph problem). In

recent years, graph streaming algorithms and lower bounds

for numerous problems have been studied extensively. In

particular, we now have a relatively clear picture of the

powers and limitations of single-pass algorithms. With a

rather gross oversimplification, this can be stated as follows:

• The exact variant of most graph problems of interest

are intractable: There are Ω(n2) space lower bounds

for maximum matching and minimum vertex cover [1],

[2], (directed) reachability and topological sorting [1],

[3], [4], shortest path and diameter [1], [5], minimum

or maximum cut [6], maximal independent set [7], [8],

dominating set [9], [10], and many others.

• On the other hand, approximate variants of many graph

problems are tractable: There are O(n · polylog(n))
space algorithms (often referred to as semi-streaming

algorithms) for approximate (weighted) matching and

vertex cover [1], [11]–[13], spanner computation and

approximation for distance problems [5], [14]–[16],

∗A full version of the paper including all technical proofs is available
on arXiv: https://arxiv.org/abs/2009.01161.

cut or spectral sparsifiers and approximation for cut

problems [17]–[20], large independents sets [8], [21],

graph coloring [7], [22], and approximate dominating

set [9], [10], among others1.

Recent years have also witnessed a surge of interest

in designing multi-pass graph streaming algorithms (see,

e.g. [1], [4], [23]–[36]); see, e.g., [1], [37] for discussions on

practical applications of multi-pass streaming algorithms in

particular in obtaining I/O-efficiency. These results suggest

that allowing even just one more pass over the input greatly

enhances the capability of the algorithms. For instance,

while computing the exact global or s-t minimum cut in

undirected graphs requires Ω(n2) space in a single pass [6],

perhaps surprisingly, one can solve both problems in only

two passes with Õ(n) and Õ(n5/3) space, respectively [38]

(see also [39] for an O(log n)-pass algorithm for weighted

minimum cut). Qualitatively similar separations are known

for numerous other problems such as triangle counting [33],

[40] (with two passes), approximate matching [2], [23],

[26], [35] (with O(1) passes), maximal independent set [7],

[8], [41] (with O(log logn) passes), approximate dominating

set [10], [42], [43] (with O(log n) passes), and exact shortest

path [5], [36] (with O(
√
n) passes).

Despite this tremendous progress, the general picture for

the abilities and limitations of multi-pass algorithms is not

so clear even when we focus on two-pass algorithms. What

other problems beside minimum cut admit non-trivial two-

pass streaming algorithms? For instance, can we obtain

similar results for directed versions of these problems? What

about closely related problems such as maximum bipartite

matching or not-so-related problems such as shortest path?

Currently, none of these problems admit any non-trivial

two-pass streaming algorithm, while known lower bounds

only rule out algorithms with o(n7/6) space [4], [5], [44]

leaving a considerable gap between upper and lower bounds

(see [45] for a discussion on the current landscape of multi-

pass graph streaming lower bounds).

1It should be noted that, in contrast, determining the best approximation
ratio possible for many of these problems have remained elusive and is an
active area of research.
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A. Our Contributions

We present near-quadratic space lower bounds for two-

pass streaming algorithms for several fundamental graph

problems including reachability, bipartite matching, and

shortest path.

Reachability and related problems in directed graphs:

We prove the following lower bound for the reachability

problem in directed graphs.

Result 1 (Formalized in Theorem 4). Any two-pass

streaming algorithm (deterministic or randomized) that

given an n-vertex directed graph G = (V,E) with two

designated vertices s, t ∈ V can determine whether or

not s can reach t in G requires Ω( n2

2Θ(
√

log n) ) space.

The reachability problem is one of the earliest prob-

lems studied in the graph streaming model [3]. Previously,

Henzinger et al. [3] and Feigenbaum et al. [5] proved

an Ω(n2) space lower bound for this problem for single-

pass algorithms, and Guruswami and Onak [44] gave an

Ω̃p(n
1+1/(2p+2)) lower bound for p-pass algorithms which

translates to Ω̃(n7/6) space for two-pass algorithms; this

lower bound was recently extended to random-order streams

by Chakrabarti et al. [4]. Note that the undirected version

of this problem has a simple O(n) space algorithm in one

pass by maintaining a spanning forest of the input graph

(see, e.g. [1]).

Using standard reductions, our results in this part can be

extended to several other related problems on directed graphs

such as estimating number of vertices reachable from a given

source or approximating minimum feedback arc set, studied

in [3] and [4], respectively.

Matching and cut problems: We have the following

lower bound for bipartite matching.

Result 2 (Formalized in Theorem 5). Any two-pass

streaming algorithm (deterministic or randomized) that

given an n-vertex undirected bipartite graph G =
(L ⊔ R,E) can determine whether or not G has a

perfect matching requires Ω( n2

2Θ(
√

log n) ) space.

