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We propose a method for studying the strong interaction regimes in twisted bilayer graphene using hybrid
Wannier functions that are Wannier-like in one direction and Bloch-like in the other. We focus on the active
bands as given by the continuum model proposed by Bistritzer and MacDonald, [Proc. Natl. Acad. Sci. 108,
12233 (2011)] and discuss the properties of corresponding hybrid Wannier functions. We then employ the method
for a study of the fillings of £3 electrons per moiré cell using the Hartree-Fock method. We discuss at length
different regimes under which a quantized anomalous Hall effect is seen in these two fillings.
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I. INTRODUCTION

Heterostructures containing moiré patterns due to incom-
mensurations in multilayers containing graphene and other
two-dimensional crystals have proven to be very tunable and
promising platforms for observing interesting phases that
are unprecedented in commensurate graphene systems [1-6].
Twisted bilayer graphene (TBG) as the most prominent mem-
ber has attracted much attention and also has given rise to
numerous theoretical studies; however, still many of the dif-
ferent correlation induced phenomena in this system have
eluded satisfactory theoretical understanding.

The most important theoretical discovery, probably, was
the realization that a low-energy theory, a continuum model
(CM), could be effectively employed to study the single-
particle electronic properties of TBG at small twist angles [7];
in fact, an analysis based on this CM resulted in the prediction
of the possibility of strong correlation physics at the magic
angle in the first place. Specifically, in this CM, the smallness
of the twist angle leads to an emergent periodicity in the
system—the so-called moiré lattice, which has a unit cell
length growing like N%; such large periodicity in turn leads to
formation of Bloch minibands. Interestingly, around the magic
angle, the bands closest to the charge neutrality point (CNP)
show exceptional flatness and are well separated from other
bands. Further including spin and valley degrees of freedom
results in eight such bands in total. Since these bands are flat,
the correlation between them can play an important role and
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give rise to interesting correlated phases and thus should be
taken into account properly. A possible theoretical approach
to this end is to consider an interacting model consisting of
these active bands only, treating the remote bands as inert; we
will be taking this route in this paper and introduce a basis for
the study of strong interactions.

Experimental observations of correlation-induced insulat-
ing states have been reported in commensurate fillings of these
active bands, along with superconducting behavior for fillings
close to these commensurate values [1-6,8,9]. Motivated by
these experimental observations, here we pursue a theoretical
model consisting of the subspace of the active bands only,
in which electronic interactions are also projected onto this
subspace; these interactions are local and thus working with
local representations of the subspace spanned by active bands
is desirable. However, as is well known, a faithful representa-
tion preserving manifest symmetries of the active bands using
fully localized Wannier functions is difficult [10,11]. Having
this in mind, in this paper, we work with hybrid Wannier
functions (HWFs) which are Bloch-like in one direction and
localized and Wannier-like in the other. Using this basis is a
compromise between locality and symmetry/topology, noting
that the wave functions are only localized in one direction;
however, as is elaborated later, this ensures that important
symmetries like valley and C, 7 (the intravalley symmetry that
protects the moiré Dirac points) remain manifest (when not
broken at the noninteracting level). Furthermore, one ends up
with a quasi-one-dimensional model, with local interactions
in one direction, which can be suitable for numerical methods
like density matrix renormaliztion group (DMRG) [12].

As we show later, remarkably, full bands of these HWFs
when maximally localized automatically exhibit a nonzero
Chern number; this means that indeed a suitable collection
of full bands of such states can display quantized anomalous
Hall effect (QAHE), a phenomenon that has been reported
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in TBG [5,6] at the filling factor of v = +3 (we define the
filling factor v to show the number of electrons per moiré
cell measured from CNP). This makes the present maximally
localized HWFs a natural basis for a corresponding theoret-
ical study. To analyze the effect of the interaction, which is
evidently required for stabilizing a full band polarization in
the HWF basis, we employ the self-consistent Hartree-Fock
(HF) method at the two fillings v = £3; these are the fillings
where single fully occupied HWF bands of holes or electrons
can be candidate many body states, respectively.

We perform two separate studies of the effect of electron-
electron interaction. First, we examine how the locality (in
one direction only) of the HWFs makes full HWF bands ad-
vantageous for the interaction energy penalty when compared
with other many-body states at the same filling. Specifically,
we check if full HWF bands turn out to be solutions of the
HF equations when interaction is considered; this ensures that
such HWF band polarized states have (at least local) minimal
interaction energy compared with other candidate many-body
states. Second, we study the stability of similar many-body
states in a model obtained by projection of the full Hamilto-
nian onto the active bands. We present numerical results on
the stability of QAHE in these two settings in a wide range of
parameter choices of the models.

There have been other HF studies of the CM at various
integer filling factors, with the analysis carried out completely
using the basis of original Bloch states [13—16]; in a subset
of these works, the remote bands are also kept in the analysis.
The present study has the advantage of working directly with
a faithful semilocalized representation of the active bands,
while providing a continuous description of the QAHE with
and without the C;7 symmetry of TBG. Moreover, in the
present analysis, the QAHE appears naturally as polarized
bands in the HWF basis and this could provide some more
insight into the nature of the Chern bands responsible for this
effect. A comparison between these prior HF studies and our
results is presented in Appendix E.

The paper is organized as follows: First, in Sec. II, we
demonstrate how the maximally localized HWFs are con-
structed and derive their topological properties. Then, in
Sec. III, we present the HF study of the interacting model at
the fillings £3, and the stability of QAHE by varying various
parameters is examined. We conclude our results in Sec. I'V.

II. HYBRID WANNIER FUNCTIONS

We will be working with the CM introduced in Ref. [7].
To take into account the two valleys, two parallel copies of
the CM are considered; in each copy, we will focus on the
two active bands, closest to the CNP. Details of the nonin-
teracting Hamiltonian are presented in Appendix A. The CM
has two free parameters in it: (i) o ~ éwAB, which accounts
for the collective effect of interlayer hopping wap and the
twist angle 6, and (ii) n = ﬁ—i’;, the ratio of the interlayer
tunneling strength in AA and AB regions of the moiré lattice,
which encodes how much corrugation is present in the system.
We will also consider adding a sublattice symmetry-breaking
term A o to the noninteracting Hamiltonian, where the Pauli
matrix o¢ is used to address sublattice degrees of freedom; this
could account for the effect of aligned hexagonal boron nitride

(hBN) substrates on the two sides of the TBG sample [17]
More relevant to experiments is a setup with different subalt-
tice potentials on the two layers, but here for simplicity we
take the potential to be identical on both layers. We will also
be using an approximation [18,19] which renders a particle-
hole symmetry to the CM; this approximation becomes better
at small angles, see Appendix A for details.

Equipped with the full noninteracting content of the model,
one can find the Bloch states lying in the middle two ac-
tive bands for each valley. We take the active bands to be
well separated from the remote bands, and thus develop an
active-bands-only model. Following the notation and methods
introduced in Refs. [20,21], we will Wannier transform prop-
erly chosen Bloch states in only one direction to obtain the
maximally localized HWF basis as follows:

1 i
ks yer m &) = — Y e Y P g),
Ny ky

W) = Y €% [kes ye, m, &), (1

Ye

where |k,;y., m, &) stands for a hybrid Wannier state, with the
indices y,, m, & denoting the real-space position in the local-
ized direction, the band (orbital), and the valley, respectively.
The states on the right-hand side are linear combinations of
the Bloch eigenstates of the noninteracting Hamiltonian at
each k:

Wme) = D [Wkn e Ui ©))

The unitary (in the band basis) matrices U are chosen at
each k to ensure that maximal localization is achieved in the
y direction ultimately and the procedure is detailed below.
Here, a rectangular Brillouin zone is chosen as shown in
Fig. 1(a) so the k, sum needed for a one-dimensional Wannier
transform in Eqgs. (1) is performed at each k,. The spin index
trivially doubles all manipulations here and thus is suppressed.
With the above convention, the allowed values of y. form a
one-dimensional lattice with lattice spacing equal to half a
moiré length (%aM =ayy), i.e., yo = j%4' where j is an in-
teger. Note that we take this lattice to be identical for different
values of k,, and so the above y. values are different from
but close to the actual locations of Wannier charge centers
(WCCs) of HWF states (see below for more information). The
transformation of the HWFs under moiré lattice translations is
depicted in Fig. 1(a).

