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CHEMICAL PHYSICS

Infinite-order perturbative treatment for quantum

evolution with exchange

Jacob R. Lindale', Shannon L. Eriksson'?, Christian P. N. Tanner', Warren S. Warren'3*

Many important applications in biochemistry, materials science, and catalysis sit squarely at the interface between
quantum and statistical mechanics: Coherent evolution is interrupted by discrete events, such as binding of a
substrate or isomerization. Theoretical models for such dynamics usually truncate the incorporation of these events
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to the linear response limit, thus requiring small step sizes. Here, we completely reassess the foundations of chemical
exchange models and redesign a master equation treatment for exchange accurate to infinite order in perturbation
theory. The net result is an astonishingly simple correction to the traditional picture, which vastly improves con-
vergence with no increased computational cost. We demonstrate that this approach accurately and efficiently
extracts physical parameters from complex experimental data, such as coherent hyperpolarization dynamics in
magnetic resonance, and is applicable to a wide range of other systems.

INTRODUCTION

Calculations of quantum evolution in dynamic systems, such as ex-
change or conversion between multiple discrete states, are important
today in many disciplines (1-5). These calculations first became
prominent in magnetic resonance more than 50 years ago with the
McConnell equations (6), which were introduced first as a classical
approximation of the spin dynamics in exchanging systems. These
equations could readily describe the dynamic spectra of uncoupled
spin-1/2 nuclei but were incapable of handling evolution under
bilinear couplings. In contrast, the density matrix formalism (7-9)
readily includes statistical averaging in the equilibrium state, and
coherent evolution can be handled by unitary transformations in-
volving calculation of a highly accessible propagator for spin systems.

As it would be computationally impossible to explicitly calcu-
late, for instance, the dynamics of 10°° nuclear spins, one averages
over each molecule to form a reduced density matrix, wherein
the form of ensemble interactions is obfuscated. Therefore, dynamic
exchange effects require a more careful treatment of the expression
of the ensemble action in the reduced density picture, modifying
the time evolution from the form given by pure quantum mechanics
@p = i[p, H)). The exchange interaction has been historically de-
rived as an analog to the case of Redfield relaxation theory (7, 10),
but the ensemble dynamics that generate relaxation occur on a time
scale far faster than the evolution of the quantum degrees of freedom
(femtoseconds to picoseconds), effectively limiting the influence of
these dynamics to the first observable moment. This is not valid for
exchange, where it would be feasible for higher moments of the en-
semble interaction to act on a time scale comparable to the coherent
evolution.

Despite the maturity of models for exchange, there is still con-
siderable motivation to develop new methods to efficiently and
accurately explore dynamic effects in systems undergoing quantum
evolution. On the forefront of magnetic resonance techniques are
hyperpolarization methods (11-15), which overcome the intrinsically
low signal-to-noise limits by distilling spin order from an external
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source. Of particular interest over the past decade is signal amplifi-
cation by reversible exchange (SABRE) (5, 15-31), in which the singlet
order of parahydrogen is converted into observable magnetization
or more complex spin states on target ligands during transient
interactions with an iridium catalyst (Fig. 1A). Optimization of this
technique requires accurate modeling of the system, which, with the
recent advent of coherently pumped SABRE experiments (Fig. 1B),
has revealed bizarre and complex dynamics (5, 32). Accurately model-
ing the coherent hyperpolarization dynamics of systems like ("°N,">C)-
acetonitrile (Fig. 1C) and subsequently fitting the experimental data
have been impossible within previous frameworks for exchange,
given the multitudinous exchange interactions, such as coligand ex-
change events and number of coupled spins (21 total spins).

To that end, we completely reinterrogate the incorporation of
dynamic exchange interactions in evolving quantum systems. We
construct a reformulated dissipative master equation by recovering
the traditional expression from the Dyson series and then continuing
the derivation to infinite order in perturbation. The ramifications of
extending the derivation of the dissipative master equation to all
orders in the exchange interaction make a profound impact on the
radius of convergence of exchange simulations with absolutely no
additional computational cost by deriving a simple scaling factor
that accounts for all moments in the ensemble motion. In addition to
the most general case of exchange between distinguishable ensembles,
we show solutions for pseudorotation generated by Abelian groups
of order 2 and 3 as well as for quantum dynamical selection (QDS),
where coherent degrees of freedom alter the exchange interaction.
By coupling this new infinite-order treatment exchange to a formu-
lation of the exchange operators that scales linearly with the number
of distinguishable ensembles, we can easily model highly complex
systems that would be untenable within alternate exchange formal-
isms (3, 25).

RESULTS

Pursuing a traditional, master equation approach to chemical ex-
change requires the assumption that fundamentally discrete exchange
events may be approximated as a continuous perturbation to the
ensemble, shifting the model from assuming a Poisson process of a
microcanonical ensemble to a Wiener process of a canonical ensemble.
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Fig. 1. SABRE provides an ideal system to challenge the limits of an exchange model, given the complexity of the underlying dynamics. (A) SABRE transfers the
singlet order of parahydrogen to a target ligand via reversible interactions with an iridium catalyst and exhibits nonlinear dynamics that are highly dependent on the
relative concentrations of each species. (B) The coherent hyperpolarization dynamics can be probed by interleaving pulses at or near the SABRE resonance condition (red)
with periods far off resonance (B = — 22.5 uT) to allow for exchange. (C) The (15N,13C)—acetonitrile SABRE system demonstrates rich dynamical information that varies with

the resonant field as a result of a complex coupling network between N, 3C, and

Quantum Monte Carlo (QMC) models discontinuously sample ex-
change events and are essentially exact, provided that one can iterate
the solution to convergence (5). However, the cost of iterating a QMC
solution to convergence would often make the calculation intractable
on the time scale of experimental guidance. For instance, on the
canonical 14-spin bis-("’N-pyridine) SABRE system, it would take
approximately 300 years to run a single 60-s simulation at a modest
exchange rate (ke = 50 sHto approximately 99% convergence.