Maximum matching problem is arguably the most studied

problem in the graph streaming model. However, the main

focus on this problem so far has been on approximation

algorithms and not much is known for exact computation of

this problem, beside that it can be done in Õ(k2) space in a

single pass where k is size of the maximum matching [46]

(for the perfect matching problem, this gives an O(n2)
space algorithm which is the same as storing the entire

input). Previously, Feigenbaum et al. [1] and Chitnis et

al. [47] proved an Ω(n2) space lower bound for single-pass

algorithms for this problem and Guruswami and Onak [44]

extended the lower bound to Ω̃p(n
1+1/(2p+2)) for p-pass

algorithms.

Both the perfect matching problem and the s-t reacha-

bility problem are simpler versions of the s-t minimum cut

problem in directed graphs. As such, our lower bounds imply

that even though the s-t minimum cut problem can be solved

in undirected graphs in Õ(n5/3) space and two passes [38],

its directed version requires n2−o(1) space in two passes

(for any multiplicative approximation). Previously, Assadi et

al. [45] proved a lower bound of Ω(n2/p5) for p-pass

algorithms for the weighted s-t minimum cut problem (with

exponential-in-p weights); for the unweighted problem, the

previous best lower bound was still Ω̃p(n
1+1/(2p+2)).

Shortest path problem: Finally, we also prove a lower

bound for the shortest path problem.

Result 3 (Formalized in Theorem 6). Any two-pass

streaming algorithm (deterministic or randomized) that

given an undirected graph G = (V,E) and two des-

ignated vertices s, t ∈ V , can output the length of the

shortest s-t-path in G requires Ω( n2

2Θ(
√

log n) ) space. The

lower bound continues to hold even for approximation

algorithms with approximation ratio better than 9/7.

Shortest path problem have also been extensively studied

in graph streaming literature. For single-pass streams, the

focus has been on maintaining spanners (subgraphs that

preserve pairwise distances approximately) which allow

for obtaining algorithms with different space-approximation

tradeoffs [5], [14]–[16] (starting from 2-approximation in

O(n3/2) space to O(log n) approximation in O(n) space),

which are known to be almost tight [5]. For multi-pass

algorithms, Õ(n) space algorithms are known for (1 + ε)-
approximation with poly(log n, 1

ε ) passes [28], [48], and

exact algorithms with O(
√
n) passes [36]. On the lower

bound front, an Ω(n2) space lower bound is known for

single-pass algorithms [5] and Ω̃p(n
1+1/2p+2) for p-pass

algorithms [44]) (for exact answer or even some small

approximation ≈ (2p+4)/(2p+2)); a stronger lower bound

of Ω(n1+1/2p) was proven earlier in [5] for algorithms that

need to find the shortest path itself.

Our results show that a wide range of graph problems

including directed reachability, cut and matching, and short-

est path problems, admit essentially no non-trivial two-pass

streaming algorithms: modulo the no(1)-term in our bounds,

the best one could do to is to simply store the entire stream

in O(n2) space and solve the problem at the end using any

offline algorithm.

B. Our Techniques

We prove our main lower bound for the s-t reachability

problem; the other lower bounds then follow easily from this

using standard ideas.

It helps to start the discussion with the lower bounds

in [4], [5], [44]. These lower bounds work with random

graphs wherein s can reach Θ(
√
n) random vertices S and
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t is independently reachable from Θ(
√
n) random vertices

T ; thus, by Birthday Paradox, s-t reachability can have

either answer with constant probability. One then shows that

to determine this, the algorithm needs to “find” S and T
explicitly. The final part is then to use ideas from pointer

chasing problems [49]–[53] to prove a lower bound for this

task. The particular space-pass tradeoff is then determined

as follows: (i) as a streaming algorithm can find the p-hop

neighborhood of s and t in p passes (by BFS), S and T need

to be (p+1)-hop away from s and t; (ii) as we are working

with random graphs, to achieve the bound of O(
√
n) on

size of S and T , we need the degree of the graph to be

O(n1/2(p+1)), leading to an O(n1+1/(2p+2)) space lower

bound for p-pass algorithms. We note that the limit of these

approaches based on random graphs seem to be Õ(n3/2);
see [4, Section 5.2].

Our lower bound takes a different route and works with

“more structured” graphs. We start with proving a single-

pass streaming lower bound for an “algorithmically easier”

variant of the reachability problem. In this problem, we

are promised that s can reach a unique vertex s⋆ chosen

uniformly at random from a set U of n1−o(1) vertices and

the goal is to “find” this vertex. Previous lower bounds [4],

[5], [44] already imply that if our goal was to determine

the identity of s⋆ exactly, we need Ω(n2) space. In this

paper, we prove a stronger lower bound that an n2−o(1)-

space single-pass algorithm essentially cannot even change

the distribution of s⋆ from uniform over U . The proof of this

part is based on information theoretic arguments that rely

on “embedding” multiple instances of the set intersection

problem (see Section III) inside a Ruzsa-Szemerédi (RS)

graph (see Section II-B), and proving a new lower bound

for the set intersection problem.

