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Abstract—We prove that any two-pass graph streaming
algorithm for the s-t reachability problem in n-vertex directed
graphs requires near-quadratic space of n>~°() bits. As a
corollary, we also obtain near-quadratic space lower bounds
for several other fundamental problems including maximum
bipartite matching and (approximate) shortest path in undi-
rected graphs.

Our results collectively imply that a wide range of graph
problems admit essentially no non-trivial streaming algorithm
even when two passes over the input is allowed. Prior to our
work, such impossibility results were only known for single-
pass streaming algorithms, and the best two-pass lower bounds
only ruled out o(n” 6) space algorithms, leaving open a large
gap between (trivial) upper bounds and lower bounds.
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[. INTRODUCTION

Graph streaming algorithms process the input graph with
n known vertices by making one or a few passes over
the sequence of its unknown edges (given in an arbitrary
order) and using a limited memory (much smaller than
the input size which is O(n?) for a graph problem). In
recent years, graph streaming algorithms and lower bounds
for numerous problems have been studied extensively. In
particular, we now have a relatively clear picture of the
powers and limitations of single-pass algorithms. With a
rather gross oversimplification, this can be stated as follows:

e The exact variant of most graph problems of interest
are intractable: There are §2(n?) space lower bounds
for maximum matching and minimum vertex cover [1],
[2], (directed) reachability and topological sorting [1],
[3], [4], shortest path and diameter [1], [5], minimum
or maximum cut [6], maximal independent set [7], [8],
dominating set [9], [10], and many others.

o On the other hand, approximate variants of many graph
problems are tractable: There are O(n - polylog(n))
space algorithms (often referred to as semi-streaming
algorithms) for approximate (weighted) matching and
vertex cover [1], [11]-[13], spanner computation and
approximation for distance problems [5], [14]-[16],
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cut or spectral sparsifiers and approximation for cut
problems [17]-[20], large independents sets [8], [21],
graph coloring [7], [22], and approximate dominating
set [9], [10], among others'.

Recent years have also witnessed a surge of interest
in designing multi-pass graph streaming algorithms (see,
e.g. [1], [4], [23]-[36]); see, e.g., [1], [37] for discussions on
practical applications of multi-pass streaming algorithms in
particular in obtaining I/O-efficiency. These results suggest
that allowing even just one more pass over the input greatly
enhances the capability of the algorithms. For instance,
while computing the exact global or s-t minimum cut in
undirected graphs requires 2(n?) space in a single pass [6],
perhaps surprisingly, one can solve both problems in only
two passes with O(n) and O(n®/3) space, respectively [38]
(see also [39] for an O(logn)-pass algorithm for weighted
minimum cut). Qualitatively similar separations are known
for numerous other problems such as triangle counting [33],
[40] (with two passes), approximate matching [2], [23],
[26], [35] (with O(1) passes), maximal independent set [7],
[8], [41] (with O(log log n) passes), approximate dominating
set [10], [42], [43] (with O(log n) passes), and exact shortest
path [5], [36] (with O(y/n) passes).

Despite this tremendous progress, the general picture for
the abilities and limitations of multi-pass algorithms is not
so clear even when we focus on two-pass algorithms. What
other problems beside minimum cut admit non-trivial two-
pass streaming algorithms? For instance, can we obtain
similar results for directed versions of these problems? What
about closely related problems such as maximum bipartite
matching or not-so-related problems such as shortest path?
Currently, none of these problems admit any non-trivial
two-pass streaming algorithm, while known lower bounds
only rule out algorithms with o(n"/®) space [4], [5], [44]
leaving a considerable gap between upper and lower bounds
(see [45] for a discussion on the current landscape of multi-
pass graph streaming lower bounds).

11t should be noted that, in contrast, determining the best approximation
ratio possible for many of these problems have remained elusive and is an
active area of research.
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A. Our Contributions

We present near-quadratic space lower bounds for two-
pass streaming algorithms for several fundamental graph
problems including reachability, bipartite matching, and
shortest path.

Reachability and related problems in directed graphs:
We prove the following lower bound for the reachability
problem in directed graphs.

Result 1 (Formalized in Theorem 4). Any two-pass
streaming algorithm (deterministic or randomized) that
given an n-vertex directed graph G = (V, E) with two
designated vertices s,t € V can determizne whether or
not s can reach t in G requires Q55 =) space.

The reachability problem is one of the earliest prob-
lems studied in the graph streaming model [3]. Previously,
Henzinger et al. [3] and Feigenbaum et al. [5] proved
an (n?) space lower bound for this problem for single-
pass algorithms, and Guruswami and Onak [44] gave an
Q,(n'*T»+2) lower bound for p-pass algorithms which
translates to fl(n” 6) space for two-pass algorithms; this
lower bound was recently extended to random-order streams
by Chakrabarti et al. [4]. Note that the undirected version
of this problem has a simple O(n) space algorithm in one
pass by maintaining a spanning forest of the input graph
(see, e.g. [1]).

