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C H E M I C A L  P H Y S I C S

Infinite-order perturbative treatment for quantum 
evolution with exchange
Jacob R. Lindale1, Shannon L. Eriksson1,2, Christian P. N. Tanner1, Warren S. Warren1,3*

Many important applications in biochemistry, materials science, and catalysis sit squarely at the interface between 
quantum and statistical mechanics: Coherent evolution is interrupted by discrete events, such as binding of a 
substrate or isomerization. Theoretical models for such dynamics usually truncate the incorporation of these events 
to the linear response limit, thus requiring small step sizes. Here, we completely reassess the foundations of chemical 
exchange models and redesign a master equation treatment for exchange accurate to infinite order in perturbation 
theory. The net result is an astonishingly simple correction to the traditional picture, which vastly improves con-
vergence with no increased computational cost. We demonstrate that this approach accurately and efficiently 
extracts physical parameters from complex experimental data, such as coherent hyperpolarization dynamics in 
magnetic resonance, and is applicable to a wide range of other systems.

INTRODUCTION
Calculations of quantum evolution in dynamic systems, such as ex-
change or conversion between multiple discrete states, are important 
today in many disciplines (1–5). These calculations first became 
prominent in magnetic resonance more than 50 years ago with the 
McConnell equations (6), which were introduced first as a classical 
approximation of the spin dynamics in exchanging systems. These 
equations could readily describe the dynamic spectra of uncoupled 
spin-1/2 nuclei but were incapable of handling evolution under 
bilinear couplings. In contrast, the density matrix formalism (7–9) 
readily includes statistical averaging in the equilibrium state, and 
coherent evolution can be handled by unitary transformations in-
volving calculation of a highly accessible propagator for spin systems.

As it would be computationally impossible to explicitly calcu-
late, for instance, the dynamics of 1020 nuclear spins, one averages 
over each molecule to form a reduced density matrix, wherein 
the form of ensemble interactions is obfuscated. Therefore, dynamic 
exchange effects require a more careful treatment of the expression 
of the ensemble action in the reduced density picture, modifying 
the time evolution from the form given by pure quantum mechanics 
(​​∂​ t​​​  ρ​  =  i [ ​  ρ​, ​ℋ  ̂​]​). The exchange interaction has been historically de-
rived as an analog to the case of Redfield relaxation theory (7, 10), 
but the ensemble dynamics that generate relaxation occur on a time 
scale far faster than the evolution of the quantum degrees of freedom 
(femtoseconds to picoseconds), effectively limiting the influence of 
these dynamics to the first observable moment. This is not valid for 
exchange, where it would be feasible for higher moments of the en-
semble interaction to act on a time scale comparable to the coherent 
evolution.

Despite the maturity of models for exchange, there is still con-
siderable motivation to develop new methods to efficiently and 
accurately explore dynamic effects in systems undergoing quantum 
evolution. On the forefront of magnetic resonance techniques are 
hyperpolarization methods (11–15), which overcome the intrinsically 
low signal-to-noise limits by distilling spin order from an external 

source. Of particular interest over the past decade is signal amplifi-
cation by reversible exchange (SABRE) (5, 15–31), in which the singlet 
order of parahydrogen is converted into observable magnetization 
or more complex spin states on target ligands during transient 
interactions with an iridium catalyst (Fig. 1A). Optimization of this 
technique requires accurate modeling of the system, which, with the 
recent advent of coherently pumped SABRE experiments (Fig. 1B), 
has revealed bizarre and complex dynamics (5, 32). Accurately model-
ing the coherent hyperpolarization dynamics of systems like (15N,13C)-
acetonitrile (Fig. 1C) and subsequently fitting the experimental data 
have been impossible within previous frameworks for exchange, 
given the multitudinous exchange interactions, such as coligand ex-
change events and number of coupled spins (21 total spins).

To that end, we completely reinterrogate the incorporation of 
dynamic exchange interactions in evolving quantum systems. We 
construct a reformulated dissipative master equation by recovering 
the traditional expression from the Dyson series and then continuing 
the derivation to infinite order in perturbation. The ramifications of 
extending the derivation of the dissipative master equation to all 
orders in the exchange interaction make a profound impact on the 
radius of convergence of exchange simulations with absolutely no 
additional computational cost by deriving a simple scaling factor 
that accounts for all moments in the ensemble motion. In addition to 
the most general case of exchange between distinguishable ensembles, 
we show solutions for pseudorotation generated by Abelian groups 
of order 2 and 3 as well as for quantum dynamical selection (QDS), 
where coherent degrees of freedom alter the exchange interaction. 
By coupling this new infinite-order treatment exchange to a formu-
lation of the exchange operators that scales linearly with the number 
of distinguishable ensembles, we can easily model highly complex 
systems that would be untenable within alternate exchange formal-
isms (3, 25).

RESULTS
Pursuing a traditional, master equation approach to chemical ex-
change requires the assumption that fundamentally discrete exchange 
events may be approximated as a continuous perturbation to the 
ensemble, shifting the model from assuming a Poisson process of a 
microcanonical ensemble to a Wiener process of a canonical ensemble. 
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Quantum Monte Carlo (QMC) models discontinuously sample ex-
change events and are essentially exact, provided that one can iterate 
the solution to convergence (5). However, the cost of iterating a QMC 
solution to convergence would often make the calculation intractable 
on the time scale of experimental guidance. For instance, on the 
canonical 14-spin bis-(15N-pyridine) SABRE system, it would take 
approximately 300 years to run a single 60-s simulation at a modest 
exchange rate (kex = 50 s−1) to approximately 99% convergence.

The methods to describe dynamic evolution in quantum systems 
are well established in the case of spin relaxation in liquids, which 
relies on the perturbative Dyson series expansion of the interaction-
frame propagator. In this case, as well as for the traditional case for 
exchange, the series is truncated to the leading term by assuming 
that the dynamic interaction is a small perturbation. The same result 
can be recovered by annealing the Liouville–von Neumann equation 
to the rate equations defining exchange by taking the tensor product 
between the quantum and chemical degrees of freedom. In both cases, 
this assumes that exchange acts linearly on the evolving quantum 
degrees of freedom, which is not well motivated. With our ansatz 
that discrete exchange events may be approximated as a continuous 
process, we recast the Dyson series for the case of exchange without 
any a priori assumptions as to the magnitude or order of the ex-
change interaction.

