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Twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (h-BN) substrate can exhibit an
anomalous Hall effect at 3/4 filling due to the spontaneous valley polarization in valley resolved moiré bands
with opposite Chern number [Science 367, 900 (2020); 365, 605 (2019)]. It was observed that a small DC
current is able to switch the valley polarization and reverse the sign of the Hall conductance [Science 367,
900 (2020); 365, 605 (2019)]. Here, we discuss the mechanism of the current switching of valley polarization
near the transition temperature, where bulk dissipative transport dominates. We show that for a sample with
rotational symmetry breaking, a DC current may generate an electron density difference between the two valleys
(valley density difference). The current induced valley density difference in turn induces a first-order transition
in the valley polarization. We emphasize that the intervalley scattering plays a central role since it is the channel
for exchanging electrons between the two valleys. We further estimate the valley density difference in the
TBG/h-BN system with a microscopic model and find a significant enhancement of the effect in the magic

angle regime.
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I. INTRODUCTION

Spontaneous ferromagnetism in a purely itinerant electron
gas without local moments is an old theoretical idea first imag-
ined by Stoner in the 1930s [1]. Realizations of this ideal have
not been easy to find. The clearest and best studied example
is probably quantum Hall ferromagnetism [2,3], where the
Stoner instability is enable by the flatness of Landau levels
induced by an orbital magnetic field. Quantum Hall ferromag-
netism is, however, not ultimately true ferromagnetism insofar
as time-reversal symmetry is from the outset strongly and
explicitly broken by a large applied magnetic field. Recently,
purely itinerant ferromagnetism has been observed in zero
magnetic field in twisted bilayer graphene (TBG), adding to
the host of exotic phenomena in this system when twisted
near the “magic angle” at which the moiré bands becomes
exceptionally flat [4-34]. The most dramatic signatures of
itinerant ferromagnetism occur in TBG samples aligned to
an hexagonal-Boron Nitride (h-BN) substrate at 3/4 filling
[4,5]. Here the ferromagnetism observed below the Curie
temperature of 5-8 K is observed via an anomalous Hall effect
(AHE)—a zero field hysteretic Hall resistivity—that evolves
into a quantized value of p,, = h/e* at low temperature: a
quantum anomalous Hall effect (QAHE). The existence of
the QAHE, which has been discussed extensively theoretically
[10,35,36], is related to two aspects of TBG. First, graphene
itself has incipient valley Chern number associated to its
Dirac points, which is created even in a single layer by an
infinitesimal perturbation breaking inversion or C, rotation or
time-reversal 7  symmetries. In TBG, this extends to bands
formed from both layers, and with h-BN to break the C,7,
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and the four active moiré bands acquire unit Chern number
with sign that is opposite for conduction and valence bands
and opposite for each valley. The second necessary aspect
for (Q)AHE in TBG is symmetry breaking. An AHE then
is observed when the difference of occupation of the two
valleys—the valley polarization ®,—becomes nonzero. This
signifies spontaneous breaking of 7 symmetry and defines
ferromagnetism. The presence of QAHE implies that at low
temperature both spin and valley symmetries are broken and
both are fully polarized. Note that for the AHE at temperatures
close to the Curie point, the valley polarization ®, is the
order parameter and spin symmetry breaking is not essential.
The sign of the Hall conductivity is determined by the valley
polarization, so that tuning the latter controls the former.

Interestingly, in experiment, the sign of the Hall conduc-
tance can be controlled by either an external magnetic field
or a bias electric field/current [4,5]. Similar hysteresis curves
were observed on sweeping either the magnetic field or the
DC current, indicating an apparent first-order transition in the
valley polarization, similar to the way in which the magnetic
field affects the magnetization in the Ising model.

The sensitive magnetic field control of the valley polariza-
tion and thus the Hall conductance has been well explained by
linear free energy dependence associated to the giant orbital
magnetic moment of the moiré Bloch electrons [4,5,37,38],
which is closely related to the large Berry curvature of the
valley Chern bands. The mechanism for current switching
of the Hall conductance remains less clear. Several propos-
als have been made for this mechanism at low temperature
[5,39,40]. Here, we focus on higher temperatures near but
below the Curie point. In experiment, the sign of the Hall
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conductance remains sensitive to the DC current in this
regime, where indeed experiments are significantly easier and
more reproducible, due to weakness of hysteresis. At these
temperatures, the bulk is dissipative o, # 0 and oy, is not
quantized, and indeed the Hall angle 0y ~ oy, /0. < 1 is
small.

In this highly conducting situation, it may be tempting
to make analogies to current switching of common metallic
ferromagnets, where it is usually ascribed to “spin torque.”
However, some important differences are evident. First, in
TBG, the magnetization itself is primarily orbital, and indeed
we do not expect significant spin polarization near the Curie
point. Second, a related point is that normal ferromagnets have
an approximate spin-rotation symmetry (arising from weak
spin-orbit coupling) and the ferromagnetism is described by
a vector order parameter with weak anisotropies; in contrast,
in TBG the valley polarization is Ising-like and not a vec-
tor. The Ising symmetry that changes the sign of the valley
polarization is just 7. Finally, in clean TBG, there is to an
excellent approximation a valley conservation symmetry. This
is not the symmetry spontaneously broken by the AHE, but
rather it implies that the valley polarization order parameter is
approximately conserved.

In this paper, we report a mechanism that takes these
features into account and leads to the control of valley
polarization by a DC current. As a consequence of the qua-
siconservation of the order parameter, in this mechanism,
intervalley scattering plays a central role. We first study the
dynamics of the valley polarization order parameter (VPOP)
near the Curie temperature 7, by obtaining its equation of
motion (EoM). The EoM shows that any mechanism which
can generate an electron density difference between the two
valleys in the noninteracting model can induce a first-order
transition of the VPOP. By solving the semiclassical Boltz-
mann equation, we show that the valley density difference can
be generated by a DC current with intervalley scattering that
breaks the rotational symmetry to C;,. We find that the valley
density difference is proportional to the current density, the
inverse of the Fermi velocity and the strength of the rotational
symmetry breaking. We make a specific estimate for the mag-
nitude of the effect for TBG aligned with h-BN (denoted as
TBG/h-BN system hereafter) and demonstrate two sources of
enhancement in comparison with the single layer graphene.
First, we show an enhancement of the effective strain from
€ in single layer graphene to €/6,, in TBG with twist angle
0,. Second, near the magic twist angle, the Fermi velocity is
significantly reduced from 10° m/s to around 10*-~103 m/s.
Combining the two effects, the enhancement of the current
induced valley density difference is on the order of 10°. Thus
the valley polarization is very sensitive to the applied DC
current.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model, discuss the dynamics and steady
state solution of the valley polarization order parameter, and
demonstrate how the it can be controlled by a DC cur-
rent qualitatively. To obtain this relation quantitatively, in
Sec. III, we present the Boltzmann equation and estimate
the intervalley scattering rate for the TBG/h-BN system. The
technical details are postponed to the Appendix. Appendix A
derives the dynamics of VPOP within the Keldysh formalism.

FIG. 1. Schematic of model with two valleys, with a Stoner-type
interaction. The two valleys are time reversal related, so that they
carry opposite Chern numbers.

Appendix B presents the details of the modeling of the
TBG/h-BN system.

II. VALLEY POLARIZATION

In this section, we discuss the dynamics of the valley
polarization order parameter. We employ the nonequilibrium
Keldysh approach [41], and obtain the equation of motion
(EoM) for the valley polarization order parameter (VPOP)
due to the interplay between the interaction and the external
current. This construction demonstrates the relation between
the current (or magnetic field) induced polarization of nonin-
teracting electrons Ang and the true polarization (the VPOP)
®,, including interactions.