Using standard reductions, our results in this part can be
extended to several other related problems on directed graphs
such as estimating number of vertices reachable from a given
source or approximating minimum feedback arc set, studied
in [3] and [4], respectively.

Matching and cut problems: We have the following
lower bound for bipartite matching.

Result 2 (Formalized in Theorem 5). Any two-pass
streaming algorithm (deterministic or randomized) that
given an n-vertex undirected bipartite graph G
(LU R,E) can determine whether or not G has a
perfect matching requires 9(29(”7\/11?")) space.

Maximum matching problem is arguably the most studied
problem in the graph streaming model. However, the main
focus on this problem so far has been on approximation
algorithms and not much is known for exact computation of
this problem, beside that it can be done in O(k?) space in a
single pass where k is size of the maximum matching [46]
(for the perfect matching problem, this gives an O(n?)
space algorithm which is the same as storing the entire
input). Previously, Feigenbaum et al. [1] and Chitnis et
al. [47] proved an §2(n?) space lower bound for single-pass
algorithms for this problem and Guruswami and Onak [44]
extended the lower bound to €,(n'*/»+») for p-pass
algorithms.
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Both the perfect matching problem and the s-t reacha-
bility problem are simpler versions of the s-f minimum cut
problem in directed graphs. As such, our lower bounds imply
that even though the s-t minimum cut problem can be solved
in undirected graphs in O(n°/3) space and two passes [38],
its directed version requires n>~°(1) space in two passes
(for any multiplicative approximation). Previously, Assadi et
al. [45] proved a lower bound of §2(n2?/p%) for p-pass
algorithms for the weighted s-t minimum cut problem (with
exponential-in-p weights); for the unweighted problem, the
previous best lower bound was still Q,,(n!*+"/@r+2),

Shortest path problem: Finally, we also prove a lower
bound for the shortest path problem.

Result 3 (Formalized in Theorem 6). Any two-pass
streaming algorithm (deterministic or randomized) that
given an undirected graph G = (V, E) and two des-
ignated vertices s,t € V, can output the length of the
shortest s-t-path in G requires Q(Qe(”i\/i)?n)) space. The
lower bound continues to hold even for approximation
algorithms with approximation ratio better than 9/7.

Shortest path problem have also been extensively studied
in graph streaming literature. For single-pass streams, the
focus has been on maintaining spanners (subgraphs that
preserve pairwise distances approximately) which allow
for obtaining algorithms with different space-approximation
tradeoffs [5], [14]-[16] (starting from 2-approximation in
O(n?/?) space to O(logn) approximation in O(n) space),
which are known to be almost tight [5]. For multi-pass
algorithms, O(n) space algorithms are known for (1 + ¢)-
approximation with poly(logn,é) passes [28], [48], and
exact algorithms with O(y/n) passes [36]. On the lower
bound front, an Q(nz) space loyer bound is known for
single-pass algorithms [5] and €, (n!*"/?*+2) for p-pass
algorithms [44]) (for exact answer or even some small
approximation = (2p+4)/(2p+2)); a stronger lower bound
of Q(n'*'?*) was proven earlier in [5] for algorithms that
need to find the shortest path itself.

Our results show that a wide range of graph problems
including directed reachability, cut and matching, and short-
est path problems, admit essentially no non-trivial two-pass
streaming algorithms: modulo the n°(1)-term in our bounds,
the best one could do to is to simply store the entire stream
in O(n?) space and solve the problem at the end using any
offline algorithm.

B. Our Techniques

We prove our main lower bound for the s-t reachability
problem; the other lower bounds then follow easily from this
using standard ideas.

It helps to start the discussion with the lower bounds
in [4], [5], [44]. These lower bounds work with random
graphs wherein s can reach ©(y/n) random vertices S and
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t is independently reachable from O(y/n) random vertices
T thus, by Birthday Paradox, s-t reachability can have
either answer with constant probability. One then shows that
to determine this, the algorithm needs to “find” S and T
explicitly. The final part is then to use ideas from pointer
chasing problems [49]-[53] to prove a lower bound for this
task. The particular space-pass tradeoff is then determined
as follows: (i) as a streaming algorithm can find the p-hop
neighborhood of s and ¢ in p passes (by BES), S and T  need
to be (p+1)-hop away from s and ¢; (ii) as we are working
with random graphs, to achieve the bound of O(y/n) on
size of S and T, we need the degree of the graph to be
O(n'/?2(P+1) leading to an O(n'*+1/(2P*2)) gpace lower
bound for p-pass algorithms. We note that the limit of these
approaches based on random graphs seem to be O(n?/ ),
see [4, Section 5.2].