To obtain maximal localization, one needs to choose the
matrices U in Eq. (2) properly: to this end, we will use
the procedure discussed in Ref. [20] to form the parallel
transport basis for the Bloch functions, an approach that is
suitable for maximal localization of one-dimensional Wannier
functions, and in the present study should be carried out for
each strip with a definite k, separately. We will use a dis-
cretization which will lead to a Bloch momenta lattice with
lattice spacings b,, b,, and with N, N, total points along the
two directions. According to this prescription, at each k, the
overlap matrices,

Keoky £
Mo = (U, o | Uik, +by5m. ) (3
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FIG. 1. (a) The moir€ lattice in real space and the corresponding BZ. A rectangular BZ is chosen —73 <k, <

(b)
J v

3 3.
T, —3 <k, < 3;note that

this is contrary to the usual hexagonal choice so the top and bottom of the BZ are identified—note that this is crucial for the usual properties
of the one-dimensional Wannier transform in the y direction to hold. The equations governing the translational properties of the HWFs are
also presented. (b) WCC positions (solid black lines) and single band Berry phases in the original Bloch bases (dashed red lines) of the two
active bands. The top plot corresponds to the chiral limit, i.e., n = 0, and the bottom one corresponds to the physical value of n = 0.8. A small
sublattice potential is added, A = 0.19 meV. The configuration of the dashed lines and the solid lines mean that the two bands carry +1 and
—1 Chern numbers in the original Bloch representation and the parallel transport representation, respectively. This is a robust feature present
in a wide range of parameter choices. Note that k, is rescaled and instead of plotting the interval [—0.5, 0.5), equivalently [0,1) is drawn.

are calculated, where as usual |ug,, ) shows the unit cell
periodic part of an original Bloch function; notice that there
is a small displacement in the k, direction in the ket state.
Next, redefinitions of Bloch functions are made as shown in
Eq. (2), with U matrices chosen in a way that the updated M
matrix for all k,, ky, & attains a form as K ke Ky ykf'é, where
K is Hermitian and y is diagonal, unitary, and independent
of k,. This, as discussed in Appendix B, ensures maximal
localization in the y direction.

The path-ordered product of all M matrices along a strip
with a given k, defines its Wilson loop, whose eigenvalues
are invariant under a k-dependent basis change such as the
one in Eq. (2). One can show that the K matrices as defined
above are equal to the identity matrix to first order in b, and
thus, the eigenvalues of each y*¢ matrix above are directly
related to the WCC positions, i.e., Wilson loop eigenvalues,
in the strip given by k.. Using this fact, WCCs of HWFs
as functions of k, could be found with examples drawn in
Fig. 1(b). It could be seen by inspection that, regardless of
the set of parameters chosen, there is a +1 winding and a —1
winding of the WCCs for the two HWF bands as k, traverses
the BZ [19,22]. Noting, based on the above observations, that
in the parallel transport basis, the single band Berry phases
along each strip with a given k, are equal to the WCC values,
leads us to an important implication for the parallel transport
basis: given how WCCs behave as functions of k, shown in
Fig. 1(b), the two Bloch bands in the parallel transport basis
have Chern numbers +1 and —1. This, in other words, means
that a fully filled band of maximally localized HWFs exhibits
a quantized Hall response. As a result, when addressing the

maximally localized HWFs, the terms band, orbital, and Chern
number could be used interchangeably.

In some special cases, the parallel transport basis can
be found explicitly. For instance, when A =0, there is a
G 7T = 0*K symmetry of the Hamiltonian, where K is the
complex conjugation operator; as shown in Appendix B, the
combinations %(Wk;lf) + i|Y.¢)), with the phases ¢y ¢
appropriately chosen, form the parallel transport Bloch basis
at k, where states |, ¢) show C, 7 symmetric Bloch eigen-
states. In particular, if one now sets 7 = 0 to obtain the chiral
limit, since the two C,7 symmetric bands are related [23]
by |Yk.1.6) = io*|Yxp,¢), the parallel transport basis consists
of sublattice polarized states; remarkably, even with A # 0
while keeping 1 = O this result holds, i.e., the parallel trans-
port basis consists of sublattice polarized states. By numerical
inspection, one can show that each of the two bands in the
parallel transport basis is more concentrated on one of the
sublattices to a high degree in a one-to-one fashion, even away
from the chiral limit. It is worthwhile to mention that the
U(4) x U(4) symmetry discussed in Ref. [16] (which states
that the interaction term of the Hamiltonian is invariant under
rotations of the bands with equal Chern numbers into each
other) could be seen readily in the above construction of the
parallel transport basis. This along with other symmetries of
the CM as seen in the HWF basis are discussed at length in
Appendix C.

The HWF basis naturally defines the problem in the geom-
etry of a cylinder. The HWFs form ring-shaped wires around
the cylinder, since these wave functions are localized in one
direction and extended in the other. Each wire is identified
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with a y,., and is composed of states with different values for
their k., band number, valley number, and spin [see Eqgs. (1)].
At the noninteracting level, hopping occurs between states in
separate wires if they have identical k,, valley number, and
spin (see Appendix C for details). This hopping decays as the
distance between wires along the cylinder is increased. Based
on this HWF construction, in the next section we will present
a HF study of a model consisting of active bands only with a
total Hamiltonian of the form

H = Hyin + Hine + Hyviro. 4

Hyi,, contains the single-particle terms in the Hamiltonian in-
duced by the CM, i.e., the hoppings between different wires as
mentioned above. The remaining two terms represent effects
of interactions: they are both proportional to e /e, where e is
the electron charge and € is the dielectric constant, and thus
vanish in the noninteracting limit. Hyg o, which is quadratic
in fermion operators, is responsible for two separate effects:
It takes the effect of filled remote bands into account at a
mean-field level and it also serves to avoid a double counting
of HF terms that are already taken into account in Hy, [13,16]
(see the discussion at beginning of the next section for more
details). Turning to the interaction term H;,;, we have chosen
the electron-electron potential to have a screened Coulomb
2 I/t

form as Vi, (r) = f?\r_l’ which is further projected onto

the active bands. The interaction retains its normal-ordered
density-density form with respect to spin, sublattice, layer,
and valley indices (more details are presented in Appendix C).
Note that due to the locality of HWFs, the electron-electron
interaction between the wires drops as the distance between
them is increased, and thus the total Hamiltonian is local in
the direction along the cylinder.

We conclude this section with some remarks regarding
the parameter values and conventions used: Via dividing the
energies and lengths by fivrky and é, respectively, we have
made them dimensionless, where kg = 47” i In this notation,
we define the dimensionless interaction strength parameter

Zint = % m, where A is the area of a moiré unit cell. Nu-
merically, gine = 1.01<2, and thus, a choice of € = 7¢) results
in gy, = 0.14 as an example.

The model introduced above comprises bands (in the par-
allel transport basis) that carry nonzero £1 Chern numbers;
thus a quantized Hall signal can be observed at integer filling
factors if with some interaction-induced effect, a suitable val-
ley and band polarization in the system occurs. As a result, it
is natural to utilize the present model to study the physics of
QAHE seen in some samples of TBG [5,6]. We will do so in
the following section for the two fillings, v = £3.

III. QUANTIZED ANOMALOUS HALL EFFECT
IN TWISTED BILAYER GRAPHENE

In this section, we present two separate HF studies in which
different choices of Hy o are utilized. We focus on the filling
v = £3 and explore the stability of QAHE phase in these
two different schemes. Before we go into the detail, we first
discuss how the HF procedure is carried out in general.

The HF procedure is implemented as follows: We fix
the filling and seek a Slater determinant many-body state,

composed of single particle states |y;) =), ¥ qle), that
minimizes the expectation value of the Hamiltonian Eq. (4),
where «, 8, ... denote the HWF basis indices k., y, &, m, s
(the states |a) will be normalized in this section). One seeks
|;) states by transforming the Hamiltonian Eq. (4) written in
the form

. 1 .
H = ZHO,aﬂ coCp+ 2 Z Vg po c&c;cﬂ,ca, (5)
af apa’p’

into a single-particle HF Hamiltonian, wherein the interaction
term is transformed into

HF _ ¥
Hy = E : CropChoty PR aar
k1k2,aa’bb/

X [Viakob o kit — Viaakobkia' kob'1- (6)

K20,k

In the above, a, b, ... (contrary to «, B, ...) show the HWF
indices except k,. Notice that we have dropped the x subscript
from k, and will do so from now on; the k-dependent matrices
P have the form P(k)us = D ¥/'1o ¥) - It has, furthermore,
been assumed that the translational symmetry around the
cylinder is not broken.