The methods to describe dynamic evolution in quantum systems
are well established in the case of spin relaxation in liquids, which
relies on the perturbative Dyson series expansion of the interaction-
frame propagator. In this case, as well as for the traditional case for
exchange, the series is truncated to the leading term by assuming
that the dynamic interaction is a small perturbation. The same result
can be recovered by annealing the Liouville-von Neumann equation
to the rate equations defining exchange by taking the tensor product
between the quantum and chemical degrees of freedom. In both cases,
this assumes that exchange acts linearly on the evolving quantum
degrees of freedom, which is not well motivated. With our ansatz
that discrete exchange events may be approximated as a continuous
process, we recast the Dyson series for the case of exchange without
any a priori assumptions as to the magnitude or order of the ex-
change interaction.

Reformulation of the Dyson series for chemical exchange

To begin, we partition the Hamiltonian into a stationary component
" o and a stochastically modulated exchange interaction H\(2), for
which the equation of motion is given by (A = 1)

0p = —i[Fo + F(t),7] (1)
Boosting Eq. 1 into the interaction frame gives
38 = ~i[ H1(t),8] @)
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'H. Lines are meant as visual guides only.

where we use the convention § — § for distinguishability between
the representations and F(t)= exp(—if[o () exp(if[o t) is
the interaction representation denoted by the tilde. Equation 2 may
then be formally integrated and iteratively substituted back into the
expression to generate the Dyson series. When doing so, we assume
that the correlation time of the exchange interaction is much faster
than the coherent evolution of the system, which allows us to write
6(t') = 6(t) Vt' and extend the upper limit of integration to infinity

+ .-

3)

5

In this equation,7is the Dyson time-ordering operator, which
imposes t > t'. At this juncture, we introduce H(t) as the operator
expansion

a6(0) =i Fruere() | - T ar [ Fru0)| Feueren ||

(4)

where g indexes through uncoupled exchange mechanisms, F 4
are real, stochastic operators describing the time evolution of ex-
change, and A, define the interaction of exchange with the evolving
quantum system. We assume that the system is in a chemical steady
state, and therefore, ( F 4¢(t)) = 0 and is importantly not the first
moment of the exchange rate. Furthermore, this has the repercus-
sion that all odd-order terms in the expansion necessarily average to
zero, ensuring that chemical exchange generates no complex phase
rotations in G. Substituting Eq. 4 into Eq. 3 and ensemble averaging
gives the leading term

06 = —TX Jo drh,e ™I L DB F ) (5)
Pq

Note that we have shifted to the commutation superoperator rep-
resentation ([O,¢]= O) and have dropped the formal time dependence
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of G as well as the tilde notation for the interaction frame for legibility.
The integrand is then the correlation function of the ensemble
motion, which, for a stochastic, real-valued, and time-continuous
(Wiener) process, is 8—50rrelated in time. To avoid violating the
time-ordering operator, 7, only self-correlated terms can give nonzero
amplitudes upon integration, which may be accounted for by im-
posing 8,4. The 3-correlation imposes that exp(i Ho(t'-1) is unity,
making all interaction-frame superoperators for exchange identical
to their lab space representation. Then, the time-ordered integral
simply determines the rate of the exchange process, which is the
probability of exchange glven a characteristic lifetime (1) during a
finite period of time, (Att;')/At. Upon integration, this gives

Af‘Cal 1
o =z ©

o di (B ) B 1) = Jo s — v
A2 22

The term A, A, can now be written as A, which is immediately
reallzed in its more common notation as the exchange superoperator
-R ¢ Where the sign convention arises to ensure that exchange forms
a completely positive map. Together with Eq. 6, this returns the
canonical form of the chemical exchange master equation, which, in

the Schrédinger representation, is

0:p = ~i| Fop| + z )

Truncating the expansion here essentlally imposes that exchange
only acts linearly on p during the finite period of time At (i.e., the
simulation step size), as this was the condition under which Eq. 6
was defined. In only the simplest cases can Eq. 7 be homogenized
and analytically integrated, wherein the finite period of time At —
dt and the assumption that an exchange interaction of any magni-
tude acts linearly on the quantum degrees of freedom are accurate.
However, now that we have explicitly established the derivation of
the chemical exchange master equation from the Dyson series, it is
simple to continue the derivation to higher-order terms. Remember-
ing that all odd-order terms necessarily go to zero upon ensemble
averaging, the next nonzero interaction in the expansion arrives in
the fourth-order term, which, after substitution of Eq. 4 and realizing that

A2 ~
there can be only powers of A, to give rise to the superoperator K, is
2222 o
08 = Y pqApAT

o TR ®
Jo dtfode o de (Bt Bye) Byt B )

