
Robustly Learning Composable Options in Deep Reinforcement Learning

Akhil Bagaria∗ , Jason Senthil∗ , Matthew Slivinski and George Konidaris
Department of Computer Science, Brown University

{akhil bagaria, jason senthil, matthew slivinski}@brown.edu, gdk@cs.brown.edu

Abstract

Hierarchical reinforcement learning (HRL) is only
effective for long-horizon problems when high-
level skills can be reliably sequentially executed.
Unfortunately, learning reliably composable skills
is difficult, because all the components of every
skill are constantly changing during learning. We
propose three methods for improving the compos-
ability of learned skills: representing skill initia-
tion regions using a combination of pessimistic and
optimistic classifiers; learning re-targetable poli-
cies that are robust to non-stationary subgoal re-
gions; and learning robust option policies using
model-based RL. We test these improvements on
four sparse-reward maze navigation tasks involv-
ing a simulated quadrupedal robot. Each method
successively improves the robustness of a baseline
skill discovery method, substantially outperform-
ing state-of-the-art flat and hierarchical methods.1

1 Introduction
Temporal abstraction is a promising approach to scaling rein-
forcement learning (RL) algorithms [Botvinick et al., 2009]
because it is capable of addressing some of the biggest chal-
lenges in RL: structured exploration [Jinnai et al., 2019],
transfer [Konidaris and Barto, 2007] and long-term credit as-
signment [Dietterich, 2000]. Hierarchical methods are partic-
ularly attractive for long-horizon, sparse reward tasks, where
flat (non-hierarchical) RL algorithms often struggle.

Hierarchical approaches succeed by allowing the agent to
sequentially execute high-level actions. This intuition has
led to several skill-discovery algorithms that explicitly sat-
isfy the composability objective: executing one skill takes
the agent to a state where it can execute another. Such algo-
rithms are widespread in the literature; from control-theory
[Lyapunov, 1992; Burridge et al., 1999; Tedrake, 2009], to
robotics [Lozano-Perez et al., 1984; Kaelbling and Lozano-
Pérez, 2017], to the online [Randløv et al., 2000; Konidaris

∗Equal contribution
1Video, code and appendix can be found at https://sites.google.

com/brown.edu/robustly-composing-options

Figure 1: A learned solution to a long-horizon, sparse reward task
that requires executing approximately 665 low-level steps (different
colors denote discovered skills). Our proposed methods result in
discovered skills that can be reliably sequentially executed, enabling
skill discovery methods to more effectively solve such tasks.

and Barto, 2009; Shoeleh and Asadpour, 2017; Bagaria and
Konidaris, 2020] and batch RL [Singh et al., 2020] settings.

Even when skills are not explicitly constructed to be se-
quentially executable, they must eventually be sequenced to
solve goal-directed tasks [Sharma et al., 2020; Frans et al.,
2018]. Additionally, skills that can be reliably sequenced can
support abstract, high-level planning [Konidaris et al., 2018].

The core difficulty that arises when discovering compos-
able skills is that of non-stationary subgoals. Skill-discovery
algorithms that explicitly optimize for composability must
learn the regions (called initiation sets [Sutton et al., 1999])
from which each skill can be successfully executed. To con-
struct sequentially executable skills, the initiation set of one
skill becomes the subgoal of a new skill [Konidaris and Barto,
2009]. These initiation sets are constantly changing as the
agent learns, causing the target (and therefore reward func-
tion) of successive skills to also change over time, destabiliz-
ing composability and complicating learning.

We propose three methods to combat this problem. First,
we propose to stabilize learned initiation sets using a dual-
classifier approach. An optimistic classifier determines when
the agent can execute the skill, which encourages exploration.
Meanwhile, a pessimistic classifier is used as a subgoal tar-
get, which is likely to grow but unlikely to shrink, leading to
stable chains. Next, to create skill policies that are robust to

https://sites.google.com/brown.edu/robustly-composing-options
https://sites.google.com/brown.edu/robustly-composing-options

non-stationary subgoals, we propose to use goal-conditioned
policies [Schaul et al., 2015] for each skill. Such policies
are robust to subgoal changes because they can always be re-
targeted towards a state in the new subgoal region. Finally,
while the majority of skill-discovery work has been model-
free, we show that using model-based RL to learn skill poli-
cies leads to a substantially more robust skills.

To evaluate our proposed changes, we consider four sparse-
reward continuous control problems in MuJoCo [Todorov et
al., 2012]. Compared to a flat model-free solution [Fujimoto
et al., 2018; Andrychowicz et al., 2017], our agent achieves at
least two orders of magnitude better sample efficiency. While
a flat model-based solution [Nagabandi et al., 2018] is un-
able to solve any of the problems considered in this paper,
our model-based hierarchy solves them with relative ease.
Finally, our agent achieves at least a 5× improvement in
sample-efficiency over a state-of-the-art skill-discovery algo-
rithm [Bagaria and Konidaris, 2020].

2 Background and Related Work
We consider decision making problems modelled as episodic,
goal-oriented MDPs M = (S,A,R, T , γ,G) [Sutton and
Barto, 2018], where G refers to a set of goals that the agent
could be asked to reach, whereupon execution terminates
with a non-negative reward. Like most goal-conditioned RL
algorithms [Schaul et al., 2015; Andrychowicz et al., 2017],
we assume access to a reward functionR : S × G → R.

Model-Free RL: Model-free methods often use Q-
learning [Watkins and Dayan, 1992] to learn Qπ(st, at), esti-
mating the expected sum of discounted future rewards condi-
tioned on taking action at from st, thereafter following policy
π. The policy π(st) = argmaxa∈AQ(st, a) chooses an ac-
tion that greedily maximizes the Q-function at a given state.
The Q-function is often represented by a neural network φ
[Mnih et al., 2015] and the policy by another neural network
ψ [Lillicrap et al., 2015]. Many algorithms exist for learning
φ and ψ from interactions withM [Duan et al., 2016].

