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Recent advances in multi-task peer prediction have greatly expanded our knowledge about the power of
multi-task peer predictionmechanisms. Various mechanisms have been proposed in different settings to elicit
different types of information. But we still lack understanding about when desirable mechanisms will exist
for a multi-task peer prediction problem. In this work, we study the elicitability of multi-task peer prediction
problems. We consider a designer who has certain knowledge about the underlying information structure
and wants to elicit certain information from a group of participants. Our goal is to infer the possibility of
having a desirable mechanism based on the primitives of the problem.

Our contribution is twofold. First, we provide a characterization of the elicitable multi-task peer predic-
tion problems, assuming that the designer only uses scoring mechanisms. Scoring mechanisms are the mech-
anisms that reward participants’ reports for different tasks separately. The characterization uses a geometric
approach based on the power diagram characterization [5, 13] in the single-task setting. For general mecha-
nisms, we also give a necessary condition for a multi-task problem to be elicitable.

Second, we consider the case when the designer aims to elicit some properties that are linear in the par-
ticipant’s posterior about the state of the world. We first show that in some cases, the designer basically can
only elicit the posterior itself. We then look into the case when the designer aims to elicit the participants’
posteriors. We give a necessary condition for the posterior to be elicitable. This condition implies that the
mechanisms proposed by [11] are already the best we can hope for in their setting, in the sense that their
mechanisms can solve any problem instance that can possibly be elicitable.
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1 INTRODUCTION
Peer prediction refers to a collection of incentive mechanisms [3, 7, 11, 12, 15–20, 22, 24] that have
been designed for the challenging setting where truthful information elicitation about some tasks
is desired but the designer has no access to the ground truth (i.e. event outcomes) for incentive
alignment. This setting is fundamental to many information elicitation applications such as peer
grading, surveys, product reviews, and forecasting for long-term events.

Recent advances in peer prediction have progressed from single-task peer prediction [7, 16–
19, 24], where an agent’s reward on a task is solely determined by how his report on the task
relates to the reports made by peer agents on the same task, to multi-task peer prediction [3, 11,
12, 15, 20, 22], where reports made by peer agents on other tasks can also be used in determining
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the agent’s reward on the task. Multi-task peer prediction mechanisms can often achieve stronger
incentive guarantees or require fewer assumptions on the underlying information structure than
single-task peer prediction mechanisms, thanks to the additional cross-task information. While
the quest for better peer prediction mechanisms is bound to continue, we attempt to understand
the limits for designing multi-task peer prediction mechanisms in this work: When is it possible
to design a desirable multi-task peer prediction mechanism?

To answer this question, the first thing we may need to understand is: what are the factors that
will influence the elicitability of a problem? Our first observation is that the existing multi-task
mechanisms (as well as single-task mechanisms) all rely on certain knowledge about the under-
lying information structure or various assumptions about it. For example, Shnayder et al. [22]
required the designer to partially know the correlation between the participants’ signals; Kong
and Schoenebeck [11] and Liu et al. [15] assumed that the participants’ signals are mutually inde-
pendent conditioned on the unknown ground truth. In addition to the various assumptions about
the underlying distribution, we have also seen mechanisms that utilize the structure of the re-
ported information. For example, Kong and Schoenebeck [11] proposed a mechanism that rewards
the point-wise mutual information between the participants’ reports, which can only be computed
when the reports are the participants’ posteriors about the state.

Our problem becomes more clear. Suppose there is a designer who has certain knowledge about
the underlying information structure and she wants to elicit certain information from a group of
participants, can we infer the possibility of having a desirable mechanism based on the primitives
of the problem before trying to search for mechanisms? The answer to this question may also
shed light on the design of new mechanisms. For certain information we want to elicit, what do
we have to know about the underlying information structure? Based on our knowledge about the
information structure, what kind of information can we possibly elicit?

This problem has been studied in single-task peer prediction if we consider mechanisms that
only ask the participants for their signals. Frongillo and Witkowski [5] used a geometric per-
spective to prove that single-task peer prediction mechanisms that achieve strict truthfulness are
equivalent to power diagrams. Their result gives a necessary and sufficient condition for a designer
with certain knowledge about the participants’ posterior beliefs to be able to design a strictly truth-
ful mechanism: the designer should be able to divide a participant’ possible posteriors after seeing
different signal realizations into different regions, and moreover, these regions must take a partic-
ular shape, that of a power diagram.

But for multi-task peer prediction, little is known about the exact condition for the existence of
strictly truthful mechanisms. As we will show by an example (at the beginning of Section 4), it is
possible for the designer to exploit the similarity between the tasks and elicit information that is
not elicitable in the single-task setting, assuming that the designer has the same knowledge about
the distribution. A natural thought one may have is to view a multi-task problem as a single-task
problem in which a participant’s report is a combination of reports for multiple tasks. The problem
of directly converting a multi-task problem into a single task problem is that a report will have
exponentially many possible values and the condition given by Frongillo and Witkowski [5] will
involve power diagrams in dimension that grows exponentially in the number of tasks, which may
not lead to meaningful results. Even for a constant number of tasks, directly applying their method
does not give an easily interpretable characterization.

In this work, we study the elicitability in multi-task peer prediction. For the definition of elic-
itability, we consider the most basic incentive guarantee that truth-telling is a strict Bayesian Nash
equilibrium (BNE). We say that a peer prediction problem is elicitable if there exists a mechanism
that guarantees that truth-telling is a strict BNE for any possible underlying information struc-
ture. We consider a peer prediction problem to have two primitives. The first one is the designer’s



knowledge or assumption about the underlying information structure. The knowledge may have
different forms. In this work, we model the designer’s knowledge by a set of possible underlying
information structures. The designer knows that the underlying information structure must lie in
this set, but she does not know which one is the true one. The second primitive is the informa-
tion that the designer asks each participant to report. In this work, we consider the most general
information which can be a function of the information structure and the participant’s signal.

Our contribution is twofold. First, we give a characterization of the elicitable multi-task peer
prediction problems, assuming that the designer only uses scoring mechanisms. Scoring mecha-
nisms are the mechanisms that reward participants’ reports for different tasks separately. To our
knowledge, all the existing mechanisms that achieve strict truthfulness are scoring mechanisms.1
We show that a multi-task problem is elicitable if and only if the following two conditions are
satisfied: (1) the designer should be able to separate a participant’s possible posteriors after seeing
different signal realizations using a power diagram, for any given marginal distribution of other
participants’ truthful reports; (2) for different marginal distributions of other participants’ truth-
ful reports, the parameters of the power diagrams should be an affine function of the marginal
distribution of other participants’ truthful reports. For general mechanisms, we give a necessary
condition for a multi-task problem to be elicitable. The necessary condition basically says that,
given a joint distribution of the participants’ reports without naming a participant i’s report, the
designer should at least be able to label participant i’s report based on the distribution.

Second, we consider the case when the designer aims to elicit some properties that are linear in
the participant’s posterior about the state of the world. We first show that in some cases, the de-
signer basically can only elicit the posterior itself. More specifically, we apply our characterization
to the case when there are two participants with signals independent conditioning on the state. If
the designer only uses scoring mechanisms, then the only elicitable linear properties of the poste-
rior are the ones that are equivalent to the posterior, assuming that the designer is uncertain about
the underlying distribution. We then look into the case when the designer elicits the participants’
posteriors. We give a necessary condition for the posterior to be elicitable. This condition implies
that the mechanisms proposed by [11] are already the best we can hope for in their setting, in the
sense that their mechanisms can work for any problem instance that can possibly be elicitable.

1.1 Related work
The elicitability of peer prediction problems has not received a lot of attention. For the single-task
peer prediction, Frongillo and Witkowski [5] use a geometric approach to study necessary and
sufficient conditions for the existence of strictly truthful peer prediction mechanisms. However,
their characterizations are for single-task mechanisms that only collect agents’ signals, but many
single-task mechanisms elicit information other than or in addition to agents’ signals or require
relatively strong assumptions on the underlying information structure. Zhang and Chen [25] also
consider the existence of strictly truthful mechanisms. They show stochastic relevance is a neces-
sary condition even for general mechanisms.

Although the problem of elicitability has not been extensively investigated in the peer prediction
literature. There is a vast literature on property elicitation. We are not able to review all of the
works in this area but point the readers to [6] and the references therein. In property elicitation,
the designer asks an agent to report a property of a probability distribution. The designer is able to
observe a sample drawn from the distribution and then decide the payment based on the report and

1The only mechanism that we know does not belong to scoring mechanisms is the Determinant-based Mutual Informa-
tion mechanism proposed by Kong [8]. The mechanism is not strictly truthful because it cannot distinguish permutation
strategies from truth-telling.



the sample. To a certain extent, a peer prediction problem can be viewed as a property elicitation
problem in which the other participants’ reports is a sample. But the problem is that it may not
always be possible to represent the information that the designer wants to elicit as a property of
the distribution of other participants’ reports.

Finally, we review the existing literature on peer prediction, in both multi-task setting and
single-task setting. Also see [4] for a survey of additional results.

Multi-task setting. The multi-task peer prediction problem was first independently introduced
and studied by Dasgupta and Ghosh [3] and Witkowski and Parkes [23]. Agents are assigned a
batch of a priori similar tasks which require each agents’ private information to be a binary signal.
Later works extend the setting to multiple-choice questions and design mechanisms that achieve
various truthfulness guarantees (dominant truthful, informed truthful) [3, 8, 12, 20, 22]. But none
of them is strictly truthful on general distributions, because agents can always relabel their signals.
Liu et al. [15] design an approximated dominant truthful mechanism (also approximated strictly
truthful) that uses surrogate loss functions as tools to correct for the mistakes in agents’ reports.
Kong and Schoenebeck [11] study the related goal for forecast elicitation. All the above mecha-
nisms [3, 11, 12, 15, 20, 22] are scoring mechanisms (Definition 2.2) except the DMI mechanism
by Kong [8] and the VMI mechanisms by Kong [9].

Single-task setting. Miller et al. [16] introduced the original peer prediction mechanism, which
is the first mechanism that has truth-telling as a strict Bayesian Nash equilibrium and does not
need verification. However, their mechanism requires the full knowledge of the common prior.
Prelec [17] relaxes the full knowledge assumption and designs the first detail-free peer prediction
mechanism—Bayesian truth serum (BTS). BTS requires that all agents’ signals are symmetric and
conditional independent given a latent state. Several otherworks study the same single-task setting
as BTS and devise mechanisms that work on more general underlying information structures [7,
10, 18, 19, 21, 24].

2 PROBLEM DESCRIPTION
Consider a designer who wants to elicit certain information about the state of the world ω ∈ Ω
from a group of participants. There are n participants who receive private signals s1, . . . , sn re-
spectively with s1 ∈ S1, . . . , sn ∈ Sn . We use Si to denote the random variable for participant
i’s signal. The state of the world and the signals follow an unknown underlying distribution
µ(ω, s1, . . . , sn). The designer does not know the true underlying distribution µ, but she may have
some information about the structure of the distribution, which allows her to restrict µ to a set
M ⊆ ∆(Ω ×S1 × · · ·×Sn). We assume that the underlying distribution µ(ω, s1, . . . , sn) is common
knowledge for all the participants. But participant i only observes the realization of his own signal
si and thus his posterior belief about the state and others’ signals will be µ(ω, s−i |si ), where s−i
denote the signals of the participants other than i .