The integrand of Eq. 8 is a four-point correlator that may be fac-
tored into a sum of two-point correlator products by Isserlis’ theorem,
where the form of each correlator is given by Eq. 6. There are (n — 1) !!
identical terms for an n-point correlator after factorization when
the process is d-correlated, where n !! is the semifactorial of #, de-
fined as the factorial using only integers of the same parity as n
(5!""'=5x 3 x 1). In addition, given the time symmetry of the Wiener
process, there will be (n — 1)! degenerate time orderings upon inte-
gration, accounted for with division of the correlator amplitude by
the degeneracy. Integration then gives

= [ t RPN ~ ~ ~
/o at dt”ﬂ) dt (Fp(t)Fp(t') Fqt”) Eq(t))

=%<74> /At =

)

At
21:2
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Notice that 8, prevents any cross terms between p and g from
arising in the summation, hence why integration generates a rate
proportional to ré. Equation 8 then becomes

A2\ 2
8t6:2<—ﬁq> Atg (10)
q 2

The fourth-order term describes the probability of two exchange
events occurring during a finite period of time, as the exchange ir interac-
tion can be expanded into successive applications of A We
shall define the powers of the exchange interaction condltloned to
specific cases and otherwise leave it in its more general form. Using
the assumptions established here, it is then beneficial to rewrite the
entire Dyson series for exchange as

k+1
al 13 42 At N
a3z () H) e

Equation 11 may be simplified byzestablishing a more rigorous

(11)

definition of the exchange operator —A,, which will show for a general
case and more specific applications. Before doing so, it is pertinent
to note that the general operator action of Eq. 11 can be written as

A2 k+1 a2 k,\ N
5)0 (1) ko-rka

where the first equality is inherent given the definition of K qand
A2 k

the second is possible if K 4O are eigenfunctions of (—Aq) , where y
is then a constant. Under this condition, the infinite sum in Eq. 11
would be independent of the interaction superoperator and evalua-
tion of all moments of the exchange interaction would have no ad-
ditional computational cost over a traditional formulation.
Exchange between distinguishable ensembles
The most general formulation for exchange is to form a composite
vector space constructed from the direct sum of m discrete chemical
configurations that form manifolds of quantum states, where ex-
change allows flow of populations between manifolds via projection
operations. This formulation is unrestricted in the systems that it
may describe, as it is trivial to project between systems of different
sizes and projections may both encapsulate linear and nonlinear
contributions to the evolution. When constructed carefully, this
method grows linearly in cost with m, as projections need not act on
the entire composite vector space.

We find the form of the exchange interaction for this case by
recognizing that projections are idempotent operations (y = 1 in Eq. 12),
such that

(12)

(7 2:)1{“ ) (71)]{“ (gz)lﬁ

Note that we have reindexed the alternating term for convenience.
There is an intricate ramification of Eq. 13, in that the group G,
containing all powers of the exchange superoperators for a given
system is isomorphic to its coset of linear power superoperators S,
which equivalently form the kinetic equations for the chemical dy-
namics. Hence, considering all moments in the exchange interaction
will only ever generate dynamics that are directly reflected in K g
Given Eq. 13 and that the summation over k is simply the Maclaurin
series for the exponential, Eq. 11 may be written in the Hilbert space as

o R _ R
9P = —i[Ho,p] +;{T—:exp<%> }p

k+1

=(-D"'(-R,) =C-D'R, 1

(14)
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In this form, Eq. 14 is the exact, closed form solution of quantum
evolution with exchange, which we call the exact dissipative master
equation (DMEXx). In its exact form, the only difference that arises
in comparison to the traditional form is the exponential factor, where
itis clear that in the limit where At — dt, the equation converges back
to Eq. 7. That arises as the impact of higher moments in exchange go
away over small periods of time because it is impossible for multiple
exchange events to occur simultaneously in the limit of infinitesimal
step sizes. However, as At becomes larger, the higher-order terms
account for moments in the dynamics of the ensemble that are not
present when one assumes a linear coupling between the quantum
and exchange degrees of freedom.

Pseudorotation by Abelian permutation groups

While Eq. 14 is valid for any exchanging quantum system, it would
be inconvenient to expand a system into separate manifolds when
the coherent evolution within those manifolds, or a subset of those
manifolds, is identical. This is the case for exchange generated by
pseudorotation, such as the canonical example of cyclohexane inversion
in magnetic resonance. Hence, it is convenient to recast Eq. 11 for
the cases of pseudorotation generated by two- and threefold symmetric
permutation groups, which we shall call G* and G* pseudorotations,
respectively. As we are recasting the DMEx for specific cases, we will
drop the g-index and write the explicit form of the equation of motion.
Note that all of the assumptions made to derive Eq. 11 remain valid
for these conditions.

In the case of pseudorotations, which contain inherently coupled
exchange processes, we define the first moment of the exchange inter-
action operator as

®R)-E=1R+R") (5

The operators R ! ®R o generate the forward (K) and backward
(R ") rotations, which are coupled with equivalent probability. We
have also written the exchange superoperator K in a traceless form
for convenience instead of writing a separate term proportional to
unity (E), as done in the general case. The forward and backward
rotations are equivalent for G* pseudorotations, which allows Eq. 15
to be reduced to

1 ~

K=R®@R -E (16)

The form of the higher powers of the exchange interaction are

given as
a2 k+1 N
(— A ) = (-2

and hence give the DMEx for G* pseudorotation in the Hilbert space

~a-1
e ] RPRT-p [
atp:_l[HO,p] +¥8Xp(%>

Again, the exponential term returns the canonical equation of
motion for exchange in magnetic resonance when taken to the limit of
analytical integration (At — dt). Note that in this case, the argument
of the exponent is proportional to 1/1, as opposed to the other cases
presented here. This arises as a ramification of the definition that
was used for K.