Our lower bound takes a different route and works with
“more structured” graphs. We start with proving a single-
pass streaming lower bound for an “algorithmically easier”
variant of the reachability problem. In this problem, we
are promised that s can reach a unique vertex s* chosen
uniformly at random from a set U of n'~°(!) vertices and
the goal is to “find” this vertex. Previous lower bounds [4],
[5], [44] already imply that if our goal was to determine
the identity of s* exactly, we need Q(n?) space. In this
paper, we prove a stronger lower bound that an n?~°(1)-
space single-pass algorithm essentially cannot even change
the distribution of s* from uniform over U. The proof of this
part is based on information theoretic arguments that rely
on “embedding” multiple instances of the set intersection
problem (see Section III) inside a Ruzsa-Szemerédi (RS)
graph (see Section II-B), and proving a new lower bound
for the set intersection problem.

We remark that our new lower bound for set intersection
is related to the recent lower bound of [45] with a subtle
technical difference that is explained in Section III and in
more details in the full version. We also note that RS graphs
have been used extensively for proving graph streaming
lower bounds [2], [8], [26], [54]-[56] starting from [2], but
this is their first application to the s-¢ reachability problem.

In the next part of the argument, we construct a family
of graphs in which the s-t reachability is determined by
existence of a single edge (s*,t*) in the graph, where s*
is the unique vertex reachable from s in a large set U
and t* is the unique vertex that can reach ¢ in a large
set W (see Figure 2 for an illustration). By exploiting our
lower bound in the first part, we show that a n>~°(1)-space
algorithm cannot properly “find” the pairs s* and ¢* in the
first pass. We then argue that this forces the algorithm to
effectively “store” all the edges between U and W in the
second pass to determine if (s*,t*) is an edge of the graph,
leading to an n2~°(1) space lower bound.

Remark (More than two passes?). The intermediate “sim-
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pler” problem we considered in our proofs (part one above)
is only hard in one pass (see Section 1V) and thus our
lower bound proof does not directly go beyond two passes.
However, it appears that our techniques can be extended
to multi-pass algorithms to prove lower bounds of the type
02 space for p-pass algorithms which are slightly
better in terms of dependence on p in the exponent compared
to [4], [5], [44]. Nevertheless, as unlike the case for two-
pass algorithms, it is no longer clear whether such bounds
are the “right” answer to the problems at hand, we opted
to not pursue this direction in this paper.

II. PRELIMINARIES

Notation: For any integer ¢ > 1, we use [t]
{1,...,t}. For any k-tuple X = (X1,...,X}) and integer
i € [k], we define X< := (X1,...,X;_1).

Throughout the paper, we use ‘sans serif” letters to denote
random variables (e.g., A) , and the corresponding normal
letters to denote their values (e.g. A). For brevity and to
avoid the clutter in notation, in conditioning terms which
involve assignments to random variables, we directly use
the value of the random variable (with the same letter), e.g.,
write B | A instead of B | A = A.

For random variables A, B, we use H(A) and I(A;B) :=
H(A) —H(A | B) to denote the Shannon entropy and mutual
information, respectively. Moreover, for two distributions
i, v on the same support, || — v||ya denotes the total
variation distance, and D(y || v) is the KL-divergence. A
summary of basic information theory facts that we use in
our proofs appear in the full version.

A. Communication Complexity and Information Complexity

We work with the two-party communication model of
Yao [57]. See the excellent textbook by Kushilevitz and
Nisan [58] for an overview of communication complexity.

Let P : X x)Y — Z be a relation. Alice receives an
input X € X and Bob receives Y € ), where (X,Y) are
chosen from a distribution D over X x ). We allow players
to have access to both public and private randomness.
They communicate with each other by exchanging messages
according to some protocol . Each message in m depends
only on the private input and random bits of the player
sending the message, the already communicated messages,
and the public randomness. At the end, one of the players
outputs an answer Z such that Z € P(X,Y). For any
protocol 7, we use I := II(X,Y) to denote the messages
and the public randomness used by 7 on the input (X,Y).

We now define two measures of “cost” of a protocol.

Definition II.1 (Communication cost). The communication
cost of a protocol 7, denoted by CC (), is the worst-case
length of the messages communicated between Alice and
Bob in the protocol.
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Definition I1.2 (Information cost). The information cost of
a protocol m, when the inputs (X,Y) are drawn from a
distribution D, is ICp(m) :=L(MN; X | Y) +I(M;Y | X).

The internal information cost (introduced by [59]; see
also [59]-[63]) measures the average amount of information
each player learns about the input of the other player by
observing the transcript of the protocol. As each bit of com-
munication cannot reveal more than one bit of information,
the internal information cost of a protocol lower bounds its
communication cost [62].

