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Abstract The primary objective of this work is to study the inverse problem of
identifying a parameter in partial differential equations with random data. We
explore the nonlinear inverse problem in a variational inequality framework. We
propose a projected-gradient-type stochastic approximation scheme for general
variational inequalities and give a complete convergence analysis under weaker
conditions on the random noise than those commonly imposed in the available liter-
ature. The proposed iterative scheme is tested on the inverse problem of parameter
identification. We provide a derivative characterization of the solution map, which
is used in computing the derivative of the objective map. By employing a finite
element based discretization scheme, we derive the discrete formulas necessary to
test the developed stochastic approximation scheme. Preliminary numerical results
show the efficacy of the developed framework.
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1 Introduction

Let (£2, %, P) be a probability space, that is, §2 is a nonempty set whose elements
are termed as elementary events, .% is a o-algebra of subsets of 2, and P a
probability measure. Let D C R” be a sufficiently smooth bounded domain and
dD be the boundary of 2. Given two random fields a : £2 x D — R and
f: £ x D — R, we consider the stochastic partial differential equation (SPDE) of
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finding a random field u : £2 x D — R that almost surely satisfies the following:

-V - (a(w, x)Vu(w, x)) = f(w, x), in D, (1a)
u(w,x) =0, ondD. (1b)

The above SPDE models interesting real-world phenomena and has been studied
in great detail in the deterministic setting. For example, in (1), # may represent
the steady-state temperature at a given point of a body; then a would be a variable
thermal conductivity coefficient, and f an external heat source. The system (1) also
models underground steady-state aquifers in which the parameter a is the aquifer
transmissivity coefficient, u is the hydraulic head, and f is the recharge. Some
details on inverse problems can be found in [6-8, 10, 12, 16, 18, 20-22].

A natural interpretation of (1) is that realizations of the data lead to deterministic
PDEs. That is, for a fixed w € §2, SPDE (1), under appropriate conditions, admits a
weak solution u(w, -) € HO1 (D).

The objective of this work is to study the nonlinear inverse problem of identifying
the parameter a from a measurement of the solution u of (1) by solving a stochastic
optimization problem of the following form:

minJ(a) := E[J(a, »)]. )
aeh

Here A is the set of feasible parameters, which is a subset of a real Hilbert space H,
J(a, w) is a misfit function, which we will define shortly, and E is the expectation
with respect to the probability measure.

If the expected value E[J(a, w)] is readily assessable, either analytically or
numerically, then (2) is practically a deterministic optimization problem that can be
solved by a wide variety of available numerical methods. However, the evaluation of
E[J (a, w)] is a challenging task. For instance, even when the random vector @ has
a known probability distribution, the computation of the expected value E[J (a, ®)]
could involve computationally expensive multi-dimensional integral evaluations. A
likely scenario is when the function J(a, w) is known, but the distribution of w is
unknown, and any information on w can only be gathered using sampling. Another
challenging situation occurs when the expected value E[J (a, )] is not observable,
and it must be evaluated through a simulation process. In all such situations, the
existing methods for deterministic optimization problems are not applicable and
ought to be appropriately modified.

Our objective is to employ the stochastic approximation approach (SAA) in
a Hilbert space setting for solving the nonlinear inverse problem of parameter
identification in stochastic PDEs. The SAA has a long history and has been used
for a wide variety of problems. On the other hand, SPDEs have also received a
great deal of attention in recent years. To the best of our knowledge, this is the first
time that the SAA approach is being used for nonlinear inverse problems. Before
describing the main contributions and our strategy, let us briefly discuss the key
ideas that have been used in these two disciplines.
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During the past several decades, the dynamic field of stochastic approximation,
initiated by the seminal paper by Robbins and Monro [32], witnessed an explosive
growth in numerous directions. To give a brief review of some work relevant to this
research, we note that Kiefer and Wolfowitz [25] extended the stochastic approx-
imation approach to finding a unique minimum/maximum of the one-dimensional
unknown regression function. An informative survey of the earlier developments in
the stochastic approximation is by Lai [27]. Many authors have studied stochastic
approximation in general space inspired by applications in control theory and related
areas. A small sample of such contributions includes the research by Barty, Roy,
and Strugarek [3], Goldstein [17], Kushner and Shwartz [26], Salov [35], Yin and
Zhu [37], where more references can be found. Interesting related results have been
given by Bertsekas and Tsitsiklis [5], Culioli and Cohen [9], and others.