The above HF Hamiltonian depends on its own eigenstates
and thus we aim to obtain them iteratively: Starting from a
well chosen initial many-body state, at each iteration step,
P matrices are updated using the eigenstates found in the
previous step; a v-dependent number of these eigenstates with
lowest eigenvalues participate in forming the P matrices. The
resulting HF Hamiltonian is then diagonalized to yield the
updated set of eigenvalues and eigenstates. This procedure
is continued until convergence is achieved. We obtain the
sought HF many-body state as a slater determinant of the
converged eigenstates with lowest HF eigenvalues. Moreover,
the nearby eigenvalues above and below the Fermi energy
could be used to give estimates of the actual energies needed
for adding or removing an electron at this filling (Koopmans’
theorem [24]) [25].

The two approaches mentioned at the beginning of this
section are taken into account by two different choices for
Hyr o in the Hamiltonian Eq. (4). In the first study, Sec. IIT A,
we examine the motivation with which the HWF basis was
introduced: The interaction energy of different many-body
states are compared with Hyr o = 0. In particular, the energy
of the state that is described as a full band of electrons (v =
+3) or holes (v = —3) in the HWF basis is compared with
other HF many-body states. Note that this choice of Hypg = 0
results in a competition between the interaction energies and
the band-structure energies as given by the CM; the latter,
which could also be viewed as the hopping term in the HWF
basis, is kept in the analysis so one attains a measure for
defining strong and weak interaction regimes.

In the second study, in Sec. III B, on the other hand, we
take [26]

Hypo = — Z [Z(Va,ﬁ,ﬁ’,a’ - Va,ﬂ,a’,ﬂ’)] C;Ca” @

ao’ L Bp

where the o, o’ summation is done over all states in the active
bands, but the partial summation over 8, 8’ (indicated by
the prime on the sum) ranges only over those states in the
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active bands that are below the CNP of the CM. Note that
the latter states when written in terms of the HWF basis will
not be band diagonal. By taking Hyr,o to have the form in
Eq. (7), we are taking two separate effects into account: First,
a mean-field potential induced by the filled remote bands. The
second effect, instead, has to do with the fact that within HF,
the electron/hole dispersion will only agree (at best) at one
filling with the dispersion given by the term Hy;,. We take that
point to be the CNP of the CM bands in the second study,
i.e., we assume that the CNP dispersion given by the CM,
describing single electron or single hole excitation energies
on top of the CNP, is unaltered by HF (see Appendix C for
discussion). For this to be true, a HF effect of all filled bands
(including remote and active bands) at the CNP is subtracted.
The combination of these two effects results in a cancellation
of the mean-field effect of the filled remote bands and thus
one ends up with the form in Eq. (7) with only the mean-field
effect of active filled bands subtracted.

In the next two subsections, we present our numerical
results corresponding to these two studies.

A. First study

In this subsection, we consider a model in which
Hyrpo = 0, wherein a competition between electron-electron
interactions and the noninteracting hopping in the HWF ba-
sis enables us to tune the model into and out of the strong
coupling regime. Previous studies, working on generic models
similar to the one used in this subsection, have shown analyti-
cally that in strong coupling limits, valley polarization in these
two filling factors is expected [27,28]. Here, we present a
more thorough HF study of the Hamiltonian, trying to identify
different regimes in which QAHE could be achieved.

In a given setting, we say that the QAHE is stabilized
through HF if two requirements are met: (i) if we initialize the
HF iterative process with a fully spin-valley-band-polarized
state, the HF iterations lead to a final HF state that is only
achieved through smooth deformation of the spin-valley-
band-polarized state (see below for further discussion of this
notion of smooth deformation), and (ii) the final HF solution
properties in large enough systems do not change consider-
ably as the system size is varied.

This means that the QAHE state is at least a minimum of
energy; we have also tried perturbing the final HF state in
different ways to examine the stability of the HF solutions
and we have observed that the final many-body states gener-
ally show a high level of stability (see the discussion right
above Sec. III B for more on other possible HF solutions).
In each setting, we start with strong interactions first and see
if the QAHE state is stabilized, and then continue to lower
the interaction strength. We will, furthermore, use periodic
boundary conditions along the cylinder. For the numerical
results presented in this paper, the system is chosen to have
N, = N, = 20.

1. n = 0, short-range interaction

We now start to present our numerical HF results. We
construct the basis of HWFs by forming the parallel transport
basis on a finite lattice in k space as discussed in Appendix B,
and then make a Wannier transform along y for each k.
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FIG. 2. Thefillingv = —3,n = 0, and £; = 0.17a,, plots within
the first study, the angles are chosen around the magic value (¢ =
0.586 corresponding to & = 1.05°). (a) Density of electrons (number
of electron per unit length of the cylinder) versus k, (momentum
across the cylinder) for different flavors where s, £, m stand for spin,
valley, and band. @ = 0.58, A = 0 and furthermore g;,, = 0.05 have
been chosen here, this value for the latter corresponds to being
close to the strong interaction limit since the band width is very
small. Almost full polarization is seen here. (b) The HF eigenvalues
(energies), with the same parameters as described in (a). The Fermi
surface is shown with the dashed red line, one can observe a HF gap
which will be used as a criterion for determining whether QAHE has
been stabilized under HF iterations or not. (c) The same plot as in
(b) with A = 1.9 meV. One can observe a second gap that is formed
above the interacting one, due to the relatively large A chosen; it
separates the states belonging to the opposite sublattices. (d) The HF
gap divided by g as a function of g, for several parameter choices.
It can be inferred that approaching the magic angle and making A
larger makes the QAHE more HF stable.

The chiral model, i.e., when n = 0, is first considered, in
which absolutely flat bands are achieved at the magic angle.
We start with the small £; limit so the electron-electron in-
teraction Vi (r) is very short ranged. A more realistic longer
range interaction is considered later. Moreover, we also take
the twist angle different from but close to the magic value so
the bands exhibit a nonzero small width.

In the first setting outlined above, or concretely with the
choices n = 0 and €; = 0.17ay;, numerical analysis shows
that the QAHE is generically stabilized at v = —3 at large in-
teraction strengths, see Figs. 2(a) and 2(b), where the density
of different flavors along with HF eigenvalues (energies) are
shown for an instance where the interaction plays the domi-
nant role. Note that because of the nature of the HWF basis,
this is a C,7 broken many-body state, despite the fact that
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this symmetry is present at the noninteracting level. We define
a HF gap as the lowest unoccupied HF eigenvalue minus
the highest occupied eigenvalue; this quantity when divided
by the interaction strength g, serves as a good qualitative
measure of whether and to what extent the polarized state is
stabilized under HE.

Note that in Fig. 2(a), although the many-body state has
components in both HWF bands in a single valley and spin
sector, and the two bands have opposite Chern numbers, the
Hall conductivity signal resulting from such a state will be
quantized; to see why this is in fact true, let us consider this
HF many-body state as defining an effective filled band. For
a spin-valley-band polarized state which is achieved at large
interaction strengths, the filled band coincides with one of the
HWEF bands and thus has manifestly a nonzero Chern number;
we can then consider a HF solution for smaller interaction
strengths, where the single-particle states belonging to the ef-
fective filled band at each Bloch momentum could be written
as linear combinations of the two HWF bands within a single
valley; since the Chern number of a band is a topological
property, one expects it to be invariant under smooth deforma-
tions of the band; starting from a spin-valley-band polarized
state and decreasing the interaction strength, we expect that as
long as the HF gap introduced above is not closed, the Chern
number is intact and QAHE is expected.