Hindsight Experience Replay (HER): When the
class of policies we wish to learn in M is restricted to
goal-reaching policies [Kaelbling, 1993], HER can im-
prove sample efficiency as follows. Given a trajectory
τ1 = (s1, a1,R(s2, g), s2), ..., (sn, an,R(sn+1, g), sn+1)
executed while trying to reach goal g, HER [Andrychow-
icz et al., 2017] replays τ1 [Lin, 1993] assuming that
the agent was trying to reach goal sn+1, by augment-
ing its set of experiences with another trajectory τ2 =
(s1, a1,R(s2, sn+1), s2), ..., (sn, an,R(sn+1, sn+1), sn+1).
Replaying trajectory τ2 trains the agent to reach state sn+1,
even when the reward functionR is sparse.

Model-Based RL: While Q-learning directly learns the
value function for control, model-based methods first learn
an approximate model of the system dynamics. This model
fξ : S × A → S is often represented using another neural
network ξ [Nagabandi et al., 2018]. Model-based methods
can then select actions by solving:

π(s|g) = argmax
a∈U |A|(−1,1)

H∑
t=1

γt−1R(st, g), (1)

such that st+1 = fξ(st, a). In Model Predictive Control
(MPC) [Garcia et al., 1989], the agent approximately solves
this optimization problem at every time-step, executing only
the first action from the resulting action sequence. By re-
planning at every time-step, MPC is robust to the prediction
errors that compound over time with a learned model [Asadi
et al., 2019].

2.1 Hierarchical Reinforcement Learning
The standard RL formulation considers an agent selecting
primitive actions at every time-step. In hierarchical RL [Barto
and Mahadevan, 2003], the agent instead selects temporally
extended actions or skills. These skills are commonly mod-
eled as options [Sutton et al., 1999], where each option o
is described using three elements: the initiation region, Io :
S → {0, 1}, describing the set of states from which the option
can be executed; the termination region, βo : S → {0, 1}, de-
scribing the subgoal region in which option execution must
terminate; and the policy, πo : S → A, which drives the
agent from Io to βo. Several methods have been proposed
to autonomously discover useful options (see Abel [2020],
chapter 2.3, for a survey).

Skill Chaining: For two options oi and oj to be reliably
sequentially executable, it must be the case that βoi ⊆ Ioj .
The skill-chaining algorithm [Konidaris and Barto, 2009] ex-
plicitly satisfies this property by learning options such that
βoi = Ioj . In skill-chaining, each discovered option o learns
its initiation region Io,θ using a binary classifier θ that de-
scribes the region from which the πo reaches βo with high
probability. Simultaneously, πo is learned using a model-free
RL algorithm to reach its subgoal region βo. The algorithm is
recursive: it first learns an option that initiates near the goal
and reliably takes the agent to the goal; then it learns another
option whose termination region is the initiation region of the
first option; then it repeats the procedure targeting the new
option. Options are chained together in this fashion until the
agent discovers an option whose initiation region contains the
start state. Deep skill chaining (DSC) [Bagaria and Konidaris,
2020] extended skill-chaining with deep RL, outperforming
existing state-of-the-art skill-discovery algorithms [Levy et
al., 2019; Bacon et al., 2017].

Since DSC explicitly constructs composable options, we
build on top of it to show that our proposed augmentations can
substantially improve the reliability of the resulting options.
However, since any skill-discovery algorithm must eventu-
ally compose learned skills to solve goal-directed tasks, our
insights could, at least in principle, improve the robustness of
their solutions.

2.2 Related Work
Robustness in HRL: Several variants of the Option-Critic
architecture [Bacon et al., 2017] have showcased robustness
to changes in transition dynamics or the reward function
[Mankowitz et al., 2018; Khetarpal and Precup, 2019; Ti-
wari and Thomas, 2019; Jain et al., 2021; Harutyunyan et al.,
2019]. By contrast, we seek to improve the reliability of hier-
archical methods in stationary, sparse-reward MDPs.

Composing Options: Some recent work has studied the
problem of composing skills as linear [Barreto et al., 2019]

Figure 2: The non-stationary subgoal problem: (a) an agent has two options o1, o2 such that o2 targets Io1 and o1 targets goal g; Eo2 is the
next state distribution of πo2 . (b) If Io1 shrinks, executing o2 no longer allows the agent to execute o1 (since Eo2 6⊆ Io1). (c) This causes βo2
to shift forward, which invalidates the previous policy πo2 , which in turn causes Io2 to shrink.

or non-linear [Qureshi et al., 2020] combinations of options
available to the agent. These methods require pre-trained op-
tions, while we discover them from scratch.

Model-Based Skill Discovery: Empowerment-driven
skill-discovery methods [Gregor et al., 2016; Eysenbach et
al., 2019] have recently been augmented with model-based
RL via the DADS algorithm [Sharma et al., 2020]. This
led to a family of related methods that optimize for explo-
ration [Campos Camúñez et al., 2020], lifelong learning [Lu
et al., 2021], and skill acquisition in image-based observa-
tion spaces [Baumli et al., 2020]. These methods represent
substantial progress in unsupervised skill-discovery, but our
setting differs from theirs in a few ways. First, unlike these
methods, we do not require a special pre-training phase for
skill-discovery. Second, while DADS is designed for the
multi-task setting, we focus on creating more robust solutions
to single-goal MDPs. Finally, skills learned by DADS have
global support, whereas we consider composability for skills
that specialize in different regions.

3 Robustly Learning Composable Options

The core difficulty in learning composable options is that,
during learning, all three components (Io, βo, πo) of every
option are simultaneously in flux. This difficulty is com-
pounded by the relationship between the initiation region of
one option and the subgoal region of another—changes to one
option’s initiation region changes another’s subgoal, in turn
changing its own policy and initiation region. These changes
cascade to downstream options, propagating instability and
causing chains of composable options to become unreliable
or even break. This situation—which can happen whenever
composable options are being learned simultaneously—is il-
lustrated in Figure 2.