(17)

(18)
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The case of G pseudorotatioTns no longer permits the reduction
of Egs; 15 and 16, as g # K . It is pertinent to note the rela-
tionR ® R =R @R, which allows for any quadratic or higher
rotation to be written in terms of the linear term. The higher powers
of the exchange interaction then reduce to the simple form

<— ﬁz)kﬂ (D'

Plugging Eq. 19 into Eq. 11 gives the DMEx for G pseudorotation

(19)

s ] R (-
0P = —1[Ho,p] +Tpexp<%> (20)
where
A . PP PN BN ~
sz%(RpR +R pR)—p 1)

Again, the only difference between the exact treatment and the
traditional implementation for exchange is the exponential term.
Note that Eqs. 18 and 20 can be used alone or in conjunction with
the more general DMEx formalism shown in Eq. 14 as a method of
contracting the composite vector space, with an obvious example
being to use Eq. 20 to compress the manifolds corresponding to the
three orientations of methyl rotation with magnetically inequivalent
interactions. This does require that the rate connecting the con-
tracted manifolds to any other manifold be identical; otherwise, the
contraction is invalid.

Quantum dynamical selection
An interesting case to examine is when the quantum and chemical
dynamics are coupled, such as in QDS, where quantum evolution
dictates the evolution of the exchange degrees of freedom. In this
case, we must reassess the assumptions made to arrive at Eq. 11 per-
taining to the stochastic motion of the ensemble. However, we will
construct this case as exchange between distinguishable ensembles,
leaving Eq. 13 intact. This case is restricted by the condition that
[Fq0,8] 0 (22)
such that we may no longer ensemble average & and the ensemble
motion operators F q separately. This gives rise to the leading term
in the Dyson series

00 = —;;;ngq?fo dt,<ﬁp<t)ﬁq<t/)6> (23)

The factorization of the three point correlator generates

(By(t)E4(1)8) = (B () E(t)X8) + (B (BN E (1)) + (E () BXE (1))
(24)

As (ﬁ q) = 0is retained with the assumption of a chemical steady
state, only the first term in the factorization is retained. Furthermore,
as the ensemble is still macroscopically described by a Wiener pro-
cess, the § correlation is retained and 8, is imposed to avoid violating
the time ordering. For any (27 + 1)-point correlator, only the single
term that averages G separately will be retained. If we then insert Eq. 24
into Eq. 23 and define

~
2

o de (B B )=, (25)
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where @1 is an ensemble motion superoperator that determines the
rate of the process as a function of the population in the quantum
state coupled to the exchange process, then we obtain as the equa-
tion of motion

938 = -3, A , 056 (26)
We may impose that
o8 =1(,6 (27)

such that Cq is a constant that is the rate of the ensemble motion

dictated by Aq, which states that G is an eigenstate of <I) at all times.
This relation is validated when & is imposed, which prevents the <I>

from generating a tensor of rank 1 or higher. Hence, we may write the
form of Eq. 25 as

(28)

where P, scales the rate by the projection of the quantum state,
which couples to the exchange process and is a constant. As projection
operators are idempotent, we may derive the DMEx for QDS directly
from the derivation of the general case, with an additional factor of
P, that makes the rates time dependent; in the Hilbert space, this is

~ A A R,P AP\ | A
atp—l[Ho,p] + Zq{ T—qexp< Ziq@>}p

(29)

Expressing the exchange rates as time-dependent quantities
complicates interpretation of this case. However, if we choose to
express the ensembles using both chemical and quantum degrees of
freedom, then we recover Eq. 14 as the equation of motion for
exchange. The exchange rates between the redefined manifolds are
then time independent.

k=0.1s"
.g};q& k=20s*
I k=1000s"*
2=~
100
10 :
g 1 . . . ’
[a) . .
» 0.100{.
E 0.010| . ‘ Traditional
. DMEXG?
0.001 . (k=300s71)

0 1 2 3 4 5
At (ms)

DISCUSSION

Performance of DMEx models

The chemical exchange master equation is only homogeneous and
analytically integrable in the simplest of cases and can acquire non-
linearities when one considers reversible exchange between distin-
guishable ensembles. The DMEx equations of motion presented
here are fully converged in the exchange interaction and handle that
interaction exactly but are not exact for the full evolution, as there is
no preservation of the time ordering between the quantum and ex-
change degrees of freedom that would be present in a full solution.
This could be approached by calculation of higher-order time de-
rivatives but at an additional computational cost. However, the next
section focuses on the difference between the traditional master
equation approach (Eq. 7) and the DMEx solutions, which shows
marked improvements in permissible time steps, and then compares
the DMEx to QMC simulations where these time orderings are pre-
served, but the computational overhead is very large. Therefore, we
will evaluate the performance of DMEx methods using the solution

B(t+ AN =81 p(t) I+ zﬁexp ( )(K [ OIRED)