On the other hand, the stochastic PDE-constrained optimization also attracted a
great deal of attention in recent years. Such problems emerged from two sources,
the inverse problems of parameter or source identification and optimal control
problems. For example, Narayanan and Zabaras [2] studied the inverse problem in
the presence of uncertainties in the material data and developed an adjoint approach
based identification process using the spectral stochastic finite element method.
In [38], the authors developed a scalable methodology for the stochastic inverse
problem using a sparse grid collocation approach. In [36], the authors developed a
robust and efficient method by employing generalized polynomial chaos expansion
to identifying uncertain elastic parameters from experimental modal data. In [30],
the authors presented an implicit sampling for parameter identification. In [34],
the authors studied the parameter identification in a Bayesian setting for the
elastoplastic problem. In [31], the authors explored the optimal control problem
for the stochastic diffusion equation. In [24], the authors focused on determining
the optimal thickness subjected to stochastic force. In [1], the authors investigated
the impact of errors and uncertainties of the conductivity on the electrocardiography
imaging solution.

Since the stochastic approximation approach is designed for problems with
either noisy experimental values or noisy samples of the function, it seems ideal
for solving inverse and ill-posed problems. However, the use of the stochastic
approximation approach is mostly non-existent. Note that Bertran [4], who studied
a stochastic projected gradient algorithm in a Hilbert space, gave an application
to optimal control problems where the data was uncertain. A formal study of the
stochastic approximation approach for optimal control in stochastic PDEs was
initiated independently by Martin, Krumschield, and Nobile [29] and Geiersbach
and Pflug [11]. Since the control-to-state map is linear, these problems involve a
convex objective function. On the other hand, the inverse problem we consider in
the present work is nonlinear, and the commonly used output least-squares (OLS)
objective functional is nonconvex, in general. Therefore, the classical results of
convex optimization cannot be combined with the SAA approach. We circumvent
this difficulty by employing a modified output least-squares (MOLS) objective
functional that uses the energy norm and is always convex. The use of the MOLS
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functional permits us to use the stochastic approximation to the inverse problem of
identifying a parameter in stochastic PDEs.

The contents of this paper are organized into five sections. Section 2 presents
a projected gradient scheme for variational inequalities in the general stochastic
approximation framework. We provide complete convergence analysis for the pro-
posed iterative scheme under weaker conditions on the random noise. In Section 3,
we focus on the inverse problem and present three optimization formulations,
namely, the OLS functional, the MOLS, functional, and the equation error (EE)
approach. The primary focus, however, remains on the MOLS approach. Besides
providing technical details on the three functionals in a continuous setting, we
also provide a discretization scheme, including discrete formulas for the objective
functionals and the gradient for the MOLS functional. Two numerical examples,
given in Section 4, demonstrate the feasibility and the efficacy of the developed
framework. The paper concludes with some remarks and a discussion of future
objectives.