Reformulation of the Dyson series for chemical exchange
To begin, we partition the Hamiltonian into a stationary component 
​​​  ℋ​​ 0​​​ and a stochastically modulated exchange interaction ​​​ℋ ̂ ​​ 1​​(t)​, for 
which the equation of motion is given by (ℏ = 1)

	​​​ ∂​ t​​​  ρ​  =  − i​[​​ ​​ℋ ̂ ​​ 0​​ + ​​ℋ ̂ ​​ 1​​(t ), ​  ρ​​]​​​​	 (1)

Boosting Eq. 1 into the interaction frame gives

	​​​ ∂​ t​​​  σ​  =  − i​[​​ ​​​ℋ ˜ ​  ̂ ​​ 1​​(t ), ​  σ​​]​​​​	 (2)

where we use the convention ​​  ​  → ​   ​​ for distinguishability between 
the representations and ​​​​ℋ ˜  ​ ̂ ​​ 1​​(t ) ≡  exp(− i ​​ℋ ̂ ​​ 0​​ t ) ​​ℋ  ̂​​ 1​​(t ) exp(i ​​ℋ  ̂​​ 0​​ t)​ is 
the interaction representation denoted by the tilde. Equation 2 may 
then be formally integrated and iteratively substituted back into the 
expression to generate the Dyson series. When doing so, we assume 
that the correlation time of the exchange interaction is much faster 
than the coherent evolution of the system, which allows us to write 
​​  ​(t′) = ​  ​(t ) ∀ t′​ and extend the upper limit of integration to infinity

	​​​ ∂​ t​​​σ ̂ ​(t ) = − i​[​​ ​​​ℋ ˜ ​  ̂ ​​ 1​​(t ), ​σ ̂ ​(t ) ​]​​ − ​ 
→

 T​ ​∫0​ 
∞

 ​​ dt′​[​​ ​​​ℋ ˜ ​  ̂ ​​ 1​​(t ), ​[​​ ​​​ℋ ˜ ​  ̂ ​​ 1​​(t′), ​σ ̂ ​(t ) ​]​​​]​​ + ⋯​​
(3)

In this equation, ​​ 
→
 T​​  is the Dyson time-ordering operator, which 

imposes t > t′. At this juncture, we introduce ​​​​ℋ ˜ ​ ̂ ​​ 1​​(t)​ as the operator 
expansion

	​​​​ ℋ ˜  ​ ̂ ​​ 1​​(t ) ≡ ​ ∑ 
q
​ ​​ ​​   F ​​ q​​(t ) ​​​A ˜ ​ ̂ ​​ q​​​	 (4)

where q indexes through uncoupled exchange mechanisms, ​​​   F ​​ q​​(t)​ 
are real, stochastic operators describing the time evolution of ex-
change, and ​​​​A ˜ ​ ̂ ​​ q​​​ define the interaction of exchange with the evolving 
quantum system. We assume that the system is in a chemical steady 
state, and therefore, ​〈 ​​   F ​​ q​​(t ) 〉  =  0​ and is importantly not the first 
moment of the exchange rate. Furthermore, this has the repercus-
sion that all odd-order terms in the expansion necessarily average to 
zero, ensuring that chemical exchange generates no complex phase 
rotations in ​​  ​​. Substituting Eq. 4 into Eq. 3 and ensemble averaging 
gives the leading term

	​​ ∂​ t​​​  σ​  =  − ​ → T ​ ​∑ 
pq

​ ​​ ​∫0​ 
∞

 ​​ dt′​​​A ̂ ​ ̂ ​​ p​​ ​e​​ −i​​ℋ  ̂​​ 0​​(t′−t)​ ​​​A ̂ ​ ̂ ​​ q​​ ​e​​ i​​ℋ  ̂​​ 0​​(t′−t)​​  σ​〈 ​​   F ​​ p​​(t ) ​​   F ​​ q​​(t′) 〉​	 (5)

Note that we have shifted to the commutation superoperator rep-
resentation ​([​O ̂ ​, •] ≡ ​​ O ̂ ​ ̂ ​)​ and have dropped the formal time dependence 

C

A B

Fig. 1. SABRE provides an ideal system to challenge the limits of an exchange model, given the complexity of the underlying dynamics. (A) SABRE transfers the 
singlet order of parahydrogen to a target ligand via reversible interactions with an iridium catalyst and exhibits nonlinear dynamics that are highly dependent on the 
relative concentrations of each species. (B) The coherent hyperpolarization dynamics can be probed by interleaving pulses at or near the SABRE resonance condition (red) 
with periods far off resonance (B = − 22.5 T) to allow for exchange. (C) The (15N,13C)-acetonitrile SABRE system demonstrates rich dynamical information that varies with 
the resonant field as a result of a complex coupling network between 15N, 13C, and 1H. Lines are meant as visual guides only.
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of ​​  ​​ as well as the tilde notation for the interaction frame for legibility. 
The integrand is then the correlation function of the ensemble 
motion, which, for a stochastic, real-valued, and time-continuous 
(Wiener) process, is -correlated in time. To avoid violating the 
time-ordering operator, ​​ 

→
 T​​, only self-correlated terms can give nonzero 

amplitudes upon integration, which may be accounted for by im-
posing pq. The -correlation imposes that ​exp(i ​​ℋ  ̂​​ 0​​(t′− t ) )​ is unity, 
making all interaction-frame superoperators for exchange identical 
to their lab space representation. Then, the time-ordered integral 
simply determines the rate of the exchange process, which is the 
probability of exchange given a characteristic lifetime (q) during a 
finite period of time, ​(t ​​q​ −1​ ) / t​. Upon integration, this gives

	​​  
→

 T ​​∫0​ 
∞

 ​​dt′〈 ​​   F ​​ p​​(t ) ​​   F ​​ q​​(t′) 〉 = ​∫0​ 
∞

 ​​dt′(t − t′) ​​ pq​​ ​ 
t ​​q​ −1​

 ─ 
t  ​  = ​  1 ─ ​​ q​​ ​​	 (6)

The term ​​​​A ̂ ​  ̂​​ p​​ ​​​A ̂ ​ ̂ ​​ q​​​ can now be written as ​​​​A ̂ ​ ̂ ​​q​ 
2
 ​​, which is immediately 

realized in its more common notation as the exchange superoperator 
​− ​​   K ​​ q​​​, where the sign convention arises to ensure that exchange forms 
a completely positive map. Together with Eq. 6, this returns the 
canonical form of the chemical exchange master equation, which, in 
the Schrödinger representation, is

	​​​ ∂​ t​​​  ρ​ =  − i​[​​ ​​ℋ ̂ ​​ 0​​, ​  ρ​​]​​ + ​∑ 
q
​ ​​ ​ 
​​   K ​​ q​​​  ρ​

 ─ ​τ​ q​​ ​​​	  (7)

Truncating the expansion here essentially imposes that exchange 
only acts linearly on ​​  ​​ during the finite period of time t (i.e., the 
simulation step size), as this was the condition under which Eq. 6 
was defined. In only the simplest cases can Eq. 7 be homogenized 
and analytically integrated, wherein the finite period of time t → 
dt and the assumption that an exchange interaction of any magni-
tude acts linearly on the quantum degrees of freedom are accurate. 
However, now that we have explicitly established the derivation of 
the chemical exchange master equation from the Dyson series, it is 
simple to continue the derivation to higher-order terms. Remember-
ing that all odd-order terms necessarily go to zero upon ensemble 
averaging, the next nonzero interaction in the expansion arrives in 
the fourth-order term, which, after substitution of Eq. 4 and realizing that 
there can be only powers of ​​​​A ̂ ​ ̂ ​​q​ 