A. The model

In this paper, we consider a model with 2 copies of Chern
insulators labeled as s = %, Fig. 1, with the following free
fermion Hamiltonian:

Ho =Y ¥ "HO Gy, (1

s=%

The two copies of Chern insulators are further assumed
to be related by the time reversal symmetry 7, such that
TH®E)T ' = HF(—k). With the restriction from the
time reversal symmetry, the two conduction bands (as well as
the valence bands) carry opposite Chern number, Fig. 1. This
model may be considered as a low energy effective model
for the TBG/h-BN system [13], when only the two active
moiré bands (in sublattice space) in each valley are included,
and each copy of a Chern insulator corresponds to a valley.
Thus the two copies of Chern insulators are referred to as two
valleys in the rest of the paper.

To model the interaction induced valley polarization, we
restrict the interaction to the intervalley density-density chan-
nel only:

Hu =U / dxn ) e ), @
where U is the interaction strength that we approximate as a

constant, and n®) is the electron density of the + valleys. This
is a caricature of the intervalley component of the Coulomb
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interaction. The inclusion of weak intravalley interaction does
not change the essential features reported in the rest of the
article, even though certain nonuniversal quantities such as
T. may be altered. In addition, the long range Coulomb in-
teraction is neglected. This is because the valley polarization
order parameter is charge neutral and there is no long range
force between separated domains. Thus we expect that the
precise form of the interaction is not important, so long as
the symmetries of the problem (time-reversal and valley con-
servation) are respected, as we will be primarily interested in
low energy quantities in the vicinity of the Curie point. At
strong interaction U > U,, the valley polarization develops
spontaneously at low temperature. The critical interaction U,
can be estimated to be the inverse of the density of states at
Fermi level according to the Stoner criteria, i.e., U, ~ p~!
[42].

Note that the spin degrees of freedom are ignored in our
study. As discussed in the Introduction, the AHE requires only
valley and not spin polarization. Furthermore, in the vicinity
of the Curie point, there is unlikely to be substantial spin
polarization, since with SU(2) spin symmetry the Mermin-
Wagner theorem [43] prohibits any 7 > O order, and SU(2)
spin symmetry is broken extremely weakly by tiny spin-orbit
and dipolar effects.

B. Steady state solution of the valley polarization
order parameter

We now obtain the EoM of the VPOP using the nonequi-
librium Keldysh approach. Details of the derivations are given
in Appendix A. It is essential to introduce a proper scattering
mechanism in order to establish a steady state subject to an
electric field. We consider short ranged disorder described
by an impurity potential VI™P(x), which induces both intra-
and intervalley scattering [see Eq. (A10)]. Such short ranged
impurities may result from vacancy disorder [44].

Near the transition temperature (7" ~ T;), the EoM can be
expressed as an expansion in powers of the VPOP ®,. It takes
the form

(@, )Py + s ® + Ang =0, 3)

which should be regarded as somewhat symbolic, with the
time and space dependence expressed in the first term in
Fourier space, while the second and third terms may be con-
sidered approximately local. To the leading order in |T — T|
and external bias electric field, quadratic terms ~o3 CI>$ can
be ignored (they vanish in equilibrium without any symmetry
breaking field). In the static limit for the homogeneous order
parameter, i.e., @ = 0 and then ¢ — 0, this reduces to the
standard expression that mimics the first-order Ising phase
transition in an external field, i.e.,

(r —ro)®y — s @ = Ang, 4)

where Ang is the valley density difference that would be
induced by the bias electric field in the absence of interactions
(and hence is smooth near T, because the transition is in-
duced by interactions). The quantity (r — r.) = —a»(0, 0) ~
(T/T. — 1) [42] changes sign across the equilibrium tran-
sition. The cubic coefficient —ay ~ |v”(ef)|U? is positive

An(]/nc

FIG. 2. Hysteresis curve for valley polarization ®, upon tuning
the valley density difference Any at T < T.. The coercive valley

. . —reN3/2
density difference is n, = —2a4( ’3a: ).

definite, corresponding to a bounded equilibrium free energy,
and ensures the stability of the state across the transition.

By construction, the VPOP describes the expectation value
of the valley density difference, ®, = ((n‘") — (n(7))) (see
Appendix A). Keep in mind that Ang is valley density dif-
ference induced by the external bias field alone without
interactions, while the VPOP @, describes the valley density
difference with both the external bias field and interactions
taken into account.

Without the bias electric field, Ang = 0, Eq. (4) describes
spontaneous Z, symmetry breaking in equilibrium when 7' <
T. [(r —r.) < 0], with &, =+ /|<’;—4’C> |. Nonzero Ang ex-
plicitly breaks the Z, symmetry, and selects the + or — VPOP,
when Any is positive or negative, respectively. By tuning Any,
one recovers the hysteresis curve, Fig. 2. The coercive valley
density difference is given by n, = —2054(%:[' )3/ 2,

To address how the external bias electric field controls the
valley polarization, we discuss below how Any depends upon
the bias electric field E, or equivalently the current density j.
Importantly, breaking lattice rotational symmetry is necessary
to generate any valley density difference by the current j. This
is because the bias electric field and current, E and j, are
vectors in 2D. To make a nonzero scalar, Ang, another vector
is needed. This means that there is a particular direction in
the sample. Thus the (discrete) rotational symmetry has to be
broken.

Moreover, by dimensional analysis, one can easily show
that the valley density difference generated by an applied DC
current should be given by

o= g 2= L, 5)

€eVfr eVF €eVF
which is proportianl to the current density in 2D, j = (jy, jy),
and inverse of the Fermi velocity vg. The dimensionless
parameters, a(b) or §., are related to the broken rotational
symmetry. They are also highly dependent on the microscopic
details of the system, which we do not attempt to address in
depth in this article.

Following the general discussion above, one may qualita-
tively argue that in the TBG/h-NB system, the valley density
difference generated by a DC current can be quite significant
for two reasons. First, the small Fermi velocity of the flat
bands near the magic angle increases Ang by a factor on
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FIG. 3. (a) Brillouin zone (BZ) of single layer graphene with
uniaxial strain; (b) moiré Brillouin zone without (left) and with
(right) uniaxial strain. The C;, symmetry of the unstrained moiré BZ
is explicitly broken by the strain field.

the order of 102-103. Second, the smallness of the moiré
Brillouin zone enhances the proportional effect of strain, as
follows. Strain results in anisotropy in the electronic spectrum,
reflected in a shift of the location of the Dirac point, §K, di-
rectional dependence of the Dirac velocity, §vp, etc. For single
layer graphene, the anisotropy can be characterized by a small
parameter, for example the strain strength, € ~ % 57}’;3 , see
Fig. 3(a). For strained TBG, as in Fig. 3(b), the shift of the
Dirac points should be compared with the size of the moiré
BZ. Thus the broken C3, symmetry is actually characterized

J

015 400 - 0,10 4 eE - 0[O = Z/dr we (s

The measure in the collision integral is defined as dI"" =

(2 )2 Both the intravalley scatterlng, WS and WS

the intervalley ones, W and W), are included. TRS requires that Wk(,j P = Wk(,

r(+-)
Wew

FIG. 4. Impurity scattering between two Fermi pockets.

b 0i K] " where 6,,, q = |K|6,, are the small twist angle

and distance between the adjacent Dirac points of the two
graphene layers due to the twist. Hence, there is an enhance-
ment of a factor of 1/6,, due to moiré physics. These two
effects enhance the dimensionless parameters . in Eq. (5),
which are thus not necessarily small, and the effect may be
quite significant.

III. CURRENT INDUCED VALLEY DENSITY DIFFERENCE

In this section, we employ the semiclassical Boltzmann
equation to demonstrate how a DC current may induce a
valley density difference Angy for models without rotational
symmetry, and estimate the dimensionless coefficient . for
TBG aligned with h-BN.