To ameliorate this difficulty, which we call nonstationary
subgoals, we propose to robustify the learning process of all
three option components. First, we propose a two-classifier
representation of the initiation region that provides a stable
subgoal target while encouraging exploration. Second, we
use hindsight-experience replay to learn a generalized pol-
icy that enables us to target subgoal states that maximize the
probability of being able to execute the successor option. Fi-
nally, to manage the difficulty of learning so many functions
in parallel, we leverage the higher stability of model-based
RL methods to learn more robust option policies.

3.1 Dual Initiation Classifiers to Avoid Shrinkage
Previous approaches learned a single binary classifier to rep-
resent Io for each option o in the skill chain. If the option exe-
cution succeeds (i.e, the agent reaches βo), it adds a new pos-
itive example for further refining Io. Since the positive exam-
ple is from a region already inside the classifier, a successful
execution leaves the classifier’s decision boundary largely un-
changed. Alternatively, if the option execution fails to reach
βo, the agent gets a negative example for the next training
iteration of Io. Since this negative example comes from a re-
gion inside the classifier, it often shrinks the initiation region
over time, with no opportunity to expand.

To avoid this issue, we propose a dual-classifier parameter-
ization of Io—representing it using both optimistic and pes-
simistic classifiers. The pessimistic classifier represents the
states from which we are highly confident that option execu-
tion will succeed, and so is a stable region for other options
to target. However, if the agent could only ever choose to ex-
ecute the option from inside this classifier, exploration would
be hindered because the option would be prevented from ex-
panding to new regions. To encourage exploration outside
the pessimistic region, we also use an optimistic classifier to
represent states where the agent can choose to execute the
option. Eventually, the two classifiers should converge to ap-
proximate the “true” initiation region of the option.

Many techniques could be used to learn these two classi-
fiers; we learn the optimistic classifier using a two-class SVM
[Cortes and Vapnik, 1995] and the pessimistic classifier us-
ing a one-class SVM [Tax and Duin, 1999]. For more details,
please refer to Section 3 of the Appendix.

3.2 Robust Subgoals via Goal State Selection
We next turn to termination regions. The “chainability” of op-
tions oi and oj implies that the subgoal region βoi is a subset
of the initiation region Ioj . As Ioj is refined over time, the
subgoal region βoi also changes, and consequently, so does
the option’s terminating reward. Since learning is highly sen-
sitive to even small changes in the reward function [Packer et
al., 2018], this creates instability in learning πoi [Lu et al.,
2019]. DSC [Bagaria and Konidaris, 2020] mitigates this is-
sue by freezing Ioj after a fixed number of learning iterations,
which can lead to the agent being stuck with poor estimates
of Ioj that hinder reliable skill composition.

Nevertheless, an option’s subgoal region will unavoidably
change continually as its target option refines its initiation

Ant-Reacher Ant U-Maze Ant Four-Rooms Ant Large-Maze

Figure 3: Maze navigation problems used to test our algorithm. These tasks require that the agent simultaneously learn good gait policies that
stabilize the “ant” robot and navigate to a distant goal in the presence of unknown obstacles.

classifier. To be robust to changes in βo, we propose to make
each option policy more flexible: rather than a fixed policy
πo, each option learns a goal-conditioned policy πo(s|g) us-
ing hindsight experience replay (HER). By conditioning the
option policy πo on goals sampled from βo, and postponing
selecting g until option execution time, the agent learns a pol-
icy robust to non-stationarity in βo.

The goal-conditioned option policy strategy necessitates a
strategy for sampling subgoal states from βo. We propose
optimizing two objectives for choosing subgoal states: (a) ro-
bustness and (b) hierarchical optimality.

Selecting Subgoal States for Robustness. Each option
policy is rewarded for reaching its termination region; from
its own perspective, all states in its termination region are
equally rewarding. However, for a subsequent option o, some
start states are better than others. How can we pick a sub-
goal for one option so that we increase the probability that a
successive option execution will succeed?

One way is to evaluate the probability of every positive ex-
ample of o succeeding (by querying the probabilistic classi-
fier representing Io), but that becomes computationally very
expensive as the agent gathers experience. Instead, we use
the simple heuristic that, over time, the agent will learn to ex-
ecute the option from reliable start states, and simply sample
from the set of positive examples used to train Io.

Selecting Subgoal States for Hierarchical Optimality.
The method above results in feasible trajectories that are, at

best, recursively optimal [Barto and Mahadevan, 2003]. We
would prefer to pick subgoals for each option in the skill-
chain so that the overall solution trajectory is approximately
hierarchically optimal [Barto and Mahadevan, 2003].

To select such subgoals, we first store the states β̂o in
which each option o triggered βo. Then, we use dynamic
programming (DP) to distribute the value of reaching the
MDP’s goal g to all the β̂os along the skill chain. This re-
sults in a value table Q̃ : S × S → R that can be used
to pick a subgoal sg for the current option ot from state st:
sg = argmaxs∈βot

Q̃(st, s).
The quality of the resulting sub-goals depends on how well

β̂o approximates βo. If it is a perfect approximation, this DP
algorithm yields the hierarchically optimal solution; other-
wise, it yields a near-optimal solution. For more details about
the DP algorithm, including the pseudocode and a discussion
about the algorithm’s time-complexity, please refer to Section
1 of the Appendix.

3.3 Learning Robust Option Policies
Finally, we consider the third component of an option: its
policy. Given the number of components simultaneously be-
ing learned in hierarchical algorithms, policy learning must
be highly stable for the agent to succeed. Although model-
free methods are commonplace for learning option policies,
model-based methods are often more stable and sample-
efficient [Deisenroth and Rasmussen, 2011].

We therefore propose learning option policies using model-
based RL. We follow Nagabandi et al. [2018] to learn a dy-
namics model fξ : S × A → S . However, Equation 1 is
insufficient for good action-selection in sparse reward prob-
lems. As a result, we solve the following infinite-horizon op-
timization problem and then execute the first action [Lowrey
et al., 2019]:

π(s|g) = argmax
a∈U |A|

H∑
t=1

γt−1R(st, g) + γHVφ(sH |g). (2)

We follow the same procedure as the model-free variant of
our algorithm to learn the terminal value function Vφ.