Communication complexity and streaming: There is a
standard connection between the communication cost of any
protocol 7 for a communication problem P(X,Y) and the
space of any streaming algorithm that can solve P(X,Y") on
a stream X oY (see Proposition VI.1); we use this connection
to establish our streaming lower bounds.

B. Ruzsa-Szemerédi Graphs

A graph G®° = (V,E) is a called an (r,t)-Ruzsa-
Szemerédi (RS) graph iff its edge-set E can be partitioned
into t induced matchings MFS, ... MFS, each of size r. We
further define an (r,t)-RS digraph as a directed bipartite
graph GR® = (L, R, E) obtained by directing every edge of
a bipartite (r,¢)-RS graph from L to R.

We use the original construction of RS graphs due to
Ruzsa and Szemerédi [64] based on the existence of large
sets of integers with no 3-term arithmetic progression,
proven by Behrend [65]. We note that there are multiple
other constructions with different parameters (see, e.g. [2],
[66]-[68] and references therein) but the following construc-
tion works best for our purpose.

Proposition I1.3 (64]). For infinitely many integers N, there
are (r,t)-RS digraphs with N vertices on each side of the
bipartition and parameters r = N and t = N/3.

0 (VIog V)

III. A NEwW LOWER BOUND FOR THE SET
INTERSECTION PROBLEM

One key ingredient of our paper is a new lower bound for
the set intersection problem, defined formally as follows.

Problem 1 (set-intersection). The set-intersection prob-
lem is a two-player communication problem in which Alice
and Bob are given sets A and B from [m)], respectively, with
the promise that there exists a unique element e* such that
{e*} = AN B. The goal is to find the target element c*
using back and forth communication (i.e., in the two-way
communication model).

The set-intersection problem is closely related to the
well-known set disjointness problem. It is in fact straightfor-
ward to prove an §2(m) lower bound on the communication
complexity of set-intersection using a simple reduction
from the set disjointness problem. However, in this paper,
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we are interested in an algorithmically simpler variant of
this problem which we define below.

Definition III.1. Let D be a distribution of inputs (A, B)
for set-intersection (known to both players). A protocol w
internal s-solves set-intersection over D iff at least one of
the following holds:

I'IEA ||dist(e* | II, A) — dist(e* | A)||wa > € or

E |[disi(e” | 1L B) — dist(e" | B)llua = <.

where all variables are defined with respect to the distri-
bution D and the internal randomness of © (recall that 11
includes the transcript and the public randomness).

Definition III.1 basically states that a protocol can internal
e-solve the set-intersection problem iff the transcript of the
protocol can change the distribution of the target element e*
from the perspective of Alice or Bob by at least ¢ in the total
variation distance on average.

Our definition is inspired but different from e-solving
in [45] (which we call external e-solving to avoid ambiguity)
which required the transcript to change the distribution
of the target element by ¢ from the perspective of an
external observer (who only sees the transcript but not
the inputs of players). More formally, external e-solving of
set-intersection over a distribution p, as defined in [45],
requires the protocol 7 to have the following property
(compare this with Definition III.1),

]ﬁ\ldist(e* | IT) — dist(€*)]|wa > €.

The previous work in [45] has shown that there is a
distribution y such that any protocol that external e-solves
set-intersection over y has information cost Q(g%-m). This
however does not imply a lower bound for the internal &-
solving problem. This is because, in principle, these two
tasks can be different. For instance, (i) a protocol that
reveals the entire set of Alice, changes the distribution of
target for Bob dramatically but not so much for an external
observer; or (ii) a protocol that reveals all the elements that
are neither in A nor in B changes the distribution of the
target for an external observer by a lot but does not change
the distribution for either of the players at all.

We prove the following lower bound on the information
cost of internal e-solving of set-intersection.

Theorem 1. There is a distribution Dsg, for set-intersection
over the universe [m] such that:

1) For any A or B sampled from Dg, both dist(e* | A)

and dist(e* | B) are uniform distributions on A and
B, each of size m/4, respectively.
For any ¢ € (0,1), any protocol w that internal e-
solves the set-intersection problem over the distri-
bution Dg) (Definition II1.1) has internal information
cost ICpg (1) = Q(e% - m).

2)
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IV. THE UNIQUE-REACH COMMUNICATION PROBLEM

We now start with our main lower bounds. Define the
following two-player communication problem.

Problem 2 (unique-reach). The unique-reach problem is
defined as follows. Consider a digraph G = (V,E) on n
vertices where V = {s}UV,UVLUV3 and any edge (u,v) €
E is directed from s to Vi or some V; to V41 for i € [2]
(we refer to each V; as a layer). We are promised that there
is a unique vertex s* in the layer V3 reachable from s.