2
 ​​ to give rise to the superoperator ​​​   K ​​ q​​​, is

	​​ 
​∂​ t​​​  σ​  = ​ ∑ pq​ ​​ ​​​A ̂ ​ ̂ ​​p​ 

2
 ​ ​​​A ̂ ​ ̂ ​​q​ 

2
 ​​  σ​​ → T​

​   
​​∫0​ 

∞
 ​​ dt′​∫0​ 

t′
 ​​ dt′′​∫0​ 

t′′
 ​​ dt′′′〈 ​​   F ​​ p​​​(​​t​)​​ ​​   F ​​ p​​​(​​t′​)​​ ​​   F ​​ q​​​(​​t′′​)​​ ​​   F ​​ q​​​(​​t′′′​)​​〉​

​​	 (8)

The integrand of Eq. 8 is a four-point correlator that may be fac-
tored into a sum of two-point correlator products by Isserlis’ theorem, 
where the form of each correlator is given by Eq. 6. There are (n − 1) !! 
identical terms for an n-point correlator after factorization when 
the process is -correlated, where n !! is the semifactorial of n, de-
fined as the factorial using only integers of the same parity as n 
(5 !! = 5 × 3 × 1). In addition, given the time symmetry of the Wiener 
process, there will be (n − 1)! degenerate time orderings upon inte-
gration, accounted for with division of the correlator amplitude by 
the degeneracy. Integration then gives

	​​
​​ → T​ ​∫0​ 

∞
 ​​ dt′​∫0​ 

t′
 ​​ dt′′​∫0​ 

​t​​ ′′​
 ​​ ​dt​​ ′′′​ 〈 ​​   F ​​ p​​​(​​t​)​​ ​​   F ​​ p​​​(​​t′​)​​ ​​   F ​​ q​​​(​​ ​t​​ ′′​​)​​ ​​   F ​​ q​​​(​​ ​t​​ ′′′​​)​​〉​

​    
=  ​​(​​4 − 1​)​​ !! _ ​(​​4 − 1​)​​ ! ​ ​​(​​ ​Δt _ ​τ​ q​​ ​​)​​​​ 

2
​ / Δt  = ​  Δt _ 

2 ​τ​q​ 2 ​
​
 ​​	

(9)

Notice that pq prevents any cross terms between p and q from 
arising in the summation, hence why integration generates a rate 
proportional to ​​​q​ 2 ​​. Equation 8 then becomes

	​​ ∂​ t​​​  σ​ = ​ ∑ 
q
​ ​​ ​​(​​ − ​​​A ̂ ​ ̂ ​​q​ 

2
 ​​)​​​​ 

2
​ ​ Δt ─ 
2 ​τ​q​ 2 ​

 ​​  σ​​	 (10)

The fourth-order term describes the probability of two exchange 
events occurring during a finite period of time, as the exchange interac-
tion can be expanded into successive applications of ​− ​​​A ̂ ​ ̂ ​​q​ 2 ​​. We 
shall define the powers of the exchange interaction conditioned to 
specific cases and otherwise leave it in its more general form. Using 
the assumptions established here, it is then beneficial to rewrite the 
entire Dyson series for exchange as

	​​​ ∂​ t​​​  σ​ = ​ ∑ 
q
​ ​​​{​​ ​ 1 ─ ​τ​ q​​ ​ ​ ∑ 

k=0
​ 

∞
 ​​ ​​(​​ − ​​​A ̂ ​ ̂ ​​q​ 

2
 ​​)​​​​ 

k+1
​ ​ 1 ─ k ! ​ ​​(​​ ​ Δt ─ 2 ​τ​ q​​ ​​)​​​​ 

k
​​}​​​  σ​​​	 (11)

Equation 11 may be simplified by establishing a more rigorous 
definition of the exchange operator ​− ​​​A ̂ ​ ̂ ​​q​ 

2
 ​​, which will show for a general 

case and more specific applications. Before doing so, it is pertinent 
to note that the general operator action of Eq. 11 can be written as

	​​​ (​​ − ​​​A ̂ ​ ̂ ​​q​ 
2
 ​​)​​​​ 

k+1
​​  σ​  = ​​ (​​ − ​​​A ̂ ​ ̂ ​​q​ 

2
 ​​)​​​​ 

k
​ ​​K ̂ ​​ q​​​  σ​ =  γ ​​   K ​​ q​​​  σ​​	 (12)

where the first equality is inherent given the definition of ​​​   K ​​ q​​​ and 

the second is possible if ​​​   K ​​ q​​​  ​​ are eigenfunctions of ​​(− ​​​A ̂ ​ ̂ ​​q​ 
2
 ​)​​ 

k
​​, where  

is then a constant. Under this condition, the infinite sum in Eq. 11 
would be independent of the interaction superoperator and evalua-
tion of all moments of the exchange interaction would have no ad-
ditional computational cost over a traditional formulation.
Exchange between distinguishable ensembles
The most general formulation for exchange is to form a composite 
vector space constructed from the direct sum of m discrete chemical 
configurations that form manifolds of quantum states, where ex-
change allows flow of populations between manifolds via projection 
operations. This formulation is unrestricted in the systems that it 
may describe, as it is trivial to project between systems of different 
sizes and projections may both encapsulate linear and nonlinear 
contributions to the evolution. When constructed carefully, this 
method grows linearly in cost with m, as projections need not act on 
the entire composite vector space.

We find the form of the exchange interaction for this case by 
recognizing that projections are idempotent operations ( = 1 in Eq. 12), 
such that

	​​​ (​​ − ​​​A ̂ ​ ̂ ​​q​ 
2
 ​​)​​​​ 

k+1

​ = ​​ (​​ − 1​)​​​​ k+1​ ​​(​​ ​​​A ̂ ​ ̂ ​​q​ 
2
 ​​)​​​​ 

k+1

​ = ​​ (​​ − 1​)​​​​ k+1​ ​​(​​ − ​​   K ​​ q​​​)​​​​ 
k+1

​ = ​​ (​​ − 1​)​​​​ k​ ​​   K ​​ q​​​	 (13)

Note that we have reindexed the alternating term for convenience. 
There is an intricate ramification of Eq. 13, in that the group Gq 
containing all powers of the exchange superoperators for a given 
system is isomorphic to its coset of linear power superoperators ​​S​q​ (1)​​, 
which equivalently form the kinetic equations for the chemical dy-
namics. Hence, considering all moments in the exchange interaction 
will only ever generate dynamics that are directly reflected in ​​​   K ​​ q​​​. 
Given Eq. 13 and that the summation over k is simply the Maclaurin 
series for the exponential, Eq. 11 may be written in the Hilbert space as

	​​​ ∂​ t​​​  ρ​  =  − i​[​​ ​​ℋ ̂ ​​ 0​​, ​  ρ​​]​​ + ​∑ 
q
​ ​​​{​​ ​ 

​​   K ​​ q​​
 ─ ​τ​ q​​ ​ exp​(​​ ​ − Δt ─ 2 ​τ​ q​​ ​​)​​​}​​​  ρ​​​	 (14)
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In this form, Eq. 14 is the exact, closed form solution of quantum 
evolution with exchange, which we call the exact dissipative master 
equation (DMEx). In its exact form, the only difference that arises 
in comparison to the traditional form is the exponential factor, where 
it is clear that in the limit where t → dt, the equation converges back 
to Eq. 7. That arises as the impact of higher moments in exchange go 
away over small periods of time because it is impossible for multiple 
exchange events to occur simultaneously in the limit of infinitesimal 
step sizes. However, as t becomes larger, the higher-order terms 
account for moments in the dynamics of the ensemble that are not 
present when one assumes a linear coupling between the quantum 
and exchange degrees of freedom.
Pseudorotation by Abelian permutation groups
While Eq. 14 is valid for any exchanging quantum system, it would 
be inconvenient to expand a system into separate manifolds when 
the coherent evolution within those manifolds, or a subset of those 
manifolds, is identical. This is the case for exchange generated by 
pseudorotation, such as the canonical example of cyclohexane inversion 
in magnetic resonance. Hence, it is convenient to recast Eq. 11 for 
the cases of pseudorotation generated by two- and threefold symmetric 
permutation groups, which we shall call G2 and G3 pseudorotations, 
respectively. As we are recasting the DMEx for specific cases, we will 
drop the q-index and write the explicit form of the equation of motion. 
Note that all of the assumptions made to derive Eq. 11 remain valid 
for these conditions.