We remark that our new lower bound for set intersection

is related to the recent lower bound of [45] with a subtle

technical difference that is explained in Section III and in

more details in the full version. We also note that RS graphs

have been used extensively for proving graph streaming

lower bounds [2], [8], [26], [54]–[56] starting from [2], but

this is their first application to the s-t reachability problem.

In the next part of the argument, we construct a family

of graphs in which the s-t reachability is determined by

existence of a single edge (s⋆, t⋆) in the graph, where s⋆

is the unique vertex reachable from s in a large set U
and t⋆ is the unique vertex that can reach t in a large

set W (see Figure 2 for an illustration). By exploiting our

lower bound in the first part, we show that a n2−o(1)-space

algorithm cannot properly “find” the pairs s⋆ and t⋆ in the

first pass. We then argue that this forces the algorithm to

effectively “store” all the edges between U and W in the

second pass to determine if (s⋆, t⋆) is an edge of the graph,

leading to an n2−o(1) space lower bound.

Remark (More than two passes?). The intermediate “sim-

pler” problem we considered in our proofs (part one above)

is only hard in one pass (see Section IV) and thus our

lower bound proof does not directly go beyond two passes.

However, it appears that our techniques can be extended

to multi-pass algorithms to prove lower bounds of the type

n1+Ω(1/p) space for p-pass algorithms which are slightly

better in terms of dependence on p in the exponent compared

to [4], [5], [44]. Nevertheless, as unlike the case for two-

pass algorithms, it is no longer clear whether such bounds

are the “right” answer to the problems at hand, we opted

to not pursue this direction in this paper.

II. PRELIMINARIES

Notation: For any integer t ≥ 1, we use [t] :=
{1, . . . , t}. For any k-tuple X = (X1, . . . , Xk) and integer

i ∈ [k], we define X<i := (X1, . . . , Xi−1).

Throughout the paper, we use ‘sans serif’ letters to denote

random variables (e.g., A) , and the corresponding normal

letters to denote their values (e.g. A). For brevity and to

avoid the clutter in notation, in conditioning terms which

involve assignments to random variables, we directly use

the value of the random variable (with the same letter), e.g.,

write B | A instead of B | A = A.

For random variables A,B, we use H(A) and I(A ;B) :=
H(A)−H(A | B) to denote the Shannon entropy and mutual

information, respectively. Moreover, for two distributions

µ, ν on the same support, ‖µ − ν‖tvd denotes the total

variation distance, and D(µ || ν) is the KL-divergence. A

summary of basic information theory facts that we use in

our proofs appear in the full version.

A. Communication Complexity and Information Complexity

We work with the two-party communication model of

Yao [57]. See the excellent textbook by Kushilevitz and

Nisan [58] for an overview of communication complexity.

Let P : X × Y → Z be a relation. Alice receives an

input X ∈ X and Bob receives Y ∈ Y , where (X,Y ) are

chosen from a distribution D over X ×Y . We allow players

to have access to both public and private randomness.

They communicate with each other by exchanging messages

according to some protocol π. Each message in π depends

only on the private input and random bits of the player

sending the message, the already communicated messages,

and the public randomness. At the end, one of the players

outputs an answer Z such that Z ∈ P (X,Y ). For any

protocol π, we use Π := Π(X,Y ) to denote the messages

and the public randomness used by π on the input (X,Y ).

We now define two measures of “cost” of a protocol.

Definition II.1 (Communication cost). The communication

cost of a protocol π, denoted by CC(π), is the worst-case

length of the messages communicated between Alice and

Bob in the protocol.
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Definition II.2 (Information cost). The information cost of

a protocol π, when the inputs (X,Y ) are drawn from a

distribution D, is ICD(π) := I(Π ;X | Y) + I(Π ;Y | X).

The internal information cost (introduced by [59]; see

also [59]–[63]) measures the average amount of information

each player learns about the input of the other player by

observing the transcript of the protocol. As each bit of com-

munication cannot reveal more than one bit of information,

the internal information cost of a protocol lower bounds its

communication cost [62].

Communication complexity and streaming: There is a

standard connection between the communication cost of any

protocol π for a communication problem P (X,Y ) and the

space of any streaming algorithm that can solve P (X,Y ) on

a stream X◦Y (see Proposition VI.1); we use this connection

to establish our streaming lower bounds.

B. Ruzsa-Szemerédi Graphs

A graph GRS = (V,E) is a called an (r, t)-Ruzsa-

Szemerédi (RS) graph iff its edge-set E can be partitioned

into t induced matchings MRS
1 , . . . ,MRS

t , each of size r. We

further define an (r, t)-RS digraph as a directed bipartite

graph GRS = (L,R,E) obtained by directing every edge of

a bipartite (r, t)-RS graph from L to R.

We use the original construction of RS graphs due to

Ruzsa and Szemerédi [64] based on the existence of large

sets of integers with no 3-term arithmetic progression,

proven by Behrend [65]. We note that there are multiple

other constructions with different parameters (see, e.g. [2],

[66]–[68] and references therein) but the following construc-

tion works best for our purpose.