Alice is given edges in E from Vi to Vs, denoted by
E 4, and Bob is given the remainder of the edges in E,
denoted by Ep (the partitioning of vertices of V' is known
to both players). The goal for the players is to find s* by
Alice sending a single message to Bob (i.e., in the one-way
communication model).

It is easy to prove a lower bound of Q(n?) on the one-
way communication complexity of unique-reach using a
reduction from the Index problem. It is also easy to see
that this problem can be solved with O(nlogn) bits of
communication, if we allow Bob to send a single message
to Alice: By the uniqueness promise on s*, no vertex with
out-degree more than one in V5 should be reachable from s
and thus Bob can communicate all the remaining edges in
Eg to Alice.

Nevertheless, in this paper, we are interested in an algo-
rithmically simpler variant of this problem similar-in-spirit
to e-solving for set-intersection (Definition III.1).

Definition IV.1. Let D be any distribution of valid in-
puts G = (V,E4 U Eg) for unique-reach (known to
both players). We say that a protocol  internal e-solves
unique-reach over D iff:

B dist(s” | T1, ) — dist(s” | Bp)aa 25, (1)
»=B

where all variables are defined with respect to the distri-
bution D and the internal randomness of © (recall that 11
includes the transcript and the public randomness).

Definition I'V.1 basically states that a protocol can internal
e-solve the problem iff the message sent from Alice can
change the distribution of the unique vertex s* from the
perspective of Bob by at least ¢ in the total variation distance
(in expectation over Alice’s message and Bob’s input).

Our main theorem in this section is the following.

Theorem 2. There is a distribution Dyg for unique-reach
and an integer b := 2@(% with the following properties:
1) For any Ep sampled from Dyg, dist(s* | Ep) is a
uniform distribution over a subset V5 of b vertices in

the layer V3 of the input graph;
2) for any ¢ € (0, 1), any one-way protocol v that inter-
nal e-solves unique-reach over the distribution Dyr

(Definition 1V.1) has communication cost CC(m) =
Qe?-n-b).

Proof of Theorem 2 is by a reduction from our Theo-
rem | using a combinatorial construction based on Ruzsa-
Szemerédi graphs (see Section II-B). In the following sec-
tion, we first present our distribution Dyg and then in the
subsequent section prove the desired lower bound.

A. Distribution Dyr in Theorem 2

To continue, we need to set up some notation. Let G RS —
(L,R,E) be an (r,t)-RS digraph with induced matchings

MERS| ..., MFS as defined in Section II-B. For each induced
matching MR, we assume an arbitrary ordering of edges
€i1,---,€r in the matching and for each j € [r] denote

ei; = (u;j,vi;) for u;; € L and v;; € R; moreover, we let
L(MFS) := {ui1, ..., uyy and R(MPS) := {vi1,..., v}
Based on these, we have the following definition:

o For any matching MZRS and any set S C [r], we define

MFPS|S as the matching in GRS consisting of the edges
eij € MPS for all j € S.

We are now ready to define our distribution. See Figure 1
for an illustration.

Distribution Dyg. An input distribution on graphs G =

{stuViuVauVs, B4 U ER).
1) Let GRS = (L, R, E®®) be a fixed (r,t)-RS digraph
on 2N vertices from Proposition II.3 with parame-

ters r = 2@(7\/%, and t = % We note that this
graph is known to both players.

2) Let V3 = L = {ul,...,uN}, Vs =
R = {v1,...,vn}, and V3 be r new vertices
{w,...,w.}.

3) Sample t independent instances

(S1,T1),...,(Ss, Ty) of set-intersection on the
universe [r] from the distribution Dg) in Theorem 1.

4) The input E4 to Alice is B4 := (MTS[S)U... U
(MFS|S)).

5) Sample i* € [t] uniformly at random.

6) The input Ep to Bob is the set of edges (s, u;+;)
for j € T;« and (v;+;, w;) for j € Tjs.

Observation IV.2. Several observations are in order:

1) For any G ~ Dyr, there is a unique vertex s*
reachable from s in Vs. Moreover, s* = we~ where
e* € [r] is the unique element in the intersection of
S+ and T+

2) For any Ep ~ Dyg, dist(s* | Eg) is uniform over
vertices w; € V3 for j € Tjx.
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L R
(a) A fixed (3,4)-RS digraph in the distribution.

Vs

% Va

(b) The graph G of Dyg; dashed edges no longer belong to the graph,
and yellow vertices are incident on M.

Figure 1: An illustration of the input distribution Dyg. Here, directions of all edges are from left to right and hence omitted.
The marked vertex (blue) in V3 denotes the unique vertex s* in this example along with the path connecting s to s*.

3) In Dyg, the index i* € [t] is independent of
the sets (S1,T1),...,(St,T;). Moreover, the pairs
(S1,T1), ..., (St T:) are mutually independent.