In the case of pseudorotations, which contain inherently coupled 
exchange processes, we define the first moment of the exchange inter-
action operator as

	​​ − ​​​A ̂ ​ ̂ ​​​ 
2
​ ≡ ​​ K ˜ ​ ̂ ​ = ​  1 ─ 2 ​​(​​​   R ​ ⊗ ​​   R ​​​ 

−1
​ + ​​   R ​​​ 

−1
​ ⊗ ​   R ​​)​​ − ​   E ​ = ​  1 ─ 2 ​​(​​​   K ​ + ​​   K ​​​ 

†
​​)​​​​	 (15)

The operators ​​​   R ​​​ 
±1

​ ⊗ ​​   R ​​​ 
∓1

​​ generate the forward ​(​   K ​)​ and backward 
​(​​   K ​​​ 

†
​)​ rotations, which are coupled with equivalent probability. We 

have also written the exchange superoperator ​​   K ​​ in a traceless form 
for convenience instead of writing a separate term proportional to 
unity (​​ ̂  E ​​), as done in the general case. The forward and backward 
rotations are equivalent for G2 pseudorotations, which allows Eq. 15 
to be reduced to

	​​​ K ˜ ​ ̂ ​ = ​    R ​ ⊗ ​​   R ​​​ 
−1

​ − ​   E ​​	 (16)

The form of the higher powers of the exchange interaction are 
given as

	​​​ (​​ − ​​​A ̂ ​ ̂ ​​​ 
2
​​)​​​​ 

k+1
​ = ​​ (​​ − 2​)​​​​ k​​​K ˜ ​ ̂ ​​	 (17)

and hence give the DMEx for G2 pseudorotation in the Hilbert space

	​​​ ∂​ t​​​  ρ​ =  − i​
[

​​ ​​ℋ ̂ ​​ 0​​, ​  ρ​​]​​ + ​ ​   R ​​  ρ​ ​​   R ​​​ 
−1

​ − ​  ρ​ ─ τ  ​ exp​
(

​​ ​ − Δt ─ τ  ​​
)

​​​​	 (18)

Again, the exponential term returns the canonical equation of 
motion for exchange in magnetic resonance when taken to the limit of 
analytical integration (t → dt). Note that in this case, the argument 
of the exponent is proportional to 1/, as opposed to the other cases 
presented here. This arises as a ramification of the definition that 
was used for ​​​K ˜ ​ ̂ ​​.

The case of G3 pseudorotations no longer permits the reduction 
of Eqs. 15 and 16, as ​​ ̂  K ​ ≠ ​​   K ​​​ 

†
​​. It is pertinent to note the rela

tion ​​​   R ​​​ 
2
​ ⊗ ​​   R ​​​ 

−2
​ = ​​   R ​​​ 

−1
​ ⊗ ​   R ​​, which allows for any quadratic or higher 

rotation to be written in terms of the linear term. The higher powers 
of the exchange interaction then reduce to the simple form

	​​​ (​​ − ​​​A ̂ ​ ̂ ​​​ 
2
​​)​​​​ 

k+1
​ = ​​ (​​ − 1​)​​​​ k​​​K ˜ ​ ̂ ​​	 (19)

Plugging Eq. 19 into Eq. 11 gives the DMEx for G3 pseudorotation

	​​​ ∂​ t​​​  ρ​  =  − i​[​​ ​​ℋ ̂ ​​ 0​​, ​  ρ​​]​​ + ​ ​​K ˜ ​ ̂ ​​  ρ​ ─ τ  ​ exp​(​​ ​ − Δt ─ 2τ  ​​)​​​​	 (20)

where

	​​​​ K ˜ ​ ̂ ​​  ρ​ = ​  1 ─ 2 ​​(​​​   R ​ρ ​​   R ​​​ 
−1

​ + ​​   R ​​​ 
−1

​ ρ​   R ​​)​​ − ​  ρ​​​	 (21)

Again, the only difference between the exact treatment and the 
traditional implementation for exchange is the exponential term. 
Note that Eqs. 18 and 20 can be used alone or in conjunction with 
the more general DMEx formalism shown in Eq. 14 as a method of 
contracting the composite vector space, with an obvious example 
being to use Eq. 20 to compress the manifolds corresponding to the 
three orientations of methyl rotation with magnetically inequivalent 
interactions. This does require that the rate connecting the con-
tracted manifolds to any other manifold be identical; otherwise, the 
contraction is invalid.
Quantum dynamical selection
An interesting case to examine is when the quantum and chemical 
dynamics are coupled, such as in QDS, where quantum evolution 
dictates the evolution of the exchange degrees of freedom. In this 
case, we must reassess the assumptions made to arrive at Eq. 11 per-
taining to the stochastic motion of the ensemble. However, we will 
construct this case as exchange between distinguishable ensembles, 
leaving Eq. 13 intact. This case is restricted by the condition that

	​​ ​[​​ ​​   F ​​ q​​(t) ,  ​  ​​]​​ ≠ 0​​	 (22)

such that we may no longer ensemble average ​​  ​​ and the ensemble 
motion operators ​​​   F ​​ q​​​ separately. This gives rise to the leading term 
in the Dyson series

	​​​ ∂​ t​​​  σ​ =  − ​∑ 
pq

​ ​​ ​​​A ̂ ​ ̂ ​​ p​​ ​​​A ̂ ​ ̂ ​​ q​​​ → T​ ​∫0​ 
∞

 ​​ dt′〈 ​​   F ​​ p​​​(​​t​)​​ ​​   F ​​ q​​​(​​t′​)​​​̂  σ​〉​​	 (23)

The factorization of the three point correlator generates

	​〈 ​​   F ​​ p​​(t) ​​   F ​​ q​​(t′) ​  ​〉 = 〈 ​​   F ​​ p​​(t) ​​   F ​​ q​​(t′)〉〈​̂  ​〉 + 〈 ​​   F ​​ p​​(t) ​  ​〉〈 ​​   F ​​ q​​(t′)〉 + 〈 ​​   F ​​ q​​(t′) ​  ​〉〈 ​​   F ​​ p​​(t)〉​	
(24)