A plot of such gaps as functions of interaction strength for
several parameter choices is shown in Fig. 2(d). Note that the
polarized state continues to exhibit HF stability as the inter-
action is lowered but becomes unstable when the interaction
energy per particle becomes roughly comparable to the band
width. Moreover, we consider a range of A from small to
large values (always smaller than the noninteracting gap to
remote bands); as shown in Fig. 2(d), regardless of the value
of A, large interaction strength stabilizes the QAHE, while
in the range of small interaction strength, larger A results
in a more stable polarization. In addition, at intermediate
interaction strength, a second gap between HF eigenvalues,
apart from the one induced by the interaction, is visible due to
the large sublattice potential and scales with A [see Fig. 2(c)];
obviously, we will keep track of the former to study stability
of QAHE. Also, as is expected and also shown in Fig. 2(d),
tuning the twist angle away from the magic value results in
weaker stabilization of QAHE and generally larger interaction
is needed to stabilize the QAHE.

At the filling of 43, on the other hand, starting from large
values of interaction strength, with the present settings, the
QAHE state is not stabilized. However, upon decreasing the
interaction strength, interestingly, when the interaction energy
per particle becomes comparable to the band width, a narrow
interval of interaction strength allows for the QAHE to be sta-
bilized, although it gets unstable again for smaller interactions
[see Fig. 3(a)]. This observation holds true irrespective of the
value of A.

The above discrepancy between the two filling factors indi-
cates that there is a particle-hole asymmetry in the system with
the current choice of the Hamiltonian, although the noninter-
acting Hamiltonian is chiral and thus particle-hole symmetric
with and without A. This asymmetry could be understood
by noting the following fact within the active-bands-only
model we have chosen to work with here, i.e., the choice of
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FIG. 3. Normalized gaps as functions of gi, with longer range
interaction and nonzero 7 in the first study. « = 0.58, and A =
1.9meV have been chosen. (a) Here both of the fillings are con-
sidered still in the chiral limit (n = 0). The QAHE is more stable
at larger screening lengths; interestingly, it is stabilized even for
v = +3 for large interactions, if a large enough screening length
is chosen. Note that this feature is lost for larger n values and, in
particular, nyhys = 0.8, as discussed in the main text. (b) Gaps are
drawn for v = —3 with £; = 1.2a,, here, as 1 is increased. Increasing
n makes QAHE less stable until it is not stabilized at all even at large
gine at n =~ 0.9 — 0.95.

Hyro = 0: Starting from the extreme cases, there is a differ-
ence between a single electron at v = —4 and a single hole at
v = 44, in that the hole senses an additional potential due to
the presence of eight full bands of electrons. In the same fash-
ion, a single hole senses an additional k-dependent potential at
v = +3 when compared with an electron at v = —3, and thus
some k values in the hole bands could be preferred over others;
more details can be found in Appendix D. This single hole
potential is interaction induced and thus becomes stronger as
the interaction is raised. One can argue that destabilization
of QAHE in the strong interaction limit of the filling +3
presented above happens exactly due to this potential; holes
prefer to occupy some momenta more than others. As we will
see below, using a longer range interaction could weaken this
asymmetry.

Let us mention two important points regarding the particle-
hole transformation of the many-body state here before
moving on: our choice of Hyro = 0 here means that sin-
gle electron excitations on top of v = —4, receive no HF
correction in their dispersion. Had we chosen another form
for Hyg,0, so the holes at v = +4 experienced no change
in dispersion from the CM, we would have gotten the same
theory but with electrons replaced with holes; in other words,
using this prescription for Hyp,o will yield the particle hole
transformed version of the present model with Hyg o = 0. Ad-
ditionally, here we only discussed the model at n = 0, where
there is a chiral symmetry in the model, while for generic
n, there is an approximate particle-hole symmetry in the CM
which plays a similar role. With this particle-hole symmetry,
one can repeat the above considerations for nonzero 1 as well,
i.e., show that the symmetry between holes and electron at the
two fillings 43 is broken within the present model and also
that in a particle hole transformed version of the model, holes
will play the role of electrons (see Appendix D for details).
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2. 71 = 0, longer range interaction

Upon using longer range interactions, which are more real-
istic, some of the results presented above are altered: a longer
range interaction does not change the picture at v = —3 much,
i.e., with the use of longer range interactions, the QAHE
is still stabilized at large interactions and stability is lost at
small enough interaction strengths [see Fig. 3(a)]. However,
at the filling +3 the effect is more remarkable: the narrow
range of the polarized states is made wider. As can be seen in
Fig. 3(a), above some intermediate screening length, even at
large interaction the QAHE state is stabilized. Generally, we
have observed that increasing £ makes QAHE more stable.

3. n # 0, away from the chiral limit

We take another step toward making the model more re-
alistic by choosing 7 to be nonzero and increasing it to the
physical value npnys ~ 0.8 [29]; the physics at v = —3 stays
similar to a high extent even up to npnys. However, at larger
n, i.e., n = 0.9 — 0.95, one starts to observe that the HF itera-
tions do not stabilize the QAHE at this filling even with largest
interactions. This means that the spin-valley polarized state
ceases to be a local minimum in energy (among Slater deter-
minant states) even when the interaction plays the dominant
role. As can be observed in Fig. 3(b), the HF gap becomes
smaller as n is increased. For the filling of +3, on the other
hand, we observed that although large interactions of a long
enough range stabilizes QAHE at small n, for larger n and,
in particular, for the physical value, this ceases to be true no
matter how long range the interaction is chosen.

4. Symmetry transformed states

Before closing the discussion of our first study, we would
like to comment on other QAHE states that are obtained
by symmetry transformations on the nearly spin-valley-band
polarized ones. We start by considering the chiral limit, as was
mentioned earlier, a U(4)xU(4) symmetry of separate trans-
formations of the two Chern sectors is seen in the interaction
part of the Hamiltonian [16]; as discussed in Appendix C,
when the kinetic terms are also considered in the chiral limit,
the symmetry of the total Hamiltonian reduces to U(4); this
is due to the fact that the unitaries acting in the two Chern
sectors cannot be chosen independently (see Appendix C).
Apart from nearly polarized states in our numerics, we also
observe states obtained by acting with such transformations
on the nearly polarized states. The above intra-Chern-sector
symmetry does not survive moving away from the chiral limit.
It is also worthwhile to mention that apart from the ones
discussed above, we did not obtain any other solution to our
unrestricted HF calculations.

Next, we turn our attention to a second study with a pro-
jected Hamiltonian.

B. Second study

In this subsection, we work with a Hamiltonian that is
obtained by projecting an interacting Hamiltonian onto the
subspace of active bands, and the zero point of the HF ap-
proach is chosen to be at the CNP of the moiré bands, i.e.,
we will use Eq. (7). Unlike the previous case, this choice

Energies/ gint

(a)

FIG. 4. The HF results obtained within the projected model, i.e.,
the model used in our second study. (a) The converged HF energies
normalized by g, versus k.. The plots on the left and right columns
correspond to = 0 and n = 0.8, respectively, while plots on the first
and second rows correspond to v = —3 and v = +3, respectively. In
all four subplots, we take « = 0.58, A = 0, £; = 0.5ay,. The interac-
tion strength is chosen as gi,, = 0.05 and 0.002 for the left and right
columns, respectively. Note that plots in each column have the same
parameter values except for the filling factor. It can be seen that the
HF energies at the two fillings v = %3 can be transformed into each
other by the particle-hole symmetry of the CM, which, in particular,
needs k, — —k,. It can be seen that for n = 0, the two sets of HF
energies are also related by the chiral symmetry of the CM. (b) The
gaps as functions of g;,. « = 0.58, A = 0 are chosen for this plot
and 7 and £; are varied.

results in a particle-hole symmetry between the many-body
states at the two filling factors +v and —v (see Appendix D
for details), and therefore we will focus on v = —3 only in
this study. Note that this particle-hole symmetry is present
regardless of the value of n and is reflected in the HF
spectrum. As an illustration, we present two sets of con-
verged HF energies shown in Fig. 4(a) with n =0 and n =
0.8. The HF energies at v = 43 and v = —3 are related
by the particle-hole transformation which, in particular, in-
volves a k, — —k, transformation. Notice that for n = 0,
these two sets of HF energies are also related by the chiral
symmetry.