4 Experiments
Our experiments aim to answer the following questions: 1)
do the proposed improvements increase the probability with
which a sequence of options can be successfully composed?
2) Does the subgoal selection algorithm approximate hierar-
chically optimal trajectories? 3) How does the proposed al-
gorithm compare to flat RL and other skill-discovery algo-
rithms?

To answer these questions, we use a test-bed compris-
ing four continuous-control maze-navigation tasks (shown in
Figure 3) involving an “ant” robot simulated using MuJoCo
[Todorov et al., 2012; Duan et al., 2016; Fu et al., 2020].

Sparse vs Dense Rewards. Dense reward functions, al-
though commonplace in RL, are often problematic because
they demand cumbersome engineering [Yu et al., 2020], can
lead to sub-optimal solutions [Ng et al., 1999] or reduce the
problem so much that simple search might outperform RL
[Mania et al., 2018]. Since hierarchies are a promising way
to address the challenges of sparse rewards, we evaluate all
algorithms in the sparse reward setting.

4.1 Implementation Details
We use TD3 [Fujimoto et al., 2018] and HER to learn goal-
conditioned value functions in all our experiments. Transi-

Figure 4: DSC trajectories (only the coordinates of the CoM are visualized) in Ant-Reacher when selecting subgoals (left) for robustness and
(middle) using our dynamic programming algorithm. (right) When using DP, the agent scores better average reward (averaged over 5 runs;
bars represent standard error; higher is better).

Figure 5: Comparing the robustness of skill chains discovered in the
Ant U-Maze domain. For a description of the “chain probability”
metric, please refer to Section 4.2. Vertical axis in log-scale; curves
are averaged over 5 runs; shaded regions denote standard error.

tions seen by all options were used to train a single dynamics
model fξ, critic Vφ, and actor πζ . Vφ and πζ were used for
selecting actions in the model-free case. Only Vφ from TD3
was used in the model-based case, where we approximately
solved Equation 2 for action-selection. For more details, see
Section 4 of the Appendix.

4.2 Evaluating Robustness
We first evaluate whether the proposed changes increase the
composability of discovered options, by measuring the ro-
bustness of skill-chains constructed in Ant U-Maze.

We measure the robustness of a sequence of options as the
probability that executing each option would take the agent to
a state from which it could successfully execute the next op-
tion (until it finally reaches the goal). We call this the chain-
ing probability:

pchain(o1, ..., oN) =
N∏
i=1

p(si ∼ βoi−1
∈ Ioi), (3)

where p(si ∼ βoi−1
∈ Ioi) represents the open-loop proba-

bility that the agent will be able to execute oi after executing

option oi−1. We approximate each probability term by the
empirical “success rate” of the option:

p(si ∼ βoi−1 ∈ Ioi) ≈
#successes(oi−1)

#executions(oi−1)
,

where #successes(oi−1) is the number of times option πoi−1

was able to reach βoi−1
.

We ablate our proposals by comparing the robustness of
the following versions of our algorithm:

1. Baseline DSC: The deep skill chaining algorithm from
Bagaria and Konidaris [2020] that we aim to improve.

2. Dual Classifiers: We add the dual classifier approach
from Section 3.1 to the baseline DSC.

3. MF-Robust-DSC: We add goal-conditioned policies to
(2); this is the model-free version of the algorithm from
Section 3.2.

4. MB-Robust-DSC: We add model-based policies to (3);
this is the version of the algorithm from Section 3.3.

Results. Figure 5 shows that each of our proposals succes-
sively increases the robustness of the discovered skill-chain.
The shape of the curves warrants discussion: as the agent dis-
covers new options, its chain probability, at first, decreases.
This is for two reasons: (a) more terms between 0 and 1 are
included in the product of Equation 3 and (b) when initial-
ized, option policies are not strong enough to reach their sub-
goals. Over time, two factors are responsible for the increas-
ing trend: (a) the agent has discovered as many options as it
needs to solve the problem, at which point no more terms are
added to the product and (b) each option’s policy improves.
Finally, the small absolute values on the vertical axis is due
to the metric being an open-loop probability—we report the
closed-loop success rate of the algorithm later in Section 4.4.

4.3 Evaluating Hierarchical Optimality
To compare the two subgoal selection strategies outlined in
section 3.2, we ran the model-based variant of our algorithm
on the Ant-Reacher domain. The goal state corresponds to the
center of mass (CoM) of the ant being at (0, 0); the starting

Figure 6: Average success rate in sparse-reward ant-navigation problems. Shaded regions denote standard error (averaged over 5 runs). The
black dashed line in the leftmost subplot is the success rate of the flat model-free baseline after 12, 000 episodes of training. In the middle
and rightmost subplots, the green line is hidden below the red one.

position of the ant is sampled uniformly from (−10, 10). The
learned initiation classifiers tended to lie in approximately
concentric circles around the goal state (visualized in Figure 1
of the Appendix). After both algorithm variants were trained
for 1000 episodes, they were evaluated on how many steps it
would take them to reach the goal when starting in the four
corners of the domain {(±9,±9)}.

Results. Robust subgoal selection often yielded subgoal
states on the “other side” of the goal—if the robot was on the
bottom-left of the domain, it could pick a subgoal closer to the
top-right. This led to the sub-optimal trajectories shown in
Figure 4a, where the ant would often over-shoot the goal. By
contrast, the dynamic programming procedure picked sub-
goal states that were always between the agent’s current state
and the overall goal—leading to much more sensible, and ap-
proximately hierarchically optimal, solution trajectories (Fig-
ure 4b). Figure 4c shows that the agent using our DP algo-
rithm for picking subgoals collected higher average rewards,
further suggesting smoother overall trajectories to the goal.

4.4 Learning Curves
Our final experiment compares the following algorithms on
ant U-maze, large-maze and four-rooms:

1. Flat model-free baseline: we used TD3+HER [Fujimoto
et al., 2018; Andrychowicz et al., 2017] as a flat model-
free baseline, since it is a state-of-the-art method for
continuous control (we used the same algorithm to learn
our model-free option policies).