A. Toy model and the semiclassical formalism

In this section, we demonstrate the effect of intervalley
scattering on the current induced valley density difference
Any by solving the semiclassical Boltzmann equation (SBE).
We simplify the Fermi surface at each valley as a circular
Fermi pocket as shown in Fig. 4 and will argue later that
this simplification does not change the result qualitatively.
The calculation is carried out in the absence of interactions,
i.e., in the paramagnetic phase, so that time reversal symme-
try is present, which imposes €*(k) = €*(—k) and v*(k) =
—v¥(—k), where s = &£ is the valley index with s # 5. No
other point group symmetries are assumed.

The SBE within the presence of a bias electric field E is
given by [41,45]

U= = )) = B + Dl ©)

o w0 as well as
and Wk(k,’L) Wk(,:_). Here, we assume

detailed balance, which follows from the first Born approximation.
We look for a static solution of the SBE, Eq. (6), within linear response. The distribution function can be conveniently

parameterized by harmonic coefficients:

fo

(s) (?)
+
k f a

3 fo 9 /o
+ Z x(*) cos nby a—f + Z y(*) sin néy ai 7

n=1
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where f; is the equilibrium Fermi distribution function, the
angle 6y is defined for each valley as shown in Fig. 4. The har-
monic coefficients, x,(f) and yff), are proportional to E within
linear response. The valley density difference is determined
by

Ang = n'P —n) = /dr‘( ) )

= —v(x” = x7), ®)

where v is the density of states at the Fermi level. Notice that
the simplification to the second line of Eq. (8) is a result of the
assumed circular Fermi pockets, see Fig. 4.

Before presenting the solution of the Boltzmann equation,
we point out the central role of intervalley scattering. Namely,
to obtain nonzero valley density difference, Ang, the inter-
valley scattering rate must be treated with care. In particular,
a constant intervalley scattering rate 1/t’ cannot generate a
nonzero valley density difference in the static limit. To see
this point, one can integrate the SBE, Eq. (6), over the full
Brillouin zone, assuming that the intervalley scattering rate
is a constant W', The result is a continuity equation for
the valley densities: 3,n™® — V. j & = —u® —n®)/7’,
where the intervalley scattering time is defined as 7/~!
pyWiner In a spatially uniform and time independent system,
the right-hand side must vanish, which indicates that the val-
ley density difference always relaxes and vanishes in the static
limit, even though we allowed for nonzero (but constant) in-
tervalley scattering. To avoid this problem, one must account
for momentum-dependent intervalley scattering, which will
induce a “source” in the continuity equation.

Following the reasoning above, we consider the intervalley
scattering rate given by

1
woP =wli = — (1 cos G + by sin 6,
kk Kk VT,( + ap k + 1 k
+aj cos Oy + ) sinby), 9)

which explicitly breaks rotational symmetry. The dimen-
sionless parameters a,, a’1 and b,, b’1 are determined by the
microscopic mechanisms of breaking rotational symmetry.

For demonstration purposes, we make two additional sim-
plifications. First, we assume the intravalley scattering is
constant,

W(++) _ W(**) — i (10)

k' T KK v’

where v and 7 are the density of states and the intravalley
scattering time, respectively. Second, the Fermi surfaces are
assumed to be circular. Indeed, given the intervalley scat-
tering rate in Eq. (9), the detailed form of the intravalley
scattering and the Fermi surface geometry are expected to
play a secondary role on the generation of valley polariza-
tion. They do not affect whether a valley density difference
can be generated by external bias or not. They only affect
the magnitude of the valley density difference, at a similar
level to other microscopic details that are beyond our model
calculations.

The solution to Eq. (6) is physically intuitive in the limit
that the intravalley scattering time (t) is much shorter than
the intervalley one (t’). To leading order in t/7’, the static

1.0
0.8}
< 0.6}
0.4}
0.2

0 2 4 6 8 10
FIG. 5. The valley density difference Any as a function of the

ratio of the inter- and intravalley scattering time 7’/7. The density is
normalized to the value of Eq. (15).

solution satisfies the SBE with only the intravalley scattering,
s 8f0 s
¢E - v,ﬁ)¥ =1 [fil. (11)

The harmonic expansion coefficients of the distribution func-
tion are

x,(f) =0 y’(f) =0 ifn#0,1 (12)
V) =seEupr YW = seE vt ’

where 7 is the intravalley scattering time, vp is the Fermi
velocity defined from kaF) = s vp(cos O, sin 6;). Note that

without intervalley scattering, there is no constraint on x(()s)

from the SBE because the number density of each valley is
separately conserved.

Now the static valley density difference can be determined
by solving 0 = Ii(nst)er[ il

0= 3" =1+ H(a + ot — ) — byt
(13)

This equation dictates a balance between the intervalley re-
laxation process (the first two terms) and a “source” (the last
term in parentheses) that generates the valley density differ-
ence. The “source” originates from the interplay between the
nonequilibrium distribution function from Eq. (12) and the
rotational symmetry breaking of the intervalley scattering rate,
Eq. (9).

Solving Eq. (13), we find that the valley density difference
Ang = n® — n is given by

VUET , ,
5 leEx(artay) + eEy(bi+b))l.  (14)

or, equivalently expressed in terms of the current density
j=oE:

Ang =

1 h , . ,
Any = %6_2[6]‘(611 +ay) +ej,(by + b)) (15)

Notice the bulk longitudinal conductivity o is related to the

intravalley scattering rate T through o = Zﬁth, where D =
%v%r is the two-dimensional diffusion constant and the pref-
actor of 2 accounts for the two valleys.

The simplified model presented in this section can be
solved exactly. The valley density difference for a general
ratio of inter- and intravalley scattering time, 7'/, is shown

in Fig. 5. Indeed, when the intervalley scattering time is much
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longer than the intravalley one, the valley density difference
saturates to a value given by Eq. (15). On the other hand, Any
decreases with decreasing intervalley scattering time. Ang
vanishes when the intervalley relaxation time 7’ goes to zero.

As has been emphasized, intervalley scattering is essential
to obtain a current induced valley density difference, be-
cause it is the channel to exchange electrons between the two
valleys. Without intervalley scattering, the electron density
within each valley is exactly conserved.

The valley density difference in Eq. (15) is determined
by the first harmonic of the intervalley scattering rate, which
explicitly breaks the discrete rotational symmetry of the sys-
tem to Cy,. In the next section, we determine the coefficients
ai, dy, by, b in Eq. (9) from microscopic modeling of h-BN
aligned TBG with C;; symmetry.

Finally, the valley density difference is proportional to the
current, Eq. (15), as we restricted ourselves to linear response.
By reversing the current direction, the valley density differ-
ence is also reversed, and hence so is the valley polarization,
see Eq. (4). Therefore we conclude that with broken rotational
symmetry, the valley polarization can be controlled by a DC
current.

B. Twisted bilayer graphene

In this section, we estimate the valley density difference
for the TBG/h-BN system. As has been emphasized, to in-
duce Ang # 0 from a bias electric field, the lattice rotational
symmetry needs to be fully broken. While unaligned TBG
exhibits the higher symmetry point group Ds, a close align-
ment of either top or bottom TBG layer with h-BN not only
breaks the sublattice (inversion) symmetry, but also can in-
duce strain to the sample that further breaks Cs, to Cy;. In
the following, we model the rotational symmetry breaking by
strain.