The designer’s goal is to elicit certain information from the participants. Participant i will be
asked to report a function of his own signal ri = fi,µ (si ). In this work, we consider functions that
are real vectors ri ∈ RL . Note that the report function can possibly depend on µ. For example,
an extensively studied report function is the prediction of the state ri = µ(ω |si ); and the well
known Bayesian Truth Serum [17] asks for the prediction of other people’s signals ri = µ(s−i |si ).
Throughout the work, we use ri = fi,µ (si ) to represent participant i’s truthful report. We denote
by Ri = fi,µ (Si ) the random variable for participant i’s truthful report and denote by Ri the range
of the report function fi,µ (si ).



In multi-task peer prediction, the designer elicits information forT > 1 i.i.d. tasks. More specif-
ically, we have

(ω(1), S (1)
1 , . . . ,S (1)

n ), . . . , (ω(T ), S (T )
1 , . . . ,S (T )

n ) i .i .d∼ µ(ω, s1, . . . , sn)

where (ω(t ), S (t )
1 , . . . ,S (t )

n ) indicates the state and the signals for task t . The designer elicits the
same information from a participant for all T tasks, i.e., r(t )i = fi,µ (s(t )i ) for the same function
fi,µ (·) across all the tasks. We denote by ω(1:T ), s(1:T )

i and r(1:T )
i the vector of the states, the vector

of participant i’s signal realizations and the vector of participant i’s truthful reports for allT tasks.
The participants will get paid after reporting the information. The payment is decided based on

the reports across all T tasks.

Definition 2.1 (Multi-task peer prediction mechanism). Amulti-task peer prediction mech-
anism asks the participants to report their private information r(1:T )

i for allT tasks. Then the payment
to a participant i is decided based on all the reports, denoted by pi (!r(1:T )

1 , . . . ,!r(1:T )
n ) when participant

i’s actual report is!r(1:T )
i .

In general, the payment rule for multiple tasks p(!r(1:T )
1 , . . . ,!r(1:T )

n ) can be very complicated. But
in practice, we would prefer mechanisms that have succinct payment rules. In this work, we will
consider a class of mechanisms that we call the scoring mechanisms.

Definition 2.2 (Scoring mechanisms). A scoring mechanism assigns a payment to each of
participant i’s report !r(t )i by comparing it with other participants’ report !r−i . Formally, a scoring
mechanism uses a payment rule that can be represented as follows:

pi (!r(1:T )
i , !r(1:T )

−i ) =
T"
t=1

p(t )
i (!r(t )i ,!r(1:T )

−i ). (1)

The key feature of scoring mechanisms is that the payment is decided separately for each of
participant’s reports for different tasks. To our knowledge, all the existingmechanisms that achieve
strict truthfulness belong to scoring mechanisms.

The participants’ goal is to maximize their own expected payoff. In multiple task peer prediction
literature, it is always assumed that an agent’s reporting strategy for task t only depends on his
signal for that task s (t )i but not the signals for other tasks s(−t )i . So we define a randomized strategy
of agent i as follows.

Definition 2.3. A strategy of agent i for a single task is a mapping σi : Si → ∆(Ri ) that maps
his observed signal si for that task into a distribution of reports, so that when agent i adopts strategy
σi , he randomly draw a report!ri according to σi (si ) when the observed signal is si .

We denote agent i’s strategy for task t by σ (t )
i . Then we say a multiple-task mechanism is strictly

truthful if truthfully reporting r(t )i for all tasks is a strict BNE.

Definition 2.4 (Strict truthfulness). A payment rule p(!r(1:T )) is strictly truthful for a distri-
bution µ(ω, s1, . . . , sn) if, assuming that the participants know µ(ω, s1, . . . , sn), truthfully reporting
r(1:T )
i is a strict BNE, i.e., for any non-truthful strategy σ (1:T )

i with σ (t )
i (s(t )i ) ! fi,µ (s(t )i ) for some s(t )i ,

Eµ [pi (R(1:T )
i ,R(1:T )

−i )] > Eµ [pi (σ (1:T )
i (S(1:T )

i ),R(1:T )
−i )].

Here we abuse the notation that σ (1:T )
i (S(1:T )

i ) represents the vector (σ (1)
i (S (1)

i ), . . . ,σ (T )
i (S (T )

i )).



Another commonly used assumption is that the participants use consistent strategies across all
tasks. This assumption is usually justified by that the designer can randomly shuffle the tasks so
that the participants cannot distinguish the tasks (e.g. see [22]).

Assumption 2.5. The participants use consistent strategies over all the tasks, i.e., σ (1)
i = σ (2)

i =

· · · = σ (T )
i for any participant i .

Then we define strict truthfulness under consistent strategies as follows.
Definition 2.6 (Strict truthfulness under consistent strategies). Apayment rule p(!r(1:T ))

is strictly truthful for a distribution µ(ω, s1, . . . , sn) if, assuming that the participants know the un-
derlying distribution µ(ω, s1, . . . , sn), truthfully reporting r(1:T )

i is a strict BNE, i.e., for all i , strategy
σi with σi (si ) ! fi,µ (si ) for some si ,

Eµ [pi (R(1:T )
i ,R(1:T )

−i )] > Eµ [pi (σi (S(1:T )
i ),R(1:T )

−i )].

Here we abuse the notation that σi (S(1:T )
i ) represents the vector (σi (S (1)

i ), . . . ,σi (S (T )
i )).

The definition of truthfulness is with respect to the single true underlying distribution µ. For a
designer who does not know µ but only knows that µ ∈ M , we say that r is elicitable if there exists
a mechanism that is strictly truthful for any µ ∈ M .

Definition 2.7 (Elicitability). A multi-task peer prediction problem 〈f,M〉 with f = { fi,µ }(i,µ)
is elicitable if there exists a payment rule p(!r(1:T )) that is strictly truthful for any possible underlying
distribution µ ∈ M .

If we assume that the participants use consistent strategies, the the definition of elicitability
only requires strict truthfulness under consistent strategies.

Definition 2.8 (Elicitability under consistent strategies). A multi-task peer prediction
problem 〈f ,M〉 with f = { fi,µ }(i,µ) is elicitable under consistent strategies if there exists a payment
rule p(!r(1:T )) that is strictly truthful under consistent strategies for any possible underlying distribution
µ ∈ M .

In this work, we mainly focus on multi-task peer prediction. Single-task peer prediction can be
seen as a special case with T = 1.

3 PRELIMINARY
In this section, we review a few important results from previous works and add some minor
findings. First, we give the definition of power diagrams and restate the characterization of elic-
itable problems in the single-task setting. Next, we discuss the correlated agreement mechanism
from [22] and the mechanism that elicits participants’ prediction about the state from [11].

3.1 Characterization for single-task elicitability
Frongillo and Witkowski [5] characterized the elicitability of the single-task problem using a geo-
metric approach from the literature on property elicitation [13, 14]. The basic idea is that the
agents’ possible posterior beliefs need to fall into the correct regions. The regions are described
by power diagrams.

Definition 3.1 ([5, 13]). A power diagram in dimensionm with K cells is a partitioning of ∆m
into K sets called cells, defined by a collection of K m-dimensional points {vk ∈ Rm : k ∈ [K]} called
sites with associated weights {wk ∈ R : k ∈ [K]}, given by

cell(vk ) =
#
u ∈ Rm : {k} = arg min

x ∈[K ]
〈u, vx 〉 −wx

$
.



Here 〈u, vx 〉 represents the inner product of the two vectors. We call 〈u, vx 〉 −wx the power distance
from u to site vx ; thus, for every point u in cell(vk ), it holds that vk is closer to u in power distance
than any other site vx .

Here we use a definition of power diagrams that is slightly different from the original definition
in [5], which used )u − vx )2 −wx as the power distance. The two definitions are equivalent and
can be transformed into one another by changing the value ofwx . For our multi-task problem, we
find it more convenient to use 〈u, vx 〉 −wx as the power distance.

To give the characterization in Frongillo and Witkowski [5], we define the following. LetQi (ri )
be the set of agent i’s possible posterior belief of r−i when his truthful report is ri .

Qi (ri ) = {µ(r−i |si ) : µ ∈ M, si satisfies fi,µ (si ) = ri }. (2)

Theorem 3.2. A single-task elicitability problem 〈f ,M〉 is elicitable if and only if for each agent i ,
there exists a power diagram in dimension |R−i | with |Ri | cells defined by {vri ∈ R |R−i | : ri ∈ Ri }
and {wri ∈ R : ri ∈ Ri }, such that each Qi (ri ) falls into a distinct cell,

Qi (ri ) ⊆ cell(vri ), for all ri ∈ Ri .

The theorem gives the necessary and sufficient condition for a single-task problem to be elic-
itable. This result is given by Frongillo and Witkowski [5] in the setting where the mechanism is
minimal, i.e., the agents are asked to directly reveal their signals ri = si and the support of the
signals is finite. When the reports are arbitrary functions, it could be difficult to analyze the space
∆ |R−i | , e.g. when the support of the reports is continuous.

We find the following proposition to be useful in our exposition, and include a proof in the
appendix. Note that the result can be implied by Theorem 3.2 when report space is discrete, and
we show it still holds when the support of r−i is continuous.

Proposition 3.3 (Robust stochastic relevancy). A single-task problem 〈f ,M〉 is elicitable
only if for any i and ri ! r′i ∈ Ri , Qi (ri ) ∩Qi (r′i ) = ∅.

If f is identity, i.e. f (si ) = si , and M = {µ}, the above condition implies stochastic relevancy.
Thus, we call the above characterization robust stochastic relevancy.

Finally, if the designer’s knowledge about the information structure is accurate enough, it is
possible to design a strictly truthful mechanism. We defer the details to Appendix B.

3.2 Correlated agreement mechanism
Shnayder et al. [22] proposed the correlated agreement mechanism for multi-task peer prediction.
They considered the design of minimal mechanisms, that is, mechanisms that ask the agents to
directly report their signals, so we have

ri = si , ∀i .
The correlated agreement mechanism only needs two participants n = 2 and two tasks T = 2.
The mechanism requires the designer to know the correlation structure of signals, but not the full
signal distribution. More specifically, define theDelta matrix ∆ to be a |S1 |× |S2 | matrix with entry
in row s1 and column s2 equal to

∆[s1, s2] = µ(s1, s2) − µ(s1)µ(s2),
where µ(s1, s2) is the joint distribution of the two participants’ signals, and µ(s1), µ(s2) are the
marginal distributions of s1 and s2 respectively. The Delta matrix describes the correlation between
different realized signal values. If an entry∆[s1, s2] > 0, thenwe have µ(s1 |s2) > µ(s1) and µ(s2 |s1) >
µ(s2), which means that seeing s2 will increase participant 2’s belief about seeing s1, and seeing s1



will increase participant 1’s belief about seeing s2, so the signal realizations s1 and s2 are positively
correlated. To ensure strict truthfulness, the CA mechanism requires the designer to know the
sign of each entry of the Delta matrix, denoted by Sign(∆), which means that the designer needs
to know for each pair of signal realizations whether they are positively correlated or negatively
correlated. The payment of the CA mechanism is designed as follows.

Definition 3.4 (Correlated agreement mechanism [22]). The correlated agreement mech-
anism asks the two participants to report their signals for two tasks. The payment to participant
i ∈ {1, 2} for task t ∈ {1, 2} is

p(t )
i (s(1:T )) = Sign(∆[s(t )i , s(t )−i ]) − Sign(∆[s(t )i , s(−t )−i ]),

where Sign(∆[x ,y]) represents the sign of the entry in row x and column y of matrix ∆.