4) The input E 4 to Alice in DyR is uniquely determined
by Si,...,S:, and the input Eg to Bob is determined
by i* and T;«.

B. Proof Sketch of Theorem 2

Let myr be any one-way protocol that internal e-solves
unique-reach on the distribution Dyg. We will prove that
CC(myr) = (e - r - t) which proves Theorem 2. The
argument relies on the following two claims: (4) internal e-
solving of unique-reach on Dyg is equivalent to internal
e-solving of set-intersection on Dg for the pair (S;+, T;+);
and (i7) the information revealed by myg about the instance
(Six, Ti+) is at least t times smaller than CC(myg). Having
both these steps, we can then invoke Theorem 1 to conclude
the proof.

We shall emphasize that this is not an immediate reduction
from Theorem 1| as we are aiming to gain an additional
factor of ¢ in the information cost lower bound for wyr
compared to the lower bound for set-intersection. This part
crucially relies on the fact that myg is a one-way protocol
and that index i* € [t] in the distribution is independent of
Alice’s input (and thus her message).

We now present the formal proof. Consider the following
protocol wg for set-intersection on the distribution Dg;
using myR as a subroutine.

Protocol wg): Given an instance (A, B) ~ Dg on
universe [r], Alice and Bob do as follows:

1) Alice and Bob [t]
public randomness.

2) Alice sets S;» = A and samples the remaining
sets S; for i # ¢* € [t|] independently from Dg
using private randomness (this is doable by part (i%)
of Observation IV.2). This allows Alice to generate

sample ¢* € using
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the set E 4 of edges for myg as in Dyg (by part (iv)
of Observation 1V.2).

Bob sets T;« = B and creates the set of edges
Ep for myr as in Dyr (again doable by part (iv)
of Observation IV.2 as Bob also knows i*).

The players then run the protocol myr on the input
(Ea, Ep) with Alice sending the message in myg to
Bob.

The first step of the proof is the following claim.

3)

4)

Claim IV.3. wg internal e-solves set-intersection on Dg).

We can also bound the internal information cost of 7g
which allows us to apply Theorem 1 and conclude the proof.
The proof of this lemma is by a direct-sum style argument.
We note that these arguments (based on information theory
tools) are by now mostly standard in the literature.

Lemma IV4. ICD3| (7TS|) < % . CC(TFUF{).

The proofs of Claim IV.3 and Lemma IV.4 are deferred
to the full version.

We now conclude the proof of Theorem 2. By Claim 1V.3,
mg internal e-solves set-intersection and thus by Theo-
rem 1, we have ICpg(ms)) = (g2 - r). Plugging in this
bound in Lemma IV.4, we obtain that

n2

CO(mum) = e+ 7+1) = Q- 57,

as the number of vertices n in the graph is O(XN). Setting
b=r/4= s5/t= concludes the proof of Theorem 2.

C. The Inverse Unique-Reach Problem

In addition to the unique-reach problem, we also need
another (almost identical) variant of this problem which we
call the inverse of the unique-reach problem, denoted by
unique-reach. This problem is basically what one would
naturally expect if we reverse the direction of all edges in
an instance of unique-reach and ask for finding the unique
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vertex that can now reach the end-vertex ¢ (corresponding
to s). Formally, we define this problem as follows.
: . <
In unique-reach, we have a digraph G = (U, %) on n
vertices where U := Uz U Uy U Uy U {t}, all edges of the
graph are directed from U; to ¢ or some U;y; to U; for

i € [2],; ande WanpeabROmiped B HCES find ARG ERITEX
br Mer, internal e-solve it exactly as in Definition IV.1. As
before, the edges between Us and Uj, denoted by FEj, are
given to Alice, and the remaining edges, denoted by FEp,
are given to Bob. The communication is also one-way from
Alice to Bob.
We als(_o define a hard input distribution for unique-reach,
‘Dyg, in exact analogy with Dygr for unique-reach:
I%me(iis a distribution over graphs G = (Us LI Uy U Uy L
UREL; U %B), obtained by sampling a graph G = ({s} U
{t}, vy, EAUER) from Dyg, setting Us = Vs, Uz = Va,
il ¥, and t = s, and reversing the direction of all edges

Ul — and Ep to obtain E4 and Ep.
m EA

HE st-REACHABILITY COMMUNICATION PROBLEM

We now define the main two-player communication prob-
lem (the setting of this problem is rather non-standard in
terms of the communication model).

Problem 3 (st-reachability). Consider a digraph G
with two designated vertices s,t and E = E; L
v, E).Eg The goal is to determine whether or not s can
Er Ut ina.
re%cllzitially, Alice receives E1 and Bob receives Eo (the
vertices s,t are known to both players). Next, Alice and
Bob will have one round of communication by Alice sending
a message Il 41 to Bob and Bob responding back with a
message 1lpi. At this point, the edges F3 are revealed to
players. Finally, Alice is allowed to send yet another
age 1l o to Bob (which this time depends on Es as
well) and Bob outputs the answer (also a function of Es).