In this equation, I{ = exp(iHo At). This is an ideal computational
method, as it only involves forward propagation of the solution, re-
quires the fewest number of matrix operations, and produces linear
evolution under the spin Hamiltonian and evolution to all orders in
the exchange interaction. Equation 30 has a small intrinsic error
associated with the solution, in that the first step only evolves quantum
mechanically. A more accurate way to solve the equation of motion
would be to evolve the initial density matrix backward in time by
At/2 and then using Eq. 30 to generate the solution. Doing so shifts
the actions of I{ and K q by a half step and corrects for this initial
error. However, we have found that this makes little difference in
the solution; thus, we retain Eq. 30 so to avoid generating a non-
integral number of steps. To isolate errors arising from exchange,
we have constructed all of the following simulations in the Hilbert

B g4 k=18s"
??q: k=15s"
Fan
f/; ;\ q k=10005s"
A0 a0)
L) P an)
10 . )
5 .
g
0050 . . . . .
n . .
E 0.10| - * Traditional
0.05] - DMEXG?
(k=300
0.01L°
0 1 2 3 4 5
At (ms)

Fig. 2. Comparison of the traditional master equation solution (Eq. 7, black) and our DMEx models for G2 and G3 pseudorotations. We use s-trioxane ring inversion to
model G2 pseudorotation (A) and tert-butyl rotation in t-BuPCl, to model G3 pseudorotation (B) The graphs at the bottom compare the root mean square deviation (RMSD)
of the generated magnetization as a function of the time evolution such as in Fig. 1C using At = 10 us (which is taken as the ground truth). The DMEx models retain good
fidelity with no additional computational overhead, even with step sizes commonly being 10 times larger than were possible with traditional solutions.
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space of the system, where one can exactly evaluate quantum evolu-
tion in systems up to 15 coupled spins.

Dynamic nuclear magnetic resonance spectra under pseudorotation
have been studied and understood for decades. Spectral features are
well resolved in the limit of slow exchange, which broaden and
coalesce as the exchange rate increases, and ultimately result in line
narrowing in the fast exchange limit. This is reflected in spectra of
s-trioxane (9) undergoing ring inversion (Fig. 2A), where the axial
(blue) and equatorial (red) have different chemical shifts and the
geminal %/ coupling is observable. As exchange increases, the
spectrum collapses to a singlet, as the axial and equatorial positions
become, on average, magnetically equivalent. Similar effects appear
for the tert-butyl rotation in t-BuPCl, (Fig. 2B), which additionally
exhibits a transition that is invariant under exchange and thus does
not broaden (33).

For either of these systems, the pseudorotation matrices are gen-
erated by expressing a spin label permutation matrix in the appro-
priate basis. For convenience, we will use the Zeeman basis in this
example. In the case of s-trioxane, where the axial and equatorial
protons interchange, it is most convenient to setup the system such
that axial protons have odd indices and equatorial protons have
even indices. Then, the rotation R is given by

R=P,®P3;®Ps (31)

13,-]- is the permutation matrix that interchanges the |af) and | Bo)
states, whereas the | o) and | BB) states are invariant under exchange.
Using this method, it is trivial to arbitrarily reindex the entire system

0.7
R06

505

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0 1 2 3 4 5

Traditional

DMEXFR2
(k=20s7)

RMSD (%)
>

0.5 .

0.0

At (ms)

and is computationally efficient because the transformation from
the original basis to the reindexed basis is unitary.

When calculating these spectra, we find that the traditional im-
plementation and the DMEx converge to the same solution as At — dt.
However, the DMEx exhibits a substantially smaller error at any
step size than the traditional implementation and only accrues an
error on the order of 1% when the step size exceeds the average
lifetime. In this limit, the traditional implementation loses stability
and the trace of p deviates from unity. This immediately provides
the ability to take larger step sizes with the DMEx implementation.
In the case of s-trioxane, an error in the solution of ~1% requires
At =1 ms in the DMEx and At = 0.1 ms using the traditional imple-
mentation, thus requiring one to sample far fewer data points. In
considering all moments of the exchange interaction, the radius of
convergence of the Dyson expansion is far larger than it would be
by assuming conditions similar to those used for exchange.

While these model systems provide illustrative examples of the
performance of the DMEx model, they are far from the more challenging
cases in dynamic systems. As noted previously, an interesting system
that has gained much attention in the past decade is the hyperpolar-
ization method SABRE, wherein large nonthermal nuclear magne-
tization is distilled from parahydrogen via reversible interactions with
an iridium catalyst. Current efforts are focused on optimizing the
extraction of spin order from parahydrogen, which requires accurate
modeling of the quantum and exchange dynamics in realistic systems.
For reference, an example simulation of the coupled coherent and
exchange dynamics that drive SABRE hyperpolarization is shown
in Fig. 3A, where the evolution of the "N polarization is calculated

B
0.7 Came . .
0.6 DMEx ‘
0.5 (At=100ps) e .
004 L . .
€03 R
©o2f ..°°
o1 — . °
0.0L°
0 20 40 60 80
kn (s7")
D
Traditional
20 DMEXx
~15| DMExXFR2
1> (At=1ms)
510
5
0

0 100 200 300 400 500 600
kn (s7")