Figure 4(b) shows the HF gap as a function of interaction
strength for several parameter choices. We observe that for
large interaction strengths at small n, QAHE is stabilized
under HF iterations but this does not happen for larger 7.
In particular, the QAHE phase is HF stable at npnys = 0.8
for a small window of parameter choices and is absent when
n = 0.5. We generically see a bump in the rescaled gap as
shown in Fig. 4(b) when interaction strength is comparable
to the noninteracting energies. This occurs due to a partial
cancellation between quadratic terms of the Hamiltonian that
arise from Hyi, and Hyp,o; it is indeed this same effect that
gives rise to the narrow window exhibiting QAHE at 7ppys.
Furthermore, the destabilization of the QAHE at larger n
values for large giy is attributed to the fact that Hyg o has
quadratic terms that scale with gy, and these terms prefer
states with particular k, values over others.

The above results have focused on the A = 0 limit. One
can also consider finite A or even the large A limit. The latter
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limit is defined by requiring that the noninteracting gap due
to A is not closed by the interaction-induced effects, hence
schematically gin < A. But this limit also results in similar
behavior of the HF stability to the present model and we will
not present these numerical results here.

C. Discussion

We have considered two different models with different
Hyr 9, in a manner that the HF zero point is chosen at v = —4
and v = 0 (CNP), respectively. The former case, as is dis-
cussed in Appendix D, is actually also related to a model with
HF zero-point choice of v = +4, by a particle-hole transfor-
mation. More specifically, the many-body states at the filling
factor v that are obtained using the HF zero point of v = —4,
with an appropriate replacement of electrons with holes, are
equivalent to states at filling factor —v, if the HF zero point
is moved to v = +4. On the contrary, the choice of v = 0 as
the zero point, i.e., the case in the second study, is always
particle-hole symmetric.

We would like to emphasize that the particle-hole sym-
metry discussed above is expected to be broken even at the
noninteracting level when actual physical effects like lattice
relaxation are taken into account. However, we should bear
in mind that if the particle-hole symmetry is not broken at
the noninteracting level, the interactions will also keep it
intact. On the other hand, the current experiments exhibiting
QAHE [5,6] only observe the effectat v = 43, and not at v =
—3, which is an indication of particle-hole symmetry break-
ing. On a phenomenological level, this makes us speculate
that among the three different cases discussed above, the HF
zero-point choice of v = 44 is probably most relevant to the
physics seen in the samples exhibiting QAHE. Let us mention
that, ultimately, within the framework of this paper, we cannot
argue in favor of any of the above three choices. However, we
note that a definitive answer to this issue needs further study
of several other effects that are neglected here; in particular,
consideration of the particle-hole symmetry-breaking effects
(such as lattice relaxation as mentioned above) and also more
careful treatment of the effects of the filled remote bands could
play decisive roles in determining which of the above choices
(if any) could serve as a consistent physical model describing
the relevant physics.

IV. CONCLUSION

To summarize, we introduce the hybrid Wannier basis in
the CM of TBG and study the strong interaction effect by
using the self-consistent HF approximation. We focus on the
filling factors £3 and investigate the stability of QAHE phases
at these two fillings. Interestingly, we observe that stability of
the QAHE depends crucially on the zero-point choice of the
HF dispersion. In the range of physically relevant parameter
choices, we see that the QAHE is most robustly stabilized at
large interaction strengths under HF for the zero-point choices
of 4, and the corresponding filling factors of v = 3. We
note that the QAHE is observed in experiments on magic
angle TBG at v = 43. Moreover, we numerically observe
that reducing the sublattice potential, reducing the screening
length, and tuning away from the magic angle generically

make the QAHE less stable. In particular, the weakened sta-
bility by reducing the sublattice potential is consistent with
experiments [5,6], which have observed the effect in TBG
samples with aligned hBN substrates, which is believed to
induce a sublattice potential.

Further development of the present method can be envi-
sioned. The HWF basis we introduced in this paper might be
used to find possible fractional phases at noninteger fillings
and other interesting phases at integer filling factors. Another
possible application, for which HWFs are particularly well
suited, is to address situations containing spatially varying
configurations such as domain walls between different sym-
metry broken states or states with one-dimensional “stripey”
translational symmetry breaking. We leave these directions for
future study.
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APPENDIX A: THE MODEL

In this Appendix, we briefly review the CM of Bistritzer
and MacDonald, which is the starting point of this paper. We
take the Hamiltonian for the two valleys (§ = £1) as

H(x)=—i (V + ié[—fz%o +qh]) (607, 0%)

+a TN fo(x) + Bi(x)a T + pa(x)o "]+ Hee.
(AD)

The Hamiltonian and the position are made dimensionless

by dividing by hvpky and é = 3;—nM, where ay = % is the

moiré unit length (a is the distance between adjacent carbon
atoms in graphene). The Pauli matrices t°, o denote the layer
and sublattice degrees of freedom. There are two parame-

ters in the above Hamiltonian: o = 7248 ~ ZAB gpd 5 = 2LaA,
hvpky vp O WAB

The moiré periodic functions B,(x) = Z?:o e 1E2)*rénj gre
defined in terms of moiré reciprocal lattice vectors Q, =
0, Q) =+3(-1%),0,=v301, %), and also with ¢ =
e?i/3 Also, q, = (‘/7§, 0) and g, = (0, —1). Notice that we
have neglected the opposite rotation of sublattice matrices
in the two layers in the Hamiltonian Eq. (A1), which is a
small effect (order 0) for small twist angles; this results in an
approximate particle/hole symmetry which is detailed below
along with some other symmetries of the CM.

The presence of a C; T breaking sublattice potential is also
considered in this paper, which is taken to be of the form A o*.

Some symmetries of the CM:
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(1) The neglect of the rotation of the sublattice matrices
results in a particle-hole symmetry as defined in Ref. [18] (see
also Ref. [19])—note that it is an intravalley transformation,

U Hk ) (=%, ),y = —Hi (x), (A2)

where Uy, = 0*t%€*¢4)* This symmetry is preserved even
if a sublattice symmetry-breaking term is also present. One
should have in mind that this particle-hole symmetry is dif-
ferent from the chiral symmetry of the Chiral model, since
the latter keeps the Bloch momentum intact and the present
particle-hole symmetry takes (ky, k,) — (—kx, k,) and also is
present regardless of the value of  within the above approxi-
mation.

(2) The above form of the Hamiltonian (no sublattice po-
tential) has a C;7 symmetry, which also acts within a single
valley,

Ul HE (—0)Up, 1 = Hi(x), (A3)

with Ug,7 = o*. In the plane-wave basis, it has the form o*IC,
where /C is the complex conjugation.

(3) There is another intravalley symmetry of our interest,
which is a mirror symmetry with respect to y,

Uyt Hok 1) (6, =)Uy,, = Hie(x),

where Uy, = o*t*. This symmetry is also only present when
A = 0, and thus when C, 7 is not broken.

(4) There is a time-reversal symmetry that acts between
the two valleys:

H_g(0)|io_ = He()|g=+1-

(A4)

= (AS)

APPENDIX B: MAXIMALLY LOCALIZED HYBRID
WANNIER FUNCTIONS

As discussed in the main text, the maximally localized
HWFs are actually maximally localized one-dimensional
Wannier functions for each k, that are derived using the
method in Ref. [20]. In this Appendix, a sketch of the pro-
cedure is presented, and also special cases are discussed in
more length.

At each k,, the spread function

Qe = D L0 mios — OVap el

where the expectation values are calculated with respect
to states |ky;y., m, &), is minimized through suitable gauge
transformations of the Bloch functions; the spread function
consists of an invariant part €2, which does not change under
gauge transformation at all, and a contribution which can be
minimized; the latter on its own comprises a band-diagonal

2
part Qp = 5 > 5 2, (~ImInMEE —by(y)m.e)” and
' 2
a band-off-diagonal part Qop = NL S E pR— IMEE

mm’
Here we give more details for the procedure discussed in
the main text; starting from a smooth gauge for the original
Bloch functions, suitable off-diagonal gauge transformations
are made so the M matrices are updated to be Hermitian. This
is done by making use of the singular value decompositions
(SVDs) of the M matrices as follows (for every M, one can
define the SVD to have the form M = VW, where V and

W are unitary and ¥ is diagonal with nonnegative entries):
Starting from a point in the BZ for every k., say k,o = —%
or, in other words, the left edge of the rectangular BZ, one
can do series of gauge transformations separately along each
constant k, line, so all (except for the last one completing the
1D loop) M matrices become Hermitian; this is done by the

Gauge transformation

(luky k1805 Uk, ky2.))