The above definition is slightly different from the original definition in [22], but they are equiv-
alent in the sense of elicitability. The CA mechanism will be strictly truthful if the following con-
dition holds.

Theorem 3.5 (Shnayder et al. [22]). If the matrix Sign(∆) does not have two identical rows and
it does not have two identical columns, the correlated agreement mechanism is strictly truthful.

Shnayder et al. [22] also discussed other incentive properties. In this work, we only consider the
strict truthfulness defined in Definition 2.6, which is equivalent to the definition of strict proper-
ness (Definition 2.6) in their work.

3.3 Elicit predictions
Kong and Schoenebeck [11] proposed a mechanism that elicits the participants’ posterior about
the state µ(ω |si ) in both single-task and multiple-task settings, when the prior µ(ω) is known to
the designer and the participants’ signals are independent conditioning on the state ω, that is,

µ(ω, s1, . . . , sn) = µ(ω)µ(s1 |ω) · · · µ(sn |ω), ∀ω, s1, . . . , sn .

Chen et al. [2] further give a sufficient condition for the mechanisms to be strictly truthful. For a
distribution µ, define P µ

i to be a |S−i | × |Ω | matrix with entry in row s−i and column ω equal to
µ(s−i |ω). Then we have the follows.

Lemma 3.6 ([2, 11]). Consider a single-task/multi-task problem 〈f ,M〉 with ri = µ(ω |si ). Suppose
the prior µ(ω) is known to the designer and the participants’ signals are independent conditioning on
the state ω. If we further have rank(P µ

i ) = |Ω | for all µ ∈ M and i ∈ [n], then ri = µ(ω |si ) is elicitable
by the following payment rule for every single task

pi (ri , r−i ) = log

%"
ω ∈Ω

ri (ω)$(r−i ,ω)
µ(ω)

&
,

with

$(r−i ,ω) = 1
A(r−i )

·
'

j!i rj (ω)
µ(ω)n−1 ,

where A(r−i ) is a normalization term so that
(

ω $(r−i ,ω) = 1.

4 MULTIPLE-TASK ELICITABILITY
As introduced in Section 3.1, if the designer only collects reports for one task, Frongillo and
Witkowski [5] showed that a single-task peer prediction problem is elicitable if and only if each
agent’s posteriors can be fitted into a power diagram. But when the designer has multiple i.i.d.



tasks, it is possible for the designer to exploit the similarity between the tasks and elicit informa-
tion that is not elicitable in the single-task framework. For example, Shnayder et al. [22] showed
that the Dasgupta-Ghosh mechanism [3] can elicit ri = si when n = 2 and the signals are categor-
ical, which means that when an agent sees a signal, all other signals become less likely than their
prior probability, i.e.,

µ(s2 = y |s1 = x) < µ(s2 = y),∀x ! y.

But the categorical condition clearly does not guarantee the robust stochastic relevance (Corol-
lary 3.3) without the knowledge about the marginal distribution, which is the necessary condition
for a problem to be elicitable in the single-task framework. Therefore we need stronger conditions
for the elicitability of multi-task problems.

In this section, we first give a necessary and sufficient condition for a multi-task problem to be
elicitable if the designer only uses scoring mechanisms. This characterization holds when Ri ’s are
finite sets, i.e., there are finitely many possible values of a participant’s report. We show how to
use our characterization in the setting of the CA mechanisms (Section 3.2). For the general case
when Ri ’s can be infinitely large, we provide necessary conditions for a multi-task problem to be
elicitable. One of the necessary conditions will be the key tool that we use to obtain the results in
Section 5. Second, for general mechanisms, we give a necessary condition for a multi-task problem
to be elicitable, assuming that the participants use consistent strategies.

4.1 Scoring mechanisms
The challenge of studying the elicitability of multi-task problems is largely due to the complexity of
the payment rule p(r(1:T )). The payment rule p(r(1:T )) can potentially be an extremely complicated
function, which may not even be efficiently computable as r(1:T ) has exponentially many possible
values. But in practice, such payments are unlikely to be appealing because of the implementation
difficulty as well as the lack of transparency. So in this section, we restrict our attention to a
smaller class of mechanisms: the scoring mechanisms (Definition 2.2). The scoring mechanisms
pay each of a participant’s reports separately. The payment to a report is decided by comparing it
with other participants’ reports across all the tasks. To our knowledge, all of the existing strictly
truthful mechanisms belong to scoring mechanisms.

Before giving our main results, we first show that when we focus on the elicitability by scoring
mechanisms, it does not matter whether the participants’ strategies will be consistent or not.

Theorem 4.1. When the designer only uses scoring mechanisms, a multi-task problem 〈f,M〉 is
elicitable if and only if it is elicitable under consistent strategies.

The proof of Theorem 4.1 can be found in Appendix C. In the rest of this section, we just assume
that the participants can use non-consistent strategies. The characterization of elicitability under
consistent strategies is just the same.

4.1.1 Characterization of elicitable multi-task problems. We now give the characterization of elic-
itable multi-task problems when all Ri ’s are finite. Our first observation is that if a multi-task
problem 〈f ,M〉 is elicitable by a scoring mechanism, then for each participant i , his posteriors
should fall into correct cells of a power diagram for any given marginal distribution of other partic-
ipants’ truthful reports. To show this formally, we introduce some notations. Consider an agent i
and a given marginal distribution of other agents’ truthful reports for a single task µ(r−i ). Define
Mµ(r−i ) to be the set of all distributions that has marginal distribution of r−i equal to µ(r−i ),

Mµ(r−i ) = {µ ′ ∈ M : µ ′(r−i ) = µ(r−i )}



Also define Qi (ri , µ(r−i )) to be the set of participant i’s possible posteriors about r−i when partic-
ipant i’s truthful report is ri and the marginal distribution of r−i is µ(r−i ),

Qi (ri , µ(r−i )) = {µ ′(r−i |si ) : µ ′ ∈ Mµ(r−i ), si satisfies fi,µ (si ) = ri }.
Then a necessary condition for a multi-task problem 〈f ,M〉 to be elicitable is that for any given
µ(r−i ), there exists a power diagram that divides Qi (ri , µ(r−i )) for different ri into different cells.
We call this the power diagram constraint for given marginal distributions.

Definition 4.2. A multi-task problem 〈f ,M〉 with finite-size Ri ’s satisfies the power diagram
constraint for given marginal distributions if for all i and µ(r−i ), {Qi (ri , µ(r−i ))}ri ∈Ri can be fitted
into a power diagram, which means that there exists a power diagram in dimension |R−i | with |Ri |
cells defined by {vri ∈ R |R−i | : ri ∈ Ri } with associated weights {wri ∈ R : ri ∈ Ri }, such that each
Qi (ri , µ(r−i )) falls into a distinct cell,

Qi (ri , µ(r−i )) ⊆ cell(vri ), for all ri ∈ Ri .

Note that checking this condition does not require the designer to know the actual marginal
distribution µ(r−i ). The condition means that for any given marginal distribution µ(r−i ), if the
designer restrict the possible underlying distributions to the ones that has marginal distribution of
r−i equal to the given µ(r−i ), it should be possible to fit {Qi (ri , µ(r−i ))}ri ∈Ri into a power diagram.

Below we provide an example to illustrate the setsQi (ri , µ(r−i )) and how they can be fitted into
power diagrams.

Example 4.3. Consider the following problem instance 〈f ,M〉. Suppose there are two agents n = 2,
two tasks T = 2 and the report and signal spaces are S1 = S2 = R1 = R2 = {0, 1, 2}. The designer
asks the participants to directly report their signals ri = fi,µ (si ) = si . The set of possible distributions
M is the set of all distributions that have the sign of the Delta matrix Sign(∆) (defined in Section 3.2)
equal to 

1 −1 −1
−1 1 −1
−1 −1 1


.

This means that for a participant i , seeing a signal realization s∗i ∈ {0, 1, 2} will increase the probabil-
ity that the other participant also observes the same signal realization s∗i but decrease the probability
that the other participant observes a different signal realization. Given such M and Ri = {0, 1, 2},
we use simplex plot on ∆({0, 1, 2}) to illustrate the sets Qi (ri , µ(r−i )). In Figure 1, each point on the
simplex plot represents a distribution on {0, 1, 2}. We choose two marginal distributions, µ(r−i ) =
(1/3, 1/3, 1/3) on the left and µ(r−i ) = (0.2, 0.3, 0.5) on the right. The colored areas are the set
{Qi (ri , µ(r−i ))}ri ∈Ri , and the dashed lines are the boundary of the cells of a power diagram with
certain sites and weights. The exact definition of the sites and the weights will be given in (9) later in
Section 4.1.2 when we discuss the application of our results.

Now assume that 〈f ,M〉 satisfies the power diagram constraint for given marginal distributions.
For any report ri ∈ Ri , denote the site vri for µ(r−i ) by vri (µ(r−i )) and denote the associated weight
by wri (µ(r−i )). Here we abuse the notation and consider wri : ∆(R−i ) → R and vri : ∆(R−i ) →
R |R−i | as functions of the marginal distribution µ(r−i ). Our second observation is that the sites of
the power diagrams vri (µ(r−i )) and the associated weightswri (µ(r−i )) need to be affine functions
of the marginal distribution of other participants’ reports for T − 1 tasks µ(r(1:T−1)−i ).2 To be more
specific, let u be the length-|R−i | vector that represents the distribution µ(r−i ). Then µ(r(1:T−1)−i ) can
2Because the tasks are i.i.d., the distribution forT −1 tasks µ(r(1:T−1)

−i ) can be generated by the distribution for a single task
µ(r−i ).



Fig. 1. With various marginal distributions µ(r−i ) and ri = 0, 1, 2, the simplex plots illustrate the sets
{Qi (ri , µ(r−i ))}ri ∈Ri (colored areas) defined in Example 4.3 and the cells of power diagrams cell(vri ) (with
dashed boundary) that separate them. In our example, the point at the intersection of the dashed lines is
the marginal distributions µ(r−i ).

be represented by the (T − 1)-th tensor power of the vector, u⊗(T−1). Our observation is that both
vri (u) andwri (u) need to be affine functions of u⊗(T−1). Moreover, when such power diagrams and
affine functions exist, we can find a mechanism that elicits r.

Theorem 4.4. Amulti-task problem 〈f ,M〉 with finite-sizeRi ’s is elicitable by scoringmechanisms
if and only if

(1) It satisfies the power diagram constraint for given marginal distributions. Let u be a vector
that represents a marginal distribution µ(r−i ) and denote by vri (u) andwri (u) the sites and the
weights of the power diagram for the marginal distribution u.

(2) Furthermore, for every i ∈ [n] and every ri ∈ Ri , there exist a matrix Dri with |R−i | rows and
|R−i |T−1 columns and a vector eri ∈ R |R−i | with

vri (u) = Dri · u⊗(T−1) + eri , for all possible u,

and there exists a vector hri with length |R−i |T−1 such that

wri (u) = h⊤ri · u
⊗(T−1), for all possible u.