Fig. 3. Evaluation of model errors in ">N-SABRE simulations using our SABRE-specific DMExFR2 model, which adds free ligand effects, rebinding, and relaxation
(FR2) to the DMEx. An example of SABRE hyperpolarization dynamics is shown for reference, calculated on a six-spin >N SABRE-SHEATH system (A). Comparing the DMEx
and a QMC treatment, which is viewed as the “gold standard” but is computationally inefficient, indicates that there is a genuine but small difference of 0.142 + 0.018%,
on average, between the two solutions [red data, (B)]. The convergence error of the QMC is indicated by the black line. This error in the DMEx is attributed to the loss of
the time orderings between the quantum and exchange degrees of freedom that are retained in the QMC. Even with nonlinear effects incorporated in the simulation, the
DMEXFR2 exhibits a larger radius of convergence over the traditional implementation by approximately a factor of 4 (C) and an improved self-consistency (parameterized
by o, the error in the predicted exchange rate) (D), which uses At = 10 us solutions as ground truth.
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under the experimental conditions for SABRE-SHield Enables Align-
ment Transfer to Heteronuclei (SHEATH) (16).

In deriving the DMEx, we began with the ansatz that exchange
could be considered as a time-continuous perturbation of the ensemble,
but it is interesting to see when this assumption fails. The perturbation
generated by exchange in the slow exchange limit is small, allowing
the solution to be largely dictated by the quantum dynamics, and
conversely, in the fast exchange limit, quantum evolution cannot
generate large excursions from equilibrium when constantly disrupted
by exchange. In the intermediate regime where SABRE exists, char-
acterized by exchange rates on the order of the dominant couplings,
itis no longer trivial to motivate that large excursions from equilibrium
would not be impactful on the dynamics. To probe this, we com-
pared our previous QMC model for SABRE (5) against the DMEx
on a three-spin SABRE system (Fig. 3B) with a dominant coupling of
*Jnp = —24 Hz. In this regime, there is a significant difference between
the convergence error of the QMC solution (cqmc) and the DMEx
solution; however, this error is, on average, only 0.142 + 0.018%. Note
that this analysis is limited to the smallest systems, given the large cost
of iterating the QMC solution, and the error accrued by the DMEx is
negligible on simulation time scale relevant to experimental guidance.

When modeling more complex systems, such as those often
found in SABRE, it is critical for the cost of the DMEx to be
augmented with an efficient method for exploring complex inter-
actions, otherwise circumventing the benefits of an infinite-order
treatment by excessive computational costs. In SABRE, these inter-
actions include quantum evolution of multiple species, rebinding of
previously polarized ligands to the activated complex, binding site
competition with spin-inert coligands, and relaxation. We call this
SABRE-specific model the “DMEXFR2” to indicate that free ligand,
rebinding, and relaxation effects are included. The most efficient
way of accomplishing an efficient implementation of exchange is by
expressing the interactions as block diagonal with respect to indi-
vidual manifolds, which we call “manifold-diagonal” for simplicity
and will motivate using the example of SABRE.

In SABRE, we primarily consider two different species: one in
which the hyperpolarization target is bound to the iridium, which
we call “bound species,” and another in solution, which we call “free
species.” Coherent evolution in the manifolds is established by sepa-
rately propagating a bound species density matrix (p,s) and the
dissociated free species density matrix (§s) under their respective
nuclear spin Hamiltonians

3:pss = —il Hys. pys] (32)
3¢Pps = —i[ Fps, Pos] (33)

We begin with the dynamics of the free species. Exchange facili-
tates association of free species to the catalyst (K, zsps), acting on
P s to remove free species from the manifold as they bind the com-
plex, and allows for dissociation of bound ligand K j5pss, adding
species back to the manifold. Both of these exchange processes happen
at the exchange rate of the ligand, ky, with an action scaled propor-
tional to the ratio of theconcentration of the iridium complex to the
free ligand ([Ir]/[S]) to account for the inherent trace normalization
of density matrices. The association operator is then simply

PN Ir] .
Ka,hSpfS = [ ]
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The dissociation operator then deposits an equivalent number of
ligands from the bound species subsystem into the free species sub-
system. For the case where both available binding sites in the iridi-
um complex are exchanging with the target ligand, there are distinct
subsets of the nuclear spins in the bound species (S, and S;), which
may dissociate to join the free species with equal probability. We
average these possibilities to generate the dissociation operator
for the free species, remembering to apply the concentration scaling
factor for exchange between manifolds

P A Ir ~ ~
Kagspes = %(TF{HZSH}PbS + Trm,s,) PbS> (35)

Combining Eqgs. 34 and 35 yields the equation of motion for the
free species with exchange interactions
~ [ A =~ Ul ~ o
o:Pps = —I[Hfs,pfs] +kNm<KdJSPbS_pfS> (36)
where ky = knexp(—Atky/2) and will be used as a notation for
the DMEx rate going forward.