= (g ki1.6)s 1k 2.6))  [OWV Dy WV ],
(B1)

where - denotes a matrix multiplication in the space of bands
and the k,, £ indices on W and V matrices are suppressed. In
traversing the BZ in the y direction once, one is able to define
the accumulated matrix

Ak =WV gty - WV 1. (B2)

Note that this matrix naively gives the prescription for a
change of basis at ko, the point one started with. However, we
would like to end up with the state we started with so a smooth
Bloch basis is defined throughout the 1D Brillouin zone. One
can achieve this if a series of actions are taken: At all k, points,
a unique basis change is made with the unitary matrix that
diagonalizes Ay, ¢, i.e., the matrix V;, where VATAVA = A with
A a diagonal matrix.

This last basis change updates all of the M matrices (ex-
cept the last one at —ky o — by, more on this below) to have
the form of a Hermitian matrix. The Hermitian matrices are
proportional to unity to first order in by, and this ensures that
Qop shown above vanishes to first order in lattice spacings.
However, there remains band-diagonal total Berry phases in
this new basis which are invariant under single band gauge
transformations; these are the inverses of the eigenvalues of
the A matrix defined above and are at this stage accumulated
in the last M matrix, i.e., at —ky o — by. One should make a
band-diagonal gauge transformation (a phase redefinition) to
ensure that this Berry phase is distributed evenly along the
one-dimensional Brillouin zone to make Qp vanish as well.
This final (band diagonal) gauge transformation results in the
final form Ky for the M matrices, with a Hermitian K and a
diagonal unitary y for the M matrices.

Note that an evenly distributed Berry phase means that

y*¥ is independent of k, and in fact equal to A7% . Fur-
thermore, bear in mind that the matrix AT is equal to the
path-ordered product of M matrices to first order in b, for
each k, and thus is equal to the Wilson loop at k, to this
order. Noting that eigenvalues of the Wilson loop operators are
related to the WCCs of the final bands means that eigenvalues

20—
of y*% take the form e™ **", where y;_, denotes the WCCs
at k, in units of %aM.
The U matrices defined in Eq. (2), can be explicitly derived
as

ky—ky 0

U = [(WV Ty WV 1 Vi (1) %0, (B3)

where all right-hand side matrices are evaluated at k,, £.
Finally, we discuss further the special cases mentioned in
the main text:
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(1) In the case where A = 0, due to the C,7 symmetry
of the Hamiltonian, one can work with Bloch eigenstates of
Hamiltonian that are C,7 symmetric. Any inner product of
two C,7T eigenstates is real; this means that the M matri-
ces have the form exp [in’my ¢by] + (’)(bi), where p” acts in
the two-dimensional band space. Thus, every SVD operator
VWT could be taken to be equal to M = exp [in'my ¢by] +
O(bﬁ) and, furthermore, V5 could be taken to be the matrix
that diagonalizes 1”. Additionally, the integrals & [ dk, my ¢
yield the single band total Berry phases of the two bands
in the parallel transport basis which should be distributed
evenly along the strip with k.. All this means that the states

A

5 (Wkre) £ ilYra)), with QT Wimg) = [V ), form
the parallel transport basis, if the phases are chosen properly
to distribute the single band Berry phases evenly along the y
direction.

(2) In the case of n = 0, regardless of the value of A, the
sublattice polarized states form the parallel transport basis.
One can argue for this as follows: Starting from A = 0, we
note that states with opposite sublattice polarizations auto-
matically have zero contribution to Q¢p. Suitable single band
gauge transformations are furthermore needed to minimize
Qp as well. On the other hand, we know that the two bands
in the chiral limit are related by [23] [k e,1) = i0%|Yre2).
This means that adding the term o *A to the Hamiltonian does
not change the subspace of active bands. Thus, previously
found sublattice polarized states still represent the active-band
subspace and with suitable single band phase redefinitions
will form the parallel transport basis. It is important to note
that the addition of A does not change Wilson loop matrices
for each k., and thus the phases chosen for A =0 in the
parallel transport basis remain valid choices for nonzero A
as well.

APPENDIX C: HAMILTONIAN IN THE HWF BASIS

In this section, we describe how different terms of the
Hamiltonian are derived in the HWF basis.

(1) Kinetic term:

Hyi, could be written in different bases; we start by writing
it in the basis of original Bloch eigenstates:

e 1 (e
ke _ W(gmj) Hin (Wicr6). W)
xtVy ¥

k;
B (E,E 0 )
- e )-
0 EX

This defines the diagonal energy matrix E¥¢. The kinetic
term in the HWF basis then reads

(CDH

peve Kk 8 €

L (kv LETN
— x>Jc . . 1 . 2
Nx <<k;,y/c,2’§/| kin (|kx’ycv ’$>’|kx7yca 75))

1 o .
=811 8¢ — elkv(ycf}’c) ka T Ekquy;g Uk,E
Kk, O £ N, Ek [( ) ]
' (C2)

and this defines the hopping matrix. As a result, the kinetic
term can be written as

Hin = Z

ke, yesye.m',m,§ s

. . Ve—Ye ke
ks v, m' &, s)(kyyye, m, &, s|t)s .

(C3)
where spin index has also been added trivially.

(2) Interaction terms:

The electron-electron interactions involve all electrons re-
gardless of which moiré bands of the CM they belong to.
However, here we are making an assumption that the gap be-
tween the active bands and the remote bands is large compared
to the electron-electron interactions and thus it is legitimate to
take the active bands as rigidly empty or full.

First, we discuss the four Fermi interaction Hamiltonians
between the electrons in the active bands in the HWF basis; it
takes the following form—the notation will be changed from
y. to y in HWF indices:

11
Ho=5— Y > Tgppimee
2N,
T kD] m] €85
0 T

Ck/\,lvylvmlvévs Ckx,zqyzqmz,%".s' CkxAz,y,z,ms.E’,S’

c
kya,y4,m4,8,s’

(o2))

with the coefficients shown by Z as follows:

Lik1s 191 1 .87
1 .
_ i(ky 1y1+ky2y2—ky 393 —ky.4y4)
N2 Ze ’
Y Tk

1
X { m XG: Ok, +hky—ks—ks,G

x [Zv(kl —ks — AG) Ay, mys(k1, ks, AG)
AG

X A;}imzqéf(k% k,, AG — G)i| } (&)

In the above equation, we take the electron—electron potential
7 e 2

to have the form V(q) = ;7 Nz Furthermore, the form

factors are defined in terms of certain inner products of paral-

lel transport basis,

Amyms i (K1, kg, AG)
= Z Z&l}k,,ml,g(Gl,ar)fl;k4,m4,g(G, + AG, 07),

G, ot
(Co)

where the ¢’s are coefficients for expansions of parallel trans-
port Bloch states in terms of plane-wave states, i.e., |&k;m,g) =
YV NxNy ZG’(”— ¢k,m,§ (G, O'T)lwk+G,ar,E>'

Second, we discuss the terms shown in the main text by
Hyir 9. Although remote bands are not treated as dynamical, a
proper projection of the interacting Hamiltonian onto the ac-
tive bands needs inclusion of an induced mean-field potential
due to the filled remote bands on the electrons in the active
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bands. This contribution will have the form

HMF, ind = Z |:Z (Va,ﬂ.ﬂ/,a’ - Va,ﬁ,a’,ﬁ/)i| Clca,, (C7)

ad’ LGP

where «, &’ run over active bands and 8, 8’ run over remote
bands below CNP.

In addition, as discussed in the main text, we have taken
the zero point of the HF to be at the CNP of the moiré bands.
This means that at CNP, the single electron/hole dispersions
as given by the CM should be unaltered under HF. For this to
be true, we subtract the HF effect of the moiré CNP noninter-
acting state from the Hamiltonian. The addition of these two
effects will result in the form given in Eq. (7) in the main text
for HMF’().