Moreover, if such power diagrams and affine functions exist, we can find a mechanism that is strictly
truthful for any µ ∈ M with payments defined by the entries of D, e and h as

p(t )
i (ri , r(t )−i , r

(−t )
−i ) = −Dri [r

(t )
−i , r

(−t )
−i ] − eri [r

(t )
−i ] + hri [r

(−t )
−i ], ∀ri ∈ Ri , r

(t )
−i , r

(−t )
−i . (3)

We want to point out that the parameters e, h in the theorem can actually be merged into matrix
D so thatDri = eri ·1⊤+1·h⊤ri . We use this form because in some applications, it is more convenient
to separate e and h and have a payment in form (3), for example when we apply the theorem to
the setting of the correlated agreement mechanism [22].

Proof of Theorem 4.4. We consider the general settingwhen the agents can use non-consistent
strategy over different tasks.

We first prove the necessity of the condition. Suppose that the designer has a strictly truthful
scoring mechanisms for a multi-task problem 〈f ,M〉, so that the payment has the form

pi (!r(1:T )
i , !r(1:T )

−i ) =
T"
t=1

p(t )
i (!r(t )i ,!r−i ). (4)



When participant i decides the strategy for task t , his report for this task !r(t )i only affects the
payment for this task p(t )

i (!r(t )i ,!r−i ). Therefore his best strategy for task t is the one that maxi-
mizes the expected payment for task t assuming that the other agents truthfully report, that is,
Eµ [p(t )

i (!R(t )
i ,R−i )]. This means that for each signal realization s(t )i , participant i should choose the

report!r(t )i that will maximize the conditional expectation Eµ [p(t )
i (!R(t )

i ,R−i )|s(t )i ]. Since the tasks
are independent, observing s(t )i will only change agent i’s belief about other people’s reports for
this task r(t )−i , but not the reports for other tasks r

(−t )
−i . So we can factor out r(t )−i in the conditional

expectation as follows

Eµ
/
p(t )
i
0!R(t )

i , R(t )
−i , R

(−t )
−i

1
|s(t )i

2
=

"
r(t )
−i ,r(−t )

−i

µ(r(t )−i , r
(−t )
−i |s(t )i ) · p(t )

i
0!r(t )i , r(t )−i , r

(−t )
−i

1

=
"

r(t )
−i ,r(−t )

−i

µ(r(t )−i |s
(t )
i ) · µ(r(−t )−i ) · p(t )

i
0!r(t )i , r(t )−i , r

(−t )
−i

1

=
"
r(t )
−i

µ(r(t )−i |s
(t )
i ) ·

"
r(−t )
−i

µ(r(−t )−i ) · p(t )
i
0!r(t )i , r(t )−i , r

(−t )
−i

1
. (5)

Now consider a givenmarginal distribution of other participants’ report for one task, µ(r−i ). Define
αy (r(t )−i ) to be the value of the second sum in (5) when participant i reports y, that is,!r(t )i = y, and
other participants’ truthful report for task t is r(t )−i ,

αy (r(t )−i ) =
"
r(−t )
−i

µ(r(−t )−i ) · p(t )
i
0
y, r(t )−i , r

(−t )
−i

1
,

where the distribution µ(r(−t )−i ) is generated according to the given marginal distribution µ(r−i ).
Then participant i’s expected payoff (for task t ) conditioning on s(t )i when reporting y is the inner
product of the vectors that represent posterior belief µ(r(t )−i |s

(t )
i ) and αy (r(t )−i ),

Eµ
/
p(t )
i
0
y, R(t )

−i , R
(−t )
−i

1
|s(t )i

2
=
"
r(t )
−i

µ(r(t )−i |s
(t )
i ) · αy (r(t )−i ) = 〈µ(r(t )−i |s

(t )
i ),αy〉.

Here we abuse the notation to use µ(r(t )−i |s
(t )
i ) to represent a vector. As a result, by the definition of

strict truthfulness, when agent i’s truthful report is ri , his expected payoff (for task t ) should be
uniquely maximized when reporting ri , which means

{ri } = argmax
y∈Ri

〈µ(r−i |si ),αy〉. (6)

We construct a power diagram by setting vy = −αy andwy = 0. Then (6) is equivalent to

µ(r−i |si ) ∈ cell(vri ).

Therefore if 〈f ,M〉 is elicitable by scoring mechanisms, {Qi (ri , µ(r−i ))}ri ∈Ri can be fitted into a
power diagram. Furthermore, let matrix Dy be a |R−i | × |R−i |T−1 matrix with p(t )

i (y, r(t )−i , r
(−t )
−i ) in

row r(t )−i and column r(−t )−i . Then by our construction of vy , we have

vy (µ(r−i )) = αy = Dy · µ(r(−t )−i ).

Therefore it is necessary that there exists vy (µ(r−i )) which is an affine function of µ(r(−t )−i ).



Next, we prove the sufficiency of the condition. If we have power diagrams defined by {vri (µ(r−i )) ∈
R |R−i | : ri ∈ Ri } andw(ri ) such that for any given µ(r−i ), Qi (ri , µ(r−i )) falls into a distinct cell

Qi (ri , µ(r−i )) ⊆ cell(vri (µ(r−i ))), for all ri ∈ Ri . (7)

and for each ri , there exist a matrix Dri with |R−i | rows and |R−i |T−1 columns and a vector eri ∈
R |R−i | such that

vri (µ(r−i )) = Dri · µ(r
(−t )
−i ) + eri ,

and there exists a vector h with length |R−i |T−1 such that

wri (µ(r−i )) = h⊤ri · µ(r
(−t )
−i ).

Consider the payment rule (3) given by the theorem

p(t )
i (ri , r(t )−i , r

(−t )
−i ) = −Dri [r

(t )
−i , r

(−t )
−i ] − eri [r

(t )
−i ] + hri [r

(−t )
−i ].

Then for any underlying distribution µ, suppose participant i observes s(t )i for task t , if participant
i reports y ∈ Ri , as shown in (5), his expected payment for task t is

Eµ
/
p(t )
i
0
y, R(t )

−i , R
(−t )
−i

1
|s(t )i

2
=
"
r(t )
−i

µ(r(t )−i |s
(t )
i ) ·

"
r(−t )
−i

µ(r(−t )−i ) · p(t )
i
0
y, r(t )−i , r

(−t )
−i

1

= −〈µ(r(t )−i |s
(t )
i ), Dy · µ(r(−t )−i ) + ey〉 +wy (µ(r−i ))

= −〈µ(r(t )−i |s
(t )
i ), vy (µ(r−i ))〉 +wy (µ(r−i )).

Consequently, the payment rule will be strictly truthful because by the condition (7) we have

µ(r−i |si ) ∈ Qi (ri , µ(r−i )) ⊆ cell(vri (µ(r−i ))),

which by the definition of cell(vri (µ(r−i ))) (Definition 3.1) means that

{ri } = arg min
y∈Ri

〈vy (µ(r−i )), µ(r−i |si )〉 −wy (µ(r−i ))

= arg min
y∈Ri

−Eµ
/
p(t )
i
0
y, R(t )

−i , R
(−t )
−i

1
|s(t )i

2
= argmax

y∈Ri
Eµ

/
p(t )
i
0
y, R(t )

−i , R
(−t )
−i

1
|s(t )i

2
.

□

Theorem 4.4 applies to the general scoring mechanisms whose p(t )
i (!r(t )i ,!r(1:T )

−i ) can be an arbi-
trary function of!r(t )i and!r(1:T )

−i . Since!r(1:T )
−i has exponentially many possible values, the payment

p(t )
i (!r(t )i ,!r(1:T )

−i ) of an arbitrary scoring mechanism can possibly be hard to compute. In practice, for
computational reasons, the designer may only want to decide payments based on a function of
!r(1:T )
−i , for example, a sufficient statistic of!r(1:T )

−i . In this case, we can have a simplified version of
Theorem 4.4 with smallerDri and hri , which will have polynomial sizes if the function of!r(1:T )

−i has
polynomially many possible values. We defer the details to Appendix C.2.

Our characterization can be used in two ways.



4.1.2 The sufficiency of the condition. Given a problem instance 〈f ,M〉, if we are able to find power
diagrams as described in Theorem 4.4, then the payment rule (3) will guarantee strict truthfulness.
To give an example, we apply Theorem 4.4 to the setting of the correlated agreement mecha-
nism (Theorem 3.5). We show how to find power diagrams as described in Theorem 4.4 when the
designer knows the sign of the Delta matrix Sign(∆) and the matrix Sign(∆) does not have two
identical rows or two identical columns. We will find that the payment rule (3) induced by the
power diagrams is just the payment rule of the CA mechanism.

Consider the setting for the CA mechanism in which n = 2,T = 2 and ri = si for all i . If
the designer knows Sign(∆) and Sign(∆) does not contain two identical rows or columns, define
Sign(∆[s1, :]) ∈ {−1,+1} |S2 | to be the sign of the s1-th row of ∆. Our goal is to find power diagrams
that will separate a participant i’s possible posteriors of the other participant’s report µ(s2 |s1) for
different signal realizations s1, for any given marginal distribution µ(s2). It may not be straightfor-
ward if we directly try to separate possible µ(s2 |s1) for different s1, but we can easily find power
diagrams that separate µ(s2 |s1) − µ(s2) for different s1. By the definition of the Delta matrix ∆,
µ(s2 |s1) − µ(s2) is just the s1-th row of ∆. If the designer knows the sign of ∆, we can just define
the sites of a power diagram to be the rows of −Sign(∆), that is, define

!vs1 = −Sign(∆[s1, :]), !ws1 = 0, ∀s1 ∈ S1.

Then for a signal realization s1 ∈ S1 and for any possible µ(s2 |s1) − µ(s2), the site !vs1 will be the
closest to µ(s2 |s1) − µ(s2) among all the sites in terms of power distance, that is,

{s1} = arg min
y∈S1

〈−Sign(∆[y, :]), µ(s2 |s1) − µ(s2)〉

= arg min
y∈S1

〈−Sign(∆[y, :]), µ(s2 |s1)〉 + 〈Sign(∆[y, :]), µ(s2)〉. (8)

Here we abuse the notation of µ(s2 |s1) and µ(s2) to denote the vectors that represent the distribu-
tion. This can be converted into power diagrams that will separate possible µ(s2 |s1) for different
s1. From (8), we can define

vs1 (µ(s2)) = −Sign(∆[s1, :]), andws1 (µ(s2)) = −〈Sign(∆[s1, :]), µ(s2)〉. (9)

Fortunately, both vs1 (µ(s2)) andws1 (µ(s2)) are affine in µ(s2), with parameters

Ds1 = 0, es1 = −Sign(∆[s1, :]), hs1 = −Sign(∆[s1, :]).

Then the payment defined by Theorem 4.4

p(t )
i (ri , r(t )−i , r

(−t )
−i ) = −Dri [r

(t )
−i , r

(−t )
−i ] − eri [r

(t )
−i ] + hri [r

(−t )
−i ]

gives
p(t )
1 (s) = Sign(∆[s(t )1 , s(t )2 ]) − Sign(∆[s(t )1 s(−t )2 ]),

which is just the payment rule of the CA mechanism.

4.1.3 The necessity of the condition. If a problem instance 〈f ,M〉 does not satisfy the condition
in our theorem, then one should not hope for a strictly truthful scoring mechanism. The designer
should seek additional knowledge about the distribution or elicit different information. Testing
whether there exist power diagrams as described in Theorem 4.4 may not be easy. Below we pro-
vide two simpler necessary conditions for the existence of strictly truthful scoring mechanisms.
When the report space Ri is discrete, these two necessary conditions can be implied by Theo-
rem 4.4. In addition, they will also hold for continuous report space, for example, when Ri = ∆Ω
is the space of all posteriors of the participant.