Proposition II.3 ([64]). For infinitely many integers N , there

are (r, t)-RS digraphs with N vertices on each side of the

bipartition and parameters r = N
eΘ(

√

log N) and t = N/3.

III. A NEW LOWER BOUND FOR THE SET

INTERSECTION PROBLEM

One key ingredient of our paper is a new lower bound for

the set intersection problem, defined formally as follows.

Problem 1 (set-intersection). The set-intersection prob-

lem is a two-player communication problem in which Alice

and Bob are given sets A and B from [m], respectively, with

the promise that there exists a unique element e⋆ such that

{e⋆} = A ∩ B. The goal is to find the target element e⋆

using back and forth communication (i.e., in the two-way

communication model).

The set-intersection problem is closely related to the

well-known set disjointness problem. It is in fact straightfor-

ward to prove an Ω(m) lower bound on the communication

complexity of set-intersection using a simple reduction

from the set disjointness problem. However, in this paper,

we are interested in an algorithmically simpler variant of

this problem which we define below.

Definition III.1. Let D be a distribution of inputs (A,B)
for set-intersection (known to both players). A protocol π
internal ε-solves set-intersection over D iff at least one of

the following holds:

E
Π,A

‖dist(e⋆ | Π, A)− dist(e⋆ | A)‖tvd ≥ ε or

E
Π,B

‖dist(e⋆ | Π, B)− dist(e⋆ | B)‖tvd ≥ ε,

where all variables are defined with respect to the distri-

bution D and the internal randomness of π (recall that Π
includes the transcript and the public randomness).

Definition III.1 basically states that a protocol can internal

ε-solve the set-intersection problem iff the transcript of the

protocol can change the distribution of the target element e⋆

from the perspective of Alice or Bob by at least ε in the total

variation distance on average.

Our definition is inspired but different from ε-solving

in [45] (which we call external ε-solving to avoid ambiguity)

which required the transcript to change the distribution

of the target element by ε from the perspective of an

external observer (who only sees the transcript but not

the inputs of players). More formally, external ε-solving of

set-intersection over a distribution µ, as defined in [45],

requires the protocol π to have the following property

(compare this with Definition III.1),

E
Π

‖dist(e⋆ | Π)− dist(e⋆)‖tvd ≥ ε.

The previous work in [45] has shown that there is a

distribution µ such that any protocol that external ε-solves

set-intersection over µ has information cost Ω(ε2 ·m). This

however does not imply a lower bound for the internal ε-

solving problem. This is because, in principle, these two

tasks can be different. For instance, (i) a protocol that

reveals the entire set of Alice, changes the distribution of

target for Bob dramatically but not so much for an external

observer; or (ii) a protocol that reveals all the elements that

are neither in A nor in B changes the distribution of the

target for an external observer by a lot but does not change

the distribution for either of the players at all.

We prove the following lower bound on the information

cost of internal ε-solving of set-intersection.

Theorem 1. There is a distribution DSI for set-intersection

over the universe [m] such that:

1) For any A or B sampled from DSI, both dist(e⋆ | A)
and dist(e⋆ | B) are uniform distributions on A and

B, each of size m/4, respectively.

2) For any ε ∈ (0, 1), any protocol π that internal ε-

solves the set-intersection problem over the distri-

bution DSI (Definition III.1) has internal information

cost ICDSI
(π) = Ω(ε2 ·m).
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IV. THE UNIQUE-REACH COMMUNICATION PROBLEM

We now start with our main lower bounds. Define the

following two-player communication problem.

Problem 2 (unique-reach). The unique-reach problem is

defined as follows. Consider a digraph G = (V,E) on n
vertices where V := {s}⊔V1⊔V2⊔V3 and any edge (u, v) ∈
E is directed from s to V1 or some Vi to Vi+1 for i ∈ [2]
(we refer to each Vi as a layer). We are promised that there

is a unique vertex s⋆ in the layer V3 reachable from s.

Alice is given edges in E from V1 to V2, denoted by

EA, and Bob is given the remainder of the edges in E,

denoted by EB (the partitioning of vertices of V is known

to both players). The goal for the players is to find s⋆ by

Alice sending a single message to Bob (i.e., in the one-way

communication model).

It is easy to prove a lower bound of Ω(n2) on the one-

way communication complexity of unique-reach using a

reduction from the Index problem. It is also easy to see

that this problem can be solved with O(n log n) bits of

communication, if we allow Bob to send a single message

to Alice: By the uniqueness promise on s⋆, no vertex with

out-degree more than one in V2 should be reachable from s
and thus Bob can communicate all the remaining edges in

EB to Alice.

Nevertheless, in this paper, we are interested in an algo-

rithmically simpler variant of this problem similar-in-spirit

to ε-solving for set-intersection (Definition III.1).

Definition IV.1. Let D be any distribution of valid in-

puts G = (V,EA ⊔ EB) for unique-reach (known to

both players). We say that a protocol π internal ε-solves

unique-reach over D iff:

E
Π,EB

‖dist(s⋆ | Π, EB)− dist(s⋆ | EB)‖tvd ≥ ε, (1)

where all variables are defined with respect to the distri-

bution D and the internal randomness of π (recall that Π
includes the transcript and the public randomness).