There is a subtlety in the projection approach outlined
above; with the above projected model at hand, we have
considered changing the interaction strength in our study pre-
sented in the main text. This alters the coefficients of both
H;, and Hyg o (a change in the dielectric constant, for exam-
ple, could result in this effect). However, such a change will
result in a different single electron/hole potential according
to Eq. (C7); in particular, the single layer Fermi velocity
vr and the interlayer tunneling parameters waa, wap Will be
renormalized, and other single-particle terms will be induced
or altered. These can include, for example, nonlinearities
in the single layer dispersion in general, etc. A change in
UF, WAA, Wap parameters will tune the system away from
the magic angle range. In this paper, we have assumed that
such a change could be compensated by a change in the twist
angle so the system is tuned back to the new magic value
for the twist angle as the interaction strength is altered. We
have furthermore assumed that other induced effects (such as
the monolayer nonlinear dispersion) could also be corrected
by some means or are negligible and do not result in an
appreciable effect. These assumptions allow us to also change
the interaction strength in the terms correcting the zero point
of our HF, and we will be left with the form in Eq. (7) with
the interaction strength altered.

(3) Symmetries:

(1) The G,T, when present, acts on the parallel trans-
port basis as stated in the main text, and transforms one
band to the other with k unchanged:

r ot Yime) = (—r, 6T Vi me) " (C8)
This, in turn, implies

(l‘, O'T|kx, )’» m, é) = (—l‘, 6T|kxs —y, ms g)*
= {2y —r),otlke,y,m, &)". (C9)

Note that y is an integer times %* and we have used the
translational properties shown in Fig. 1(a).

(2) The particle-hole symmetry exchanges the two
bands of the HWF basis, taking k, to —k,. In the parallel
transport basis, the states can be related by this transforma-

tion as follows:

(r, ot Yime) = (—1)"i {e W7 (—1)!+7
X (=%, ), 6T V(—k byie)}.  (C10)

The factor (—1)"i in the above equation can be derived
in the C, 7 symmetric case explicitly; it furthermore can be
maintained in the A # 0 case as well by appropriate phase
redefinitions. The above property, furthermore, results in
the symmetry of WCC positions under k, <> —k,, as seen
in Fig. 1(b).

(3) The time-reversal symmetry also relates the HWF
states in the valleys in the following fashion:

<r’0"5|kx7)’,m’€) =<r’o—t|_kx9yvm7§>*‘ (Cll)
This symmetry can also be viewed in the parallel transport

basis as
r ot Pkme) = (rotl¥ 4 e)'.  (C12)

(4) Extra symmetry of the interaction term:

Interestingly, when C,7T is present, the above equations
show that under simultaneous action of the symmetries C,7,
particle hole, time reversal, and M, (not exhibited above for
the parallel transport basis) on a parallel transport band, one
obtains the other band with the same Chern number, i.e., one
with the parallel transport band number and valley number
swapped; explicitly, it is straightforward to show that the wave
functions in these two bands satisfy the following relation (we

will use the parallel transport basis for the following argument
and not the HWF basis):

(r, ot Yme) = (1) e ST (r, 5T [P )]
(C13)
This means that if one acts with this intra-Chern-sector trans-
formation on one creation and one annihilation operator with
the same spin and valley indices in the interaction terms,

+

.
Chiomi s Clomo &5 Chyms 85" Chaymy .5

(C14)
the matrix element of the interaction remains unchanged; this
implies the existence of a symmetry of the interaction term
of the Hamiltonian, which we discuss for the chiral limit and
also away from the chiral limit separately below:

(1) n =0, magic angle: In the chiral limit, since the
parallel transport basis is sublattice polarized, the in-
teraction in Eq. (C14) becomes of the density-density
type in the band index as well as the spin and valley
indices. This, along with the above observation of the
invariance of interaction matrix elements, implies that
the interaction terms could be grouped together so only

3 1 T T ck4,1,K
fermion bilinear terms (Ck,,l,K Ckl,Z,K’)<C and
k42K

N j c

f f ki 2,K : .

(ck] 2K Sk, K,) (C > appear in the four Fermi terms
. . kA ’ 1 ’K, . . .

of the interaction, where the spin indices are suppressed.

This means that separate unitary transformations within
each Chern sector keep the interaction intact. Upon further
including the spin rotation symmetry as well, one recovers
the two separate U(4) x U(4) symmetries of the two Chern
sectors discussed in Ref. [16].

(2) n =0, away from the magic angle: In the chiral
limit, the noninteracting Hamiltonian can be written in the
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parallel transport basis as follows:

R T T
Huin = €xlcy | g Chox = Chox Gy Thecl

_ (T § Crok
= (Ck,l,l( _Ck,Z,K’) (C ) +Hec.,
k1K

suppressing the spin indices. The creation operators in
the row vector correspond to one Chern sector and the
annihilation operators in the column vector belong to the
opposite Chern sector; this shows that the two unitary
matrices acting on the two separate Chern sectors need to
be related so the kinetic term remains invariant as well. In
other words, if, for example, the 2 x 2 unitary U is used
for the C = +1 sector, U u* (u* is the Pauli matrix acting
on the above doublets of fermion operators) should be used
for the C = —1 sector. This reduces the symmetry group to
U(4) when spin is also included.

(3) n # 0: Away from the chiral limit, apart form the
kl’l(’)( k“K)aHd (LkIZK Z,lk)( k42k)s

kg LK/

other combinations also appear in the four Fermi interac-

%20, “”)
4. 1.K

bilinears (¢,

tion; these terms could be written as (C;LI,I,K

and (G,ox % ax )(c‘k4 1K) This again means that the uni-

taries in the two Chern sectors should be related, and in
fact identical so these new terms also remain invariant. This
results in the symmetry group U(4) with spin included; this
last symmetry of the interaction term away from the chiral
limit does not survive when the noninteracting terms of the
Hamiltonian are considered.

APPENDIX D: PARTICLE-HOLE SYMMETRY BETWEEN
v=+4+3ANDv=-3

In this Appendix, we discuss how the particle-hole sym-
metry of the CM is displayed in the way the many-body states
are transformed between the two fillings v = £3. We should
note that for general 7, we have an approximate particle-hole
symmetry which needs a k, — —k, transformation as well. As
was discussed in the main text, this particle-hole symmetry is
broken in our numerical results for the first study, i.e., when
the HF zero point is taken at v = —4 or, in other words,
when only the HWF basis hoppings along with the interaction
between particles in the active bands are kept. It is broken
even in the limit of n = 0, i.e., the chiral model regardless
of the value of A. We will furthermore argue that had we
started with a model where the zero point of the HF is at
v = +4, we would have gotten the particle hole transformed
version of the same model; in this model, holes will play the
role of electrons. Finally, we will sketch how the particle-hole
symmetry is retained in the projected model of our second
study.

We consider the model of our first study in the chiral limit
for simplicity. The chiral symmetry of the model in this limit
indicates that each state with an energy E (k) has a counter-
part with the same k value but opposite energy —E (k). Note
again that this is different from the particle-hole symmetry we
discussed above (the latter is present with an approximation
of neglecting the rotation of sublattice matrices); we only

consider the chiral limit in the following but very similar
reasoning can be done for the particle-hole symmetry at gen-
eral n. The two states with energies £F (k) could be written
in terms of each other as |y 1¢) =i 0°|Yy2¢), where the
indices 1,2 correspond to states within the two active bands.
Thus, it is easy to form sublattice polarized states:

£ Pkaky.m e

~t

Ckmé ﬁ

It has been argued in the main text and the Appendix that the
states in the parallel transport basis also have such a form and
thus we take 6; ¢.m 10 be the creation operator in the parallel
transport basis. One can get the maximally localized HWFs
by doing a Wannier transform:

—ikyy ~T
ymé Ze Chom, &

[ef 16+ (=D)"ic, ] (D1)

(D2)

Note that on the left-hand side, i.e., Fermi operators in the
HWEF basis we are not using ~ signs anymore. We will also
drop the subscript of k,. The kinetic term of the Hamiltonian
in terms of these states reads

Hkin|A=0
NN Zeké[ewk’s ck1gckzg+e iy Ckzsckls]
y £k
1 ,
- y-ykt T
~ N, 2l Chy 1€ Sy
T e kyy

Y =y,k,E\k T

+ (t ) Cryng Cryrels (D3)
where @i k& = Prk,2.6 — Prk,. 16> and the hopping parameter
reads ¢ 0k E = ﬁ Zkv e% 0" V[¢ ¢ €] and the subscript
of k, is not shown from here on. When the sublattice potential
term is also present, we have argued above that since the
term o°A keeps the active band subspace intact at each k,
the states shown in Eq. (D1) still form the HWF basis; it is
straightforward to work out the sublattice potential form as
well, since HWF basis is sublattice polarized:

1
— i i
Hy = 3m A3 L6y Coyre — Gy Gyl (D)
ToEky
We also note that ¢y k2.6 = —@x.k,.1.¢. regardless of the value

of A.