First, observe that a cell of a power diagram must be convex. Therefore, if we fix a marginal dis-
tribution µ(r−i ),Qi (ri , µ(r−i )) for different ri should fall into disjoint convex sets. More specifically,
we should have the following.

Proposition 4.5. Amulti-task problem 〈f ,M〉 is not elicitable if there exist i ∈ [n] and a marginal
distribution µ(r−i ) and ri ! r′i ∈ Ri , such that there exist k, l ∈ Z+ and q1, . . . , qk ∈ Qi (ri , µ(r−i ))
and β1, . . . , βk ∈ [0, 1] with β1 + · · · + βk = 1 and q′1, . . . , q

′
l ∈ Qi (r′i , µ(r−i )) and β ′

1, . . . , β
′
l ∈ [0, 1]

with β ′
1 + · · · + β ′

l = 1 such that

β1 · q1 + · · · + βk · qk = β ′
1 · q′1 + · · · + β ′

l · q
′
l .

The second necessary condition is even simpler. It is similar to the robust stochastic relevance
condition 3.3 that we proposed for the single-task peer prediction. The difference in the multi-task
setting is that we need to fix a marginal distribution µ(r−i ).

Proposition 4.6 (Robust stochastic relevance with given marginal distributions). For
a multi-task problem 〈f ,M〉, if there exist i ∈ [n] and a marginal distribution µ(r−i ) such that

Qi (ri , µ(r−i )) ∩Qi (r′i , µ(r−i )) ! ∅
for ri ! r′i ∈ Ri , then 〈f ,M〉 is not elicitable.

Although Proposition 4.6 seems apparent based on Theorem 4.4, it can be useful when we con-
sider a complicated report space, e.g., when we consider eliciting linear properties of the partici-
pants’ posteriors (Section 5). It is the main tool that we use to prove our main results in Section 5.

4.2 General mechanisms
Although all the existing strictly truthful mechanisms that we know belong to scoring mech-
anisms, recently there have been attempts to design more complicated mechanisms with good
properties, e.g., the mechanism proposed by Kong [8] is not a scoring mechanism. In this section,
we look at general multi-task mechanisms and give a necessary condition for a multi-task problem
to be elicitable, assuming that the participants use consistent strategies, which is a commonly used
assumption by the multi-task peer prediction literature.

The necessary condition basically says that, given a joint distribution of the participants’ reports
without naming a participant i’s report, the designer should at least be able to label participant i’s
report based on the distribution. For example, consider two participants who are asked to report
a high signal or a low signal, i.e., R1 = R2 = {high, low}. Then given a possible joint distribution
without the labels of the first participant’s report, e.g. the distribution represented by the table in
the left. The designer should be able to tell which of r1 and r ′1 is the high report.

high low
r1 0.8 0.2
r ′1 0.2 0.8

=⇒
high low

high 0.8 0.2
low 0.2 0.8

Formally, we have the following theorem.
Theorem 4.7. A multi-task problem 〈f ,M〉 is elicitable under consistent strategies only if for any

distribution µ ∈ M , any agent i and any permutation π of Ri , there exists no !µ ∈ M such that

µ(π (ri ), r−i ) = !µ(ri , r−i ).
Or equivalently, for any i , if we use a |Ri | × |R−i | matrix Aµ with µ(ri , r−i ) in row ri and column r−i
to represent any µ ∈ M , then for any µ ∈ M and any |Ri | × |Ri | permutation matrix P , there exists
no !µ ∈ M such that

P · Aµ = A!µ .



Proof. We prove that if there exist µ,!µ ∈ M and permutation π that have µ(π (ri ), r−i ) =

!µ(ri , r−i ), there exists no payment rule pi (r (1:T )
i , r(1:T )

−i ) that guarantees strict truthfulness under
consistent strategies for both µ and !µ.

Since µ(π (ri ), r−i ) = !µ(ri , r−i ), we have

E!µ [pi (π (r (1:T )
i ), r(1:T )

−i )] =
"
r(1:T )

!µ(r (1:T )
i , r(1:T )

−i ) · pi (π (r (1:T )
i ), r(1:T )

−i )

=
"
r(1:T )

µ(π (r (1:T )
i ), r(1:T )

−i ) · pi (π (r (1:T )
i ), r(1:T )

−i )

=
"
r(1:T )

µ(r (1:T )
i , r(1:T )

−i ) · pi (r (1:T )
i , r(1:T )

−i )

= Eµ [pi (r (1:T )
i , r(1:T )

−i )],

which means that the expected payment of permuting the reporting when the underlying distri-
bution is !µ is equal to the expected payment of truthfully reporting when the distribution is µ. At
the same time, it should also hold that

E!µ [pi (r (1:T )
i , r(1:T )

−i )] =
"
r(1:T )

!µ(r (1:T )
i , r(1:T )

−i ) · pi (r (1:T )
i , r(1:T )

−i )

=
"
r(1:T )

µ(π (r (1:T )
i ), r(1:T )

−i ) · pi (r (1:T )
i , r(1:T )

−i )

=
"
r(1:T )

µ(r (1:T )
i , r(1:T )

−i ) · pi (π−1(r (1:T )
i ), r(1:T )

−i )

= Eµ [pi (π−1(r (1:T )
i ), r(1:T )

−i )],

which means that the expected payment of truthfully reporting when the underlying distribution
is !µ is equal to the expected payment of inversely permuting the strategy when the distribution
is µ. Then it is easy to see that pi (·) cannot be strictly truthful for both µ and !µ. If pi (r (1:T )

i , r(1:T )
−i )

is strictly truthful for !µ, then by definition, permuting the truthful reports should lead to strictly
lower expected payment,

E!µ [pi (r (1:T )
i , r(1:T )

−i )] > E!µ [pi (π (r (1:T )
i ), r(1:T )

−i )],

which will violate the strict truthfulness for µ

Eµ [pi (π−1(r (1:T )
i ), r(1:T )

−i )] > Eµ [pi (r (1:T )
i , r(1:T )

−i )]

according to the two equalities above. □

One may wonder whether the permutation can be replaced by any reporting strategy, i.e.,
whether the permutation matrix can be replaced by any Markov matrix. The answer is nega-
tive. For the proof to hold, we need the matrix P to be invertible, and the only invertible Markov
matrices are permutation matrices.

The previous works that design strictly truthful multi-task peer prediction mechanisms make
assumptions that automatically satisfy this condition. To our knowledge, this necessary condition
did not appear in any previous work, but similar techniques have been used in a different setting.
Shnayder et al. [22] used a similar approach to prove that the CA mechanism is maximally strong
truthful among a broader class of mechanisms (Theorem 5.9).



5 LINEAR PROPERTIES
In this section, we consider the reports that are linear in the participant’s posterior µ(ω |si ). More
specifically, the report function ri is a length-L vector with

ri = G · µ(ω |si )
where G is a L× |Ω | matrix that represents the linear transformation from the posterior µ(ω |si ) to
ri . Or equivalently, each entry of ri is the expectation of a random variable defined on Ω. Common
examples include

• the posterior itself ri = µ(ω |si );
• the moments of the state ω when the state is a real number E[ω |si ],E[ω2 |si ],E[ω3 |si ] . . . .

The elicitability of such linear properties has been studied by Abernethy and Frongillo [1] when
the designer can observeω and design a payment based on both the report andω. They showed that
linear properties are always elicitable in that case. But in peer prediction problems, the designer
cannot observe ω but only have the participants’ reports that are correlated with ω.

Our results show that it may not always be possible to elicit reports that are linear in the par-
ticipants’ posterior. We first consider two participants with signals independent conditioning on
ω. In this case, if the designer has a single-task problem or the designer only considers scoring
mechanisms for a multi-task problem, then the designer basically can only elicit linear properties
that are equivalent to µ(ω |si ), assuming that the designer is uncertain about the underlying distri-
bution. We then look into the case when the reports ri is just the participants’ posteriors µ(ω |si ).
We give a necessary condition for µ(ω |si ) to be elicitable. This condition implies that the mecha-
nisms proposed by [11] are already the best we can hope for in their setting, in the sense that their
mechanisms can work for any problem instance that can possibly be elicitable.

5.1 Impossibility result for two agents
Suppose we have two participants whose signals are conditionally independent, that is, the joint
distribution µ(ω, s1, s2) = µ(ω)µ(s1 |ω)µ(s2 |ω) for allω ∈ Ω, s1 ∈ S1, s2 ∈ S2. We assume that the de-
signer is uncertain about the conditional distributions of the participants’ signals µ(s1 |ω), µ(s2 |ω).
We formally define the uncertainty as follows.

Definition 5.1. We say that a designer with an elicitability problem 〈f ,M〉 is minimally uncertain
about the conditional distributions of the participants’ signals if there exist a prior µ(ω) and a set of
possible conditional distributions µ(si |ω) for each participant i , denoted byMi ⊆ R |Si |× |Ω | , such that
for any µ ′(s1 |ω) ∈ M1, . . . , µ

′(sn |ω) ∈ Mn , the joint distribution generated by them and the prior
µ(ω)

µ ′(ω, s1, . . . , sn) = µ(ω)µ ′(s1 |ω) · · · µ ′(sn |ω), ∀ω, s1, . . . , sn

is a possible joint distribution µ ′(ω, s1, . . . , sn) ∈ M , and eachMi is open relative to the space of valid
conditional distributions (∆Si ) |Ω | .

The main restriction here is thatMi needs to be an open set relative to the space of valid condi-
tional distributions. This means that for each participant i , there should exist a possible conditional
distribution µ(si |ω) such that the nearby conditional distributions are also possible.

Then if the designer never asks anyone for trivial reports that is a constant function of the
participant’s posterior, the only elicitable linear properties are the ones that are equivalent to
the posteriors µ(ω |si ), assuming that the designer only wants scoring mechanisms for multi-task
problems. More specifically, we have the following theorem.

Theorem 5.2. For a single-task/multiple-task elicitability problem 〈f ,M〉 with n = 2 with condi-
tional independent signals, if the designer is minimally uncertain about the conditional distributions



of the participants’ signals, and for any participant i , the truthful report ri = G · µ(ω |si ) is a non-
constant linear function of the posterior µ(ω |si ), then r is elicitable/elicitable by scoring mechanisms
only if there is a one-to-one mapping from µ(ω |si ) to ri for all i , i.e.,

matrix
3
G
1⊤

4
has rank |Ω |, (10)

where 1 is the all-ones vector with length |Ω |.

Here condition (10) is equivalent to that there exists a one-to-one mapping from µ(ω |si ) to ri
because if the matrix in (10) has rank |Ω |, then it has linearly independent columns, which means

that it has a left inverse H such that H ·
3
G
1⊤

4
= I . Then we can recover µ(ω |si ) from ri as

H ·
3
ri
1

4
= H ·

3
G
1⊤

4
· µ(ω |si ) = µ(ω |si ).

According to Theorem 5.2, a designer who is interested in some information that is linear in
the participants’ posteriors should just try to elicit their posteriors µ(ω |si ), if the conditions in the
theorem are satisfied. The proof of the theorem is based on the necessary condition inCorollary 4.6.
The proof of Theorem 5.2 is quite involved. The high level idea is that if the columns of the matrix3

G
1⊤

4
are linearly dependent, we can find two possible distribution µ, µ ′ ∈ M so that there exist

two signal realizations si , s ′i of a participant i that will lead to the same posterior in µ and µ ′

µ(r−i |si ) = µ ′(r−i |s ′i ),
but the truthful reports are different

G · µ(ω |si ) ! G · µ ′(ω |s ′i ).
So it violates Proposition 4.6. We defer the full proof to Appendix D.1.