As ​〈 ​​   F ​​ q​​ 〉 = 0​ is retained with the assumption of a chemical steady 
state, only the first term in the factorization is retained. Furthermore, 
as the ensemble is still macroscopically described by a Wiener pro-
cess, the  correlation is retained and pq is imposed to avoid violating 
the time ordering. For any (2n + 1)–point correlator, only the single 
term that averages ​​  ​​ separately will be retained. If we then insert Eq. 24 
into Eq. 23 and define

	​​​  → T​ ​∫0​ 
∞

 ​​ dt′〈 ​​   F ​​ q​​​(​​t​)​​ ​​   F ​​ q​​​(​​t′​)​​〉 ≡ ​​​ Φ ̂ ​ ̂ ​​ q​​​​	 (25)
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where ​​​  ​  ​​​ q​​​ is an ensemble motion superoperator that determines the 
rate of the process as a function of the population in the quantum 
state coupled to the exchange process, then we obtain as the equa-
tion of motion

	​​ ∂​ t​​​  σ​  =  − ​∑ q​ ​​ ​​​A ̂ ​ ̂ ​​q​ 
2
 ​ ​​​Φ ̂ ​ ̂ ​​ q​​​  σ​​	 (26)

We may impose that

	​​​​ Φ ̂ ​ ̂ ​​ q​​​  σ​ = ​ ζ​ q​​​  σ​​	 (27)

such that q is a constant that is the rate of the ensemble motion 

dictated by ​​​​A ̂ ​ ̂ ​​ q​​​, which states that ​​  ​​ is an eigenstate of ​​​​Φ ̂ ​ ̂ ​​ q​​​ at all times. 
This relation is validated when δ is imposed, which prevents the ​​​​Φ ̂ ​ ̂ ​​ q​​​ 
from generating a tensor of rank 1 or higher. Hence, we may write the 
form of Eq. 25 as

	​​​​ Φ ̂ ​ ̂ ​​ q​​ = ​  → T​ ​∫0​ 
∞

 ​​ dt′​  δ​(​​t − t′​)​​ _ 
Δt / ​(​​Δt ​τ​q​ −1​​)​​

​ ​P​ q​​ = ​ ​P​ q​​ _ ​τ​ q​​ ​​	 (28)

where ​​P​ q​​​ scales the rate by the projection of the quantum state, 
which couples to the exchange process and is a constant. As projection 
operators are idempotent, we may derive the DMEx for QDS directly 
from the derivation of the general case, with an additional factor of ​​
P​ q​​​ that makes the rates time dependent; in the Hilbert space, this is

	​​​ ∂​ t​​​  ρ​− i​[​​ ​​ℋ ̂ ​​ 0​​, ​  ρ​​]​​ + ​∑ q​ ​​​{​​ ​​​   K ​​ q​​ ​P​ q​​ _ ​τ​ q​​ ​ exp​(​​ ​− Δt ​P​ q​​ _ 2 ​τ​ q​​ ​​ )​​​}​​​  ρ​​​	 (29)

Expressing the exchange rates as time-dependent quantities 
complicates interpretation of this case. However, if we choose to 
express the ensembles using both chemical and quantum degrees of 
freedom, then we recover Eq. 14 as the equation of motion for 
exchange. The exchange rates between the redefined manifolds are 
then time independent.

DISCUSSION
Performance of DMEx models
The chemical exchange master equation is only homogeneous and 
analytically integrable in the simplest of cases and can acquire non-
linearities when one considers reversible exchange between distin-
guishable ensembles. The DMEx equations of motion presented 
here are fully converged in the exchange interaction and handle that 
interaction exactly but are not exact for the full evolution, as there is 
no preservation of the time ordering between the quantum and ex-
change degrees of freedom that would be present in a full solution. 
This could be approached by calculation of higher-order time de-
rivatives but at an additional computational cost. However, the next 
section focuses on the difference between the traditional master 
equation approach (Eq. 7) and the DMEx solutions, which shows 
marked improvements in permissible time steps, and then compares 
the DMEx to QMC simulations where these time orderings are pre-
served, but the computational overhead is very large. Therefore, we 
will evaluate the performance of DMEx methods using the solution

	​​​   ​(t + t) = ​​  U​​​ 
†
​​  ​(t ) ​  U​ + ​∑ 

q
​ ​​ ​ t ─ ​​ q​​ ​ exp ​(​​ ​ − t ─ 2 ​​ q​​ ​​)​​​(​​ ​​   K ​​ q​​ − ​   E ​​)​​​(​​ ​​  U​​​ 

†
​​  ​(t ) ​  U​​)​​​​	 (30)

In this equation, ​​​  U​ ≡  exp​(​​i ​​ℋ ̂ ​​ 0​​ Δt​)​​​​. This is an ideal computational 
method, as it only involves forward propagation of the solution, re-
quires the fewest number of matrix operations, and produces linear 
evolution under the spin Hamiltonian and evolution to all orders in 
the exchange interaction. Equation 30 has a small intrinsic error 
associated with the solution, in that the first step only evolves quantum 
mechanically. A more accurate way to solve the equation of motion 
would be to evolve the initial density matrix backward in time by 
t/2 and then using Eq. 30 to generate the solution. Doing so shifts 
the actions of ​​  U​​ and ​​​   K ​​ q​​​ by a half step and corrects for this initial 
error. However, we have found that this makes little difference in 
the solution; thus, we retain Eq. 30 so to avoid generating a non-
integral number of steps. To isolate errors arising from exchange, 
we have constructed all of the following simulations in the Hilbert 

A B

Fig. 2. Comparison of the traditional master equation solution (Eq. 7, black) and our DMEx models for G2 and G3 pseudorotations.  We use s-trioxane ring inversion to 
model G2 pseudorotation (A) and tert-butyl rotation in t-BuPCl2 to model G3 pseudorotation (B) The graphs at the bottom compare the root mean square deviation (RMSD) 
of the generated magnetization as a function of the time evolution such as in Fig. 1C using t = 10 s (which is taken as the ground truth). The DMEx models retain good 
fidelity with no additional computational overhead, even with step sizes commonly being 10 times larger than were possible with traditional solutions.
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space of the system, where one can exactly evaluate quantum evolu-
tion in systems up to 15 coupled spins.

Dynamic nuclear magnetic resonance spectra under pseudorotation 
have been studied and understood for decades. Spectral features are 
well resolved in the limit of slow exchange, which broaden and 
coalesce as the exchange rate increases, and ultimately result in line 
narrowing in the fast exchange limit. This is reflected in spectra of 
s-trioxane (9) undergoing ring inversion (Fig. 2A), where the axial 
(blue) and equatorial (red) have different chemical shifts and the 
geminal 2JHH coupling is observable. As exchange increases, the 
spectrum collapses to a singlet, as the axial and equatorial positions 
become, on average, magnetically equivalent. Similar effects appear 
for the tert-butyl rotation in t-BuPCl2 (Fig. 2B), which additionally 
exhibits a transition that is invariant under exchange and thus does 
not broaden (33).