The following theorem is the main result of our paper.

Theorem 3. For any € € (n~/2,1/2), any communication
protocol for st-reachability thaé succeeds with probability at
+¢ requires Q(e? - =5 —) bits of communication.

1 20 (vlogn)

least 3
We note that the n~ /2 lower bound on ¢ in Theorem 3 is
not sacrosanct and any term which is w 10% still works

b=

is the parameter in Theorem 2.
where

___n_
20 (Vlogn)

A. A Hard Distribution for st-reachability

%
Recall the distributions Dyr, Dyr from Section IV. We
will use them to define our distribution for st-reachability.

Figure 2 for an illustration.
See
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Distribution Dst. A hard input distribution for the
st-reachability problem.
1) Let V := {S}UV1|_|V2L|‘/3|_|U3|_|U2L|U1|_|{t} -
each V; or U, is called a layer of GG (this partitioning
2) SR haphplayes . . By by picking
each edge (v, u) 6@3 x Us'intependently and with
probability half.
3) Sample the following two graphs independently:
a) H:= ({s}uViuVaUV;, E4UEg) sampled
from the distribution Dyg;
= (UsuUs WU, ULt} %A Ll Ep) sampled
from the distribution

b)

UR-

4) The initial input to Alice and Bob are, respectively,
Fi and Ey := E4 U F 4, and the input revealed to
both players in the second round is F3 := EgUFE g.

To avoid potential confusion, we should note right away
that Bob in the distribution Dgt is receiving the input of
Alice in Dyr and DyR.

Observation V.1. The following two remarks are in order:

1) The distributions of E,, H, and E are mutually
independent in Dsr.

2) s can reach t in G iff the edge (s*,t*) € Ey.
(proof: the only vertex in V3 reachable from s is s*
and the only vertex in Us that reaches t is t*, thus the
only potential s-t path is s ~> s* — t* ~> t.)

B. Setup and Notation

Let wgt be any deterministic protocol for st-reachability
over the distribution Dgy with

CC(mst) = 0(e? - b?), 2)
where b = m is the parameter in Theorem 2 for

instances of Dyr and Dyr. We will prove that the probabil-
ity that wgt outputs the correct answer to st-reachability
is % + o(e), hence proving Theorem 3 for deterministic
protocols. The results for randomized protocols follows
immediately from this and an averaging argument (i.e., the
easy direction of Yao’s minimax principle [69]).

To facilitate our proofs, the following notation would be
useful. For brevity, we use

II:= (HA].: HBl7 HAZ))

Zy = (a1, 1, E3),

ZQ = (H, Eg, 8*7 t*).
We also use O € {0, 1} to denote the output Bob at the end
of the protocol.

For any pair of vertices v, u € V3 xUs, we use the notation
E;(v,u) € {0,1} to denote whether or not the edge (v, u) €
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U, Uy

Figure 2: An illustration of the input distribution Dgr. Here, the directions of all edges are from left to right and hence
omitted. The vertices s* € V3 and t* € Us are marked blue and the potential edge (s*,t*) is marked red—existence or
non-existence of this edge uniquely determines whether or not s can reach ¢ in G.

F;. For a fixed choice of F'3 = Eg U %B in Dg7, We use
V3 and U3 to denote the sets from which s* and t* are
chosen uniformly at random from conditioned on Ep and

B, respectively (see part () of Theorem 2). We also define:

Ey(V,U3) = {E1(vi,us) | (vi,ui) € V5" x U3}
We further assume a fixed arbitrary ordering of pairs v, u €
V3 x Us and define:
E1<(v,u) = El(U17 ’Z,Ll), El(’l)z, ’UQ)7 e

for all pairs (v;,u;) € Ey(V3, Uy) that appear before (v, u)
in this ordering (note that we ignore the other edges of E;
that are not in F1(V5, U3) here).

Crucial Independence Properties

The following independence properties are crucial for our
proofs. They are all based on the rectangle property of
communication protocols and part (i) of Observation V.1.

I_IAQ 1 S*,t* ‘ 21 (3)
E1 1 S*,t* | Zl,I'IAg (4)
Ey L Ei(s*,t) | Z1,2s. 5)

The proofs appear in full version.

C. Part One: The First Round of Communication

In the following lemma, we prove that after the first
round of the protocol, the (joint) distribution of (s*,¢*)
conditioned on Z; = (II1,1lp;, F3) is almost the same
as if we only conditioned on E5. This is basically through a
reduction from Theorem 2 considering s*,¢* are distributed
(originally) according to Dyr and Dyr and the public
information E3 provides the input of Bob in the instances
of unique-reach and unique-reach in this reduction.