A full account of the microscopic details of magic angle
TBG to obtain the valley density difference is quite chal-
lenging, and requires the full knowledge of the intervalley
scattering mechanism as well as the spectrum and wave
functions of TBG near the magic twist angle. Many micro-
scopic effects induced by the alignment with h-BN substrate
[46], which are generally more relevant for higher energy
bands, were neglected in the modeling below. Nevertheless,
the mechanism we proposed in Sec. III A is generic. The
magnitude of the effect, parametrized by the coefficient §,
in the valley density difference Eq. (5), is a reflection of
the degree of rotational symmetry breaking. For example, in
strained single layer graphene, . ~ €, where € is the strain
strength. In this sense, a general mechanism that enhances
the effect of strain would be desirable to explain the small
critical current observed in the experiment. In the following,
we show that in TBG aligned with h-BN, due to the interplay
between two comparable lengths—the moiré scale (a/6,,) and
the strain scale (a/e)—the strain effect is enhanced to € — 0%.
To demonstrate this point, it is enough to introduce the inter-
layer tunneling perturbatively, which preserves the analytical
solubility.

Our modeling is based on the continuous model, intro-
duced in Ref. [47] and generalized in Ref. [48] that captures
elastic deformations systematically. Here, we assume a

Layer 1 Layer 2

1
~ —1? (1 4+ Harmonic Series)
Nz

K'-valley K-valley

Layer 2 Layer 1

K'-valley K-valley

FIG. 6. The intervalley impurity scattering in twisted bilayer
graphene. Layer 1 is strained, while layer 2 is not. The intralayer
intervalley scattering (green arrows) are assumed to be isotropic. The
interlayer intervalley scattering (red arrows) may be anisotropic, as
in Egs. (9) and (B14).

uniaxial strain parameterized by the strain tensor [40]

sin 2¢ :| n (ve — 1)e

£= —cos2¢ 2

I+ veoe |:cos2¢ L. (16)

2 sin 2¢

where € is a dimensionless parameter characterizing the strain
strength. v, = 0.165 is the Poisson ratio for graphene. ¢ is the
direction of the strain. Note that only the first term in Eq. (16)
breaks rotational symmetry and enters into §..

Without loss of generality, we consider the strain only on
layer 1, Fig. 6. The analysis here can be straightforwardly
adapted to the heterostrained situation [23,27,48-51]. Due to
the combination of the strain field and the alignment with
the h-BN substrate, the Dirac Hamiltonian around the K-point
becomes H = vpk - (1 + &) - 0 + mo, [48], where vp, k and
m are the Dirac velocity, the momentum measured from the
Dirac point and the mass gap, respectively. At the leading
order in the strain strength, the rotational symmetry breaking
of the continuous model under the strain field is reflected
in several aspects. First, the Dirac points at K valleys are
shifted by (SKE/) =-£- Kf/) for the strained layer [48]. As a
result, the momentum difference between the adjacent Dirac
points of the two layers, see Fig. 3, is modified as

g —>q=q,—-£ K, (17)

where q; = 6,K; x 2, i € {1, 2, 3}. Second, the single layer
hopping integral is modified due to the strain field, which
modifies the single layer energetics and shift the Dirac points
also at order €/a. Third, the Dirac spectrum is anisotropic.
However, the Dirac spectrum anisotropy is parametrically
smaller in |k|/|K| than the shift of the Dirac point [48] and
is thus neglected.

For simplicity, only the first contribution is included in
the following discussions. As the wave vectors for interlayer
tunneling ¢} — g}, i.e., the reciprocal lattice vector of the
moiré Brillouin zone (mBZ), are modified due to the strain,
the Cs, rotational symmetry of the mBZ is broken explicitly
[see Fig. 3(b)], and the effect is characterized by

8K, N €|K]| €

—, 18
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where both the shift of the Dirac point under strain field,
0K ~ €|K|, and the size of mBZ, g = 0,,|K]|, are small and
comparable to each other.

We focus on bulk transport. From the discussion of
Sec. IIT A, both intra- and intervalley scattering of TBG must
be taken into account properly. The dominant scattering mech-
anism in TBG is yet to be determined, but certain key features
may be captured by simple modeling. Here, we consider short
range impurities and a low doping level (well below 3 /4 filling
of the moiré conduction band) so that there is a Fermi pocket
around each Dirac point at the corner of the mBZ (see Fig. 6).
Notice that the intervalley scattering involves a much larger
momentum transfer than the intravalley one. Therefore we
assume the intravalley scattering time t being much shorter
than the intervalley scattering time 7', which is expected to be
generically true for most scattering mechanisms in TBG.

As discussed in the previous section, the intravalley scat-
tering only plays a secondary role in the generation of valley
density difference by a bias DC current. Hence, we assume
the intravalley scattering is dominated by the scattering within
each Fermi pocket with a constant relaxation time, . The
intervalley scattering requires more careful examination to ob-
tain the coefficients ay, a}, by, b} in Eq. (9). There are several
processes as shown in Fig. 6. With simple on-site disorder,
it turns out that the scattering between the two valleys in the
same graphene layer does not break C;, or generate nonzero
ay, ay, by, b since we neglected the anisotropy of the Dirac
spectrum. Thus the scattering rates between the two valleys
of the same graphene layer are taken to be constant, wt) !,
as indicated by the green arrows in Fig. 6. At the same time,
the scattering rates between the two valleys in different layers
may break rotational symmetry through the process indicated
by the red arrows in Fig. 6. It is directly related to the shift
of the Dirac points due to strain as well as the coherent
interlayer tunneling. As in Fig. 6, the scattering rates of such
processes are of order ~(vr’)7lt2, where t is a dimensionless
perturbation parameter for the interlayer tunneling, Eq. (B13).

After fitting the scattering rates into the semiclassical
Boltzmann equation introduced in the previous section, we
obtain the valley density difference generated by a DC current.
The main result is summarized in Fig. 7, where, without
loss of generality, only one graphene layer is strained (see
Appendix B for more details of the calculation).

When the strain strength is zero, Cs; is restored and the
valley density difference is identically zero.

For nonzero strain strength, the valley density difference
appears as expected from the breaking of C;, symmetry. At
small strain strength, the valley density difference is linear in
the strain strength:

A k
20 _ (1 4 v, ) 2F
nj m

ggmw+@x (19)

where the basic scale for current induced density is nj =
@';—/fﬂﬁe%ej. Here 6; is the angle of the current, ¢ is the
angle of uniaxial strain as defined in Eq. (16). The small
numerical value in Fig. 7 is a result of the low doping as-
sumption, where vpkp/m is a small parameter with kr being

the Fermi momentum. The result is further suppressed by
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FIG. 7. The valley density difference generated by a DC cur-
rent in TBG with a strain field. The density is normalized to

2 . . .

: igt/;; Z ﬁe%e j. The dotted lines are obtained from a numerical cal-
culation. The dashed lines correspond to the analytical expression of
Eq. (19) for comparison. The parameters are chosen as 6,, = 1.03°,

¢ = 17.20°, vpg/m = 0.1 and vpkg/m = 0.005.

the interlayer tunneling 72, which is assumed to be small to
introduce the interlayer tunneling perturbatively.

Even though our result, Fig. 7 and Eq. (19), was ob-
tained with a set of very specific assumptions (weak interlayer
coupling and low doping level), some implications can be
drawn for real samples. In reality, there are several comparable
scales: moiré band width, interlayer coupling and the mass
gap [47,52]. Therefore the dimensionless parameter #> is not
small. In addition, the phenomenon of current switching of
valley polarization is observed at three quarter filling. Thus
it is reasonable to expect that the small factor of vpkp/m
in Eq. (19) is lifted and is on the order of O(1). Therefore
we conclude that the actual valley density difference can be
estimated as

e 1 h
with a numerical coefficient on the order of O(1). Based on
the arguments above, one may roughly estimate that a small
DC current (~10~* A/m) could generate a large valley den-
sity difference on the order of 10!! m~2. This is comparable
to the effect of magnetic field (~vugB and B ~ 10 mT with
wp being the Bohr magneton) [5].