For either of these systems, the pseudorotation matrices are gen-
erated by expressing a spin label permutation matrix in the appro-
priate basis. For convenience, we will use the Zeeman basis in this 
example. In the case of s-trioxane, where the axial and equatorial 
protons interchange, it is most convenient to setup the system such 
that axial protons have odd indices and equatorial protons have 
even indices. Then, the rotation ​​   R ​​ is given by

	​​    R ​ = ​​   P ​​ 12​​ ⊗ ​​   P ​​ 34​​ ⊗ ​​   P ​​ 56​​​	 (31)

​​​   P ​​ ij​​​ is the permutation matrix that interchanges the ∣〉 and ∣〉 
states, whereas the ∣〉 and ∣〉 states are invariant under exchange. 
Using this method, it is trivial to arbitrarily reindex the entire system 

and is computationally efficient because the transformation from 
the original basis to the reindexed basis is unitary.

When calculating these spectra, we find that the traditional im-
plementation and the DMEx converge to the same solution as t → dt. 
However, the DMEx exhibits a substantially smaller error at any 
step size than the traditional implementation and only accrues an 
error on the order of 1% when the step size exceeds the average 
lifetime. In this limit, the traditional implementation loses stability 
and the trace of ​​  ​​ deviates from unity. This immediately provides 
the ability to take larger step sizes with the DMEx implementation. 
In the case of s-trioxane, an error in the solution of ≈1% requires 
t = 1 ms in the DMEx and t = 0.1 ms using the traditional imple-
mentation, thus requiring one to sample far fewer data points. In 
considering all moments of the exchange interaction, the radius of 
convergence of the Dyson expansion is far larger than it would be 
by assuming conditions similar to those used for exchange.

While these model systems provide illustrative examples of the 
performance of the DMEx model, they are far from the more challenging 
cases in dynamic systems. As noted previously, an interesting system 
that has gained much attention in the past decade is the hyperpolar-
ization method SABRE, wherein large nonthermal nuclear magne-
tization is distilled from parahydrogen via reversible interactions with 
an iridium catalyst. Current efforts are focused on optimizing the 
extraction of spin order from parahydrogen, which requires accurate 
modeling of the quantum and exchange dynamics in realistic systems. 
For reference, an example simulation of the coupled coherent and 
exchange dynamics that drive SABRE hyperpolarization is shown 
in Fig. 3A, where the evolution of the 15N polarization is calculated 

B

C

A

D

Fig. 3. Evaluation of model errors in 15N-SABRE simulations using our SABRE-specific DMExFR2 model, which adds free ligand effects, rebinding, and relaxation 
(FR2) to the DMEx. An example of SABRE hyperpolarization dynamics is shown for reference, calculated on a six-spin 15N SABRE-SHEATH system (A). Comparing the DMEx 
and a QMC treatment, which is viewed as the “gold standard” but is computationally inefficient, indicates that there is a genuine but small difference of 0.142 ± 0.018%, 
on average, between the two solutions [red data, (B)]. The convergence error of the QMC is indicated by the black line. This error in the DMEx is attributed to the loss of 
the time orderings between the quantum and exchange degrees of freedom that are retained in the QMC. Even with nonlinear effects incorporated in the simulation, the 
DMExFR2 exhibits a larger radius of convergence over the traditional implementation by approximately a factor of 4 (C) and an improved self-consistency (parameterized 
by k, the error in the predicted exchange rate) (D), which uses t = 10 s solutions as ground truth.
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under the experimental conditions for SABRE–SHield Enables Align-
ment Transfer to Heteronuclei (SHEATH) (16).

In deriving the DMEx, we began with the ansatz that exchange 
could be considered as a time-continuous perturbation of the ensemble, 
but it is interesting to see when this assumption fails. The perturbation 
generated by exchange in the slow exchange limit is small, allowing 
the solution to be largely dictated by the quantum dynamics, and 
conversely, in the fast exchange limit, quantum evolution cannot 
generate large excursions from equilibrium when constantly disrupted 
by exchange. In the intermediate regime where SABRE exists, char-
acterized by exchange rates on the order of the dominant couplings, 
it is no longer trivial to motivate that large excursions from equilibrium 
would not be impactful on the dynamics. To probe this, we com-
pared our previous QMC model for SABRE (5) against the DMEx 
on a three-spin SABRE system (Fig. 3B) with a dominant coupling of 
2JNH = −24 Hz. In this regime, there is a significant difference between 
the convergence error of the QMC solution (QMC) and the DMEx 
solution; however, this error is, on average, only 0.142 ± 0.018%. Note 
that this analysis is limited to the smallest systems, given the large cost 
of iterating the QMC solution, and the error accrued by the DMEx is 
negligible on simulation time scale relevant to experimental guidance.

When modeling more complex systems, such as those often 
found in SABRE, it is critical for the cost of the DMEx to be 
augmented with an efficient method for exploring complex inter-
actions, otherwise circumventing the benefits of an infinite-order 
treatment by excessive computational costs. In SABRE, these inter-
actions include quantum evolution of multiple species, rebinding of 
previously polarized ligands to the activated complex, binding site 
competition with spin-inert coligands, and relaxation. We call this 
SABRE-specific model the “DMExFR2” to indicate that free ligand, 
rebinding, and relaxation effects are included. The most efficient 
way of accomplishing an efficient implementation of exchange is by 
expressing the interactions as block diagonal with respect to indi-
vidual manifolds, which we call “manifold-diagonal” for simplicity 
and will motivate using the example of SABRE.

In SABRE, we primarily consider two different species: one in 
which the hyperpolarization target is bound to the iridium, which 
we call “bound species,” and another in solution, which we call “free 
species.” Coherent evolution in the manifolds is established by sepa-
rately propagating a bound species density matrix (​​​̂  ​​ bS​​​) and the 
dissociated free species density matrix (​​​̂  ​​ fS​​​) under their respective 
nuclear spin Hamiltonians

	​​​ ∂​ t​​ ​​  ​​ fS​​  =  − i​[​​ ​​̂  
ℋ

​​ fS​​, ​​  ​​ fS​​​]​​​​	 (32)

	​​​ ∂​ t​​ ​​  ​​ bS​​  =  − i​[​​ ​​  ℋ​​ bS​​, ​​  ​​ bS​​​]​​​​	 (33)

We begin with the dynamics of the free species. Exchange facili-
tates association of free species to the catalyst (​​​   K ​​ a,fS​​ ​​̂  ​​ fS​​​), acting on 
​​​̂  ​​ fS​​​ to remove free species from the manifold as they bind the com-
plex, and allows for dissociation of bound ligand ​​​   K ​​ d,fS​​ ​​  ​​ bS​​​, adding 
species back to the manifold. Both of these exchange processes happen 
at the exchange rate of the ligand, kN, with an action scaled propor-
tional to the ratio of theconcentration of the iridium complex to the 
free ligand ([Ir]/[S]) to account for the inherent trace normalization 
of density matrices. The association operator is then simply

	​​ ​   K ​​ a,bS​​ ​​̂  ​​ fS​​  =  − ​ [Ir] ─ [S] ​ ​​̂  ​​ fS​​​	 (34)