Definition IV.1 basically states that a protocol can internal

ε-solve the problem iff the message sent from Alice can

change the distribution of the unique vertex s⋆ from the

perspective of Bob by at least ε in the total variation distance

(in expectation over Alice’s message and Bob’s input).

Our main theorem in this section is the following.

Theorem 2. There is a distribution DUR for unique-reach

and an integer b := n
2Θ(

√

log n) with the following properties:

1) For any EB sampled from DUR, dist(s⋆ | EB) is a

uniform distribution over a subset V ⋆
3 of b vertices in

the layer V3 of the input graph;

2) for any ε ∈ (0, 1), any one-way protocol π that inter-

nal ε-solves unique-reach over the distribution DUR

(Definition IV.1) has communication cost CC(π) =
Ω(ε2 · n · b).

Proof of Theorem 2 is by a reduction from our Theo-

rem 1 using a combinatorial construction based on Ruzsa-

Szemerédi graphs (see Section II-B). In the following sec-

tion, we first present our distribution DUR and then in the

subsequent section prove the desired lower bound.

A. Distribution DUR in Theorem 2

To continue, we need to set up some notation. Let GRS =
(L,R,E) be an (r, t)-RS digraph with induced matchings

MRS
1 , . . . ,MRS

t as defined in Section II-B. For each induced

matching MRS
i , we assume an arbitrary ordering of edges

ei,1, . . . , ei,r in the matching and for each j ∈ [r] denote

eij := (uij , vij) for uij ∈ L and vij ∈ R; moreover, we let

L(MRS
i ) := {ui1, . . . , uir} and R(MRS

i ) := {vi1, . . . , vir}.

Based on these, we have the following definition:

• For any matching MRS
i and any set S ⊆ [r], we define

MRS
i |S as the matching in GRS consisting of the edges

eij ∈ MRS
i for all j ∈ S.

We are now ready to define our distribution. See Figure 1

for an illustration.

Distribution DUR. An input distribution on graphs G =
({s} ⊔ V1 ⊔ V2 ⊔ V3, EA ⊔ EB).

1) Let GRS = (L,R,ERS) be a fixed (r, t)-RS digraph

on 2N vertices from Proposition II.3 with parame-

ters r = N
2Θ(

√

log N) , and t = N
3 . We note that this

graph is known to both players.

2) Let V1 = L = {u1, . . . , uN}, V2 =
R = {v1, . . . , vN}, and V3 be r new vertices

{w1, . . . , wr}.

3) Sample t independent instances

(S1, T1), . . . , (St, Tt) of set-intersection on the

universe [r] from the distribution DSI in Theorem 1.

4) The input EA to Alice is EA := (MRS
1 |S1) ∪ . . . ∪

(MRS
t |St).

5) Sample i⋆ ∈ [t] uniformly at random.

6) The input EB to Bob is the set of edges (s, ui⋆j)
for j ∈ Ti⋆ and (vi⋆j , wj) for j ∈ Ti⋆ .

Observation IV.2. Several observations are in order:

1) For any G ∼ DUR, there is a unique vertex s⋆

reachable from s in V3. Moreover, s⋆ = we⋆ where

e⋆ ∈ [r] is the unique element in the intersection of

Si⋆ and Ti⋆ .

2) For any EB ∼ DUR, dist(s⋆ | EB) is uniform over

vertices wj ∈ V3 for j ∈ Ti⋆ .
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L R

(a) A fixed (3, 4)-RS digraph in the distribution.

V1 V2

V3

s

(b) The graph G of DUR; dashed edges no longer belong to the graph,
and yellow vertices are incident on MRS

i⋆ .

Figure 1: An illustration of the input distribution DUR. Here, directions of all edges are from left to right and hence omitted.

The marked vertex (blue) in V3 denotes the unique vertex s⋆ in this example along with the path connecting s to s⋆.

3) In DUR, the index i⋆ ∈ [t] is independent of

the sets (S1, T1), . . . , (St, Tt). Moreover, the pairs

(S1, T1), . . . , (St, Tt) are mutually independent.

4) The input EA to Alice in DUR is uniquely determined

by S1, . . . , St, and the input EB to Bob is determined

by i⋆ and Ti⋆ .

B. Proof Sketch of Theorem 2

Let πUR be any one-way protocol that internal ε-solves

unique-reach on the distribution DUR. We will prove that

CC(πUR) = Ω(ε2 · r · t) which proves Theorem 2. The

argument relies on the following two claims: (i) internal ε-

solving of unique-reach on DUR is equivalent to internal

ε-solving of set-intersection on DSI for the pair (Si⋆ , Ti⋆);
and (ii) the information revealed by πUR about the instance

(Si⋆ , Ti⋆) is at least t times smaller than CC(πUR). Having

both these steps, we can then invoke Theorem 1 to conclude

the proof.