IV. SUMMARY AND DISCUSSION

In this work, we proposed a mechanism for DC current
switching of the valley polarization in the dissipative regime.
It was obtained by first determining the dynamics of the valley
polarization order parameter (VPOP) in an applied electric
field near the Curie temperature 7, using the nonequilibrium
Keldysh formalism. This formalism relates the spontaneous
value of the VPOP to the one linearly induced by a current
without interactions in the paramagnetic phase. In this way,
one sees that sweeping the DC current, and thus varying
the current generated valley density difference, the VPOP
undergoes a first-order phase transition. Consequently, the
model reproduces a hysteresis curve in the Hall conductance,
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consistent with the experiments in Refs. [4,5]. The current
generated valley density difference takes the generic form of
Eq. (5) and we repeat here

1
Ang >~ —j - §. 1)
€eVf

From a solution of the semiclassical Boltzmann equation, we
point out that a proper form of intervalley scattering that
breaks the Cs, rotational symmetry is necessary to generate
nonzero valley density difference by the transport current.
This may be due to strain in TBG aligned with h-BN.
Our modeling indicates an enhancement of the strain effect
by a factor inversely proportional of the twist angle, i.e.,
|8 ~ €/6,,. Together with the reduction of Fermi velocity
in magic angle TBG, we argue that these two effects signif-
icantly reduce the critical current needed to reverse the Hall
conductance.

A few theories have been developed in light of the ob-
servation of current switching of valley polarization in the
TBG/h-BN sample [5,39,40]. The picture developed here re-
lies on the finite scattering time t and thus does not apply to
the quantum anomalous Hall regime observed at temperature
well below T.. It is also a bulk mechanism. The theoretical
analysis in Ref. [5], in contrast, describes a finite-size mech-
anism which applies in the nondissipative limit o, < 0xy,
based on edge states. In that limit, each edge state can be
described in quasiequilibrium even in the presence of a cur-
rent, and thereby Ref. [5] obtains a correction to the edge
state Free energy of order I3, where I is the edge current,
which favors the valley polarization associated with a par-
ticular direction of the edge current. Another treatment in
the nondissipative regime explicitly models the forces on a
domain wall, Ref. [39]. In connection to the present work, we
note that Ref. [39] introduces violation of valley conservation
in a phenomenological manner. At intermediate temperature
below 7., the system has nonzero valley polarization and or-
bital magnetization and is in the dissipative transport regime.
Reference [40] presents a mechanism for current reversal of
the anomalous Hall effect due to magnetoelectric response.
The latter work does not distinguish valley polarization and
orbital magnetization, which play very different roles in our
treatment due to the quasiconservation of the former. In any
case, the result quoted in Ref. [40] becomes negligible close
to T.. Our work instead is relevant near 7., when the orbital
magnetization of the equilibrium system is too small to be
greatly affected by a small critical DC current.

ACKNOWLEDGMENTS

We thank Kohei Kawabata for helpful discussions. X.Y.
is supported by the Heising-Simons Foundation, the Simons
Foundation, and NSF Grant No. NSF PHY-1748958 and
partly by NSF Grant No. DMR-1608238 and DMR-2037654.
M.Y. is supported in part by the Gordon and Betty Moore
Foundation through Grant GBMF8690 to UCSB and by the
National Science Foundation under Grant No. NSF PHY-
1748958. L.B. is supported by the NSF CMMT program
under Grant No. DMR-1818533.

APPENDIX A: VALLEY POLARIZATION ORDER
PARAMETER DYNAMICS FROM KELDYSH FORMALISM

This section is for the demonstration of the valley polariza-
tion in the twisted bilayer graphene (TBG) with the presence
of an external bias. The “slow” dynamics of the valley polar-
ization order parameter, denoted by ®(x, ) and its Fourier
transformation ®(q, w), is governed by the following action:

Fldby, &g = / / S (4. 0y —0)Pulg. )

+U/ dt/dzx[al(x,t)dbq(x,t)

+a3(x, 1)Pq(x, 1) D2 (x, 1)

+ay(x, )Py (x, NPY(x, )] + O(P7) (A
with the saddle-point time evolution equation given by
SF[ Py, @
0= [ cl q] (AZ)
§®@q ®y=0

Here, ® corresponds to the quantum fluctuations of the valley
polarization, in the Keldysh language.
The coefficients of «; are listed below:

a1, 1) =n P, 1) —nx, 1) = Ang(x, 1), (A3)
2
(g, 0)=U <v+ 3 v”Tz—I—quz—_iw)—l, (Ad)
1 d*k _

as(x, 1) = =2 U Gy Q[P — W),
(A5)
_ (+) (=) 3 v

os(x, 1) = yry /(2 B NP+ k)] = 4U
(A6)

Notations:

(1) @ corresponds to the VPOP @, in the maintext;

(2) n®(x, 1) is the electron density of valley (s);

(3) v = v(ep) is the electron density of states at Fermi
level €g of a given valley, while v” is the second derivative
of density of states. The valley polarized state is stable when
v/ < 0.

(4) U is the Stoner interaction strength;

5) D= %v%r is the electron’s diffusion constant;

(6) T is the temperature;

(7) a3 will be explained in detail later. It involves the
difference of the electron’s distribution function in the two
valleys, £ (k). Thus it is proportional to the bias.

1. Model Hamiltonian

We consider a model of the following Hamiltonian:

H = Hy + Vg5 + Hin. (A7)
The first part of the Hamiltonian is given by
5 H(+)(_iax) + Vbias(x) 0
Hy = (=) . .
0 H7(—i0y) + Vpias (%)
(A8)
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Electrons live in the two valleys described by H®(—id,). The
two valleys are presumed to be time reversal (TR) related:

TH (=id) T = HT(idy). (A9)
The system is subject to a bias electric potential Vias(x).
The second part is the disorder potential:
W) Vitx)
Vais = |:V1 @ Vo) | (A10)

The electrons experiences intravalley impurity scattering po-
tential Vp(x) and the intervalley impurity scattering potential
Vi(x). The impurity potentials follow the following probabil-
ity distribution:

PVo(x)] = Exp[—m / d2x|Vo(x)|2:|,

PV, (x)] = EXpI:—rrVI/ / d2x|V1(x)|2], (A11)
and following correlation:
, §P(x —x') o 8P —x)
Vo(x)Vo(x)) = o Viei(x)) = ————,
TVT 2wt
(A12)

where (- - - ) means disorder average.
The third part of the Hamiltonian gives the Stoner interac-
tion between two valleys:
Hi = Un™P @, 0)n D (x, 1). (A13)

If the interaction is strong enough to the system may develop
valley polarization spontaneously at low temperature.

2. Keldysh formulation

For nonequilibrium and disordered system, it’s convenient
to use Keldysh formulation to extract the physical features.
The formulation is based on the following path integral:

(Z) = /Dl/;(-&-)DI//(+)D‘p(—)DI/I(—)eis[ll_’(“,'/fw,l/}(*)s\/’(*’]

(Al14)
with the action given by

S = /C dt / d%c{ [V, ¥ ]lis, —Ho][giﬂ]

_ U&(-&-)w(-’-)v}(—)w(—)}. (A15)
The time contour is defined as C = {—o0, 0o} U {00, —00},
going from negative infinity to infinity then back to negative
infinity.