5.2 Prediction on the State
In this section, we study the report function that is just the participants’ posteriors about ω after
observing their signals ri = µ(ω |si ). We provide a necessary condition for µ(ω |si ) to be elicitable
when the participants’ signals are conditionally independent and the designer is uncertain about
the conditional distributions of the participants’ signals.

For each participant i , our necessary condition will look at the conditional distribution of the
other participants’ signals µ(s−i |ω). For every µ ∈ M , define Pµi to be a |S−i | × |Ω | matrix with
entry in row s−i and column ω equal to µ(s−i |ω).

Theorem 5.3. For a single-task/multiple-task elicitability problem 〈f ,M〉 with ri = µ(ω |si ) with
conditional independent signals, if the designer is minimally uncertain about the conditional distri-
butions of the participants’ signals, then the condition

rank(Pµi ) = |Ω |, ∀i,∀µ
is necessary for 〈f ,M〉 to be elicitable/elicitable by scoring mechanisms.

The proof can be found in Appendix D.2.
This necessary condition basically means that to guarantee that truthfully reporting is a strictly

optimal strategy for participant i (at the equilibrium), the other participants’ signals need to be
sufficiently correlated with the state ω. Since Kong and Schoenebeck [11] proposed a mechanism
that elicits µ(ω |si )when the designer knows the prior µ(ω) (see details in Section 3.3), the condition
in Theorem 5.3 is also sufficient when the prior µ(ω) is known.



Corollary 5.4. For a single-task/multiple-task elicitability problem 〈f ,M〉 with ri = µ(ω |si ) with
known prior µ(ω)with conditionally independent signals, if the designer is minimally uncertain about
the conditional distributions of the participants’ signals, then the condition that rank(Pµi ) = |Ω | for
all i and µ is both necessary and sufficient for ri = µ(ω |si ) to be elicitable/elicitable by scoring mech-
anisms.

The necessity of the condition implies that the mechanisms proposed by Kong and Schoenebeck
[11] are able to solve all the problem instances that are elicitable (by scoring mechanisms in the
multi-task setting) if we consider the problem of eliciting µ(ω |si ) when the prior µ(ω) is known.

Corollary 5.5. For a single-task/multiple-task elicitability problem 〈f ,M〉 with ri = µ(ω |si ) with
known prior µ(ω)with conditionally independent signals, if the designer is minimally uncertain about
the conditional distributions of the participants’ signals, then all the problem instances 〈f ,M〉 that are
elicitable/elicitable by scoring mechanisms can be solved by the mechanism proposed by Kong and
Schoenebeck [11], i.e., their mechanism will be strictly truthful for all µ ∈ M .

6 DISCUSSION
We study the elicitability of multi-task peer prediction problems. Our main contribution includes
(1) we characterize the elicitable multi-task peer prediction problems when the designer only uses
scoring mechanisms, (2) we are the first to study the elicitability of properties that are linear in the
participants’ posteriors. We believe that the most intriguing future direction is to further simplify
our characterization and find more applications of this result, by either considering more specific
settings or adopting more advanced tools. For example, our characterization does not impose any
restriction on the designer’s knowledge about the distribution: the set M can be an arbitrary set
of possible distributions. An immediate question is: can we simplify the characterization if M
has a certain structure? Our negative result for linear properties only used a simplified version
of the necessary condition. We believe that stronger results can be proved if we deploy more of
the structure of power diagrams, e.g. the convexity of the cells. Finally, our result shows that it
is possible to have a simpler characterization by restricting the class of mechanisms. It may be
possible to simplify our result by considering other classes of mechanisms.

ACKNOWLEDGMENTS
The authors would like to thank all the anonymous reviewers for their careful reading, valuable
comments, and constructive remarks. This work is supported by the National Science Foundation
under Grant No. IIS 2007887.



REFERENCES
[1] Jacob D. Abernethy and Rafael M. Frongillo. 2012. A Characterization of Scoring Rules for Linear Properties. In

Proceedings of the 25th Annual Conference on Learning Theory, Vol. 23. 27.1–27.13.
[2] Yiling Chen, Yiheng Shen, and Shuran Zheng. 2020. Truthful Data Acquisition via Peer Prediction.

arXiv:cs.GT/2006.03992
[3] Anirban Dasgupta and Arpita Ghosh. 2013. Crowdsourced judgement elicitation with endogenous proficiency. In

Proceedings of the 22nd international conference on World Wide Web. 319–330.
[4] Boi Faltings and Goran Radanovic. 2017. Game theory for data science: Eliciting truthful information. Synthesis

Lectures on Artificial Intelligence and Machine Learning 11, 2 (2017), 1–151.
[5] Rafael Frongillo and Jens Witkowski. 2017. A geometric perspective on minimal peer prediction. ACM Transactions

on Economics and Computation (TEAC) 5, 3 (2017), 1–27.
[6] Rafael M Frongillo. 2013. Eliciting private information from selfish agents. Ph.D. Dissertation. UC Berkeley.
[7] Radu Jurca and Boi Faltings. 2008. Incentives for expressing opinions in online polls. In Proceedings of the 9th ACM

Conference on Electronic Commerce. 119–128.
[8] Yuqing Kong. 2020. Dominantly truthful multi-task peer prediction with a constant number of tasks. In Proceedings

of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2398–2411.
[9] Yuqing Kong. 2021. Counting the Number of People That Are Less Clever Than You. arXiv preprint arXiv:2103.02214

(2021).
[10] Yuqing Kong and Grant Schoenebeck. 2018. Equilibrium Selection in Information Elicitation without Verification via

Information Monotonicity. In 9th Innovations in Theoretical Computer Science Conference.
[11] Yuqing Kong and Grant Schoenebeck. 2018. Water from two rocks: Maximizing themutual information. In Proceedings

of the 2018 ACM Conference on Economics and Computation. 177–194.
[12] Yuqing Kong and Grant Schoenebeck. 2019. An information theoretic framework for designing information elicitation

mechanisms that reward truth-telling. ACM Transactions on Economics and Computation (TEAC) 7, 1 (2019), 2.
[13] Nicolas Lambert and Yoav Shoham. 2009. Eliciting truthful answers to multiple-choice questions. In Proceedings of

the 10th ACM conference on Electronic commerce. 109–118.
[14] Nicolas S. Lambert, David M. Pennock, and Yoav Shoham. 2008. Eliciting Properties of Probability Distributions. In

Proceedings of the 9th ACM Conference on Electronic Commerce (EC ’08). Association for Computing Machinery, New
York, NY, USA, 129–138. https://doi.org/10.1145/1386790.1386813

[15] Yang Liu, Juntao Wang, and Yiling Chen. 2020. Surrogate scoring rules. In Proceedings of the 21st ACM Conference on
Economics and Computation. 853–871.

[16] N. Miller, P. Resnick, and R. Zeckhauser. 2005. Eliciting informative feedback: The peer-prediction method. Manage-
ment Science (2005), 1359–1373.

[17] D. Prelec. 2004. A Bayesian Truth Serum for subjective data. Science 306, 5695 (2004), 462–466.
[18] Goran Radanovic and Boi Faltings. 2013. A robust bayesian truth serum for non-binary signals. In Proceedings of the

27th AAAI Conference on Artificial Intelligence (AAAI" 13). 833–839.
[19] Goran Radanovic and Boi Faltings. 2014. Incentives for truthful information elicitation of continuous signals. In

Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI" 14). 770–776.
[20] Grant Schoenebeck and Fang-Yi Yu. 2020. Learning and Strongly Truthful Multi-Task Peer Prediction: A Variational

Approach. arXiv:cs.GT/2009.14730
[21] Grant Schoenebeck and Fang-Yi Yu. 2020. Two Strongly Truthful Mechanisms for Three Heterogeneous Agents

Answering One Question. In International Conference on Web and Internet Economics. Springer.
[22] Victor Shnayder, Arpit Agarwal, Rafael Frongillo, and David C Parkes. 2016. Informed truthfulness in multi-task peer

prediction. In Proceedings of the 2016 ACM Conference on Economics and Computation. 179–196.
[23] J. Witkowski and D. Parkes. 2013. Learning the Prior in Minimal Peer Prediction.
[24] Jens Witkowski and David C. Parkes. 2012. Peer prediction without a common prior. In Proceedings of the 13th ACM

Conference on Electronic Commerce, EC 2012, Valencia, Spain, June 4-8, 2012, Boi Faltings, Kevin Leyton-Brown, and
Panos Ipeirotis (Eds.). ACM, 964–981. https://doi.org/10.1145/2229012.2229085

[25] Peter Zhang and Yiling Chen. 2014. Elicitability and knowledge-free elicitation with peer prediction. In Proceedings
of the 2014 international conference on Autonomous agents and multi-agent systems. 245–252.

http://arxiv.org/abs/cs.GT/2006.03992
https://doi.org/10.1145/1386790.1386813
http://arxiv.org/abs/cs.GT/2009.14730
https://doi.org/10.1145/2229012.2229085


A TABLE OF NOTATIONS
symbols single tasks multiple tasks

space of signal S := ×iSi , and s ∈ S S := ×iSi , and s(1:T ) ∈ ST

common prior µ a distribution on Ω×S1 · · ·×Sn µ⊗T , each task is identically and
independently sampled from µ

Designer’s knowl-
edge

M a subset of distributions that
contains the underlying distribu-
tion µ ∈ M

same

report space R := ×iRi same

private signal S := (Si )i the random variable of
signals sampled from µ

S(1:T ) := (S(1:T )
i )i = (S (t )

i )i,t a ran-
dom variable sampled from µ⊗T

truthful map f = (fi,µ )i,µ same

truthful report R = (Ri )i , a random variable
(fi,µ (Si ))i where (Si )i ∼ µ

R(1:T ) = (R(1:T )
i )i = (R(t )

i )i,t , a ran-
dom variable

strategy σ = (σi )i , a collection of n inde-
pendent random mappings where
σi : Si → ∆(Ri ).

σ = (σ (1:T )
i )i = (σ (t )

i )i,t a col-
lection of nT independent random
mapping σ (t )

i : Si → ∆(Ri )

strategic report !R = (!Ri )i = (σi (Si ))i , ran-
dom variables (σi (Si ))i depends on
(σi )i and (Si )i

!R(1:T ) = (!R(1:T )
i )i = (!R(t )

i )i,t =

(σ (t )
i (S (t )

i ))i,t

payment p = (pi )i where pi : ×iRi → R p = (pi )i where pi : ×iRT
i → R

B MISSING PROOFS IN SECTION 3
Given a distribution λ on a finite set Ω×S1 × · · ·×Sn and ϵ > 0, let B(λ, ϵ) = {µ : )µ −λ)1 ≤ ϵ} ⊂
∆(Ω × S1 × · · · × Sn)} be the collection of distributions whose total variation distance from λ is
smaller than ϵ . Note that if ϵ = 0, B(λ, 0) is a singleton and we know exactly the true distribution.
There are several truthful mechanisms, e.g., Miller et al. [16]. The following theorem shows we
can still have truthful mechanisms when ϵ > 0 is small enough.