Now it is straightforward to check that the terms in Hyiy,
including the A term, have the same form in terms of d oper-
ators as that in terms of ¢ operators, where they are defined as
in the following particle hole transformations:

"

Chyre = G yaes

il _
Crynge = _dk,—y,l,é' (D5)
This means that Hy;, is particle-hole symmetric with the above
prescription. Spin indices could be trivially added to the above

terms.
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FIG. 5. Eigenvalues of the single hole potential shown in Eq. (D8). The following set of paramters has been used: n =0, o = 0.58,
A =19 meV, £; =0.1ay, gn = 0.1. Lower energies are available for smaller k, values. A magnified view of smallest energies is shown in

panel (b).

One should furthermore consider the interaction term; the
interaction in general can be written as follows:

1
Hiy = 5 E E E Vkl)‘lém; koy2§'m/s k3ys€'m's kaysEm

k’s,y’'s EE'ss’ mm'

. N
X [Ckl Y., Ckz.yz,m’,é’,S’ ckz,yz,m’,é’,S’ Ck.«,yzx,m,é.,s]‘

(D6)

Since, (r, ot|kjyym&) = (—r, 51|k;(—y)m&)*, the interac-
tion terms have the following relations between themselves:

Vkl,Vl Em;koy2§'m'skays'm' kaysém

= Vi (ya)érm; ks (—y)& s ko (—ya)E/0s e (—y1 )i -

The interaction thus takes the following form in terms of the
d operators:

1 .
§ :V T g7
Hint = 5 £ 1,2,3.4 dl dz d3 d4

+ ng dy (=Vi231 + Vi213)
123

1
— V -V , D7
+ 5 %:( 1221 1212) (D7)

where for simplicity a change of notation has been made,
1 = (k1,y1,&,s,m), and so forth. The first term above is
identical in form to the original interaction Hamiltonian in
terms of ¢ operators. However, there are terms quadratic in
d, the single hole terms, that were not present in the original
Hamiltonian. Note that the terms on the third row are constant.
The terms on the second row, on the other hand, turn out
to be k, dependent and thus impose a single hole potential;
this is the origin of the particle-hole asymmetry between the
fillings £3, as was discussed in the main text. Note that unlike
this situation, in the usual Hubbard model with a single band,
nearest-neighbor hopping and constant on-site interaction, for
example, the analog of this term is just a redefinition of the
chemical potential.

The single hole potential introduced above has the follow-
ing explicit form:

;
Z Z dkzv)’zymzfzqsz dkz,ymmzfzﬁz

kayays ma&asa

X E [_zkaY1$|m1;kzyzézmz;kzyzézmz;klylélml
kiysmi

+ 85251 (szml Vkl,Vl &imyskay26imyskiyi§1my; kaysEimy I (D8)

This single hole potential has been calculated numerically for
a special case and its eigenvalues are formed, see Fig. 5. One
can observe that hole states with k, closer to 0 are preferred.

We briefly mention here what form of a particle-hole trans-
formation should be used, instead of Eq. (D5), when n # 0,
which means that there is no chiral symmetry in the model.
Generically and regardless of the value of A, the following
transformation could be used:

:j..

~F 5
—k,2,E’ d

Croe = (DY)

~F
k.16 E1LE
where for k = (k,, k;), we define k= (—k,, ky). Note that
for the sake of clarity, we have expressed the particle-hole
transformation for creation and annihilation operators in the
parallel transport basis, i.e., before the hybrid Wannier trans-
formation is performed. It is straightforward to repeat the
manipulations detailed above also with this transformation.
If A =0, the C, T is present and one can use a particle-hole
transformation that works within each valley:

g

Crae = iy e (D10)

e =i -
It is worthwhile to note that Egs. (D9) preserves the Chern
number of the band, while Egs. (D10) takes it to the opposite
value. In Fig. 4(a) of the main text, we have used the latter
transformation since C,7 is present.

It is simple now to see how one could obtain a model with
its HF zero point at v = +4; by requiring the second row in
Eq. (D7) to be canceled by the terms in Hyg . Note that this
will result in a Hamiltonian which is identical to the one we
used in our first study, except that the electrons are replaced
by holes. It is also easy at this point to check that the model
with its zero point at the CNP is particle-hole symmetric. This
happens due to the particular form that Hyg o takes for this
choice, i.e., Eq. (7); it is straightforward to check that the sum
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of Hyr,o with the terms on the second row of Eq. (D7) takes
the form of Hyr ¢ again but particle hole transformed.

APPENDIX E: COMPARISON WITH OTHER HARTREE
FOCK STUDIES

In this Appendix, we compare our approach and results
on the HF stability of QAHE with other recent HF studies,
namely Refs. [13—16]. We first summarize our results: Our
numerical analysis shows that with the physical choice of
n ~ 0.8, we observe a robust QAHE for v = —3 and v = +3,
if we set the zero point of our HF approach to be at v = —4
and v = +4, respectively. This QAHE is a consequence of
valley, spin, and band (in the HWF basis) polarization in the
HF solutions. On the contrary, if the HF zero point is taken
at the CNP, there is a particle-hole symmetry between the
many-body states found at v = £3; we only observe QAHE
in small windows of parameters in either of these two filling
factors for the choice of n = 0.8. Based on these observations
and following a phenomenological argument, we expect the
model with the HF zero point set at v = +4 to be most
relevant to physics seen in TBG samples exhibiting QAHE.
In the following, we compare the results of this model with
those presented in some of the recent related HF studies.

We start with Ref. [15], where a HF study is carried
out, keeping the remote bands as dynamical in the analysis.
Furthermore, the zero point of the HF Hamiltonian is taken
at the CNP of decoupled monolayer graphene sheets. These
authors have considered several filling factors, for example,
at CNP, they observe an interaction-induced gap correspond-
ing to a C, T broken phase for large enough interaction. On
the other hand, in the insulators they obtain at the fillings
v =41 and v = £3, C;7 is not necessarily broken and thus

the many-body states at these fillings do not automatically
show QAHE. This is in contrast to our findings outlined above
where an insulator exhibiting QAHE could be observed at one
of these two fillings, depending on the choice of the HF zero
point.

We next turn to Ref. [13], where a HF study has been
implemented, taking only the active bands as dynamical. The
zero point of their HF is set at the CNP of the active bands, and
this makes their model similar to the one in one of our studies.
The focus of this paper is on the CNP and they report observ-
ing a variety of different symmetry-broken insulating states
in their numerical results, including C,7 broken, spin/valley
polarized, etc. Reference [16], on the other hand, deals with
the full set of moiré bands in the HF analysis, but with the
main focus on the CNP also. Interestingly, the U(4) x U(4)
symmetry of the chiral model ( = 0) discussed in this paper
can also be seen in the HWF basis (and also the parallel
transport basis) as discussed in the present paper; for general
n, when G, T is present, an interaction-only model consisting
of active bands only displays a U (4) x U(4) symmetry (see
Appendix C).

Finally, we consider Ref. [14], where a HF study taking all
bands into account has been presented. The authors consider
several filling factors and, in particular, they are able to see
a QAHE at v = £3; the presence of a significant sublattice
potential is crucial for the QAHE to materialize. This is in
contrast to the present work, where the presence of a sub-
lattice potential can make the QAHE stronger, but it is not
necessary for the occurrence of the required flavor polariza-
tion. Within our study, we observed that a larger interaction
strength could compensate for the absence of the sublattice
potential.
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