The dissociation operator then deposits an equivalent number of 
ligands from the bound species subsystem into the free species sub-
system. For the case where both available binding sites in the iridi-
um complex are exchanging with the target ligand, there are distinct 
subsets of the nuclear spins in the bound species (Sa and Sb), which 
may dissociate to join the free species with equal probability. We 
average these possibilities to generate the dissociation operator 
for the free species, remembering to apply the concentration scaling 
factor for exchange between manifolds

	​​​​    K ​​ d,fS​​ ​​  ​​ bS​​  = ​  [Ir] ─ 2 [S] ​​(​​ ​Tr​ {​H​ 2​​​S​ a​​}​​ ​​  ​​ bS​​ + ​Tr​ {​H​ 2​​​S​ b​​}​​ ​​  ​​ bS​​​)​​​​	 (35)

Combining Eqs. 34 and 35 yields the equation of motion for the 
free species with exchange interactions

	​​​ ∂​ t​​ ​​  ​​ fS​​  =  − i​[​​ ​
​̂  
ℋ

​
​ fS​​, ​​  ​​ fS​​​]​​ + ​​   k ​​ N​​ ​ [Ir] ─ [S] ​​(​​ ​​   K ​​ d,fS​​ ​​  ​​ bS​​ − ​​  ​​ fS​​​)​​​​	 (36)

where ​​​ ~ k ​​ N​​  ≡ ​ k​ N​​ exp(− Δt ​k​ N​​ / 2)​ and will be used as a notation for 
the DMEx rate going forward.

The bound species has two exchange interactions: one for the 
simultaneous exchange of a ligand and the hydrides occurring at 
rate of kH and one for the exchange of target ligands at a rate of 
kN − kH. We will formulate the exchange operator for the bound 
species as a single entity, ​​​   K ​​ ex​​​, which takes multiple manifolds as 
arguments. Hydride exchange is restricted to occur only during 
ligand exchanges as the complex form a tetrahydride intermediate 
to facilitate this reaction. In the case where both parahydrogen and 
ligand exchange occur concurrently, we exchange the portion 
​Δt(​​ ~ k ​​ a,H​​ / ​​ ~ k ​​ N​​)​ of ​​​̂  ​​ bS​​​ to reflect the new hydride population and new 
ligand population. This may be written as

	​​ ​(​​ ​ 
​​   k ​​ a,H​​

 ─ 
​​   k ​​ N​​

 ​​ )​​ ​​  ​​ ​pH​ 2​​​​ ⊗ ​​  ​​ fS​​ ⊗ ​Tr​ {​H​ 2​​,S}​​ ​​  ​​ bS​​​​	 (37)

where ​​​  ​​ p​H​ 2​​​​​ is the density matrix for pure singlet parahydrogen and 
Tr{H2, S} returns the density matrix for the ligand that remains bound. 
In the case where the hydrides do not exchange but the target ligand 
does, another portion of the density matrix ​Δt((1 − ​​ ~ k ​​ a,H​​ ) / ​​ ~ k ​​ N​​)​ must 
be reformulated to reflect the newly exchanged ligand

	​​ ​(​​1 − ​ 
​​   k ​​ a,H​​

 ─ 
​​   k ​​ N​​

 ​​ )​​ ​Tr​ {S}​​ ​​  ​​ bS​​ ⊗ ​​  ​​ fS​​​​	 (38)

where ​T ​r​ {S}​​ ​​  ​​ bS​​​ is the density matrix for the subsystem of the remain-
ing ligand and parahydrogen. This projection must be constructed 
carefully to ensure that the coherences are appropriately retained 
between the hydrides and remaining ligand. Note that while we 
are exchanging between the free and bound species subsystems, the 
scaling factor is not needed as the free species density matrix is, by 
definition, trace normalized. Therefore, one free ligand equivalent 
leaving the free species will look like one free ligand equivalent asso-
ciating with the bound species. As this free ligand leaves the free species 
though, the appropriate reduction in the free species density matrix 
must be scaled by the concentration ratios. The full exchange oper-
ators can now be written as a combination of these two components

	​​ 
​​​   K ​​ {S}​​(​​  ρ​​ bS​​, ​​  ρ​​ fS​​ ) = ​(​​1 − ​ 

​​   k ​​ a,H​​
 ─ 

​​   k ​​ N​​
 ​​ )​​ ​Tr​ {S}​​ ​​  ρ​​ bS​​ ⊗ ​​  ρ​​ fS​​​

​    
​                                         + ​(​​ ​ 

​​   k ​​ a,H​​
 ─ 

​​   k ​​ N​​
 ​​ )​​ ​​  ρ​​ ​pH​ 2​​​​ ⊗ ​​  ρ​​ fS​​ ⊗ ​Tr​ {​H​ 2​​,S}​​ ​​  ρ​​ bS​​​

​​		
(39)
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The two possible ligand exchanges from the two available bind-
ing sites, a and b, then average together to give the final exchange 
operator for the bound species

	​​​​    K ​​ ex​​  = ​  1 ─ 2 ​​(​​ ​​   K ​​ {​S​ a​​}​​ + ​​   K ​​ {​S​ b​​}​​​)​​​​	 (40)

Note that Eqs. 35 and 40 contains terms that are quadratic in the 
magnetization density, arising from the effects of rebinding ligands 
that have already interacted with the species. Hence, this is a second-
order nonlinear partial differential equation, which must be solved 
simultaneously with the equation of motion for the free species to 
define the full evolution of the system.

Furthermore, these nonlinearities are amplified as the ratio in-
creases. It now becomes possible to efficiently represent the impact 
of concurrent evolution of the J-coupling networks in the free and 
bound species of the target ligand. In addition, we can now model 
the effects that various solution compositions will have on the 
polarization dynamics, given that rebinding of previously polarized 
ligand will significantly affect the evolution of the bound species 
under the nuclear spin Hamiltonian.

Even with the incorporation of the nonlinear terms to the DMEx, 
the solution convergence is still far faster than that of the traditional 
implementation (Fig. 3C), and the two models still converge in the 
limit when t → dt. One can obtain the same error in the DMExFR2 

with a step size that is four times larger than the traditional im-
plementation. While we have focused on the accuracy of the simu-
lation, its precision in reproducing input parameters, such as 
the exchange rate, are just as important, particularly as these 
models are used to extract physical parameters from experimental 
data. Under this condition, it is not only critical that the simulation 
is stable but also efficient, as large portions of phase space have to be 
searched to perform an experimental fit. To characterize the pre-
cision of the simulation, we introduce the parameter k, which 
defines the relative shift in the predicted exchange rate in the 
simulation (Fig. 3D). Unexpectedly, there was essentially no 
exchange rate at which the traditional implementation provided a 
solution that was stably precise. In contrast to that, the DMEx 
model essentially perfectly reproduces the input exchange rate 
until k ≈ 300 s−1, and when nonlinearities are introduced to the 
simulation, the maximum deviation from the input exchange rate is 
only k ≈ 0.5%.