The dynamics of the valley polarization order parameter
may be obtained by a Hubbard-Strantonovich transformation:

(Z) = <f DtﬁDlﬂDCI)eiS[‘/;"/”q"> (A16)

with the new action:
_ _ N 1. -
S, ¢, @] = /cdt/dZX{w[iar — Hylyr — ZUWWz

1 1
+ EUQDWUZW — Zuqﬂ}. (A17)

Here, the fermionic degrees of freedom is compactly written
as ¥ = [P, O] and ¢ = [P, v 1T, o, is the Pauli
matrix in the valley space. The valley polarization order pa-
rameter ® couples to the difference of the electron densities
in the two valleys /o, v, and the saddle point solution reads

P = (Yo ). (AL8)

It’s convenient to perform a Keldysh rotation before pro-
ceeding further:

1
V2
1
(Dcl/q = E(q>+ o).

1

e Fv-), NG

1ﬁl/Z = 1p1/2 = (W+ + 1//_),

(A19)

Here, the subindex +(—) indicates the fields on the forward
(backward) time domain {—o0, oo} ({o0, —00}).
After the Keldysh rotation, the action reads

oo ~
3:/ dt/dzx{zﬁ[Ggl —Vdis)/CI
—o0
1

+ —Ucpaazy“}ﬁ - UdeCI)q}.

> (A20)

Here, we assume the total density ¥4/ is fixed, thus neglected
the term of —U[xl_fw]2. The meaning of ®,y* is explained
below.

Some notations. The fervmionic fields are two component
spinor in Keldysh space, ¥ = [/, ¥2] and ¥ = [y, ¥] .
And each component is also a two component spinor in valley
space, Y12 = [1//1(72), w;;z)]T and similarly for /2. Vg is the
disorder potential and is a two by two matrix in the valley
space. Meanwhile, y* with o = cl, q are the matrices in the
Keldysh space:

a_[1 0] 4_Jo 1
V—[o 1]”’—1 0

Then, the fermionic degrees of freedom may be integrated
out directly:

(Z) = </Dd> exp{ —iU /Do dt/d2x<1>clcl>q

+ Trln [Gol — Viisy + %CDO,UZ)/“] }> (A22)
where Trln[...] includes summation over space, time,
Keldysh and internal valley d.o.f. This is a path integral with
an action depends on the order parameter. The goal is to find
the effective disorder averaged action F[®, ®y] = —iln(Z)
that is linear in @, so that that the semiclassical dynamics of
the order parameter is given by

_ 5,/—"[CDC1, (Dq]
8

(A21)

0 (A23)

D=0
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3. Disorder averaging process

The first observation is that S[®j, @4 = 0] = 0. A direct implication is that when we do power expansion of the Trin [ - - ]
in powers of the order parameter ®,, each term is at least linear in ®4. Thus the expansion goes like follows:

1 o -1 n—1 i1 n
TrIn [Ggl — Vaisy + EUdJaazy"‘] = Z ( n) Tr[(Ggl — Vaisy®) 1§U¢aazy“:|
n=1
S (_l)nfl 1 " n
= Z Tr GbEUq)aO'Z]/ s (A24)
n

. _ —1 . .
where for brevity, we define Gy, = (G, ' — Vgisy) ™. Then, we expand the exponential and then do the disorder average and
then re-exponentiate the expression. During this process, we keep our accuracy only to linear order in @

(1) Expand the exponential to linear order in ®:

exp{Trln[~~]}=1+Z

-1 n—1 1 n
=D Tr|:Gb§U<I>aozy°‘] +0(®}). (A25)
n
n=1

(2) Do the disorder average and keeping terms up to ®*:
1 1, 1 :
(exp{TrIn[---1}) = 1 + U{Tr GbEGJQGZy“ — EU Tr szd%,azy"‘

1 1 N 1 4
+ §U3Tr<|:Gb§d>aozy“:| >— ZU4Tr<[Gb§CI>O,UZy°‘] >+ (A26)

(3) After re-exponentiate Eq. (A26) and including the noninteracting quadratic in ® term from Eq. (A22), we find the effective
disorder averaged action as

1 1 1 2
F = —iUTr[®y Py + U<Tr|:Gb§<I>aozy“]> - EUzTr<[Gb§<Daazy“] >

1 1 o1 1 4
+ §U3Tr<|:szd>aaZy“:| >— ZU4Tr<[Gb§d>aazy“] >+ (A27)

Notice that this process of disorder averaging is quite straightforward here. This is because we aim at the semiclassical
dynamics of the order parameter and keep our accuracy only to linear order in ®4. Thus different terms do not mix (since each
term is already linear in ®g.)

4. The meaning of each term

(1) The linear term vanishes in equilibrium due to time reversal symmetry. A bias electric potential may lead to nonzero value
as we show in Sec. 5.
(2) The quadratic term contains the polarization operator:

U? .
~ = S P PaTr((Gooy Goozy 1) = iU @g@all(g, ©). (A28)

The polarization I1(q, w) in the static limit contributes to the susceptibility of valley polarization order parameter, and drives
a second-order phase transition to valley polarized state below 7.

(3) Similar to the linear term, the cubic term vanishes in equilibrium due to time reversal symmetry as well. To analyze the
leading order nonequilibrium effect due to bias potential, we keep the linear term only and ignore the cubic term, which is
smaller by ®2 near T,.

(4) The quartic term should proportional to the second derivative of the electron’s density of states as in the usual description
of the Stoner instability.

To summarize, the nonequilibrium effect is mainly captured by the linear term. The rest captures the interaction effect to the
effective action in equilibrium, which has been studied well in the context of Stoner instability. As a result, in the following
perturbative expansion in @, V4,5 is considered only in the linear term. To obtain the coefficients for quadratic and quartic terms,
we consider Vi = 0.
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5. Linear term

The linear term we are chasing after only contains the Keldysh Green’s function:

o) o D, (x, ¢t
<Tr|:Gbozy‘f qu = / di / d%%Tr[(G{f(x, x;t,1)o.]. (A29)
—00
The equal spacetime Keldysh Green’s function is the distribution function up to gradient corrections:
(G, x;t,1) = / do d—ZkF(x t:k, o)[(GR)x. t:k, 0) — (G1)(x. 13K, )] (A30)
LY AAERAERE] 27_[ (271_)2 s Lo lby LY AMERERAE] W ASEREEAS] .
The difference of retarded and advanced Green’s function is a delta function GR — G* = —i278(w — Hp). The integration over

the frequency puts F on-mass shell, making a real distribution function. Then, integration over momentum gives ~1 — 2n(x, t),
with n(x, ¢) being the electron density. Note that F is traced with o,. Thus

U<Tr[Gbo—qu%:|> = iU /oo dt/dzx Dqx, 1) [n P, 1) —n D, )] (A31)

the order parameter ®, couples to the difference in the electron density of the two valleys.

The valley density difference is defined as Ang(x, t) = n(x, 1) — n)(x, t) hereafter. Ang(x, t) is induced by the bias field
only when proper intervalley scattering is taken into account. For simplicity, we will ignore the electron interaction to obtain
Any. Formally, the self-consistent kinetic equation for F' and thus Ang can be obtained as below.

In Keldysh space, the fermionic Green’s function has the following structure:

G =[% G (A32)
*Tlo Gl

The Green’s function is a function of two space-time coordinates, G, = Gy (x, x';¢,t’). It can be written in terms of Wigner
coordinates:

; ; Ax Ax At At
Gy(x, t;k, w) = /dAt/dzAx e_’k'A”""A’Gb X+ —,x— —t+—,t — — . (A33)
2 2 2 2
The retarded and advanced Green’s functions are given by the standard disorder calculation:
R/A 1 . .
Gy (x,t;k, w) = + gradient corrections. (A34)

o — Hy(k,x) £ i

The Keldysh Green’s function may be parameterized as GX = GR x F — F x« G* (the Wigner coordinates are not written
explicitly). The star operation is defined as

I <~ — “— = — - — =
*:exp{z[ax-ak—ak-ax—a,-aw+aw-a,]}. (A35)
F plays the role of density matrix with a two by two structure in valley space, satisfying the following equation:
—[w—Hy*F]=3XX— (SR« F —F 4. (A36)

This formal equation is essentially the Boltzmann equation in some simple cases (neglecting the entanglement between two
valleys). It needs to be solved independently. Within mass shell approximation of F, and considering impurity scattering of the
form Eq. (A10), we obtain the semiclassical Boltzmann equation [Eq. (6)] in the main text. While the band carries nonzero
Chern number, we have checked that the Berry curvature effect does not contribute to valley polarization in the linear response,
so it is ignored to obtain Eq. (6).