2. Flat finite-horizon model-based baseline: we used the
model-based algorithm from Nagabandi et al. [2018] as
our flat model-based baseline (we used the same algo-
rithm to learn our model-based option policies).

3. Flat infinite-horizon model-based baseline: given that
our problems are sparse-reward, we augment the model-
based baseline with TD3, which is used to learn a value
function that informs action-selection (Equation 2).

4. Deep skill chaining (DSC): we used DSC as our HRL
baseline, because we extend DSC and it outperformed
other skill-discovery methods [Bagaria and Konidaris,
2020].

5. Model-Free DSC++ (ours): the model-free variant of
our algorithm described in Section 3.2.

6. Model-based DSC++ (ours): the model-based variant of
our algorithm described in Section 3.3.

We report the “average success rate” metric from
Andrychowicz et al. [2017]. Every 10 episodes, we ran
the algorithm from a fixed start state (0, 0), checking if it
could reach the goal within 1000 steps. Due to its simplicity,
we use the robust subgoal selection algorithm from Section
3.3 for rolling out our goal-conditioned option policies.

Results. Figure 6 shows the average success rate of com-
peting methods averaged over 5 random seeds. Both ver-
sions of the flat model-based baseline were unable to achieve
a > 0% success rate; so we leave them out of the learning
curves in Figure 6. Ant U-Maze was the only sparse-reward
problem that TD3 and the baseline DSC were able to achieve
a > 0% (but TD3 had to be trained for far more episodes).
The proposed algorithm (shown with blue and orange curves)
were easily able to outperform all baselines including DSC.

5 Conclusion
The success of skill discovery in goal-directed tasks de-
pends on learning options that can be sequentially composed.
However, robust composition is challenging because of non-
stationary subgoal regions. We proposed methods that ad-
dress all three components of option learning—initiation re-
gions, termination conditions, and option policies—to learn
reliably composable options. We experimentally showed that
our augmentations measurably improve the robustness of dis-
covered skills and eventually allow us to solve more challeng-
ing, long-horizon problems.

Acknowledgements
We thank Kshitij Sachan, Cam Allen, Sam Lobel, and
other members of the Brown BigAI group for their sugges-
tions. This research was supported by NSF grants 1955361,
1717569 and the DARPA Lifelong Learning Machines pro-
gram under grant FA8750-18-2-0117. This research was
conducted using computational resources and services at the
Center for Computation and Visualization, Brown University.

References
D Abel. A Theory of Abstraction in Reinforcement Learning.

PhD thesis, Brown University, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schnei-
der, Rachel Fong, Peter Welinder, Bob McGrew, Josh To-
bin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hind-
sight experience replay. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and
Michel L Littman. Combating the compounding-error
problem with a multi-step model. arXiv preprint
arXiv:1905.13320, 2019.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-
critic architecture. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

Akhil Bagaria and George Konidaris. Option discovery using
deep skill chaining. In International Conference on Learn-
ing Representations, 2020.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Co-
manici, Eser Aygün, Philippe Hamel, Daniel Toyama,
Shibl Mourad, David Silver, and Doina Precup. The option
keyboard: Combining skills in reinforcement learning. In
Advances in Neural Information Processing Systems, 2019.

Andrew G Barto and Sridhar Mahadevan. Recent advances
in hierarchical reinforcement learning. Discrete event dy-
namic systems, 2003.

Kate Baumli, David Warde-Farley, Steven Hansen, and
Volodymyr Mnih. Relative variational intrinsic control.
arXiv preprint arXiv:2012.07827, 2020.

Matthew M Botvinick, Yael Niv, and Andew G Barto. Hi-
erarchically organized behavior and its neural foundations:
a reinforcement learning perspective. Cognition, 113(3),
2009.

Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek.
Sequential composition of dynamically dexterous robot be-
haviors. The International Journal of Robotics Research,
1999.

Vı́ctor Campos Camúñez, Alex Trott, Caiming Xiong,
Richard Socher, Xavier Giró Nieto, and Jordi Tor-
res Viñals. Explore, discover and learn: unsupervised dis-
covery of state-covering skills. In International Conference
on Machine Learning, 2020.

Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine learning, 1995.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-
based and data-efficient approach to policy search. In In-
ternational Conference on Machine Learning, 2011.

Thomas G Dietterich. Hierarchical reinforcement learning
with the MAXQ value function decomposition. JAIR,
2000.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and
Pieter Abbeel. Benchmarking deep reinforcement learn-
ing for continuous control. In International Conference on
Machine Learning, 2016.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and
Sergey Levine. Diversity is all you need: Learning skills
without a reward function. In International Conference on
Learning Representations, 2019.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John
Schulman. Meta learning shared hierarchies. In Interna-
tional Conference on Learning Representations, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and
Sergey Levine. D4RL: Datasets for deep data-driven re-
inforcement learning. arXiv preprint arXiv:2004.07219,
2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning, 2018.

Carlos E Garcia, David M Prett, and Manfred Morari. Model
predictive control: theory and practice—a survey. Auto-
matica, 25(3):335–348, 1989.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra.
Variational intrinsic control. ArXiv, abs/1611.07507, 2016.

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas
Heess, Remi Munos, and Doina Precup. The termination
critic. In The 22nd International Conference on Artificial
Intelligence and Statistics, 2019.

Arushi Jain, Khimya Khetarpal, and Doina Precup. Safe
option-critic: learning safety in the option-critic architec-
ture. The Knowledge Engineering Review, 36, 2021.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris.
Discovering options for exploration by minimizing cover
time. In International Conference on Machine Learning,
2019.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Learning
composable models of parameterized skills. In IEEE Inter-
national Conference on Robotics and Automation, 2017.

Leslie Pack Kaelbling. Learning to achieve goals. In Inter-
national Joint Conference on Artificial Intelligence, 1993.

Khimya Khetarpal and Doina Precup. Learning options with
interest functions. In AAAI, 2019.

George Konidaris and Andrew Barto. Building portable op-
tions: Skill transfer in reinforcement learning. In Interna-
tional Joint Conference on Artificial Intelligence, 2007.