2 Stochastic Approximation for Variational Inequalities

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, K C H be
nonempty, closed, and convex, and F : H — H be a given map.
We consider the variational inequality of finding # € K such that

(F(u),v—u) >0, forallveKk. 3)

We aim to develop iterative methods for (3) in the general framework of
stochastic approximation, that is, when the map F can only be accessed with some
random noise. As a particular case, we will explore the variational inequality of
finding # € K such that

(E[G(u, w)], v —u) >0, foreveryv e K, %)

where G(-,-) : 2 x H — H, and E[G(u, w)] is the expected value of G (u, w).
Our focus is on the following projected stochastic approximation scheme for (3):

upt1 = Pxluy — oy (F(uy) + w,)l], ay > 0. )

Here F'(u,) is the true value of F at u,, F(u,) + w, is an approximation of F at
u,, and w, is a stochastic error. In the context of (4), F(u,) + w, = Gu,, wy,),
where wj, is a sample of the random variable w. To be specific, here at iteration n,
we use a sample w, of w to calculate G(u,, w) and treat it as an approximation
of E[G(u,, w)] = F(uy). Evidently, F(u,) can be approximated without any
information on the probability distribution of w.
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We recall that, given the probability space (§2, ., IP), afiltration {%,} C % is an
increasing sequence of o-algebras. A sequence of random variable {w,} is termed
to be adapted to a filtration .%,, if and only if, w, € %, for all n € N, that is, w,
is .%,-measurable. Moreover, the natural filtration is the filtration generated by the
sequence {w,} and is given by %, = o (w, : m < n).

The following result by Robbins and Siegmund [33] will be used shortly:

Lemma 1 Let .%, be an increasing sequence of o-algebras, and Vy,, a,, b,, and
o

¢n be nonnegative random variables adapted to %, . Assume that Z a, < oo and

n=1
o
an < 00, almost surely, and
n=1

]E[Vn+1|§n] < +a)Vy —cp + by.

o
Then {V,,} is almost surely convergent and Z cn < 00, almost surely.
n=1

We also need the following notions of monotonicity and continuity:

Definition 1 Given the Hilbert space H, let F : X — X* be a nonlinear map. The
map F is called:

1. monotone, if
(Fu— Fv,u—v) >0, forallu,v € X. (6)
2. m-strongly monotone, if there exists a constant m > 0 such that
(Fu—Fv,u—v)zmHu—sz, forallu,v € X. @)
3. L-Lipschitz continuous, if there exists a constant L > 0 such that
|Fu— Fu|| < L|lu —v||, forallv,v e X. ®)
4. hemicontinuous, if the real function ¢t +— (F (u+tv), w) is continuous on [0, 1],
forall u, v, w € X.

The following result provides the convergence analysis for the scheme (5):

Theorem 1 Let H be a real Hilbert space, K C H be nonempty, closed, and
convex, and F : H — H be given. Let {w,} be an H-valued sequence of random
variables on a probability space (2, .%,P). Let {u,} be the sequence generated by
(5) and F#, := o (uy, ..., u,) be a filtration on (2, %, P) such that {u,} is %#,-
measurable. Assume that the following conditions hold:

(A1) Thereis a constant ¢ > 0 such that |F (w)| < c(1+ ||u|), foreveryu € K.
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(Az) F is m-strongly monotone and hemicontinuous.
(A3) There are constants ¢y > 0 and ¢ > 0 such that

IE [wn]| Zul | < c1Bn A+ 1F @)D, Bn >0, €))

1
E[lonl?1 %5 ] < e2 (1 + 8—||F<un>||2) L8>0, (10)
n

(Aa) The sequences {ay}, {Bn}, and {8,} of positive reals satisfy:
Zoz =00 Za2<oo Za—3<oo Zaﬁ < 0 (11D
n ) n ) (Sn , nPn .
neN neN neN neN

Then, {u,} converges, almost surely, to the unique solution u of (3).