We shall emphasize that this is not an immediate reduction

from Theorem 1 as we are aiming to gain an additional

factor of t in the information cost lower bound for πUR

compared to the lower bound for set-intersection. This part

crucially relies on the fact that πUR is a one-way protocol

and that index i⋆ ∈ [t] in the distribution is independent of

Alice’s input (and thus her message).

We now present the formal proof. Consider the following

protocol πSI for set-intersection on the distribution DSI

using πUR as a subroutine.

Protocol πSI: Given an instance (A,B) ∼ DSI on

universe [r], Alice and Bob do as follows:

1) Alice and Bob sample i⋆ ∈ [t] using

public randomness.

2) Alice sets Si⋆ = A and samples the remaining

sets Si for i �= i⋆ ∈ [t] independently from DSI

using private randomness (this is doable by part (iii)
of Observation IV.2). This allows Alice to generate

the set EA of edges for πUR as in DUR (by part (iv)
of Observation IV.2).

3) Bob sets Ti⋆ = B and creates the set of edges

EB for πUR as in DUR (again doable by part (iv)
of Observation IV.2 as Bob also knows i⋆).

4) The players then run the protocol πUR on the input

(EA, EB) with Alice sending the message in πUR to

Bob.

The first step of the proof is the following claim.

Claim IV.3. πSI internal ε-solves set-intersection on DSI.

We can also bound the internal information cost of πSI

which allows us to apply Theorem 1 and conclude the proof.

The proof of this lemma is by a direct-sum style argument.

We note that these arguments (based on information theory

tools) are by now mostly standard in the literature.

Lemma IV.4. ICDSI
(πSI) ≤ 1

t · CC(πUR).

The proofs of Claim IV.3 and Lemma IV.4 are deferred

to the full version.

We now conclude the proof of Theorem 2. By Claim IV.3,

πSI internal ε-solves set-intersection and thus by Theo-

rem 1, we have ICDSI
(πSI) = Ω(ε2 · r). Plugging in this

bound in Lemma IV.4, we obtain that

CC(πUR) = Ω(ε2 · r · t) = Ω(ε2 · n2

2Θ(
√
logn)

),

as the number of vertices n in the graph is O(N). Setting

b = r/4 = n
2Θ(

√

log n) concludes the proof of Theorem 2.

C. The Inverse Unique-Reach Problem

In addition to the unique-reach problem, we also need

another (almost identical) variant of this problem which we

call the inverse of the unique-reach problem, denoted by←−−−−−−−−−
unique-reach. This problem is basically what one would

naturally expect if we reverse the direction of all edges in

an instance of unique-reach and ask for finding the unique
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vertex that can now reach the end-vertex t (corresponding

to s). Formally, we define this problem as follows.

In
←−−−−−−−−−
unique-reach, we have a digraph

←−
G = (U,

←−
E ) on n

vertices where U := U3 ⊔ U2 ⊔ U1 ⊔ {t}, all edges of the

graph are directed from U1 to t or some Ui+1 to Ui for

i ∈ [2], and we are promised that there is a unique vertex

t⋆ in U
3 that can reach t. The goal is to find this vertex t

⋆
,

or rather, internal ε-solve it exactly as in Definition IV.1. As

before, the edges between U2 and U1, denoted by
←−
EA, are

given to Alice, and the remaining edges, denoted by
←−
EB ,

are given to Bob. The communication is also one-way from

Alice to Bob.

We also define a hard input distribution for
←−−−−−−−−−
unique-reach,

named

←−DUR, in exact analogy with DUR for unique-reach:

←−DUR

is a distribution over graphs
←−
G = (U3 ⊔ U2 ⊔ U1 ⊔

{t} ,
←−
EA ⊔←−

EB), obtained by sampling a graph G = ({s} ⊔

V1⊔V2

⊔V3, EA⊔EB) from DUR, setting U3 = V3, U2 = V2,

U1 =
V1, and t = s, and reversing the direction of all edges

in EA

and EB to obtain
←−
EA and

←−
EB .

V. T
HE st-REACHABILITY COMMUNICATION PROBLEM

We now define the main two-player communication prob-

lem (the setting of this problem is rather non-standard in

terms of the communication model).

Problem 3 (st-reachability). Consider a digraph G =

(V,E)
with two designated vertices s, t and E := E1 ⊔

E2 ⊔
E3. The goal is to determine whether or not s can

reach
t in G.

Initially, Alice receives E1 and Bob receives E2 (the

vertices s, t are known to both players). Next, Alice and

Bob will have one round of communication by Alice sending

a message ΠA1 to Bob and Bob responding back with a

message ΠB1. At this point, the edges E3 are revealed to

both
players. Finally, Alice is allowed to send yet another

message ΠA2 to Bob (which this time depends on E3 as

well) and Bob outputs the answer (also a function of E3).

The following theorem is the main result of our paper.

Theorem 3. For any ε ∈ (n−1/2, 1/2), any communication

protocol for st-reachability that succeeds with probability at

least 1
2

+ε requires Ω(ε2 · n2

2Θ(
√

log n) ) bits of communication.