The bound species has two exchange interactions: one for the
simultaneous exchange of a ligand and the hydrides occurring at
rate of ki and one for the exchange of target ligands at a rate of
ky — kp. We will formulate the exchange operator for the bound
species as a single entity, K ., which takes multiple manifolds as
arguments. Hydride exchange is restricted to occur only during
ligand exchanges as the complex form a tetrahydride intermediate
to facilitate this reaction. In the case where both parahydrogen and
ligand exchange occur concurrently, we exchange the portion
Atk an/ kn) of Pos to reflect the new hydride population and new
ligand population. This may be written as

Kar\ . ~ A
<~LH> Ppt, @ Prs @ Trim, sy Pos (37)

kn

where Py, is the density matrix for pure singlet parahydrogen and
Trm,, s returns the density matrix for the ligand that remains bound.
In the case where the hydrides do not exchange but the target ligand
does, another portion of the density matrix A#((1 — k )/ k y) must
be reformulated to reflect the newly exchanged ligand

Ea,H A A
<1 _E—N> TrisiPps ® Prs

where T'ris)Pps is the density matrix for the subsystem of the remain-
ingligand and parahydrogen. This projection must be constructed
carefully to ensure that the coherences are appropriately retained
between the hydrides and remaining ligand. Note that while we
are exchanging between the free and bound species subsystems, the
scaling factor is not needed as the free species density matrix is, by
definition, trace normalized. Therefore, one free ligand equivalent
leaving the free species will look like one free ligand equivalent asso-
ciating with the bound species. As this free ligand leaves the free species
though, the appropriate reduction in the free species density matrix
must be scaled by the concentration ratios. The full exchange oper-
ators can now be written as a combination of these two components

(38)

PN k N N
Ki(Pos: Prs) = (1 —ELH> Tris) Pos ® Prs
N

AR ~ A
+ <I€LH> Pot, ® Prs ® Trim, 5 Pbs (39)
N
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Fig. 4. Importance of modeling SABRE systems using complete models. (A) To reduce computational overhead, virtually all calculations to date remove ancillary spins
from the system, such as artificially reducing the number of protons on the pyridines in the bis-('>N) SABRE complex from 10 to 2 (A). Doing so alters the hyperpolarization
dynamics (blue) as compared to the explicit 14-spin calculation (black), which is stable using the DMExFR2 models for step sizes even up to 5 ms (red). (B) Fitting the
14-spin calculated time evolution with this smaller model produces incorrect values of the exchange rates. (C) Including all relevant exchange pathways when modeling
SABRE systems is also crucial for predicting accurate exchange parameters. Here, we fit the experimental (°N,"3C)-acetonitrile hyperpolarization dynamics to DMExFR2
models with (solid) and without (dashed) coligand exchange effects. When neglecting these exchange pathways, the predicted exchange rates differ from the correct

values by 44 to 92%.

The two possible ligand exchanges from the two available bind-
ing sites, a and b, then average together to give the final exchange
operator for the bound species

Rex = %(I?{sa} + f{sb}) (40)

Note that Eqgs. 35 and 40 contains terms that are quadratic in the
magnetization density, arising from the effects of rebinding ligands
that have already interacted with the species. Hence, this is a second-
order nonlinear partial differential equation, which must be solved
simultaneously with the equation of motion for the free species to
define the full evolution of the system.

Furthermore, these nonlinearities are amplified as the ratio in-
creases. It now becomes possible to efficiently represent the impact
of concurrent evolution of the J-coupling networks in the free and
bound species of the target ligand. In addition, we can now model
the effects that various solution compositions will have on the
polarization dynamics, given that rebinding of previously polarized
ligand will significantly affect the evolution of the bound species
under the nuclear spin Hamiltonian.

Even with the incorporation of the nonlinear terms to the DMEXx,
the solution convergence is still far faster than that of the traditional
implementation (Fig. 3C), and the two models still converge in the
limit when At — dt. One can obtain the same error in the DMExFR2

Lindale et al., Sci. Adv. 2020; 6 : eabb6874 7 August 2020

with a step size that is four times larger than the traditional im-
plementation. While we have focused on the accuracy of the simu-
lation, its precision in reproducing input parameters, such as
the exchange rate, are just as important, particularly as these
models are used to extract physical parameters from experimental
data. Under this condition, it is not only critical that the simulation
is stable but also efficient, as large portions of phase space have to be
searched to perform an experimental fit. To characterize the pre-
cision of the simulation, we introduce the parameter oy, which
defines the relative shift in the predicted exchange rate in the
simulation (Fig. 3D). Unexpectedly, there was essentially no
exchange rate at which the traditional implementation provided a
solution that was stably precise. In contrast to that, the DMEx
model essentially perfectly reproduces the input exchange rate
until k &~ 300 s™', and when nonlinearities are introduced to the
simulation, the maximum deviation from the input exchange rate is
only ox = 0.5%.

Practical examples

As noted previously, guided in silico exploration of novel experi-
mental methods that increase the hyperpolarization of SABRE is the
focus of optimization efforts in the community. With the improved
stability of the DMEx models, it is possible to explore realistic sys-
tems with complex coupling networks and reduce the calculation to
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an obtainable cost by using large simulation step sizes (At > 1 ms).
The flexibility of this formulation to be expressed in either Hilbert
or Liouville space additionally provides access to much larger spin
systems than previously possible.