Proof Due to the strong monotonicity of F, variational inequality (3) has a unique
solution u € K. Then, we have u = Pk (i), and by (5) and the m-strong
monotonicity of F, we get

ltnt1 — @ll* = | Px (un — 0t (F (un) + @n)) — P (@)|*
< llun — it — an(F () + )|
= llun — ll* + g | F (un) + @nll* — 200 (F (un) + @p, ty — i)
< (1 = 2map)|luy — all* + 202 F (un)|* + 202 | wg |12

— 20t (@p, up — ),
where we used the m-strong monotonicity of F' to deduce that
(F(un)s ttn — i) = mlluy — > + (F (@), un — i) = mlu, — il
Next, by taking conditional expectation with respect to .%,,, we deduce
E (w1 — @l*1: 7] < (1= 2ma) un — l* + 20 | F () I
+ 262K [0 |21 70 | + 2alltn = GIE [0 Z] [ (12)
To find bounds on the terms in (12), we begin by noticing that

IF (un)ll < c(1 + l[unll)
< c(l+ ull) + cllun — ull
< ki(d + llup —ul), 13)

where k; := c¢(1 + |lit]]), and hence by setting k» := 4k?, we obtain
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202 F (un)|1* < koo2(1 + llun — i]|?). (14)
Moreover, by the inequality a < 1+ a?, which holds for all a € R, and (13), we get

ltn — GINE [n] ] | < Bullen — @l (14 | F (wa)l)
< Bullun — all(1 + ky + ki luy — i)
< B+ k) llun — il + ki Bollun — it
< Bu(L+ kD)4 + lun — l|*) + ki Bullun — it*
< Ba(L+kp) + (14 2k1) Bullun — il|?,
and hence setting k3 := 2(1 + 2k;), we obtain

20, |ty — || B [wn] Z] || < k3ot Bu(1 + Il — it %) 15)

Finally, using (13) again, we obtain

Fu,)|?
E[lonl?17:] < 2 (1 N ll(g_ﬂl)
n
2k3(1 _ o2
§c2<1+ i€ +|<|S’4n i ))
n
200k? )
o+ S 1(1+||Mn—u||2),
n

and hence, setting k4 := 4czk%, we obtain

k4a,% k40[%

On On

202 [ lon 1.7, | < 2207 + luen — ] (16)

Summarizing, due to (12), (14), (15), and (16), there is a constant k > 0 with

_ ko? _
E[lltps1 — it)*.Fn] < (1 — 2may, + ka2 + ka, By + 5 ) lluy — i)
n

ko
+ ke + ke B + (17

n

which can be written as

E[lltnsr = @217 | < (4 @) lun = @l = e + by,
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where

ko2
ap = ka,% + ko, By + 5 L

n

2 kay
b, = ko + ko, B + 5

n

. =12
Cp = 2moy |luy — u|”.

Since E a, < oo and E b, < o0, as a consequence of Theorem 1, it follows that
neN neN
Pa)

llu, — ul|“ converges, almost surely, and

> 2may |lu, —ill|* < 4o,
neN

which, due to Z o, = 0o, confirms that ||u, — u|| — 0, almost surely. The proof

. neN
is complete. O

We shall now discuss two special cases of the above result:

Corollary 1 Let H be a real Hilbert space, K C H be nonempty, closed, and
convex, and F : H — H be given. Let {w,} be an H-valued sequence of random
variables on a probability space (2, F, P). Let {u,} be the sequence generated by
(5) and F#, := o (uyg, ..., u,) be a filtration on (2, F, P) such that {u,} is %#,-
measurable. Assume that the following conditions hold:

(C1) F is m-strongly monotone and L-Lipschitz continuous.
(C2) ElonlZal =0, and Y a2 [lon]*| 7] < oo.
n

(C3) a, € (0,2m/L?).
Then, {u,} converges, almost surely, to the unique solution u of (3).

Proof Note that u = Pg(u — o, F (1)), and hence

ltps1 — ill* = | Pk (un — ot (F () + @p)) — Pi (it — a F (@0))||*
< lltn — it — 0t (F (un) — F(it) + wn) |
< llup — i) + 21| F (uy) — F(it) + wnl*
— 20 (F (uy) — F (i) + @y, ty — i)

< (1 = 2may, + 202 luy — i)* + 200 |0n |* — 2060 (0n, ty — i),

and by taking the expectation past .%,, we deduce
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Bl — @21 Z0] < (1 = 2may + 26217y — > + @28 [ o217, ).
which can be written as
E [ltnst = 1217 < (1 + @) lun = @12 = o + b,

where for a positive constant k£ > 0, we have
a, =0,
b = GE [lonl21 7).
Sp = 2(aym — oz,zle),
Cn 1= Sullun — .