Theorem B.1. If fi (si ) = si for all i and λ ∈ ∆(Ω × S1, . . .Sn) has full support λ > 0 and is
stochastic relevant so that λ(s−i |si ) ! λ(s−i |s ′i ) for all i ∈ [n] and distinct si and s ′i , there exists ϵ > 0
such that 〈f ,B(λ, ϵ)〉 is elicitable.

The idea is very similar to the maximal robust mechanisms in Frongillo and Witkowski [5].
However, instead of the joint distribution being close to a center λ, their result requires all condi-
tional distributions are close to a center. The proof is straightforward and it is in the appendix.

Proof of Corollary 3.3. If Qi (ri ) ∩Qi (r ′i ) ! ∅, then there exist µ1 and µ2 with

µ1(r−i |si ) = µ2(r−i |s ′i ), f (si ) = ri , f (s ′i ) = r ′i .

Then if there exists a truthful payment rule p(r), then by the definition of elicitability Definition 2.7
it should satisfy that

Er−i∼µ1(r−i |si )[pi (ri , r−i )] > Er−i∼µ1(r−i |si )[pi (r ′i , r−i )],



Er−i∼µ2(r−i |s ′i )[pi (r
′
i , r−i )] > Er−i∼µ2(r−i |s ′i )[pi (ri , r−i )].

which is impossible if µ1(r−i |si ) = µ2(r−i |s ′i ). □

Proof of Theorem B.1. Because λ is stochastic relevant, 〈f , {λ}〉 is elicitable. [16]
By Theorem 3.2, for agent i , there exists a power diagram with sites vr ∈ R |R−i | and weights

wr ∈ R for all r ∈ Ri such that for all ri ∈ Ri , ri = argmins {〈λ(r−i |ri ), vs 〉 − ws }, and for any
distinct pair ri , r ′i

〈λ(r−i |ri ), vri 〉 −wri > 〈λ(r−i |ri ), vr
′
i 〉 −wr ′i

Now we want to prove the same power diagram works for 〈f ,B(λ, ϵ)〉 when ϵ is small enough:
For all ri ∈ Ri and µ ∈ B(λ, ϵ), cell(vri ) contains Qi (ri ).

First we can bound the distance between conditional distributions by the distance between their
joint distributions. For any µ > 0 and ri ∈ Ri

)µ(r−i |ri ) − λ(r−i |ri ))1 =
"
r−i

5555µ(ri , r−i )µ(ri )
− λ(ri , r−i )

λ(ri )

5555
≤
"
r−i

5555µ(ri , r−i )µ(ri )
− µ(ri , r−i )

λ(ri )

5555 +
"
r−i

5555µ(ri , r−i )λ(ri )
− λ(ri , r−i )

λ(ri )

5555
≤ |µ(ri )−1 − λ(ri )−1 |

"
r−i

|µ(ri , r−i )| + λ(ri )−1
"
r−i

|µ(ri , r−i ) − λ(ri , r−i )|

≤ |µ(ri )−1 − λ(ri )−1 | + λ(ri )−1)µ − λ)1

Now it is sufficient to bound the first term by )µ − λ)1. If )µ − λ)1 < ϵ , we can take ϵ smaller
than minri λ(ri )/2. Thus, for all ri , we have |µ(ri ) − λ(ri )| < λ(ri )/2, and |µ(ri )−1 − λ(ri )−1 | =
|µ(ri ) − λ(ri )|/(µ(ri )λ(ri )) ≤ 2

λ(ri )2 )µ − λ)1. Therefore, we have

)µ(r−i |ri ) − λ(r−i |ri ))1 ≤
6

2
λ(ri )2

+
1

λ(ri )

7
)µ − λ)1 ≤

3
λ(ri )2

)µ − λ)1 (11)

On the other hand, since Ri is a finite set and λ > 0, we can pick ϵ0 > 0 small enough such that
for all ri ! r ′i

3ϵ0 + 〈λ(r−i |ri ), vri 〉 −wri < 〈λ(r−i |ri ), vr
′
i 〉 −wr ′i . (12)

Now for all distinct ri , r ′i and µ ∈ B(λ,minri
λ(ri )2
)vri )∞ ϵ0), we have

8
〈λ(r−i |ri ), vr

′
i 〉 −wr ′i

9
− (〈λ(r−i |ri ), vri 〉 −wri )

=〈λ(r−i |ri ), vr
′
i − vri 〉 −wr ′i +wri

≥〈λ(r−i |ri ) − µ(r−i |ri ), vr
′
i − vri 〉 + 3ϵ0 (by Eqn. (12))

≥3ϵ0 − )λ(r−i |ri ) − µ(r−i |ri ))1)vri )∞ (Holder’s inequality)

>3ϵ0 −
3)vri )∞
λ(ri )2

)λ − µ)1 (by Eqn. (11))

≥0 ()µ − λ)1 ≤ λ(ri )2
)vri )∞ ϵ0)

This completes our proof. □



C MISSING PROOFS IN SECTION 4
C.1 Proof of Theorem 4.1
First it is apparent that a mechanism that guarantees strict truthfulness also guarantees strict
truthfulness under consistent strategies. In the following proposition we show if there is a scoring
mechanism so that a multi-task problem 〈f ,M〉 is elicitable under consistent strategies there is a
scoring mechanism such that 〈f ,M〉 is elicitable under general strategies defined in Definition 2.3.

Proposition C.1. If there exists a scoring rule mechanism p = {pti : i ∈ [n], t ∈ [T ]} so that a
multi-task problem 〈f ,M〉 is elicitable under consistent strategies, there is a scoring mechanism such
that 〈f ,M〉 is elicitable under general strategies.

Proof of Proposition C.1. We construct such scoring mechanism against general strategies
through symmetrization.

Since p is a scoring mechanism, agent i’s payment pi can be decomposed as pi (r(1:T )
i , r(1:T )

−i ) =(T
t=1 p

(t )
i (r (t )i , r(1:T )

−i ) for all r ∈ R where for agent i , p(t )
i only depends on his report on task i . We

define a new payment p̂i through symmetrization: Let Sym(T ) be the collection of all permutations
on set [T ].

p̂i (r) :=
1
T !

"
τ ∈[T ],π ∈Sym(T )

p(τ )
i

8
r (π (1))
i , r (π (1))

−i , r (π (2))
−i , . . . , r (π (T ))

−i

9
.

First it is easy to see if all agents use consistent strategies σ , the expectation of p̂i equals the
expectation of pi

Eσ ,S

:
p̂i (!R); = Eσ ,S

:
pi (!R); . (13)

Formally, because when σ is consistent the distribution of !R is exchangeable on tasks so that the
distribution of (!R(1) . . . !R(T )) is identical to the distribution of (!R(π (1)) . . . !R(π (T ))) for any permuta-
tion π ∈ Sym(T ), the expectation of p̂i is the sum of T ! identical terms, and Eqn. (13) holds.

Then we show that given any agent i’s general strategy σi = (σ 1
i , . . . ,σ

T
i ), if all other agents are

truth telling, there exists a consistent

σ̂i :=
1
T

"
t

σ t
i

such that agent i’s expected payment of p̂i under strategy σi is equal to the expected payment of
pi under σ̂i ,

Eσi ,S

:
p̂i

8!R(1:T ),R(1:T )
−i

9;
= Eσ̂i ,S

:
pi

8!R(1:T ),R(1:T )
−i

9;
(14)

Note that if Eqn. (14) holds, with Eqn. (13) we completes the proof. When every other agents are
truth telling, the expected payment under any general nontruthful strategy σi is strictly less than
the expected payment of truth telling,

Eσi ,S

:
p̂i

8!R(1:T ),R(1:T )
−i

9;

=Eσ̂i ,S

:
pi

8!R(1:T ),R(1:T )
−i

9;
(by (14))

<ES

:
pi

8!R9; (pi is truthful under consistent strategies.)

=ES

:
p̂i

8!R9; (by (13) and truth telling is an consistent strategy)

The above inequality is strict, because if σi is not truthful, the average σ̂i is also not truthful.



Finally, let’s prove Eqn. (14). We set R⊗(T−1)
−i be a sequence of T − 1 iid truthful report on a

generic tasks, and (R(π (2))
−i , . . . ,R(π (T ))

−i ) has the same distribution as R⊗(T−1)
−i for any permutation

π ∈ Sym(T ), because the distribution is exchangeable. With this notion, due to the linearity of
expectation, we have

Eσi ,S[p̂i (!R)] = 1
T
E

<"
τ ,τ ′

p(τ )
i

8
σ (τ ′)
i (S (τ ′)

i ),R(τ ′)
−i ,R⊗(T−1)

−i

9=

=
1
T
Eσi ,S

<"
τ ,τ ′

p(τ )
i

8
σ τ

′
i (S ′i ), f−i,µ (S ′−i ),R

⊗(T−1)
−i

9=
(Let (S ′i , S ′−i ) be sampled from µ.)

=
1
T
ES

<"
τ ,τ ′

"
ri ∈Ri

Pr
:
σ (τ ′)
i (S ′i ) = ri

;
p(τ )
i

8
ri , f−i,µ (S ′−i ),R

⊗(T−1)
−i

9=

=ES

<"
τ

"
ri ∈Ri

%
1
T

"
τ ′

Pr
:
σ (τ ′)
i (S ′i ) = ri

; &
p(τ )
i

8
ri , f−i,µ (S ′−i ),R
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−i
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τ
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ri ∈Ri
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p(τ )
i
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ri , f−i,µ (S ′−i ),R

⊗(T−1)
−i
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T
(
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i )

=Eσ̂i ,S

<"
τ

p(τ )
i

8
σ̂i (S ′i ), f−i,µ (S ′−i ),R

⊗(T−1)
−i

9=
= Eσ̂i ,S

:
pi (!R);

which completes the proof. □

C.2 Characterization for polynomial-size scoring mechanisms
Suppose the designer only uses scoring mechanisms with

p(t )
i (!r (t )i ,!r(1:T )

−i ) = p(t )
i (!r (t )i ,!r (t )−i ,Y (!r(−t )−i )),

where Y is an arbitrary function with range Y. And Y has a polynomial size. We first define the
power diagram constraint for fixed marginal distribution of µ(Y (r(1:T−1)−i )). The definition is similar
to Definition 4.2. To simplify the notation, we write Y (r(1:T−1)−i ) as Y .

DefineM(µ(Y )) to be the set of all distributions that has marginal distribution ofY equal to µ(Y ),
M(µ(Y )) =

>
µ ′ ∈ M : µ ′(Y ) = µ(Y )

?
Also defineQi (ri , µ(Y )) to be the set of participant i’s possible posteriors about the others’ reports
when participant i’s truthful report is ri and the marginal distribution of Y is µ(Y ),

Qi (ri , µ(Y )) = {µ(r−i |si ) : µ ∈ M(µ(Y )), si satisfies fi,µ (si ) = ri }.
Then the power diagram constraint for fixed marginal distribution of µ(Y ) is defined as follows.

Definition C.2. A multi-task problem 〈f ,M〉 satisfies the power diagram constraint for fixed
marginal distributions of µ(Y ) if for all i and µ(Y ), {Qi (ri , µ(Y ))}ri ∈Ri can be fitted into a power
diagram, which means that there exists a power diagram in dimension |R−i | with |Ri | cells defined
by {vri ∈ R |R−i | : ri ∈ Ri } with associated weights {wri ∈ R : ri ∈ Ri }, such that each Qi (ri , µ(Y ))
falls into a distinct cell,

Qi (ri , µ(Y )) ⊆ cell(vri ), for all ri ∈ Ri .