6. The quadratic term

For the quadratic term, only the equilibrium contribution needs to be considered for our purpose. The quadratic term from
interaction reads

2
——1U2T1" G—lcbo'
) b2 a0zY

1 o0
= —gUZZ/ dtldtZ/dledZXZQa(xZ,t2)q>ﬂ(xlytl)Tr<Gb(xlsx2;tl,tZ)UzyaGb(stxl;tZ,tl)azyﬁ>- (A37)
a,p VX
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Some observations.

(1) Only the term of the form ® @, is relevant. The associate coefficient is ~Tr[Gpo,y ' Gyo,y 9] ~ Tr[GbRG{f + G{fG{?]; 2)
Current treatment does not have explicit time dependence in the Hamiltonian. Thus the Green’s functions are functions of time
difference. (3) At equilibrium, the Keldysh Green’s function is of the following form:

d .
(Gy )1 X231, 1) = / i‘?_le(r'_mF(f)[(GE)(xl»x2;6) —(Gy )1, x21)]. (A38)

(4) For simplicity, the intervalley scattering in Gy, is ignored. As a result, the Green’s functions are diagonal in the valley space.
We will argue below that the simplification only modify the result quantitatively.
More careful analysis shows that the quadratic term is

1, 1 . | 2 n
_EU Tr Gbicbaaz)/ = _ZU dndty | d x1d"x;®q(x2, 12)Pei(x1, 11)
—0oQ

x Tr{(Gy (X1, X231, )0, Gy (%2, X132, 11)0 + G (X1, %2311, 1)0. Gl (X2, X135, 11)0z). (A39)

What’s in the trace should be GRo,GX o, + G*0,GA0.. Since we assumed the Green’s functions are diagonal in the valley space,
the summation over valley index only contribute to a factor 2.
Next step is to rewrite the fields and Green’s functions in frequency space, one arrives at the following expression:

U? (do de
- /Z /d2x1d2x2d>q(x2, — )Py (x], a))/E(Gf(xl,xz;e)GbR(xz,x1;6+w)+Gﬁ(x1,xz;G)G{f(xz,xl;E-i-w)), (A40)
where the valley d.o.f. has been summed over. The second line can be further expressed as

d_é R . R . A . A .
o [(Gh (x1. %21 € + )Gy (X2, %13 €)F (€ + ©) — Gp (x1, %23 € + )G (X2, X 15 €)F (€))

+ (Gy(x1, x25€ + )Gy (x2, x1;€)(F () — F (€ + w)))] = —2i T1(x1, x2; w). (A41)

I1(x;, x2; w) is the disorder averaged polarization operator, note that the disorder average should be performed for both single
particle Green’s function and four-point correlation (i.e., the ladder diagrams), and its Fourier component is given by
T ’ "2 iw -1 -1
ng,w)y=v+ —"VT"+v———, forg<!l ", o<1 . (A42)
3 Dg? — iw

Thus, in momentum ¢ and frequency w space, the quadratic term is given by

1 o, 7? d d?
— U | Gyoy =2 | ) = i / O 29 g (—q, —0)1(q, ©)Pa(q. ). (A43)
2 Y2 2 ) @mn)? ¢ ’

In the static limit, i.e., w = 0, g — 0, we obtain the standard expression for 7, of valley polarization as 1 — U (v + %Zv”TCZ) =

_ Uv—1
0—->T,. = /—Uﬂz\v”\/S'

For completeness, we present the calculation for the cubic and the quartic terms.
The cubic term can be very similarly written down:

7. The cubic and the quartic term

13 -1 an-11 o } 3 2o oo 1
§U Tr( | (G, ' — Vaisy®) Eq)affzy =U" | dhdtrydtz | d"xid"xod ngq’q(xz,t2)¢c1(x3,1‘3)<1>c1(x1,11)
X Tr(G(x1, %2511, 12)0: Y G (x2, X35 12, 13)G (X3, X153 13, 1)) (Ad4)

Notice that the last line should have been ~Go.y9Go.,y'Go,y !, which could be simplified.
The steps to proceed. (1) Put all the ® fields at the same space-time point (x», t;). With this approximation, we neglect the
nonlocal effects. We choose the space-time coordinate of @ as a reference point. (2) Expand the Keldysh Green’s function as

GX(x1,x2:11, 12) :/dl3/d2X3[GR(xl,X3;t1,l3)F(X3,X2;l3,[2)—F(xl,X3;t1,t3)GA(.X'3,.X'2;l3,12)]. (A45)
(3) The cubic term would reduce to
1
~ gU3 / dtrd®x, @y (x2, 1) D2 (X2, 1) / dtdt;di, / d*xid*x3d*xy

x Tr{o:[F(4,2)GR(2,3)GR(3, DGR (1,4) — F(2, )G*(4,3)G*(3, NG*(1,2)]). (A46)

Here, (i, j) is short for (x;, x;;#;, t;).
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(4) The second line may be evaluated in Fourier space, giving rise to ~i27 [ (diafk LFP k) — FOd)];

. . 21 )?
The third-order term is

d’k
(2m)?

R [Pk — O w). (A47)

~ %ZUS/dtzdzxzq%l(xz,fz)cpz](xz,fz)/

One should notice that the cubic term vanishes in equilibrium. Thus it involves the weak electric field and higher order of
VPOP. Thus the cubic term is neglected in the main text, when we discuss the VPOP physics close to or above the critical
temperature, 7.

The quartic term can be evaluated in the same way as the cubic term:

1 1 4 1
—ZU4TF<|:Gb5®anVa:| >= —U4/dILdfzdl3dl4/d2x1d2x2d2x3d2x4ﬁ¢q(x2,lz)cbcl(xs,f3)d>c1(x4,l4)d>c1(x1,ll)

x Tr(G(x1, x25t1, )Y IG(x2, X33 12, 13)G (X3, X43 13, 14)G (X4, X131, 11)). (A48)

The next steps fully parallel the previous analysis of the cubic term. (1) Put all the ® fields at the same space-time point (x7, ).
With this approximation, we neglect the nonlocal effects, which does not alter our main conclusion. We choose the space-time
coordinate of @4 as a reference point.

(2) Expand the Keldysh Green’s function as

GR(xy, x0511, 1) = / dt; / d*x3[GR(x1, X331, 5)F (X3, X23 13, 1) — F (X1, X331, 15)G™ (%3, %25 13, 12)]. (A49)
(3) The quartic term would reduce to

1
~ —§U4fdtzd2X2¢q(XQ,lz)q)z](x'z,Iz)/dt1dl3dt4dt5/dled2X3d2X4dZX5
x ([F(5,2)GR(2,3)GR(3, 4)GR4, HGR(1, 5) — F(2,5)G*(5,3)G*(3, )G* (4, 1)GA(1, 2)]) (A50)

Here, (i, j) is short for (x;, x;;1;, ;).

(4) The second line may be evaluated in Fourier space, giving rise to ~+ é‘;’;z 2L P+ fO W]
(5) The fourth-order term would be

. 2
~ Ly / dtd*x®y(x, )2 (x, 1) / ﬂaﬁ [fP &)+ O]
48 (2m)2 (ASD)

1
- iﬁU“v”/dtdzx(bq(x, 1D (x, 1).