We note that the n−1/2 lower bound on ε in Theorem 3 is

not sacrosanct and any term which is ω
(

logn
b

)
still works

where
b = n

2Θ(
√

log n) is the parameter in Theorem 2.

A. A Hard Distribution for st-reachability

Recall the distributions DUR,
←−DUR from Section IV. We

will use them to define our distribution for st-reachability.

See
Figure 2 for an illustration.

Distribution DST. A hard input distribution for the

st-reachability problem.

1) Let V := {s}⊔V1 ⊔V2 ⊔V3 ⊔U3 ⊔U2 ⊔U1 ⊔{t} –

each Vi or Ui is called a layer of G (this partitioning

is known to both players).2) Sample the graph
G

1 := (
V
3 ⊔ U

3, E1) by picking

each edge (v, u) ∈ V3×U3 independently and with

probability half.

3) Sample the following two graphs independently:

a) H := ({s}⊔V1 ⊔V2 ⊔V3, EA ⊔EB) sampled

from the distribution DUR;

b)
←−
H := (U3⊔U2⊔U1⊔{t} ,←−EA⊔←−

EB) sampled

from the distribution
←−DUR.

4) The initial input to Alice and Bob are, respectively,

E1 and E2 := EA ∪←−
EA, and the input revealed to

both players in the second round is E3 := EB∪
←−
EB .

To avoid potential confusion, we should note right away

that Bob in the distribution DST is receiving the input of

Alice in DUR and
←−DUR.

Observation V.1. The following two remarks are in order:

1) The distributions of E1, H , and
←−
H are mutually

independent in DST.

2) s can reach t in G iff the edge (s⋆, t⋆) ∈ E1.

(proof: the only vertex in V3 reachable from s is s⋆

and the only vertex in U3 that reaches t is t⋆, thus the

only potential s-t path is s � s⋆ → t⋆ � t.)

B. Setup and Notation

Let πST be any deterministic protocol for st-reachability

over the distribution DST with

CC(πST) = o(ε2 · b2), (2)

where b := n
2Θ(

√

log n) is the parameter in Theorem 2 for

instances of DUR and
←−DUR. We will prove that the probabil-

ity that πST outputs the correct answer to st-reachability

is 1
2 + o(ε), hence proving Theorem 3 for deterministic

protocols. The results for randomized protocols follows

immediately from this and an averaging argument (i.e., the

easy direction of Yao’s minimax principle [69]).

To facilitate our proofs, the following notation would be

useful. For brevity, we use

Π := (ΠA1,ΠB1,ΠA2),

Z1 := (ΠA1,ΠB1, E3),

Z2 := (Π, E3, s
⋆, t⋆).

We also use O ∈ {0, 1} to denote the output Bob at the end

of the protocol.

For any pair of vertices v, u ∈ V3×U3, we use the notation

E1(v, u) ∈ {0, 1} to denote whether or not the edge (v, u) ∈
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EA

E1EB
EB

←−
EA

←−
EB

←−
EB

V1 V2

V3 U3

U2 U1

s t

Figure 2: An illustration of the input distribution DST. Here, the directions of all edges are from left to right and hence

omitted. The vertices s⋆ ∈ V3 and t⋆ ∈ U3 are marked blue and the potential edge (s⋆, t⋆) is marked red–existence or

non-existence of this edge uniquely determines whether or not s can reach t in G.

E1. For a fixed choice of E3 = EB ∪←−
EB in DST, we use

V ⋆
3 and U⋆

3 to denote the sets from which s⋆ and t⋆ are

chosen uniformly at random from conditioned on EB and←−
EB , respectively (see part (i) of Theorem 2). We also define:

E1(V
⋆
3 , U

⋆
3 ) := {E1(vi, ui) | (vi, ui) ∈ V ⋆

3 × U⋆
3 } .

We further assume a fixed arbitrary ordering of pairs v, u ∈
V3 × U3 and define:

E
<(v,u)
1 := E1(v1, u1), E1(v2, u2), . . .

for all pairs (vi, ui) ∈ E1(V
⋆
3 , U

⋆
3 ) that appear before (v, u)

in this ordering (note that we ignore the other edges of E1

that are not in E1(V
⋆
3 , U

⋆
3 ) here).

Crucial Independence Properties

The following independence properties are crucial for our

proofs. They are all based on the rectangle property of

communication protocols and part (i) of Observation V.1.

ΠA2 ⊥ s⋆, t⋆ | Z1 (3)

E1 ⊥ s⋆, t⋆ | Z1,ΠA2 (4)

E2 ⊥ E1(s
⋆, t⋆) | Z1,Z2. (5)

The proofs appear in full version.

C. Part One: The First Round of Communication

In the following lemma, we prove that after the first

round of the protocol, the (joint) distribution of (s⋆, t⋆)
conditioned on Z1 = (ΠA1,ΠB1, E3) is almost the same

as if we only conditioned on E3. This is basically through a

reduction from Theorem 2 considering s⋆, t⋆ are distributed

(originally) according to DUR and
←−DUR and the public

information E3 provides the input of Bob in the instances

of unique-reach and
←−−−−−−−−−
unique-reach in this reduction.