Due to imposed conditions, we have Z a, < oo, and Z b, < oo, almost surely.

n=eN neN
00

As a consequence, |u, — i||> converges almost surely, and E ¢, < 00, almost

n=1
surely. Furthermore, since s, is bounded away from zero, we infer that the sequence
{u,} converges strongly to u, almost surely. The proof is complete. O

Corollary 2 Let H be a real Hilbert space, K C H be nonempty, closed, and
convex, and F : H — H be given. Let {w,} be an H-valued sequence of random
variables on a probability space (2, %, P). Let {u,} be the sequence generated by
(5) and %, = o(uyg,...,u,) be a filtration on (2, F,P) such that {u,} is F,-
measurable.

(Hy) Thereis a constant ¢ > 0 such that ||F (w)|| < c(1+ ||u|), foreveryu € K.
(Hy)  F is m-strongly monotone and hemicontinuous.

(Hs) Elwn|F) =0, and Y o2E [lon]’| 7, ] < oo.
n
(Hy) The sequence {a,} of positive reals satisfies:

Y an=00, Y ay<oc. (18)

neN neN

Then, {u,} converges, almost surely, to the unique solution u of (3).
Proof The proof is based on the arguments used above. O

Remark 1 Hiriart-Urruty [19] extended the stochastic approximation approach to
nonlinear variational inequalities when some random noise contaminated the data.
He proposed a variety of projection-type iterative methods in Hilbert spaces, even
considered variational inequalities with multi-valued maps, and provided several
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convergence theorems in quadratic mean and almost certain sense. Theorem 1 is
given under the same condition F as in [19]; however, we have more general condi-
tions on random noise, which were inspired by Barty, Roy, and Strugarek [3]. Jiang
and Xu [23] initiated a detailed study of the stochastic approximation framework
for the expected value formulation of variational inequalities. Corollary 1 is similar
to the results [23], given for the particular case of an expected value formulation of
a variational inequality.

3 Stochastic Approximation for Inverse Problems

In this section, we will study the inverse problem of identifying a deterministic
parameter in a stochastic partial differential equation. In the final section, we will
discuss the extension of the present framework to the case of a stochastic parameter.

3.1 Optimization Formulation of the Inverse Problem

We recall that given a real Banach space X, a measure space (§2, .%, u), and an
integer p € [1, 00), the Bochner space L”(£2, X) consists of Bochner integrable
functions u : £2 — X with finite pth moment, that is,

1/p
lullLr(2,x) == </Q ||u(w)||§du(w)> — E[Ilu(a))”";(]l/p < o0

If p = oo, then L*°(£2, X) is the space of Bochner measurable functions u : 2 —
X such that

esssup,cqllu(w)llx < oo.

For w € 2, variational formulation of (1) seeks u,, € V := H(} (D) such that

f a(w, x)Vuy(a) - Vodx = f f(w,x)vdx, forallv e V. (19)
D D

Assume that there are constants kg and k; such that
0<kyg<a(w,x) <k <o0, ae.in D x 2.

The following is a well-known result for (19):

Lemma2 Let f € L2(.{2, H~Y(D)). Then, there is a positive constant ¢ such that
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”uC‘)(a)”HOl(D) =< C”f”Hfl(D) forae we $2,
”“(a)”Lz(.Q,HOl(D)) S C”f”Lz(Q,H(;l(D))'

In the following, we shall assume that a is deterministic. Moreover, for positive
ko and k1, we define the set of admissible parameters:

A::{aeLoo(D):0<k0§a(x)§k1<oo,xeD}. (20)

We now state some technical results. Since these results are stated for realiza-
tions, their proofs are natural generalizations of the results given in [15] for the
corresponding deterministic case.