The case of the canonical bis-(lSN-pyridine) SABRE-SHEATH
system is particularly interesting, as it contains 14 strongly coupled
spins in just the “iridium-bound” manifold with 22 total spins and
is perhaps the most prevalent system in '°’N SABRE. As the full
system is far outside the scope of previous exchange models for
SABRE, it has been traditionally acceptable to truncate the spin sys-
tem to an approximate system, fully or partially removing ancillary
"H nuclei, with the largest approximation reported in literature using
a single 'H per ligand (4). Even in this case, the dynamics of the
truncated model diverge greatly from the actual system dynamics
(Fig. 4A), the latter which can be explicitly calculated using the
DMEXFR2 model with either 2-ms (black) or 5-ms (red) step sizes
with only minor deviation between the solutions. As a result, the
truncated model optimizes to exchange rates that are false while re-
taining a deviation of ~10% from the actual system dynamics when
reoptimized to the erroneous rates (Fig. 4B). This means that any
physical parameters extracted from experimental data by the model
will be greatly confounded by the truncation errors inherent to the
formulation.

To empbhasize the efficiency and flexibility of this framework, we
used the DMExFR2 model to fit the coherent hyperpolarization
dynamics of (**N-'3C)-acetonitrile when exciting the sample with
short (milisecond) pulses tuned to a field near the SABRE reso-
nance condition, as described in our prior work (5, 32). Coherent
evolution is then interrogated by varying the resonant pulse length,
which encodes the dynamics in the final polarization detected. This
is a multicomponent SABRE system containing 21 total spins and
requires consideration of hyperpolarization-inactive coligand
effects to accurately describe the dynamics. These effects allow for
additional exchange pathways to influence the dynamics of the sys-
tem. One of the most critical ramifications arising in allowing the
hyperpolarizable ligand to exchange between positions on the com-
plex and thus with which parahydrogen-derived hydride the ligand
is coupled. In the limit of fast exchange, this makes the hydrides
appear equivalent and would prevent the singlet order from being
converted into observable magnetization. When coligand effects are
included (solid lines), the experimental data can be reproduced
with high fidelity to experiment at multiple field conditions
(Fig. 4C), such as when the resonant pulse is B = — 1.65 (red) or
—0.91 uT (blue). Furthermore, the extracted exchange rates for
these datasets are ky = 14.5 + 1.8 s ' and k= 6.00 + 0.75 s for the
B=-1.65uT data and ky = 15.0 + 3.3 s"" and ky; = 4.50 + 0.98 s
for the B=—0.91 uT data. When coligand effects are neglected, the
predicted exchange rates can have errors of 44 to 92%.

Properly simulating this system requires two seven-spin manifolds
for the two conformers of the iridium complex, a five-spin manifold
for the free (°N-'3C)-acetonitrile, and a two-spin manifold for
parahydrogen. Fitting the experimental data would be intractable
within any of the previous formalisms for SABRE dynamics (3, 25)
as a function of the system size. However, when built using the
DMEXFR2 model in conjunction with the manifold-diagonal for-
malism for exchange introduced here, each simulation dataset,
which consists of 32 simulations lasting 30 s using Af = 2 ms,
requires approximately 15 min to calculate, making a grid optimi-
zation fit possible within a day.
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CONCLUSIONS AND OUTLOOK

The foundations of exchange in dynamic quantum systems have
been reassessed and derived in its exact form from infinite-order
perturbation theory. In doing so, the DMEx formalism presented
here accounts for higher moments in the ensemble action that are
omitted from the traditional implementation. The speed and accu-
racy with which complex exchanging spin systems may be modeled
using the DMEx formalism allows for extensive in silico experimenta-
tion and optimization in a way that has previously been inaccessible.
In tandem, we have introduced a manifold-diagonal implementation
for exchange, allowing the simulations of multicomponent systems
with nonlinear exchange dynamics to scale linearly with the dimen-
sion of the composite space. Expressing individual manifolds
in their Hilbert space representation affords efficient simulation of
experimental data with high fidelity.

We anticipate that the results demonstrated here will have a radical
impact on the simulation of complex dynamic systems. In the hyper-
polarization community, the ability to accurately and efficiently
simulate the entire SABRE system should greatly alter the optimi-
zation of the hyperpolarization efficiency. Annealing the DMEx
formalism to state space reduction techniques has the potential to
introduce efficient simulation of systems as large as biomolecules,
offering the possibility to markedly reduce computational time and
improve simulation accuracy using larger time steps. While these
results are presented within the framework of SABRE, they are
immediately applicable to the dynamics of any quantum system
undergoing exchange, provided that the chemical dynamics are at
equilibrium. More broadly, these results demonstrate a method to
encapsulate the coupling between distinguishable ensembles past
the perturbative limit. This has the potential to have a transformative
impact in the field of open quantum system dynamics for applica-
tions like quantum computing, where quantum information loss to
a bath is critical for understanding the limits of the system.

MATERIALS AND METHODS

Coherent SABRE-SHEATH experiments

A sample of (**N,1-13C)-acetonitrile (100 mM), pyridine (33 mM),
and IrIMesCODCI (5 mM; IMes, 1,3-bis(2,4,6-trimethylphenyl)-
imidazol-2-ylidine; COD, 1,5-cyclooctadiene) was prepared in
methanol-d4 and activated by bubbling parahydrogen gas (7 bars)
through the solution. This sample was then bubbled inside of a
solenoid positioned within a triple-layer micrometal shield, which
was stroboscopically pumped between the resonant field condition
(B=-1.650r —0.91 uT) for a given pulse length interleaved with a
nonresonant field of B = — 22.5 uT for 250 ms; this was repeated for
60 s to generate SABRE hyperpolarization. The coherent dynamics
are interrogated by varying the resonant pulse length.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/32/eabb6874/DC1
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