8. Equation of motion

Combining the calculation above, one can obtain the action given at the beginning of this section. The equation of motion for
the valley polarization order parameter @ could also be read out as

1
Any + [UTI(q, ©) — 1]dg + a3 + iU%”cpgl =0. (A52)

APPENDIX B: MODELING OF TWISTED BILAYER GRAPHENE (TBG)

This section presents the necessary technical details of our modeling of the twisted bilayer graphene. Our modeling is based
on BM’s continuous model in Ref. [47] and its generalization to the situation with an arbitrary smooth lattice deformation in
Ref. [48].
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1. The model Hamiltonian for TBG under uniaxial strain

As an example, we focus on the electronic states near the K point of layer 1, which can be well described by the following
Hamiltonian:

hey) (k) Ty T, T,
T} Dk + q),) 0 0
H(IK)(k) — hL 0w /2 b , (Bl)
T, 0 he )k + q;,) 0
T, 0 0 hgt )k +g)))

where 6,, is the twist angle. As argued in the maintext, we are neglecting the anisotropy in the Dirac Hamiltonian. Therefore the
diagonal terms are given by

+) _ m kaé’i[(G"ia)
hy (k) = [kaei(eke) —m , (B2)
where k = |k| and 6; = tan™! i—‘ are the magnitude and the polar angle of momentum k measured from the K point, respectively;
the diagonal element, m, is the mass term induced by the alignment with the substrate.
The interlayer coupling are described by the off-diagonal terms in Eq. (B1), given by [47,48]
7o—wll M 1 = peig@drigart| | s T — we—i9®d+ighz| | e (B3)
b 1 1 ) tr e_iz,% 1 ) tl el'%'r 1 )

where w is the interlayer coupling strength; G(2, 3) are the reciprocal lattice vector of the graphene layer 1(2); d and T are
vectors defining the twist in real space: R' = M(0,,)(R — t) + d. Here, the effect of any strain field is also neglected. The strain
field will introduce corrections in the reciprocal lattice vectors. Thus the corrections to the interlayer couplings are on the order
of strain strength.

More importantly are the momenta g; withi = 1, 2, 3 (or b, tr, tl), which connect the K-point in layer 1 to the adjacent K-point
in layer 2, Fig. 3(b). Mathematically, the momenta q; are given by

V31 V31
L= ‘_g'Ki; :Kew 07_1’ N A ] — A ' A ) B4
deaek g (oo (20), (<L) 5
where £ is the uniaxial strain tensor; K; are the momenta of the three K points of layer 1. Here, we consider only layer 1 is
strained, without loss of generality.
For the convenience of analytical calculation, one may assume the interlayer coupling is weak and solve for the wave function

perturbatively for the states around the K point, |k| < |g;|. The wave function will be used to evaluate the impurity scattering
amplitudes and the rates.

2. Impurity potential and impurity average

In this section, we present the details about the impurity potential and impurity averaging process in our simplified model
calculation. For the convenience of analytical calculation, we assumed short ranged impurities (for simplicity), whose functional
form in real space is given by

V(r) = V8 — Rimp)- (BS)

Therefore, for a scattering process of plane waves with momentum transfer of Ak, the scattering amplitude is given by the
Fourier transformation:

V(Ak) = Ve'SkRim | (B6)

Here the phase factor is kept explicitly. It will be important below when doing the disorder averaging in the huge moiré unit cell.
Let’s focus on the scattering between the two valleys of different layers, indicated by the red arrows in Fig. 6. We start the
analysis by assuming only the sublattice A of graphene layer 2 is disordered and evaluating the scattering rates. Then, one should
do the same analysis for the disorder to be on the other sublattice site and the other graphene layer and do an algebraic average
over the all the scattering rates.
Let’s focus on the situation when only the sublattice A of graphene layer 2 is disordered. The scattering amplitude from a
state k near the K point of layer 1 to a state k" near the K’ point of layer 2 is given by

2K"Y(1K 2K (24 1K
Vk(’k ) ):wli/ )Tv( )WIE )7 (B7)
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Layer 1

K'-valley

Layer 2

. K-valley

Layer 2 Layer 1

K'-valley K-valley

FIG. 8. The possible momentum transfers Ak; (red) upon impurity scattering between states of K valley layer 1 and K’ valley layer 2. The
green arrows labels the reciprocal lattice vectors G(2/3) of graphene layer 1.

where %511( ) and w(,zK/) are the wave functions of the states near K point of layer 1 and K’ point of layer 2 correspondingly. The
impurity matrix is given by an 8 x 8 matrix:

M Rimy () | pibaRimy () | pidksRimp ()

e _y 022

0 0 0 0 0 0 . (B8)
Osx2 | Osx6
The corresponding scattering rate is defined as
] . 2
W) _ 215 (39)

where pjmp is the impurity density.

Notice that the moiré lattice has a huge unit cell. Therefore Eq. (B9) is not yet the scattering rate to be put in the Boltzmann
equation. The scattering rate to be used in the Boltzamnn equation is obtained from Eq. (B9) by averaging over the impurity
location Rjyp. The disorder averaging can be easily done by noticing that the phases in the impurity matrix, Eq. (B8), are
completely random relative to each other. Algebraic, this can be seen by factoring out the factor ¢/*¥1*®im in Eq. (B8). The
remaining phases involves the momentum difference. As shown in Fig. 8, notice that

Aky — Ak = G(2), Aks — Ak = G(3), (B10)

where G(2/3) are the reciprocal lattice constant of graphene layer 1. Notice that the impurities are now assumed to be in graphene
layer 2. The relative phases can be written as

o (Akays—=Ak1) Rimp iG(2/3)-Rimp i1G(2/3)=G'(2/3)]-Rimp

=e =e

B11
— 19" /3 Rimp. B

In the last equally of the first line, the reciprocal lattice vector of graphene layer 2, G'(2/3) is inserted. To go to the second
line, one should notice that the difference of the reciprocal lattice vector of the two graphene layers defines the reciprocal lattice
vector of the moiré€ lattice, GY (2/3). At this point, due to the huge moiré unit cell, it’s obvious that the relative phases in Eq. (B8)
are completely random upon impurity averaging. The disorder averaging of the scattering rates can be done by averaging the
random phases:

W)y = 27 ol VG ) ®12)

imp imp
with Riy,, being the location of the impurities, whose values correspond to the locations of the sublattice A of graphene layer
2. Algebraically, this disorder averaging process is the same as independently treating each nonzero element in Eq. (B8) and

calculating the scattering rates and then doing an averaging.

3. Scattering rates

Following the procedure in the previous section, we were able to calculate the impurity scattering rate and extract the valley
density difference under a DC current with numerical calculation. The result is summarized as the dotted line in Fig. 7.

Under certain limit, analytical expressions can be found to help understand the limiting factors of the valley density difference
under a DC current. Below, we present the scattering rates under the limit of vDIk(/)I = vpkr <K Vp|q;| K mand € K 6,, as well
as the weak interlayer coupling limit. The first condition, vpkr < vplq;| < m, states that the chemical potential is close to
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the bottom (top) of the conduction (valence) band so that the Fermi surfaces are approximately circular. The second condition,
€ K 6, assumes weak strain strength so that the rotational symmetry is weakly broken. The last simplification of weak interlayer

coupling manifests itself as the condition of

t= —+—— 1.
Bg/am <

(B13)

Under the conditions stated above, we were able to find the leading order contribution to the intervalley, interlayer scattering
rates (indicated as red arrows in Fig. (6)) for electrons in the conduction band:

’ 3 € k]: € UDkF € kF 3 € UDkF .
WO ~ 221 4 | 36 — €3y)— — — Beyy— Ok + | —6€r— — — = (€xx — €yy)— —— | sin @
Ok I + | 3(e ew)ew p € o cos Oy + eyew p 2(6 ey))ew - sin O
€ k € upk € k 3 € vpk .
+ |:_3(6xx — Eyy)%;l: — éxy% ]:nFi| COS Qk’ + |:6€xy%§ - E(Exx — ny)%%} sm@k/}. (B14)
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