Theorem 2 For w € 2, the map A > a — u(a) is Lipschitz continuous.

Theorem 3 For w € 2, and a in the interior of A, the map a — uy(a) is
differentiable at a. The derivative Su,, := Du,(a)(8a) of u,(a) at a in the direction
da is the unique solution of the stochastic variational problem: Find Su,, € V such
that

/ a(x)Vdu, - Vvdx = —/ daVuy(a) - Vvdx, forallveV. 2n
D D

One of the most commonly used optimization formulations is the following
output least-squares (OLS) objective functional:

~ 1
5@ = 3E[ 0@ = 201205, | (22)

where u,(a) is the solution of (19) for a and z,, is the measured data.

One of the shortcomings of the above functional is that it is nonconvex, in
general. Although it is known that the gradient of the OLS functional, with the
aid of a regularization, can be made strongly monotone, it runs into the risk of over-
regularizing the identification process, see [14].

We now define the modified output least-squares (MOLS) objective functional:

J(a) = %E [/ a(x)V(up(a) — ze) - V(ue(a) — zw)dx} , (23)
D

where u,(a) is the solution of (19) for a and z,, is the measured data.
The following result summarizes some properties of the MOLS objective:

Theorem 4 Let a be in the interior of A. Then:

1. The first derivative of J at a is given by
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DJ(a)(ba) = —%]E [/D 8aV(uw(a) + 20)V(uw(a) = 20) dX] .

2. The second derivative of J at a is given by

D?J(a)(8a, 8a) = E [/ a(x)Vuy,(a)Vuy(a) dx:| .
D

Consequently, the MOLS functional is convex in the interior of the set A.

For the sake of a comparison, we would also describe another commonly
used method, the so-called equation error approach (see [13]), which consists of
minimizing, for w € £2, and for the data z, € HO1 (D), the quadratic objective
functional:

= 1 2
minJ(@) = SE [ lea(a. 2013, | 4)
where e, (a, uy) € H(} (D) satisfies the following variational problem:

(ew(@, 1), V) g1 () =/Daww-w—fo(w,x)v, for all v € Hy (D).

Since the inverse problem of identifying parameters in partial differential
equations is ill-posed, and for a stable identification process, some regularization
is needed. For this, we assume that the set of admissible parameters A belongs to a
Hilbert space that is compactly embedded into L°°(D).

Therefore, we consider the following regularized analogues of the three function-
als described above:

LT _ 1 2 K 2
I;élgaﬂk(a) = EE luw(a) — zwlle(D)] + EIIaIIH, (25)

min J (a) := 5 / a(x)V(uw(a) = zo) - V(ue(a) — Zw)dx] + = lall3.
achA 2 | JD 2
(26)

L~ LT K
minJ (@ i= 3 [lew(@ o)1 | + Slalfy: )

Here u,,(a) is the solution of (19) for a(x), z,, is the measured data, « > 0 is a fixed
regularization parameter, and || - ||%1 is the regularizer.

Since J is convex and A is closed and convex, the following variational inequality
is a necessary and sufficient optimality condition for (26): Find a € A such that

(VI(a),b—a) +xla,b—a) >0, foreveryb e A. (28)
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Note that by defining
J(a, w) = fDa(x)V(Mw(a) — Zw) - V(up(a) — ze) dx,
we can show that
Vi(a, w)(da) = —%/;)&z(x)V(uw(a) + 20) V(e (@) — 7o) dx,

and, consequently,
Vi) = VE[J(a, )] = E[VJ(a, w)].
Therefore, it follows that
V(@) = VE[J(a,») + kal = E[VJ(a, 0) + ka] = E[G(a,w)],  (29)

where we set G(a, w) = VJ(a, w) + ku.
Analogous statements can be made for the OLS objective and the EE objective.