Practical examples
As noted previously, guided in silico exploration of novel experi-
mental methods that increase the hyperpolarization of SABRE is the 
focus of optimization efforts in the community. With the improved 
stability of the DMEx models, it is possible to explore realistic sys-
tems with complex coupling networks and reduce the calculation to 

A B

C

Input exchange 
rates, 14-spin 

simulation 

Fig. 4. Importance of modeling SABRE systems using complete models. (A) To reduce computational overhead, virtually all calculations to date remove ancillary spins 
from the system, such as artificially reducing the number of protons on the pyridines in the bis-(15N) SABRE complex from 10 to 2 (A). Doing so alters the hyperpolarization 
dynamics (blue) as compared to the explicit 14-spin calculation (black), which is stable using the DMExFR2 models for step sizes even up to 5 ms (red). (B) Fitting the 
14-spin calculated time evolution with this smaller model produces incorrect values of the exchange rates. (C) Including all relevant exchange pathways when modeling 
SABRE systems is also crucial for predicting accurate exchange parameters. Here, we fit the experimental (15N,13C)-acetonitrile hyperpolarization dynamics to DMExFR2 
models with (solid) and without (dashed) coligand exchange effects. When neglecting these exchange pathways, the predicted exchange rates differ from the correct 
values by 44 to 92%.
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an obtainable cost by using large simulation step sizes (t > 1 ms). 
The flexibility of this formulation to be expressed in either Hilbert 
or Liouville space additionally provides access to much larger spin 
systems than previously possible.

The case of the canonical bis-(15N-pyridine) SABRE-SHEATH 
system is particularly interesting, as it contains 14 strongly coupled 
spins in just the “iridium-bound” manifold with 22 total spins and 
is perhaps the most prevalent system in 15N SABRE. As the full 
system is far outside the scope of previous exchange models for 
SABRE, it has been traditionally acceptable to truncate the spin sys-
tem to an approximate system, fully or partially removing ancillary 
1H nuclei, with the largest approximation reported in literature using 
a single 1H per ligand (4). Even in this case, the dynamics of the 
truncated model diverge greatly from the actual system dynamics 
(Fig. 4A), the latter which can be explicitly calculated using the 
DMExFR2 model with either 2-ms (black) or 5-ms (red) step sizes 
with only minor deviation between the solutions. As a result, the 
truncated model optimizes to exchange rates that are false while re-
taining a deviation of ≈10% from the actual system dynamics when 
reoptimized to the erroneous rates (Fig. 4B). This means that any 
physical parameters extracted from experimental data by the model 
will be greatly confounded by the truncation errors inherent to the 
formulation.

To emphasize the efficiency and flexibility of this framework, we 
used the DMExFR2 model to fit the coherent hyperpolarization 
dynamics of (15N-13C)-acetonitrile when exciting the sample with 
short (milisecond) pulses tuned to a field near the SABRE reso-
nance condition, as described in our prior work (5, 32). Coherent 
evolution is then interrogated by varying the resonant pulse length, 
which encodes the dynamics in the final polarization detected. This 
is a multicomponent SABRE system containing 21 total spins and 
requires consideration of hyperpolarization-inactive coligand 
effects to accurately describe the dynamics. These effects allow for 
additional exchange pathways to influence the dynamics of the sys-
tem. One of the most critical ramifications arising in allowing the 
hyperpolarizable ligand to exchange between positions on the com-
plex and thus with which parahydrogen-derived hydride the ligand 
is coupled. In the limit of fast exchange, this makes the hydrides 
appear equivalent and would prevent the singlet order from being 
converted into observable magnetization. When coligand effects are 
included (solid lines), the experimental data can be reproduced 
with high fidelity to experiment at multiple field conditions 
(Fig. 4C), such as when the resonant pulse is B = − 1.65 (red) or 
−0.91 T (blue). Furthermore, the extracted exchange rates for 
these datasets are kN = 14.5 ± 1.8 s−1 and kH = 6.00 ± 0.75 s−1 for the 
B = − 1.65 T data and kN = 15.0 ± 3.3 s−1 and kH = 4.50 ± 0.98 s−1 
for the B = − 0.91 T data. When coligand effects are neglected, the 
predicted exchange rates can have errors of 44 to 92%.

Properly simulating this system requires two seven-spin manifolds 
for the two conformers of the iridium complex, a five-spin manifold 
for the free (15N-13C)-acetonitrile, and a two-spin manifold for 
parahydrogen. Fitting the experimental data would be intractable 
within any of the previous formalisms for SABRE dynamics (3, 25) 
as a function of the system size. However, when built using the 
DMExFR2 model in conjunction with the manifold-diagonal for-
malism for exchange introduced here, each simulation dataset, 
which consists of 32 simulations lasting 30 s using t = 2 ms, 
requires approximately 15 min to calculate, making a grid optimi-
zation fit possible within a day.

CONCLUSIONS AND OUTLOOK
The foundations of exchange in dynamic quantum systems have 
been reassessed and derived in its exact form from infinite-order 
perturbation theory. In doing so, the DMEx formalism presented 
here accounts for higher moments in the ensemble action that are 
omitted from the traditional implementation. The speed and accu-
racy with which complex exchanging spin systems may be modeled 
using the DMEx formalism allows for extensive in silico experimenta-
tion and optimization in a way that has previously been inaccessible. 
In tandem, we have introduced a manifold-diagonal implementation 
for exchange, allowing the simulations of multicomponent systems 
with nonlinear exchange dynamics to scale linearly with the dimen-
sion of the composite space. Expressing individual manifolds 
in their Hilbert space representation affords efficient simulation of 
experimental data with high fidelity.

We anticipate that the results demonstrated here will have a radical 
impact on the simulation of complex dynamic systems. In the hyper-
polarization community, the ability to accurately and efficiently 
simulate the entire SABRE system should greatly alter the optimi-
zation of the hyperpolarization efficiency. Annealing the DMEx 
formalism to state space reduction techniques has the potential to 
introduce efficient simulation of systems as large as biomolecules, 
offering the possibility to markedly reduce computational time and 
improve simulation accuracy using larger time steps. While these 
results are presented within the framework of SABRE, they are 
immediately applicable to the dynamics of any quantum system 
undergoing exchange, provided that the chemical dynamics are at 
equilibrium. More broadly, these results demonstrate a method to 
encapsulate the coupling between distinguishable ensembles past 
the perturbative limit. This has the potential to have a transformative 
impact in the field of open quantum system dynamics for applica-
tions like quantum computing, where quantum information loss to 
a bath is critical for understanding the limits of the system.

MATERIALS AND METHODS
Coherent SABRE-SHEATH experiments
A sample of (15N,1-13C)-acetonitrile (100 mM), pyridine (33 mM), 
and IrIMesCODCl (5 mM; IMes, 1,3-bis(2,4,6-trimethylphenyl)-
imidazol-2-ylidine; COD, 1,5-cyclooctadiene) was prepared in 
methanol-d4 and activated by bubbling parahydrogen gas (7 bars) 
through the solution. This sample was then bubbled inside of a 
solenoid positioned within a triple-layer micrometal shield, which 
was stroboscopically pumped between the resonant field condition 
(B = − 1.65 or −0.91 T) for a given pulse length interleaved with a 
nonresonant field of B ≈ − 22.5 T for 250 ms; this was repeated for 
60 s to generate SABRE hyperpolarization. The coherent dynamics 
are interrogated by varying the resonant pulse length.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/32/eabb6874/DC1
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