George Konidaris and Andrew Barto. Skill discovery in con-
tinuous reinforcement learning domains using skill chain-
ing. Advances in Neural Information Processing Systems,
22, 2009.

George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Perez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. JAIR,
2018.

Andrew Levy, George Konidaris, Robert Platt, and Kate
Saenko. Hierarchical reinforcement learning with hind-
sight. In International Conference on Learning Represen-
tations, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. arXiv preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Reinforcement learning for robots using neural
networks. Technical report, Carnegie-Mellon Univ Pitts-
burgh PA School of Computer Science, 1993.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade,
Emanuel Todorov, and Igor Mordatch. Plan online, learn
offline: Efficient learning and exploration via model-based
control. In International Conference on Learning Repre-
sentations, 2019.

Tomas Lozano-Perez, Matthew T Mason, and Russell H
Taylor. Automatic synthesis of fine-motion strategies for
robots. The International Journal of Robotics Research,
1984.

Kevin Lu, Igor Mordatch, and Pieter Abbeel. Adaptive on-
line planning for continual lifelong learning. arXiv preprint
arXiv:1912.01188, 2019.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mor-
datch. Reset-free lifelong learning with skill-space plan-
ning. In International Conference on Learning Represen-
tations, 2021.

Aleksandr Mikhailovich Lyapunov. The general problem of
the stability of motion. International journal of control,
1992.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple ran-
dom search of static linear policies is competitive for re-
inforcement learning. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Sys-
tems, pages 1805–1814, 2018.

Daniel Mankowitz, Timothy Mann, Pierre-Luc Bacon, Doina
Precup, and Shie Mannor. Learning robust options. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement
learning. Nature, 2015.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and
Sergey Levine. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning.
In IEEE International Conference on Robotics and Au-
tomation, 2018.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy
invariance under reward transformations: Theory and ap-
plication to reward shaping. In International Conference
on Machine Learning, volume 99, 1999.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp
Krähenbühl, Vladlen Koltun, and Dawn Song. As-
sessing generalization in deep reinforcement learning.
arXiv preprint arXiv:1810.12282, 2018.

Ahmed H Qureshi, Jacob J Johnson, Yuzhe Qin, Taylor Hen-
derson, Byron Boots, and Michael C Yip. Composing task-
agnostic policies with deep reinforcement learning. Inter-
national Conference on Learning Representations, 2020.

Jette Randløv, Andrew G Barto, and Michael T Rosenstein.
Combining reinforcement learning with a local control al-
gorithm. In International Conference on Machine Learn-
ing, 2000.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver.
Universal value function approximators. In International
Conference on Machine Learning, 2015.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar,
and Karol Hausman. Dynamics-aware unsupervised dis-
covery of skills. In International Conference on Learning
Representations, 2020.

Farzaneh Shoeleh and Masoud Asadpour. Graph based skill
acquisition and transfer learning for continuous reinforce-
ment learning domains. Pattern Recognition Letters, 2017.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral
Kumar, and Sergey Levine. COG: Connecting new skills
to past experience with offline reinforcement learning. In
Conference on Robot Learning, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learn-
ing: An introduction. MIT press, 2018.

R.S. Sutton, , D. Precup, and S. Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in re-
inforcement learning. Artificial Intelligence, 1999.

David MJ Tax and Robert PW Duin. Support vector domain
description. Pattern recognition letters, 1999.

Russ Tedrake. LQR-trees: Feedback motion planning on
sparse randomized trees. 2009.

Saket Tiwari and Philip S Thomas. Natural option critic. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, 2012.

Christopher JCH Watkins and Peter Dayan. Q-learning. Ma-
chine learning, 1992.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning. In Conference on Robot
Learning, 2020.

Appendix: Robustly Learning Composable Options
in Deep Reinforcement Learning

Akhil Bagaria∗ , Jason Senthil∗ , Matthew Slivinski and George Konidaris
Department of Computer Science, Brown University

{akhil bagaria, jason senthil, matthew slivinski}@brown.edu, gdk@cs.brown.edu

1 Picking Hierarchically Optimal Subgoals
In this section, we provide more details about the algorithm
discussed in Section 3.2 of the main paper. Specifically, we
pick (approximately) hierarchically optimal subgoal states for
each option in the chain using a dynamic programming algo-
rithm. By approximately “hierarchically optimal”, we mean
that the resulting trajectory approximates the optimal solution
to the overall problem, given acquired options [Barto and Ma-
hadevan, 2003].

Algorithm 1 Subgoal selection algorithm

1: procedure CREATE-VALUE-TABLE(o1, o2, ..., oN)
2: for oi ∈ (o1, ..., oN) do . Start from the goal-option
3: update-option-values(oi)
4: end for
5: end procedure
6: procedure UPDATE-OPTION-VALUES(o)
7: for s ∈ Io do . Samples from initiation set
8: for s′ ∈ Eo do . Samples from termination set
9: if o is not the goal-option then

10: p = o.parent
11: Q̃(s, s′) = Vo(s|s′) + γ max

s′′∈Ep
Q̃(s′, s′′)

12: else
13: Q̃(s, s′) = R(s, s′)
14: end if
15: end for
16: end for
17: end procedure
18: procedure PICK-SUBGOAL(st, ot)
19: if ot is the goal-option then
20: returnM.goal-state
21: end if
22: p = o.parent
23: return arg maxs∈Ip Q̃(st, s)
24: end procedure

The algorithm operates on pairs of input, output states for
each option o. The input states are states inside Io and the
output states Eo are the subset of samples from the option’s
termination set that still satisfy its parent option’s pessimistic

∗Equal contribution

classifier (i.e, they are samples from the option’s current ter-
mination region).

Algorithm Description. The goal state of the first option
in the chain (the “goal-option”) is known—it is the goal state
g of the MDPM. As a result, the values of all the states in Io,
when o is the goal-option is the terminal reward correspond-
ing to reaching g (line 13 of Algorithm 1). Next, we examine
the input-output states of the next option—the one that targets
the “goal-option”. Each pair of input-output states is assigned
a value based on that option’s value-function—bootstrapped
by the parent option’s value (line 11 of Algorithm 1). This
process is recursively continued until the input-output states
of each option in the chain have been assigned a value in
the table Q̃. The create-value-table() procedure is
called at the end of every episode.