Lemma V.2.

E
Z1

‖dist(s⋆, t⋆ | Z1)− dist(s⋆, t⋆ | E3)‖tvd = o(ε).

D. Part Two: The Second Round of Communication

Lemma V.2 implies that the extra information Z1 available

to Alice at the beginning of the second round does not

change the distribution of (s⋆, t⋆) by much. We use this

to show that the message of Alice in the second round does

not change the distribution of E1(s
⋆, t⋆) ∈ {0, 1} by much.

Lemma V.3.

E
Z1,Z2

‖dist(E1(s
⋆, t⋆) | Z1, Z2)− dist(E1(s

⋆, t⋆))‖tvd = o(ε).

E. Concluding the Proof of Theorem 3

We are now ready to conclude the proof of Theorem 3.

Lemma V.3 implies that conditioning on Z1, Z2 does not

change the distribution of E1(s
⋆, t⋆) by much. By the inde-

pendence property of Eq (5), we know that this continues

to hold even if we further condition on the input of Bob,

i.e., E2. We use this to prove that the probability that πST

outputs the correct answer is almost the same as random

guessing.

Claim V.4. Pr (πST outputs the correct answer) = 1
2 +o(ε).

To conclude, we have shown that for any deterministic

protocol πST with CC(πST) = o(ε2 · b2), the probability

that πST outputs the correct answer over the distribution

DST is only 1
2 + o(ε). This can be extended directly to

randomized protocols as by an averaging argument, we can

always fix the randomness of any randomized protocol πST

on the distribution DST to obtain a deterministic protocol

with the same error guarantee. Noting that b = n
2Θ(

√

log n)

concludes the proof of Theorem 3.

VI. GRAPH STREAMING LOWER BOUNDS

We now obtain our graph streaming lower bounds by

reductions from the st-reachability communication problem

defined in Section V. The first step of all these reductions is

to show that one can simulate any two-pass graph streaming
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algorithm on graphs G = (V,E) using a protocol in the

setting of the st-reachability problem. The proof is via a

standard simulation.

Proposition VI.1. Any two-pass S-space streaming algo-

rithm A on graphs G = (V,E1⊔E2⊔E3) of st-reachability

can be simulated exactly by a communication protocol πA
with CC(πA) = O(S) and the communication-pattern

restrictions of the st-reachability problem.

A. Directed Reachability

We obtain the following theorem for the directed reacha-

bility problem.

Theorem 4 (Formalization of Result 1). Any streaming

algorithm that makes two passes over the edges of any

n-vertex directed graph G = (V,E) with two designated

vertices s, t ∈ V and outputs whether or not s can reach

t in G with probability at least 2/3 requires Ω( n2

2Θ(
√

log n) )
space.

Theorem 4 follows immediately from Proposition VI.1

and our lower bound in Theorem 3.

We also present some standard extension of this lower

bound to other problems related to the directed reachability

problem.

• Estimating number of vertices reachable from a

source: Consider any instance of the problem in The-

orem 4 and connect t to 2n new vertices. In the new

graph, if s can reach t, then it can also reach at least

2n other vertices, while if s does not reach t, it can

reach at most n other vertices. Hence, the lower bound

in Theorem 4 extends to this problem as well which

was studied (in a similar format) in [3].

• Testing if G is acyclic or not: Recall that the hard dis-

tribution of graphs in Theorem 3 and hence Theorem 4

is supported on acyclic graphs. If in these graphs, we

connect t to s directly, then the graph remains acyclic iff

s cannot reach t. Hence, the lower bound in Theorem 4

extends to this problem as well.

• Approximating minimum feedback arc set: The

lower bound for acyclicity implies the same bounds

for any (multiplicative) approximation algorithm of

minimum feedback arc set (the minimum number of

edges to be deleted to make a graph acyclic) studied

in [4].

B. Bipartite Perfect Matching

We obtain the following theorem for the bipartite perfect

matching problem using a standard reduction.

Theorem 5 (Formalization of Result 2). Any streaming

algorithm that makes two passes over the edges of any

n-vertex undirected bipartite graph G = (L ⊔ R,E) and

outputs whether or not G has a perfect matching with

probability at least 2/3 requires Ω( n2

2Θ(
√

log n) ) space.

C. Single-Source Shortest Path

Finally, we have the following theorem for the shortest

path problem, again using a standard reduction.

Theorem 6 (Formalization of Result 3). Any streaming

algorithm that makes two passes over the edges of any n-

vertex undirected graph G = (V,E) with two designated

vertices s, t ∈ V and outputs the length of the shortest s-t
path in G with probability at least 2/3 requires Ω( n2

2Θ(
√

log n) )
space.

The lower bound continues to hold even if the algorithm

is allowed to output an estimate which, with probability at

least 2/3, is as large as the length of the shortest s-t path

and strictly smaller than 9/7 times the length of the shortest

s-t path.
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