3.2 Discrete Formulas

We will use a standard finite element discretization of the spaces V and H. We
begin, therefore, with a triangulation 73 on D. Let V;, and Hj be the spaces of
piecewise linear continuous polynomials relative to .7,. Let {¢1, ¢2, ..., ¢n} and
{o1, @2, ..., ¢} be the corresponding bases for Vj, and Hj, respectively. The space
Hy, is then isomorphic to R, and for any a € Hj, we define A € R! by A; =
a(x;), i = 1,2,...,1, where the nodal basis {¢1, ¢2, ..., ¢} corresponds to the

nodes {xp, x2, ..., x7}. Conversely, each A € R! corresponds to a € Hj defined
i
by a(x) = ) A;¢;. Analogously, u € Vj,, will correspond to U € R™, where

i=1
m
Uy = u),i = 1,2,...,m, and u = ) U;¢;, where yi,y2, ..., yn are the
i=1
interior nodes of the finite element mesh (triangulation) .7,.
Given a realization/sample w € §2, the discrete version of variational problem
(19) seeks U = U(w, A) € R™ by solving

K(A)U(w, A) = F(0),

where K (A) € R™* and F(w,) € R™ are the stiffness matrix and the load vector
defined by
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K(A)i’j :/ ah(x)Vq&j . V¢,-dx, for i,j = 1,...,m,
D
F(w); :/ fu(w, x)pidx, fori=1,...,m.
D

To compute the gradient of the MOLS objective, it is convenient to define the
so-called adjoint stiffness matrix L(-) € R”™*! by the condition

L(V)A = K(A)V, foreveryV e R", AeR
Then,
VI(A, w)(8A) = —%(U(w, A) + Z(@) KA (U (o, A) — Z(o))
= —%MTL(U(w, A) + Z(@) (U, A) = Z()),
which yields
VIe(A o) = —%L(U(w, A) + Z@) (U@, A) = Z() + k(M +K)A,
where M, K € R">*™ are the corresponding mass and stiffness matrices in Hp:
M; ; = /D(pjgoidx, fori,j=1,...,1,

Ki)jZ/V(pj-Vgﬁidx, fOI'i,jZI,...,l.
D

The above preparation permits to define the following stochastic approximation
scheme for computing a solution of the discrete variant of (28):

In the classical stochastic gradient, a single sampling is done at each iterative
step. However, in the above algorithm, instead of sampling the random variable at
each step once, at step n, we sample a predetermined number s, times, called the
sample rate, and use the empirical average to approximate the expected value.

4 Computational Experiments

In this section, we present results from our numerical computations. We consider the
domain D = (0, 1) and choose functions a(x) and u(w, x) = u(¥1(w), Y2(w), x)
and compute the corresponding f(w, x) by f(w,x) = —(@ax)ux(w, x)),. We
choose a uniform mesh on (0, 1) with mesh size h = 1/(N + 1), where N stands
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Algorithm 1 Stochastic approximation for parameter identification

1: Choose an initial guess Ag € R™, positive step-lengths {«;,,} satisfying (18), the sample rate
{sn} C N, and initial samples {00}, of the random variable w.
jli=1

2: Given A, € A, generate samples {w’]’-}sf"= | of w and define

Sn
Aner = Po | Ay = =236 (0, A0) | (30)
j=1

Sn 3

where G is the discrete variant of gradient of the regularized MOLS objective (see (29)).
3: Stop if some stopping criteria are met.

for the number of interior nodes. The same set of piecewise linear finite element
basis functions is used for the representations of a(x) and u(w, x); therefore,
U(w, A) € RN (for a fixed w) and A € RVN*t2 (i.e., m = N + 2). The constraint set
K is defined by

A={ae H'(£2): ap < ax) <ap}.
Example 1 For this example, we choose

a(x) =1+ x2,
u(w,x) =Y (wx(1 —x)+ Yy(w) sin(3x),

where Y1 (w), Y2(w) ~ UIO0, 1], i.e., random variables Y; and Y, are uniformly
distributed over interval [0, 1]. We choose ap = 0.5 and a; = 3 and use N = 99,
sp = 5, oy = 0.5a¢/n with op = 10* in Algorithm 1 for this example. Iterations
are terminated once the L2 norm of the expected value of the gradient drops below
y = 1077, Results of this computation using the MOLS method are shown in
Figure 1. Regularization parameter k = 107° is used to produce these figures.