Time complexity. Given that the agent has K options, and
the option owith the most states in its effect set has |Eo| = N ,
then the big-o complexity of this algorithm is O(K ×N2).

Once the value table Q̃ is constructed, the agent first picks
the option to execute: ot = πO(st). Then, it queries the value
table Q̃ to find the next subgoal state from the current state-
option pair (st, ot):

sg = arg max
s∈Eot

Q̃(st, s).

2 Full Algorithm Pseudo-Code
Algorithms 2 and 3 outline the pseudo-code of our method.

3 Initiation Set classifiers
In this section, we provide more details about how the initia-
tion classifiers are trained and utilized. Then, we will present
some qualitative comparison with the classifiers learned by
the baseline DSC algorithm.

Training Initiation Classifiers. We represent each op-
tion’s initiation region using an optimistic classifier and a pes-
simistic classifier. We parameterized the optimistic classifier
using a two-class SVM θ1 which was trained using positive
X+ (states from which option execution was successful) and
negative X− (states from which option execution failed) ex-
amples. We then pass X+ through θ1 and the subset of it
which is still predicted as positive, X++, is used to train the
one-class SVM θ2. This leads to a tight pessimistic classifier

Episode 10 Episode 100 Episode 1000

Figure 1: Initiation regions learned for the option that drives the agent to the goal state (visualized as a star in the center of each plot) in
Ant-Reacher. The horizontal and vertical axes represent the x, y positions of the ant’s CoM. The top row visualizes the classifiers learned
by the baseline DSC algorithm; the bottom row corresponds to the Robust DSC algorithm. In the bottom row, the optimistic classifier is
visualized in dark red, the pessimistic classifier as the black contour lines. The Robust DSC agent learns a bigger initiation region, which
implies larger goal regions for successive options, thereby making their policy learning process easier.

Algorithm 2 Robust DSC Rollout

1: procedure ROLLOUT(Skill ChainO, Option HorizonH)
2: Initialize empty trajectory buffer B
3: for each timestep t do
4: Select option o using policy over options πO(st)
5: Sample a goal for selected option: g ∼ βo
6: Execute option policy πo(: |g) in the environment
7: Add trajectory τ =

⋃H−1
i=0 (si, o, ai, si+1, g) to B

8: if final state sH reached goal g then
9: Add τ to o’s list of positive examples

10: else
11: Add τ to o’s list of negative examples
12: end if
13: Refit option o’s initiation classifier
14: Add τ to o’s replay buffer and update πo
15: end for
16: return B =

⋃
t (st, ot, at, st+1, gt)

17: end procedure

around the states from which we are highly confident about
executing that option.

Both types of SVMs were trained using an RBF kernel
[Scholkopf et al., 1997]. We used the ThunderSVM software
package [Wen et al., 2018] to implement the initiation clas-
sifiers. Following related work [Levy et al., 2019; Bagaria
and Konidaris, 2020; Eysenbach et al., 2019; Sharma et al.,
2020], the classifiers were trained on the subset of the state
(ant position) that matters to the reward function.

Querying Initiation Classifiers. If option o2 targets op-
tion o1, a state s is in βo2 if s is inside o1’s pessimistic clas-
sifier. To make the optimistic classifier larger than the pes-
simistic one, option o1 can be executed if s is inside either
classifier’s positive region.

Algorithm 3 Robust DSC Algorithm

1: procedure ROBUST-DSC(Start state s0, Goal region g)
2: Initialize global option oG such that IoG(:) = 1
3: Initialize goal option og such that βog = g
4: Initialize skill chain O with {og}
5: for each episode do
6: transitions = ROLLOUT(O, H)
7: if s0 /∈ Io, ∀o ∈ O then
8: Create new option ω
9: Add ω to skill chain O

10: end if
11: end for
12: end procedure

Qualitative Evaluation of Learned Classifiers. We now
qualitatively evaluate whether our proposed changes can dis-
cover better initiation regions than baseline DSC. We com-
pare the two algorithms in the Ant-Reacher domain where
the ant has to navigate to the center of 20× 20 arena. We will
visualize the initiation classifier for the “goal option”, which
is the option that targets the MDP’s goal state (shown with a
star in figure 1).

Figure 1 shows the initiation classifiers learned by the base-
line DSC algorithm (top) and the Robust DSC algorithm (bot-
tom). As is visually clear, the baseline algorithm discovers an
overly conservative initiation classifier which shrinks over-
time; implying a smaller goal region for a successive option
that would target it. By contrast, using the new algorithm, the
optimistic classifier (shown as the red region in the bottom
row) shrinks and the pessimistic classifier (shown with black
contours) expands until the two converge on a intuitively rea-
sonable estimate of the option’s initiation region.

Figure 2: Learning curves comparing two versions of the model-free
variant of our algorithm in Ant U-Maze. In one, every option distills
its experiences into the same value function (blue); in the other, each
option learns a separate, independent value function (orange).

4 Policy learning implementation details
Each option o’s reward function Ro gives a reward of 0 for
reaching its subgoal and −1 otherwise: Ro(s, g ∈ βo) =
R(s, g). We then use an off-the-shelf actor-critic algorithm,
TD3 [Fujimoto et al., 2018] and HER [Andrychowicz et al.,
2017] for policy learning. In the model-based setting, we
found that using TD3 with output normalization [Agarwal et
al., 2020] was more stable than a vanilla TD3, where the data
collected for learning Vφ is “more off-policy” [Levine et al.,
2020].

Learning a single value function. Usually each option
has to learn a different value function that is tied to its
own subgoal region. However, due to goal-conditioning,
we can now re-use the same value function to pick ac-
tions for different options. Each option conditions the value
function on goal states drawn from its own subgoal region,
and then picks an action accordingly: πo(s|g ∼ βo) =
arg maxa∈AQφ(s, a|g). We hypothesize that learning a sin-
gle value function would be better because it distills data
collected by all options into a single function [Rusu et al.,
2015], precluding the need to re-learn similar representations
over and over. We ablate this design decision of using a sin-
gle value function rather than having a separate one for each
option—the results are presented in Figure 2. This parame-
terization of options suggests connections between HRL and
curriculum learning [Narvekar et al., 2020].