Then we have the following theorem.



Theorem C.3. If the designer only uses scoring mechanisms with

p(t )
i (!r (t )i ,!r(1:T )

−i ) = p(t )
i (!r (t )i ,!r (t )−i ,Y (!r(−t )−i )),

where Y is an arbitrary function with range Y, then a multi-task problem is elicitable if and only if
(1) it satisfies the power diagram constraint for fixed marginal distribution of µ(Y ); (2) the site vri
for different µ(Y ) is an affine function of µ(Y ) and the weightswri for different µ(Y ) is also an affine
function of µ(Y ). Formally, for every i ∈ [n] and every ri ∈ Ri , there exist a matrix Dri with |R−i |
rows and |Y| columns and a vector eri ∈ R |R−i | with

vri (µ(Y )) = Dri · µ(Y ) + eri ,

and there exists a vector hri with length |Y| such that

wri (µ(Y )) = h⊤ri · µ(Y ).
Moreover, if such power diagrams and affine functions exist, we can find a mechanism that is strictly
truthful for any µ ∈ M with payments defined by the entries of D, e and h as

p(t )
i (ri , r(t )−i ,Y (!r(−t )−i )) = −Dri [r

(t )
−i ,Y (!r(−t )−i )] − eri [r

(t )
−i ] + hri [Y (!r(−t )−i )], ∀ri ∈ Ri , r

(t )
−i , r

(−t )
−i .

The proof of the theorem is entirely similar to the proof of Theorem 4.4.

D MISSING PROOFS IN SECTION 5
D.1 Proof of Theorem 5.2
Before starting the main proof, we give a useful lemma about distributions with conditional inde-
pendent signals.

Lemma D.1. If a distribution µ(ω, s1, s2) has conditional independent signals, i.e., µ(ω, s1, s2) =
µ(ω)µ(s1 |ω)µ(s2 |ω), then participant 1’s posterior about s2 satisfies

µ(s2 |s1) =
"
ω ∈Ω

µ(s2 |ω)µ(ω |s1).

Proof. It is because

µ(s2 |s1) =
"
ω

µ(s2,ω |s1) =
"
ω

µ(s2 |ω, s1)µ(ω |s1) =
"
ω

µ(s2 |ω)µ(ω |s1).

Here in the last equation, we’ve used the conditional independence: µ(s2 |ω, s1) = µ(ω,s1,s2)
µ(ω,s1) =

µ(ω)µ(s1 |ω)µ(s2 |ω)
µ(ω)µ(s1 |ω) = µ(s2 |ω). □

Consider a multi-task elicitability problem 〈f ,M〉 with two agents and with conditional inde-
pendent signals with ri = G·µ(ω |si ), and the designer is minimally uncertain about the conditional
distributions of the participants’ signals. We show that if rank([G⊤, 1]) < |Ω |, there exists a pair
of distributions µ∗, µ ′ ∈ M that will violate the condition in Proposition 4.6.

We first choose a distribution µ∗ ∈ M as follows. Since the designer is minimally uncertain
about the conditional distributions of the participants’ signals, there exists a prior µ(ω) and a
set of possible conditional distributions for each participant Mi ⊆ R |Si |× |Ω | , such that the joint
distributions generated by them are all possible, and eachMi is open relative to the space of valid
conditional distributions (∆Si ) |Ω | . Suppose that the first agent’s set of possible likelihood functions
M1 ⊆ R |S1 |× |Ω | contains a ball with radius ε centered at µ∗(s1 |ω), andM2 contains a ball centered at
µ∗(s2 |ω).3 Let µ∗(ω, s1, s2) be the joint distribution generated by µ(ω), µ∗(s1 |ω) and µ∗(s2 |ω). Then
3Here Mi contains a ball means that there is a ball B ⊆ R|Si |×|Ω | such that the intersection of the ball and the space of
valid conditional distributions is still in Mi , i.e., B ∩ (∆Si )|Ω | ⊆ Mi .



for a certain s∗1 ∈ S1, participant 1’s possible posterior about ω after seeing s∗1 must contain a ball
centered at

µ∗(ω |s∗1) ∝ µ(ω)µ∗(s∗1 |ω)
with some radius ε∗ > 0.

We then find another distribution µ ′ ∈ M such that
(a) the marginal distribution of r2 remains the same, µ ′(r2) = µ∗(r2);
(b) participant 1’s truthful report after seeing s∗1 is different, G · µ′(ω |s∗1) ! G · µ∗(ω |s∗1);
(c) but participant 1’s posterior about r2 after seeing s∗1 is unchanged, µ

′(r2 |s∗1) = µ∗(r2 |s∗1).
Then according to Proposition 4.6, r is not elicitable.

Since the report function ri = G · µ(ω |si ) is nonconstant, there exists a length-|Ω | vector β with
G · β ! 0 and 1⊤ · β = 0. Since the possible posterior of the first agent after seeing s∗1 contains a
ball centered at µ∗(ω |s∗1), there exists a small enough δ such that µ ′(ω |s∗1) = µ∗(ω |s∗1) + δ · β is a
possible posterior of the first agent and condition (b) is satisfied, i.e.,

G · µ∗(ω |s∗1) ! G · µ′(ω |s∗1). (15)

We will use this vector β to construct a likelihood function µ ′(s2 |ω) ∈ M2 so that (a) and (c) are
also satisfied.

LetQ∗ be an |S2 |× |Ω | matrix with µ∗(s2 |ω) at row s2 and columnω. If rank([G⊤, 1]) < |Ω |, then
there exists a length-|Ω | vector α such that α ! 03

G
1⊤

4
diag(µ(ω)) · α = 0,

where diag(µ(ω)) represents the |Ω |× |Ω |matrix with the prior µ(ω) on the diagonal. Definematrix

Q′ = Q∗ + k · α⊤

with

k =
−δQ∗β

α⊤ · µ′(ω |s∗1)
.

(Here it is WLOG to assume that the denominator is non-zero. The reason is as follows. WLOG
we can assume that α⊤ · µ∗(ω |s∗1) ! 0 because if it is equal to zero, we can shift µ∗(ω |s∗1) within
the small ball so that it becomes non-zero. Then there must exist small enough δ such that the
denominator α⊤ · µ′(ω |s∗1) is non-zero.) It is easy to verify that the vector k we picked satisfies
1⊤ · k = 0 because 1⊤Q∗ = 1⊤ and 1⊤β = 0. Therefore by choosing small enough δ , matrix
Q′ = Q∗+k·α⊤ will represent a valid likelihood function µ ′(s2 |ω) ∈ M2, becauseM2 contains a ball
with radius ε centered at Q∗. Let µ ′(ω, s1, s2) be the joint distribution generated by µ(ω), µ ′(s2 |ω)
and any µ(s1 |ω) ∈ M1 that will give the desired µ ′(ω |s∗1) = µ∗(ω |s∗1) + δ · β .

We first show that condition (c) is satisfied. By our construction of k, participant 1’s posteriors
about participant 2’s signal µ ′(s2 |s∗1) will remain the same as µ∗(s2 |s∗1). Because by Lemma D.1,

µ′(s2 |s∗1) = Q′ · µ′(ω |s∗1) = (Q∗ + kα⊤)µ′(ω |s∗1)
= Q∗ · µ′(ω |s∗1) + k

0
α⊤µ′(ω |s∗1)

1
= Q∗ · (µ∗(ω |s∗1) + δ · β) − δQ∗β

= Q∗ · µ∗(ω |s∗1)
= µ∗(s2 |s∗1).

Notice that this is not equivalent to (c) because we need the posterior about participant 2’s report
r2 to be unchanged. However, it suffices to prove that for all s2 ∈ S2, the posteriors µ∗(ω |s2) and



µ ′(ω |s2) lead to the same report G · µ∗(ω |s2) = G · µ′(ω |s2). By our construction of Q′

Q′ = Q∗ + k · α⊤

and our selection of α which guarantees3
G
1⊤

4
diag(µ(ω)) · α = 0,

it holds that 3
G
1⊤

4
diag(µ(ω)) · (Q′)⊤ =

3
G
1⊤

4
diag(µ(ω)) · (Q∗)⊤.

The l-th row of the equation imply that for any s2 ∈ S2,"
ω

G[l ,ω](µ(ω)µ ′(s2 |ω)) =
"
ω

G[l ,ω](µ(ω)µ∗(s2 |ω)),

where G[l ,ω] represents the element in row l and column ω of G. This is equivalent to"
ω

G[l ,ω]µ ′(ω |s2)µ ′(s2) =
"
ω

G[l ,ω]µ∗(ω |s2)µ∗(s2), ∀s2 ∈ S2. (16)

The last row means that for all s2 ∈ S2,"
ω

µ(ω) · µ ′(s2 |ω) =
"
ω

µ(ω)µ∗(s2 |ω),

which is equivalent to

µ ′(s2) = µ∗(s2), ∀s2 ∈ S2. (17)

Combining (16) and (17), we get"
ω

G[l ,ω]µ ′(ω |s2) =
"
ω

G[l ,ω]µ∗(ω |s2), ∀s2 ∈ S2. (18)

This means that µ∗(ω |s2) and µ ′(ω |s2) lead to the same report G · µ∗(ω |s2) = G · µ′(ω |s2) for any
s2 ∈ S2, which completes our proof of condition (c).

Finally, it is easy to show that (a) will also be satisfied. Equations (17) and (18) together imply
that the marginal distribution of r2 remains the same, i.e.,

µ ′(r2) = µ∗(r2).

D.2 Proof of Theorem 5.3
First because of conditional independence we have µ(s−i |si ) =

(
ω ∈Ω µ(ω |si )µ(s−i |ω), or equiva-

lently,
µ(s−i |si ) = Pµi · µ(ω |si ).

If there exists µ and i such that rank(Pµi ) < |Ω |, then the columns of Pµi are linearly dependent. So
there exists a non-zero vector a such that

Pµi · a = 0.

Since the set of possible likelihood function Mi contains a ball with radius ε ,4 there must exists a
small enough δ such that µ(ω |si ) + δa is a possible prediction of the state. More specifically, there
exists !µ ∈ M with the same prior !µ(ω) = µ(ω) and

!µ(ω |si ) = µ(ω |si ) + δa.
4Here Mi contains a ball means that there is a ball B ⊆ R|Si |×|Ω | such that the intersection of the ball and the space of
valid conditional distributions is still in Mi , i.e., B ∩ (∆Si )|Ω | ⊆ Mi .



In addition, by our definition of conditional independent knowledge, !µ can further have the same
likelihood function for other agents !µ(s−i |ω) = µ(s−i |ω), which leads to

!µ(s−i |si ) = Pµi · !µ(ω |si ) = Pµi (µ(ω |si ) + δα) = Pµi · µ(ω |si ) = µ(s−i |si ).
This is equivalent to !µ(r−i |si ) = µ(r−i |si )
because !µ(ω |sj ) remains the same for all j ! i . So agent i’s posterior about others’ reports is
the same but the truthful report becomes different !µ(ω |si ) ! µ(ω |si ). This violates the necessary
condition for single-tasks problems, i.e., the robust stochastic relevance condition Proposition 3.3,
which requires

Qi (!µ(ω |si )) ∩Qi (µ(ω |si )) = ∅.
It also violates the necessary condition for multi-task problems Proposition 5.3 since we have
µ(r−i ) = !µ(r−i ).