Example 2 In this example, we choose the same u(w, x) as in Example 1, but with
a slightly more interesting function a(x) defined by

a(x) = 2sin(wr(x — 0.2)) — 2tanh(20x — 8) + 4.

Figure 2 shows results of a run using parameters N = 159, s, = 10, a9 = 105,
and k = 1077 using the MOLS method. For the constraints, we use agp = 1 and
a; = 8. Figure 3 shows some realizations of the random fields u(w, x) and f(w, x).
Note that Figures 1 and 2 represent results of a typical simulation. Regularization
parameter « is chosen after we do several test runs for a particular set of parameter
values. The method gives us a very stable reconstruction of the coefficient a(x) in
each case regardless of the choice of the initial approximate A©.
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Fig. 1 Example 1: Comparison of exact coefficient a and the approximated coefficient a;, using
MOLS method (left) and loglog plot of the error [la — a2 versus iterations (right)
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Fig. 2 Example 2: Comparison of exact coefficient a and the approximated coefficient a;, using
MOLS method (left) and loglog plot of the error [la — a2 versus iterations (right)
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3 Typical realizations of the random fields # and f from Example 2
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Fig. 4 Example 2: Comparison of exact coefficient a and the approximated coefficient a;, using
EE method (left) and loglog plot of the relative error |la — a2/ ||lall 2 versus iterations (right)
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Fig. 5 Example 1: Comparison of exact coefficient ¢ and the approximated coefficient a;, using
the OLS method (left) and loglog plot of the norm of the gradient ||V J(ay)|| 2 versus iterations
(right)

Results of Computations by EE and OLS Methods We compare the performance
of the MOLS method with those of the OLS and EE methods (see equations (27)
and (25) for regularized objective functional definitions). Figure 4 shows the results
of a run with parameters N = 159, s, = 20, o9 = 10°, and ¥« = 5 - 1077 for
Example 2 using EE method. The quality of the estimation is excellent and the
results are comparable with those of the MOLS method. No significant gain in the
computational cost for the EE method is observed as our examples are in 1D (these
computations take only a minute or two in MATLAB). However, the EE method
is expected to have considerable computational cost advantage for problems in two
or three space dimensions compared to MOLS and OLS methods. Figure 5 shows
results of a simulation using OLS method for Example 1. Parameter values used
in the computation are N = 99, s, = 1, ap = 105, and ¥ = 5 - 107°. Tolerance
for the L? norm of the gradient is set to y = 10~ (see the right plot in the figure
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referenced above which shows the decrease of this norm as iterations progress). The
quality of the estimation seems to be not as good as the ones we obtained from the
MOLS and EE methods, and there is a mismatch close to the right boundary of the
domain. While applying the OLS method to both examples, we observed that the
method requires a more careful tuning of the parameters compared to the other two
methods we used in our experiments.

5 Concluding Remarks

We developed a stochastic approximation approach for identifying a deterministic
parameter in a stochastic partial differential equation. Besides considering more
general stochastic PDEs such as linear elasticity or fourth-order plate models, a
desirable extension of this work is to identify a stochastic parameter a(w, x). A
natural approach would be to separate the deterministic and stochastic components
by using the so-called finite-dimensional noise assumption (see [28]). The determin-
istic components can then be identified by extending the stochastic approximation
framework. We aim to pursue this approach in future work.
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