4.1 Deep Model-based RL
We adopt the approach from Nagabandi et al. [2018] for
our learned dynamics model. We parameterize our learned
dynamics function fξ(st, at) as a feedforward deep neural
network which take as input the current state st and action
at, and predicts the change in state st over the time step
duration of ∆t. Thus the next state ŝt+1 is predicted by
ŝt+1 = st + fξ(st, at).

Learning the Dynamics Model
The neural network architecture for our dynamics model
has two hidden layers, each with dimension 500, with
LeakyReLU activations. We train this model using the Adam
optimizer with learning rate 0.001 and batch size 1024. Again
following Nagabandi et al. [2018], our model-based experi-
ments begin with 50 episodes of random rollouts from (0, 0).
This data is used to train the first iteration of the dynamics
model fξ, which is later fine-tuned during RL. After the first
iteration of training, we fit fξ at the end of every episode. Un-
like Nagabandi et al. [2018], we do not add noise to the state
during training or inference.

Model-Predictive Control
We utilize our dynamics model by using model predictive
control. We follow Nagabandi et al. [2018] identically here.
We use a random-shooting method in which M action se-
quences of length K are randomly generated from the uni-
form random distribution U(−1, 1)—the first action in the
cost minimizing sequence is executed in the environment. In
all of our experiments, M = 14, 000 and K = 7.

5 Hyperparameter Settings
For TD3, we use the hyperparameters exactly as in Fujimoto
et al. [2018], except for the learning rate value in both actor
and critic networks. We found that a lower learning rate was
helpful for stabilizing value function learning. The hyperpa-
rameters related to TD3 are listed in Tables 1 and 2; those
related to training fξ are in Table 3. Finally, the option spe-
cific hyperparameters are listed in Table 4.

Parameter Value
Replay buffer size 1e6
Critic Learning rate 10−5

Actor Learning rate 10−5

Optimizer Adam
Target Update Rate τ 5 · 10−3

Batch size 100
Iterations per time step 1
Discount Factor 0.99
Output Normalization True

Table 1: TD3 Hyperparameters for Model-based DSC++

6 Number of Skills over Time
The skill-chaining algorithm creates as many options as it
needs to reliably solve a goal-directed task. As a result, it
creates more options to solve harder tasks than easier ones.
Figure 3 shows how the number of skills change over time
for different configurations of the DSC algorithm. Baseline
DSC requires significantly more options to solve the same
problem with the same reliability as the DSC++ algorithm.
In addition to the results presented in Figure 4 of the main
paper, this suggests that our proposals improve the reliability
of the skill-chain.

Parameter Value
Replay buffer size 1e6
Critic Learning rate 3 · 10−4

Actor Learning rate 3 · 10−4

Optimizer Adam
Target Update Rate τ 5 · 10−3

Batch size 100
Iterations per time step 1
Discount Factor 0.99
Output Normalization False

Table 2: TD3 Hyperparameters for Model-free DSC++

Parameter Value
Batch size 1024
Optimizer Adam
Controller horizon H 7
Number actions sampled K 14000

Table 3: Hyperparameters for learning dynamics model fξ

7 Compute Infrastructure
All experiments in this paper were run on the Brown Uni-
versity CCV compute cluster which included 8 NVIDIA
QuadroRTX GPUs and 16 Intel Skylake CPUs. Running
our experiments requires only 1 GPU at a time, the multiple
GPUs were used to run the same code with different random
seeds in parallel.

References
Rishabh Agarwal, Dale Schuurmans, and Mohammad

Norouzi. An optimistic perspective on offline reinforce-
ment learning. In International Conference on Machine
Learning, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schnei-
der, Rachel Fong, Peter Welinder, Bob McGrew, Josh To-
bin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hind-
sight experience replay. In Advances in Neural Information
Processing Systems, 2017.

Akhil Bagaria and George Konidaris. Option discovery using
deep skill chaining. In ICLR, 2020.

Andrew G Barto and Sridhar Mahadevan. Recent advances
in hierarchical reinforcement learning. Discrete event dy-
namic systems, 13(1-2):41–77, 2003.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and

Parameter U-Maze Large Maze Four Rooms
Gestation Period 5 5 10
Option Timeout 200 200 200
Buffer Length 50 50 50

Table 4: Skill Chaining Hyperparameters

Figure 3: Number of discovered skills over time on Ant U-Maze.

Sergey Levine. Diversity is all you need: Learning skills
without a reward function. In ICLR, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing
function approximation error in actor-critic methods. In In-
ternational Conference on Machine Learning, pages 1582–
1591, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

Andrew Levy, George Konidaris, Robert Platt, and Kate
Saenko. Hierarchical reinforcement learning with hind-
sight. In International Conference on Learning Represen-
tations, 2019.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and
Sergey Levine. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning.
In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 7559–7566. IEEE, 2018.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov,
Matthew E Taylor, and Peter Stone. Curriculum learning
for reinforcement learning domains: A framework and sur-
vey. Journal of Machine Learning Research, 21(181):1–
50, 2020.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gul-
cehre, Guillaume Desjardins, James Kirkpatrick, Raz-
van Pascanu, Volodymyr Mnih, Koray Kavukcuoglu,
and Raia Hadsell. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges,
Federico Girosi, Partha Niyogi, Tomaso Poggio, and
Vladimir Vapnik. Comparing support vector machines
with gaussian kernels to radial basis function classifiers.
IEEE transactions on Signal Processing, 45(11):2758–
2765, 1997.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar,
and Karol Hausman. Dynamics-aware unsupervised dis-

covery of skills. In International Conference on Learning
Representations (ICLR), 2020.

Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian
Chen. ThunderSVM: A fast SVM library on GPUs and
CPUs. Journal of Machine Learning Research, 19:797–
801, 2018.