Lemma V.2.

E |[dist(s*,t* | Z1) = dist(", " | E3)lna = 0(e)-
1
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D. Part Two: The Second Round of Communication

Lemma V.2 implies that the extra information Z; available
to Alice at the beginning of the second round does not
change the distribution of (s*,t*) by much. We use this
to show that the message of Alice in the second round does
not change the distribution of E;(s*,t*) € {0,1} by much.

Lemma V.3.

ZIEZ |dist(E1(s*,t*) | Z1, Z2) — dist(E1(s™,t*))|lwa = o(e).
1,42

E. Concluding the Proof of Theorem 3

We are now ready to conclude the proof of Theorem 3.
Lemma V.3 implies that conditioning on Z;, Zs does not
change the distribution of F4(s*,t*) by much. By the inde-
pendence property of Eq (5), we know that this continues
to hold even if we further condition on the input of Bob,
i.e., 2. We use this to prove that the probability that 7gt
outputs the correct answer is almost the same as random
guessing.

Claim V4. Pr(mst outputs the correct answer) = 3 +o(e).

To conclude, we have shown that for any deterministic
protocol 7t with CC(7mst) = o(e? - b?), the probability
that wgt outputs the correct answer over the distribution
Dgt is only % + o(e). This can be extended directly to
randomized protocols as by an averaging argument, we can
always fix the randomness of any randomized protocol mst
on the distribution Dgt to obtain a deterministic protocol
with the same error guarantee. Noting that b =
concludes the proof of Theorem 3.

_n
20(VTog )

VI. GRAPH STREAMING LOWER BOUNDS

We now obtain our graph streaming lower bounds by
reductions from the st-reachability communication problem
defined in Section V. The first step of all these reductions is
to show that one can simulate any two-pass graph streaming
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algorithm on graphs G = (V, E) using a protocol in the
setting of the st-reachability problem. The proof is via a
standard simulation.

Proposition VI.1. Any two-pass S-space streaming algo-
rithm A on graphs G = (V, E1UE, 1 E3) of st-reachability
can be simulated exactly by a communication protocol w4
with CC(m4) O(S) and the communication-pattern
restrictions of the st-reachability problem.

A. Directed Reachability

We obtain the following theorem for the directed reacha-
bility problem.

Theorem 4 (Formalization of Result 1). Any streaming
algorithm that makes two passes over the edges of any
n-vertex directed graph G = (V, E) with two designated
vertices s,t € V and outputs whether or not s can reach
t in G with probability at least 2/3 requires 9(2@("7;0?”))
space.

Theorem 4 follows immediately from Proposition VI.1
and our lower bound in Theorem 3.

We also present some standard extension of this lower
bound to other problems related to the directed reachability
problem.

« Estimating number of vertices reachable from a
source: Consider any instance of the problem in The-
orem 4 and connect ¢ to 2n new vertices. In the new
graph, if s can reach ¢, then it can also reach at least
2n other vertices, while if s does not reach ¢, it can
reach at most n other vertices. Hence, the lower bound
in Theorem 4 extends to this problem as well which

was studied (in a similar format) in [3].

Testing if G is acyclic or not: Recall that the hard dis-

tribution of graphs in Theorem 3 and hence Theorem 4

is supported on acyclic graphs. If in these graphs, we

connect ¢ to s directly, then the graph remains acyclic iff

s cannot reach t. Hence, the lower bound in Theorem 4

extends to this problem as well.

« Approximating minimum feedback arc set: The
lower bound for acyclicity implies the same bounds
for any (multiplicative) approximation algorithm of
minimum feedback arc set (the minimum number of
edges to be deleted to make a graph acyclic) studied
in [4].

B. Bipartite Perfect Matching

We obtain the following theorem for the bipartite perfect
matching problem using a standard reduction.

Theorem 5 (Formalization of Result 2). Any streaming
algorithm that makes two passes over the edges of any
n-vertex undirected bipartite graph G = (L U R, E) and
outputs whether or not G has a perfect matching with
probability at least 2/3 requires Q(Q(_)(niiﬁn)) space.
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C. Single-Source Shortest Path

Finally, we have the following theorem for the shortest
path problem, again using a standard reduction.

Theorem 6 (Formalization of Result 3). Any streaming
algorithm that makes two passes over the edges of any n-
vertex undirected graph G = (V, E) with two designated
vertices s,t € V and outputs the length of the shortest s-t
path in G with probability at least 2/3 requires 9(2@("7;;?70)
space.

The lower bound continues to hold even if the algorithm
is allowed to output an estimate which, with probability at
least 2/3, is as large as the length of the shortest s-t path
and strictly smaller than 9/7 times the length of the shortest
s-t path.
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